BCD-TO-BINARY/ BINARY-TO-BCD NUMBER CONVERTER

MC4300/MC4000 series

MC4001L,P*

The MC4001 is derived from the XC170/171 128-Bit Read Only Memory. It serves as a basic building block in Binary-to-BCD and BCD-to-Binary converters. Conversion of any length binary or BCD word can be accomplished by interconnecting MC4001 packages. The MC4001 also contains a full adder and subtractor.

Features:

Address times < 45 ns Outputs sink 16 mA Output capacitance < 7.0 pF @ 1.5 V

ENABLE INPUT TRUTH TABLE (POSITIVE LOGIC)

E	E	Q 7	Q6	Q5	Ω4	Ω3	Q2	Q1	QO
0	0	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
1	0	1	. 1	1	1	1	1	1	1
1	1	FUNCTION ENABLED							

"NAND" GATE EQUIVALENT OF BCD-TO-BINARY CONVERTER

L suffix = 16-pin dual in-line ceramic package (Case 620).
P suffix = 16-pin dual in-line plastic package (Case 612).

"NAND" GATE EQUIVALENT OF BINARY-TO-BCD CONVERTER

INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

FAMILY	MC4001 INPUT LOADING FACTOR	MC4001 OUTPUT LOADING FACTOR
MC4000	1.0	5
MC400	1.0	5
MC2000	0.67	5
MC3000	0.7	6
MC7400	1.0	10
MC830	1.15**	11

Note: Differences in MC4000 series loading factors result from differences in specifications for each family.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Supply Voltage	v _{CC}	-0.5 to +7.0	Vdc	
Supply Operating Voltage Range	V _{CC}	4.75 to 5.25	Vdc	
Input Voltage	V _{in}	-0.5 to +5.5	Vdc	
Power Dissipation (Package Limitation) Derate above TA=25°C	PD	625 5.0	mW mW/ ^O C	
Operating Temperature Range	TA	0 to +75	°C	
Storage Temperature Range	T _{stg}	-55 to +125	°C	

ELECTRICAL CHARACTERISTICS (TA = 0 to +75°C)

Characteristic	Symbol	Min	Max	Unit
Address Input Forward Current $(V_A = 0, V_{CC} = 5.0 \text{ Vdc})$	IF	-	1.6	mAdc
Enable Input Forward Current $(V_E = 0, V_{CC} = 5.0 \text{ Vdc})$	IF	-	1.6	mAdc
Address Input Leakage Current (V _A = 5.5 Vdc, V _{CC} = 5.0 Vdc)	IR	-	100	μAdc
Enable Input Leakage Current (V _E = 5.5 Vdc, V _{CC} = 5.0 Vdc)	IR		100	μAdc
Logical "0" Output Voltage (I _{OL} = 16 mAdc, V _{IL} = 0.9 Vdc, V _{IH} = 2.0 Vdc, V _{CC} = 4.75 Vdc)	VOL	-	0.45	Vdc
Logical "1" Output Voltage ($V_{IL} = 0.9 \text{ Vdc}$, $V_{IH} = 2.0 \text{ Vdc}$, $I_{OH} = -0.5 \text{ mAdc}$, $V_{CC} = 4.75 \text{ Vdc}$)	V _{OH}	-	2.5	Vdc
Power Supply Drain Current (Memory Enabled, V _{CC} = 5.25 Vdc)	lpD	4	93	mAdc
(Memory Disabled, V _{CC} = 5.25 Vdc)		-	55	

SWITCHING TIMES ($V_{CC} = 5.0 \text{ Vdc}$, $T_A = +25^{\circ}\text{C}$)

Positive Input Address to Positive Output		t _{A+Q+}	-	45	ns
Negative Input Address to Negative Output	I _{OL} = 10 mA driving	tA-Q-	-	45	ns
Positive Input Address or Enable to Negative Output		tA+Q- or tE+Q-	-	45	ns
Negative Input Address or Enable to Positive Output	30 pF	tA-Q+ or tE-Q+		45	ns

^{**} Applies only when input is being driven by MDTL gate with 2 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6 k ohm pullup resistors reduce drive capability to fan-out of 3.

TYPICAL APPLICATIONS

FIGURE 3 - 4-BIT BINARY ADDER OUTPUT CONVERTED TO BCD

Many functions can be designed from the XC170/171 Read Only Memory. The MC4001 BCD-to-Binary/Binary-to-BCD converter is made from the XC171, which has 2.0 k ohm pullup resistors on the outputs. Through use of a computer-designed metal mask, the truth table shown on the first page of this data sheet is programmed into the Memory by etching out metal links from the device metalization where a logic "1" level must be stored. Logic "0"s are stored where links are not removed.

