MULTI-PURPOSE REGULATORS # MC1566L MC1466L ## MONOLITHIC VOLTAGE AND CURRENT REGULATOR This unique "floating" regulator can deliver hundreds of volts — limited only by the breakdown voltage of the external series pass transistor. Output voltage and output current are adjustable. The MC1466/MC1566 integrated circuit voltage and current regulator is designed to give "laboratory" power-supply performance. - Voltage/Current Regulation with Automatic Crossover - Excellent Line Voltage Regulation, 0.01% +1.0 mV - Excellent Load Voltage Regulation, 0.01% +1.0 mV - Excellent Current Regulation, 0.1% +1.0 mA - Short-Circuit Protection - Output Voltage Adjustable to Zero Volts - Internal Reference Voltage - Adjustable Internal Current Source # PRECISION WIDE-RANGE VOLTAGE and CURRENT REGULATOR EPITAXIAL PASSIVATED ### TYPICAL APPLICATIONS ### MAXIMUM RATINGS (T_A = +25°C unless otherwise noted) | Rating | | Symbol | Value | Unit | |--|------------------|-------------------------------------|-------------------------|--------------------------| | Auxiliary Voltage | MC1466
MC1566 | V _{aux} | 30
35 | Vdc | | Power Dissipation (Package Limitation) Denate above $T_A = +50^{\circ}C$ | | P _D
1/ _{∂JA} | 750
6.0 | mW
mW/ ^o C | | Operating Temperature Range | MC1466
MC1566 | TA | 0 to +75
-55 to +125 | °C | | Storage Temperature Range | | T _{stq} | -65 to +150 | °C | ### **ELECTRICAL CHARACTERISTICS** ($T_A = +25^{\circ}C$, $V_{aux} = +25$ Vdc unless otherwise noted) | Characteristic Definition | Characteristic | | Symbol | Min | Тур | Max | Units | |--|---|--|-------------------------------------|------------|------------------------|--------------|-------| | | Auxiliary Voltage (See Notes 1 8
(Voltage from pin 14 to pin 7) | 2)
MC1466
MC1566 | V _{aux} | 21
20 | = | 30
35 | Vdc | | 28/2222 V _{III} Q OR EQUIV V _{BJX} 13 MC1466 VC1565 11 | Auxiliary Current | MC1466
MC1566 | laux | | 9.0
7.0 | 12
8.5 | mAdc | | | Internal Reference Voltage
(Voltage from pin 12 to pin 7) | MC1466
MC1566 | VIR | 17.3
18 | 18.5
18.5 | 19.7
19 | Vdc | | 7 8 3 8 2 170
10 10 10 10 10 10 10 10 10 10 10 10 10 1 | Reference Current (See Note 3) | MC1466
MC1566 | l _{ref} | 0.8
0.9 | 1.0
1.0 | 1.2
1.1 | mAdc | | 10, F = \$55 x 1 1% C ₀ | Input Current-Pin 8 | MC1466
MC1566 | 18 | - | 6.0
3.0 | 12
6.0 | μAdc | | | Power Dissipation | MC1466
MC1566 | PD | - | = | 360
300 | mW | | | Input Offset Voltage, Voltage Co
Amplifier (See Note 4) | ntrol
MC1466
MC1566 | V _{iov} | 0 | 15
15 | 40
25 | mVdc | | 2 202222
1 2 10 14 20255 12 10 14 | Load Voltage Regulation
(See Note 5) | MC1466
MC1566 | ΔV _{iov} | | 1.0
0.7 | 3.0
1.0 | mV | | | | MC1466
MC1566 | ΔV _{ref} /V _{ref} | - | 0.015
0.004 | 0.03
0.01 | % | | 7 8 3 9 7 120 R4 5.5 k | Line Voltage Regulation
(See Note 6) | MC1466
MC1566 | ΔV _{iov} | | 1.0
0.7 | 3.0
1.0 | mV | | 1-1-1 10 8.55 k ± 1% 18 k 1.0 k | | MC1466
MC1566 | ΔV _{ref} /V _{ref} | - | 0.015
0.004 | 0.03
0.01 | % | | 10 P | Temperature Coefficient of Outp
$(T_A = 0 \text{ to } +75^{\circ}\text{C})$
