DUAL OPERATIONAL AMPLIFIERS #### **OPERATIONAL AMPLIFIERS** ### MC1435 . . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extermely high gain is required with excellent stability. #### **Typical Amplifier Features:** - ◆ High Open Loop Gain Characteristics AVOL = 7,000 typical - Low Temperature Drift ±10 μV/^OC - Large Output Voltage Swing ±3.6 V typ @ ±6.0 V supply - Low Input Offset Voltage − 1.0 mV - Low Input Noise Voltage 0.5 μV #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | | |---|---|--|-------------------------------------|--| | Power Supply Voltage | V+
V- | +9. 0
-9. 0 | Vdc
Vdc | | | Differential Input Signal | v _{in} | ±5.0 | Volts | | | Common Mode Input Swing | n Mode Input Swing CMV _{in} +5.0 | | Volts | | | Output Short Circuit Duration | t _s | Continuous | | | | Power Dissipation (package limitation)
Metal Can
Derate above 25°C
Flat Package
Derate above 25°C
Plastic Package
Derate above 25°C | P _D | 680
4.6
500
3.3
400
3.3 | mW
mW/°C
mW/°C
mW
mW/°C | | | Operating Temperature Range* | T _A | 0 to + 75 | °C | | | Storage Temperature Range
Metal Can and Flat Package
Plastic Package | T _{stg} | -65 to +150
-65 to +125 | °C | | ^{*}For full temperature range (-55°C to +125°C) and characteristic curves, see MC1535 data sheet. #### **CIRCUIT SCHEMATIC** #### **EQUIVALENT CIRCUIT** ## MC1435 (continued) ELECTRICAL CHARACTERISTICS (Each Amplifier) (V⁺ = +6.0Vdc, V⁻ = -6.0Vdc, T_A = 25°C unless otherwise noted) | Characteristic Definitions (linear operations) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|---|--|--------------|-------------|--------------|-------------------| | A _{VOL} = ^e out e _{in} | Open Loop Voltage Gain (T _A = 0°C to +75°C) | A _{VOL} | 3,500
71 | 7,000
77 | | V/V
dB | | e _{in} Z _{out} | Output Impedance
(f = 20 Hz) | z _{out} | - | 1.7 | _ | kΩ | | Ţ | Input Impedance
(f = 20 Hz) | Z _{in} | 10 | 45 | - | kΩ | | | Output Voltage Swing ($R_L = 10 \text{ k}\Omega$) | v _{out} | 5. 0 | 7. 0 | - | v _{p-p} | | AVCM = $\frac{e_{out}}{e_{in}}$ | Input Common Mode Voltage Swing | CMV _{in} | +3.0
-2.0 | +3.9 | - | V _{peal} | | CM _{rej} = A _{VCM} - A _{VOL} | Common Mode Rejection Ratio | CM _{rej} | 60 | 90 | - | dB | | 120- | Input Bias Current $\left(I_b = \frac{I_1 + I_2}{2}\right), (T_A = +25^{\circ}C)$ $(T_A = 0^{\circ}C)$ | I ^b | - | 1.2 | 5.0 | μ A | | 110 | | | - | 3.6 | 10 | | | 120-4 | Input Offset Current $(I_{10} = I_1 - I_2)$ $(I_{10} = I_1 - I_2, T_A = 0^{\circ}C)$ | I _{io} | - | 0.05 | 0. 5
1. 5 | μА | | | $(I_{io} = I_1 - I_2, T_A = +75^{\circ}C)$ | | - | - | 1.5 | | | V _{ia} | Input Offset Voltage $(T_A = 25^{\circ}C)$ $R_S = 50\Omega$ | v _{io} | - | 1.0 | 5. 0 | mV | | V _{out} = 0 | $(T_A = 0^{\circ}C \text{ to } + 75^{\circ}C)$ | | - | - | 7. 5 | | | e _{in} R ₂ | Step Response [Gain = 100, 30% overshoot, D. A.7 kg. B. 470 kg. | t _f | - | 0.8 | - | μs | | _/ | $\left\{ \begin{array}{l} R_1 = 4.7 \text{ k}\Omega, \ R_2 = 470 \text{ k}\Omega, \\ R_3 = 150 \ \Omega, \ C_1 = 1,000 \text{ pF} \end{array} \right\}$ | dV _{out} /dt ① | - | 0.1 | - | μs
V/μs | | Tod R1 | | out out | - | 7.0 | - | | | 10% + OUTPUT | Gain = 10, 10% overshoot, | t _f | - | 0.4 | - | μs | | e _{out} 50% | $\left\{ \begin{array}{l} R_1 = 47 \text{ k}\Omega, \ R_2 = 470 \text{ k}\Omega, \\ R_3 = 47 \ \Omega, \ C_1 = 0.01 \ \mu\text{F} \end{array} \right\}$ | dv _{out} /dt ① | - | 0.3
4.0 | - | μs
