#### **DUAL OPERATIONAL AMPLIFIERS**

#### **OPERATIONAL AMPLIFIERS**

### MC1435

. . . designed for use as summing amplifiers, integrators, or amplifiers with operating characteristics as a function of the external feedback components. Ideal for chopper stabilized applications where extermely high gain is required with excellent stability.



#### **Typical Amplifier Features:**

- ◆ High Open Loop Gain Characteristics AVOL = 7,000 typical
- Low Temperature Drift ±10 μV/<sup>O</sup>C
- Large Output Voltage Swing ±3.6 V typ @ ±6.0 V supply
- Low Input Offset Voltage − 1.0 mV
- Low Input Noise Voltage 0.5 μV

#### MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                                                | Symbol                                    | Value                                  | Unit                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|--|
| Power Supply Voltage                                                                                                                                  | V+<br>V-                                  | +9. 0<br>-9. 0                         | Vdc<br>Vdc                          |  |
| Differential Input Signal                                                                                                                             | v <sub>in</sub>                           | ±5.0                                   | Volts                               |  |
| Common Mode Input Swing                                                                                                                               | n Mode Input Swing CMV <sub>in</sub> +5.0 |                                        | Volts                               |  |
| Output Short Circuit Duration                                                                                                                         | t <sub>s</sub>                            | Continuous                             |                                     |  |
| Power Dissipation (package limitation)<br>Metal Can<br>Derate above 25°C<br>Flat Package<br>Derate above 25°C<br>Plastic Package<br>Derate above 25°C | P <sub>D</sub>                            | 680<br>4.6<br>500<br>3.3<br>400<br>3.3 | mW<br>mW/°C<br>mW/°C<br>mW<br>mW/°C |  |
| Operating Temperature Range*                                                                                                                          | T <sub>A</sub>                            | 0 to + 75                              | °C                                  |  |
| Storage Temperature Range<br>Metal Can and Flat Package<br>Plastic Package                                                                            | T <sub>stg</sub>                          | -65 to +150<br>-65 to +125             | °C                                  |  |

<sup>\*</sup>For full temperature range (-55°C to +125°C) and characteristic curves, see MC1535 data sheet.

