HIGH-FREQUENCY CIRCUITS

MONOLITHIC RF/IF/AUDIO AMPLIFIER

 \dots an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -55 to +125°C. (See application note AN 513 for design details.)

- High Power Gain 50 dB typ at 10 MHz
 45 dB typ at 60 MHz
 35 dB typ at 100 MHz
- Wide-Range AGC 60 dB min, dc to 60 MHz
- Low Reverse Transfer Admittance < 10 μmhos typ at 60 MHz
- 6.0 to 15-Volt Operation, Single-Polarity Power Supply

See Packaging Information Section for outline dimensions.

WIDEBAND AMPLIFIER WITH AGC

SILICON EPITAXIAL PASSIVATED

MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit Vdc	
Power Supply Voltage	V+	+18		
Output Supply	V ₅ , V ₆ +18		Vdc	
AGC Supply	VAGC	V+	Vdc	
Differential Input Voltage	Vin	5.0	Vdc	
Power Dissipation (Package Limitation) Derate above T _A = +25°C	PD	680 4.6	mW mW/ ^O C	
Operating Temperature Range	TA	-55 to +125	°C	
Storage Temperature Range	T _{stg}	-65 to +150	°C	

ELECTRICAL CHARACTERISTICS (V⁺ = +12 Vdc, f = 60 MHz, BW = 1.0 MHz, T_A = +25°C unless otherwise noted, see Figure 16 for test circuit.)

Characteristic	Symbol	Min	Тур	Max	Unit
AGC Range, V ₂ = 5.0 Vdc to 7.0 Vdc		60	68	-	dB
Single-Ended Power Gain	Ap	40	45	_	dB
Noise Figure (R _S = 50 ohms)	Nf	_	6.0	-	dB
Output Voltage Swing (Pin 5) Differential Output - 0 dB AGC -30 dB AGC	V ₅	-	14 6.0	-	V _{p-p}
Single-Ended Output - 0 dB AGC -30 dB AGC			7.0 3.0	-	
Output Stage Current (Pins 5 and 6)	15+16	-	5.6	-	mA
Total Supply Power Current (Vout = 0)	ΙD	_	14	17	mAdc
Power Dissipation (V _{in} = 0)	PD	-	168	200	mW

Parameter	Symbol	Тур		
		f = 30 MHz	f = 60 MHz	Unit
Single-Ended Input	911	0.4	0.75	mmhos
Admittance	511	1.2	3.4	
Single-Ended Output	922	0.05	0.1	mmho
Admittance	b22	0.50	1.0	
Forward Transfer	Y21	150	150	mmhos
Admittance (Pin 1 to Pin 5)	021	-45	-105	degrees
Reverse Transfer	912	-0	-0	μmhos
Admittance®	b12	-5.0	-10	

^{*}The value of Reverse Transfer Admittance includes the feedback admittance of the test circuit used in the measurement. The total feedback capacitance including test circuit; is 0.025 pF and is a more practical value for design calculations than the internal feedback of the device alone. (See Figure 5)

ADMITTANCE PARAMETERS (V* = 12 Vdc, T_A = +25°C) SCATTERING PARAMETERS (V* = +12 Vdc, T_A = +25°C, Z_0 = 50 Ω)

		Тур		
Parameter	Symbol	f = 30 MHz	f = 60 MHz	Unit
Input Reflection Coefficient	\$11	0.95	0.93	-
	811	-7.3	-16	degrees
Output Reflection	S ₂₂	0.99	0.98	-
Coefficient	θ ₂₂	-3.0	~5.5	degrees
Forward Transmission	\$21	16.8	14.7	-
Coefficient	021	128	64.3	degrees
Reverse Transmission	S ₁₂	0.00048	0.00092	-
Coefficient	.012	84.9	79.2	degrees