V/μs | | 90% R ₃ | Gain = 1, 5% overshoot, | $t_{\mathbf{f}}$ | - | 0.5 | - | μs | | OVERSHOOT V+ | $R_1 = 47 \text{ k}\Omega, R_2 = 47 \text{ k}\Omega$ | t _{pd} | - | 0.25 | - | μs | | SLEW RATE | $R_3 = 4.7 \Omega, C_1 = 0.1 \mu F$ | dV _{out} /dt ① | - | 0.67 | - | V/μs | | | Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \Omega, T_A = 0^{\circ}C \text{ to } +75^{\circ}C)$ | ${ t TC}_{ extsf{V}io}$ | - | 3.0 | - | μ ۷/° C | | | Average Temperature Coefficient of
Input Offset Current
(T _A = 0°C to +75°C) | TC _{Iio} | | 2 0 | | nA/°C | | | DC Power Dissipation (Power Supply = ± 6.0 V, V _{out} = 0) | P _D | - | 100 | 180 | mW | | $S = \frac{\Delta V_{\text{out}}}{\Delta V_{\text{s}}(A_{\text{VOL}})}$ SENSITIVITY = S | Positive Supply Sensitivity (V constant) | S ⁺ | - | 50 | - | μ V/V | | \$ vot € vout | Negative Supply Sensitivity
(V ⁺ constant) | s ⁻ | - | 100 | - | μ V/V | | ATCHING CHARACTERISTICS | | | | | | | | Same characteristic definitions as shown for each amplifier above. | Open Loop Voltage Gain | A _{VOL1} -A _{VOL2} | | ±1.0 | - | •dB | | as shown for each ampittee above. | Input Bias Current | I _{b1} -I _{b2} | - | ±0.15 | - | $\mu \mathbf{A}$ | | | Input Offset Current | I _{io1} -I _{io2} | - | ±0.02 | - | μΑ | | | Average Temperature Coefficient | TC _{lio1} -TC _{lio2} | | ±0.1 | - | nA/°C | | | Input Offset Voltage | $v_{io1}^{-}v_{io2}^{-}$ | - | ±0.1 | - | mV | | | Average Temperature Coefficient | TC _{Vio1} -TC _{Io2} | | ±0.5 | | μ V /°C | | | Channel Separation (See Fig. 10)
(f = 10 kHz) | e _{out 1}
e _{out 2} | - | -60 | - | dB . | ① dV_{out}/dt = Slew Rate #### TYPICAL OUTPUT CHARACTERISTICS V^{+} = +6.0 Vdc, V^{-} = -6.0 Vdc, T_{A} = 25°C FIGURE 1 - TEST CIRCUIT | FIGURE
NO. | CURVE
NO. | VOLTAGE
GAIN | TEST CONDITIONS | | | | OUTPUT | | |---------------|--------------|-----------------|-----------------|--------------------|---------------------|--------------------|---------------------|----------| | | | | $R_1(\Omega)$ | R ₂ (Ω) | C ₁ (pF) | R ₃ (Ω) | C ₂ (pF) | (mV rms) | | 2 | 1 | ſ 100 | 4.7 k | 470 k | 1,000 | 150 | 0 | 1.7 | | | 1 A | lor 100 | 4.7 k | 470 k | 0 | ∞ ∞ | 510 | 2.1 | | | 2 | ſ 10 | 47 k | 470 k | 10,000 | 47 | 1 0 | 1.0 | | | 2A | lor 10 | 47 k | 470 k | l o | ∞ | 5,000 | 2.1 | | | 3 | J 1 | 47 k | 47 k | 100,000 | 4.7 | 0 | 0.12 | | | 3A | lor 1 | 47 k | 47 k | 0 | ∞ | 50,000 | 0.46 | | 3 | | 1 100 | 4.7 k | 470 k | 1,000 | 150 | 0 | 1.7 | | | | or 100 | 4.7 k | 470 k | 0 1 | 00 | 510 | 2.1 | | | 2 | i 10 | 47 k | 470 k | 10,000 | 47 | 0 | 1.0 | | | 2 | or 10 | 47 k | 470 k | i o | ∞ | 5,000 | 2.1 | | | 3 | li t l | 47 k | 47 k | 100,000 | 4.7 | 0 | 0.12 | | | 3 | for 1 | 47 k | 47 k | Ö | ∞0 | 50,000 | 0.46 | | 4 | | I AVOL | 100 | ∞ | 1,000 | 150 | 0 | 8.1 | | ' ' | 1 | or AVOL | 100 | ∞ | 0 | ∞ | 510 | 8.1 | | | 2 | 1 AVOL | 100 | ∞0 | 10,000 | 47 | 0 | 5.5 | | - 1 | 4 | or AVOL | 100 | ∞ | 0 | ∞ | 5,000 | 5.5 | | | 3 | AVOL | 100 | ∞ ∞ | 100,000 | 4.7 | 1 0 | 4.4 | | | 3 | lor AVOL | 100 | ∞ | 0 | ∞ | 50,000 | 4.4 | FIGURE 2 – LARGE SIGNAL SWING versus FREQUENCY FIGURE 3 - VOLTAGE GAIN versus FREQUENCY FIGURE 4 — OPEN LOOP VOLTAGE GAIN versus FREQUENCY FIGURE 5 — INPUT OFFSET VOLTAGE versus TEMPERATURE #### MC1435 (continued) FIGURE 9 – OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE # FIGURE 10 — INDUCED INPUT SIGNAL (CHANNEL SEPARATION) versus FREQUENCY Induced input signal (μV of induced input signal in amplifier #2 per volt of output signal at amplifier #1) $e^{'}_{out_2} = e^{'}_{in_2} \times \frac{R_E}{R_S}$, where $e^{'}_{out_2}$ is the component of e_{out_2} due only to lack of perfect separation between the two amplifiers.