$(T_A = -55 \text{ to } +25^{\circ}\text{C})$
$(T_A = +25 \text{ to } +125^{\circ}\text{C})$ | ut Voltage
MC1466
MC1566
MC1566 | TC _{Vo} | 1 1 1 | 0.01
0.006
0.004 | | %/°C | | 14 5 1.2 k 10 pF 201272 2 | Input Offset Voltage, Current Co
Amplifier (See Note 4)
(Voltage from pin 10 to pin 11) | ntrol
MC1466
MC1566 | Vioi | 0
3.0 | 15
15 | 40
25 | mVdc | | 7 8 3 9 2 10 83 F ₂ 5 125 125 125 125 125 125 125 125 125 1 | Load Current Regulation
(See Note 7) | MC1466
MC1566 | ΔΙ <u></u> | | | 0.2
0.1 | % | | R ₇ 10 C ₀ R ₁ S ₂ V ₀ O C ₀ R ₁ S ₂ V ₀ O C ₀ R ₁ S ₂ S ₂ S ₂ S ₂ S ₃ S ₄ S ₄ S ₅ S ₂ S ₂ S ₃ S ₄ S ₄ S ₅ | | MC1466
MC1566 | ΔI _{ref} | - | - | 1.0 | mAdc | ### MC1566L, MC1466L (continued) ### NOTE 1: The instantaneous input voltage, $V_{\rm aux}$, must not exceed the maximum value of 30 Volts for the MC1466 or 35 Volts for the MC1566. The instantaneous value of $V_{\rm aux}$ must be greater than 20 Volts for the MC1566 or 21 Volts for the MC1466 for proper internal regulation. The auxiliary supply voltage V_{aux}, must "float" and be electrically isolated from the unregulated high voltage supply, VIN ### NOTE 3: Reference current may be set to any value of current less than 1.2 mAdc by applying the relationship: $I_{ref \ (mA)} = \frac{8.55}{81}(k\Omega)$ $$I_{ref (mA)} = \frac{8.55}{B_1 (k\Omega)}$$ ### NOTE 4: A built-in offset voltage (15 mVdc nominal) is provided so that the power supply output voltage or current may be adjusted to zero. Load Voltage Regulation is a function of two additive components, ΔV_{iov} and ΔV_{ref} , where ΔV_{iov} is the change in input offset voltage (measured between pins 8 and 9) and ΔV_{ref} is the change in voltage across R2 (measured between pin 8 and ground). Each component may be measured separately or the sum may be measured across the load. The measurement procedure for the test circuit shown is: - a. With S1 open ($I_4 = 0$) measure the value of V_{iov} (1) and Vref (1) - b. Close S1, adjust R4 so that $I_4 = 500 \mu A$ and note Viov (2) and Vref (2). - Then $\Delta V_{iov} = V_{iov}(1) V_{iov}(2)$ - % Reference Regulation = $$\frac{[V_{ref(1)} - V_{ref(2)}]}{V_{ref(1)}} (100\%) = \frac{\Delta V_{ref}}{V_{ref}} (100\%)$$ ### Load Voltage Regulation = $$\frac{\Delta V_{ref}}{V_{ref}}$$ (100%) + ΔV_{iov} ### NOTE 6: Line Voltage Regulation is a function of the same two additive components as Load Voltage Regulation, ΔV_{iov} and ΔV_{ref} (see note 5). The measurement procedure is: - a. Set the auxiliary voltage, V_{aux}, to the minimum specified value of 20 Volts for the MC1566 and 21 Volts for the MC1466. Read the value of V_{iov} (1) and V_{ref} (1). - b. Change the V_{aux} to 35 Volts for the MC1566 or 30 Volts for the MC1466 and note the value of V_{iov} (2) and Vref (2). Then compute Line Voltage Regulation: $$\Delta V_{iov} = \Delta V_{iov} (1) - V_{iov} (2)$$ % Reference Regulation = $$\frac{[V_{\text{ref}}(1) - V_{\text{ref}}(2)]}{V_{\text{ref}}(1)} (100\%) = \frac{\Delta V_{\text{ref}}}{V_{\text{ref}}} (100\%)$$ Line Voltage Regulation = $$\frac{\Delta