TYPICAL CHARACTERISTICS (V⁺ = 12 Vdc, $T_A = +25^{\circ}C$ unless otherwise noted) FIGURE 4 - FIXED TUNED POWER GAIN versus FIGURE 5 - POWER GAIN versus SUPPLY VOLTAGE TEMPERATURE (See test circuit, Figure 16) (See test circuit, Figure 16) 80 80 70 70 POWER SUPPLY CURRENT (mAdc) 1 = 60 MHz f = 60 MHz 18 60 60 Ap. POWER GAIN (dB) Ap, POWER GAIN (dB) 50 50 Ap 12 40 40 30 30 ID 20 6.0 20 10 10 0 0 2.0 8.0 10 12 -75 -50 +25 +50 +75 +100 +125 +150 +175 V*, POWER SUPPLY VOLTAGE (Vdc) TA, AMBIENT TEMPERATURE (°C) FIGURE 6 - REVERSE TRANSFER ADMITTANCE versus FIGURE 7 - NOISE FIGURE versus FREQUENCY FREQUENCY (See Parameter Table, page 2 of MC1590 specification) 10 Y12, REVERSE TRANSFER ADMITTANCE (umho) 9.0 -40 8.0 NOISE FIGURE (dB) 7.0 -30 6.0 5.0 4.0 -20 ₹ 3.0 -10 2.0 1.0 g12 ≈ 0 0 0 200 50 60 70 80 90 100 150 f, FREQUENCY (MHz) f, FREQUENCY (MHz) FIGURE 8 - SINGLE: ENDED OUTPUT ADMITTANCE FIGURE 9 - SINGLE-ENDED INPUT ADMITTANCE 2.5 10 9.0 Y11, INPUT ADMITTANCE (mmhos) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 922 20 200 20 40 40 200

f, FREQUENCY (MHz)

f, FREQUENCY (MHz)

TYPICAL CHARACTERISTICS (continued)

FIGURE 10 - Y₂₁, FORWARD TRANSFER ADMITTANCE, RECTANGULAR FORM

FIGURE 11 - Y₂₁, FORWARD TRANSFER ADMITTANCE, POLAR FORM

FIGURE 12 — S_{11} and S_{22} , INPUT AND OUTPUT REFLECTION COEFFICIENT

TYPICAL CHARACTERISTICS (continued)

FIGURE 14 - S21, FORWARD TRANSMISSION COEFFICIENT (GAIN)

FIGURE 15 - S₁₂, REVERSE TRANSMISSION COEFFICIENT (FEEDBACK)

TYPICAL APPLICATIONS

FIGURE 16 - 60-MHz POWER GAIN TEST CIRCUIT

- L1 = 7 Turns, #20 AWG Wire, 5/16" Dia., C1,C2,C3 = (1-30) pF 5/8" Long

 L2 = 6 Turns, #14 AWG Wire, 9/16" Dia.,
 3/4" Long C4 = (1·10) pF

FIGURE 17 - VIDEO AMPLIFIER

FIGURE 18 - 30-MHz AMPLIFIER (Power Gain = 50 dB, BW ≈ 1.0 MHz)

- L1 = 12 Turns #22 AWG Wire on a Toroid Core, (T37 6 Micro Metal or Equiv)
 T1: Primary = 17 Turns #20 AWG Wire on a Toroid Core, (T44 6 Micro Metal or Equiv)
- Secondary = 2 Turns #20 AWG Wire

FIGURE 19 - 100-MHz MIXER

L2 = 16 Turns, #20 AWG Wire on a Toroid Core, (T44-6 Micro Metal or Equiv)

TYPICAL APPLICATIONS (continued)

FIGURE 20 - TWO-STAGE 60 MHz IF AMPLIFIER (Power Gain \approx 80 dB, BW \approx 1.5 MHz)

T1: Primary Winding = 15 Turns, #22 AWG Wire, 1/4" ID Air Core Secondary Winding = 4 Turns, #22 AWG Wire, Coefficient of Coupling ≈ 1.0 T2: Primary Winding = 10 Turns, #22 AWG Wire, 1/4" 1D Air Core Secondary Winding = 2 Turns, #22 AWG Wire, Coefficient of Coupling ≈ 1.0

FIGURE 21 - SPEECH COMPRESSOR