V_{ref}}{V_{ref}} (100\%) + \Delta V_{iov}$$ ### NOTE 7: Load Current Regulation is measured by the following procedure: - a. With S2 open, adjust R3 for an initial load current, IL(1), such that Vo is 8.0 Vdc. - b. With S2 closed, adjust R \uparrow for V_0 = 1.0 Vdc and read IL(2). Then Load Current Regulation = $$\frac{[I_L(2) - I_L(1)]}{I_L(1)} (100\%) + I_{ref}$$ where I_{ref} is 1.0 mAdc, Load Current Regulation is specified in this manner because I_{ref} passes through the load in a direction opposite that of load current and does not pass through the current sense resistor, Rs. ### TYPICAL CIRCUIT CONNECTION ### NORMAL DESIGN PROCEDURE AND DESIGN CONSIDERATIONS 1. Constant Voltage: For constant voltage operation, output voltage Vo is given by: $V_0 = (I_{ref}) (R_2)$ where R2 is the resistance from pin 8 to ground and Iref is the output current of pin 3. The recommended value of Iref is 1.0 mAdc. Resistor R1 sets the value of Iref: where R1 is the resistance between pins 2 and 12. 2. Constant Current: For constant current operation: - (a) Select R_s for a 250 mV drop at the maximum desired regulated output current, I max. - (b) Adjust potentiometer R3 to set constant current output at desired value between zero and I max. - 3. If V_{in} is greater than 20 Vdc, CR2, CR3, and CR4 are necessary to protect the MC1466/MC1566 during short-circuit or transient - In applications where very low output noise is desired, R2 may be bypassed with C1 (0.1 μF to 2.0 μF). When R2 is bypassed. CR1 is necessary for protection during short-circuit conditions. - 5. CR5 is recommended to protect the MC1466/MC1566 from simultaneous pass transistor failure and output short-circuit. - The RC network (10 pF, 240 pF, 1.2 k ohms) is used for compensation. The values shown are valid for all applications. However, the 10 pF capacitor may be omitted if f_T of Q1 and Q2 is greater than 0.5 MHz. - 7. For remote sense applications, the positive voltage sense terminal (pin 9) is connected to the positive load terminal through a separate sense lead; and the negative sense terminal (the ground side of R2) is connected to the negative load terminal through a separate sense lead. - 8. Co may be selected by using the relationship: $C_{0} = (100~\mu F)~I_{L}(max)$, where $I_{L}(max)$ is the maximum load current in amperes. - C2 is necessary for the internal compensation of the MC1466/ MC1566. - 10. For optimum regulation, current out of pin 5, 15, should not exceed 0.5 mAdc. Therefore select Q1 and Q2 such that: $$\frac{I_{\text{max}}}{\beta 1 \beta 2} \le 0.5 \text{ mAdc}$$ $$\frac{1}{\beta 1 \beta 2} \le 0.5 \text{ mAdc}$$ $$\frac{1}{\beta 1 \beta 2} \le 0.5 \text{ mAdc}$$ where: I max = maximum short-circuit load current (mAdc) β 1 = minimum beta of Q1 $\beta 2$ = minimum beta of $\Omega 2$ Although Pin 5 will source up to 1.5 mAdc, I $_5$ > 0.5 mAdc will result in a degradation in regulation. 11. CR6 is recommended when $V_{\rm Q}$ > 150 Vdc and should be rated such that Peak Inverse Voltage > $V_{\rm Q}$.