#### **CIRCUIT SCHEMATIC**

#### **EQUIVALENT CIRCUIT**



## MC1435 (continued)

ELECTRICAL CHARACTERISTICS (Each Amplifier) (V<sup>+</sup> = +6.0Vdc, V<sup>-</sup> = -6.0Vdc, T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic Definitions (linear operations )                                         | Characteristic                                                                                                                                          | Symbol                                   | Min          | Тур         | Max          | Unit              |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------------|--------------|-------------------|
| A <sub>VOL</sub> = <sup>e</sup> out e <sub>in</sub>                                     | Open Loop Voltage Gain (T <sub>A</sub> = 0°C to +75°C)                                                                                                  | A <sub>VOL</sub>                         | 3,500<br>71  | 7,000<br>77 |              | V/V<br>dB         |
| e <sub>in</sub> Z <sub>out</sub>                                                        | Output Impedance<br>(f = 20 Hz)                                                                                                                         | z <sub>out</sub>                         | -            | 1.7         | _            | kΩ                |
| Ţ                                                                                       | Input Impedance<br>(f = 20 Hz)                                                                                                                          | Z <sub>in</sub>                          | 10           | 45          | -            | kΩ                |
|                                                                                         | Output Voltage Swing ( $R_L = 10 \text{ k}\Omega$ )                                                                                                     | v <sub>out</sub>                         | 5. 0         | 7. 0        | -            | v <sub>p-p</sub>  |
| AVCM = $\frac{e_{out}}{e_{in}}$                                                         | Input Common Mode Voltage Swing                                                                                                                         | CMV <sub>in</sub>                        | +3.0<br>-2.0 | +3.9        | -            | V <sub>peal</sub> |
| CM <sub>rej</sub> = A <sub>VCM</sub> - A <sub>VOL</sub>                                 | Common Mode Rejection Ratio                                                                                                                             | CM <sub>rej</sub>                        | 60           | 90          | -            | dB                |
| 120-                                                                                    | Input Bias Current $\left(I_b = \frac{I_1 + I_2}{2}\right),  (T_A = +25^{\circ}C)$ $(T_A = 0^{\circ}C)$                                                 | I <sup>b</sup>                           | -            | 1.2         | 5.0          | μ <b>A</b>        |
| 110                                                                                     |                                                                                                                                                         |                                          | -            | 3.6         | 10           |                   |
| 120-4                                                                                   | Input Offset Current $(I_{10} = I_1 - I_2)$ $(I_{10} = I_1 - I_2, T_A = 0^{\circ}C)$                                                                    | I <sub>io</sub>                          | -            | 0.05        | 0. 5<br>1. 5 | μА                |
|                                                                                         | $(I_{io} = I_1 - I_2, T_A = +75^{\circ}C)$                                                                                                              |                                          | -            | -           | 1.5          |                   |
| V <sub>ia</sub>                                                                         | Input Offset Voltage $(T_A = 25^{\circ}C)$ $R_S = 50\Omega$                                                                                             | v <sub>io</sub>                          | -            | 1.0         | 5. 0         | mV                |
| V <sub>out</sub> = 0                                                                    | $(T_A = 0^{\circ}C \text{ to } + 75^{\circ}C)$                                                                                                          |                                          | -            | -           | 7. 5         |                   |
| e <sub>in</sub> R <sub>2</sub>                                                          | Step Response  [Gain = 100, 30% overshoot,  D. A.7 kg. B. 470 kg.                                                                                       | t <sub>f</sub>                           | -            | 0.8         | -            | μs                |
| _/                                                                                      | $\left\{ \begin{array}{l} R_1 = 4.7 \text{ k}\Omega, \ R_2 = 470 \text{ k}\Omega, \\ R_3 = 150 \ \Omega, \ C_1 = 1,000 \text{ pF} \end{array} \right\}$ | dV <sub>out</sub> /dt ①                  | -            | 0.1         | -            | μs<br>V/μs        |
| Tod R1                                                                                  |                                                                                                                                                         | out out                                  | -            | 7.0         | -            |                   |
| 10% + OUTPUT                                                                            | Gain = 10, 10% overshoot,                                                                                                                               | t <sub>f</sub>                           | -            | 0.4         | -            | μs                |
| e <sub>out</sub> 50%                                                                    | $\left\{ \begin{array}{l} R_1 = 47 \text{ k}\Omega, \ R_2 = 470 \text{ k}\Omega, \\ R_3 = 47 \ \Omega, \ C_1 = 0.01 \ \mu\text{F} \end{array} \right\}$ | dv <sub>out</sub> /dt ①                  | -            | 0.3<br>4.0  | -            | μs<br>V/μs        |
| 90% R <sub>3</sub>                                                                      | Gain = 1, 5% overshoot,                                                                                                                                 | $t_{\mathbf{f}}$                         | -            | 0.5         | -            | μs                |
| OVERSHOOT V+                                                                            | $R_1 = 47 \text{ k}\Omega, R_2 = 47 \text{ k}\Omega$                                                                                                    | t <sub>pd</sub>                          | -            | 0.25        | -            | μs                |
| SLEW RATE                                                                               | $R_3 = 4.7 \Omega, C_1 = 0.1 \mu F$                                                                                                                     | dV <sub>out</sub> /dt ①                  | -            | 0.67        | -            | V/μs              |
|                                                                                         | Average Temperature Coefficient of Input Offset Voltage $(R_S = 50 \Omega, T_A = 0^{\circ}C \text{ to } +75^{\circ}C)$                                  | ${	t TC}_{	extsf{V}io}$                  | -            | 3.0         | -            | μ <b>۷/°</b> C    |
|                                                                                         | Average Temperature Coefficient of<br>Input Offset Current<br>(T <sub>A</sub> = 0°C to +75°C)                                                           | TC <sub>Iio</sub>                        |              | 2 0         |              | nA/°C             |
|                                                                                         | DC Power Dissipation (Power Supply = ± 6.0 V, V <sub>out</sub> = 0)                                                                                     | P <sub>D</sub>                           | -            | 100         | 180          | mW                |
| $S = \frac{\Delta V_{\text{out}}}{\Delta V_{\text{s}}(A_{\text{VOL}})}$ SENSITIVITY = S | Positive Supply Sensitivity (V constant)                                                                                                                | S <sup>+</sup>                           | -            | 50          | -            | μ <b>V/V</b>      |
| \$ vot € vout                                                                           | Negative Supply Sensitivity<br>(V <sup>+</sup> constant)                                                                                                | s <sup>-</sup>                           | -            | 100         | -            | μ <b>V/V</b>      |
| ATCHING CHARACTERISTICS                                                                 |                                                                                                                                                         |                                          |              |             |              |                   |
| Same characteristic definitions as shown for each amplifier above.                      | Open Loop Voltage Gain                                                                                                                                  | A <sub>VOL1</sub> -A <sub>VOL2</sub>     |              | ±1.0        | -            | •dB               |
| as shown for each ampittee above.                                                       | Input Bias Current                                                                                                                                      | I <sub>b1</sub> -I <sub>b2</sub>         | -            | ±0.15       | -            | $\mu \mathbf{A}$  |
|                                                                                         | Input Offset Current                                                                                                                                    | I <sub>io1</sub> -I <sub>io2</sub>       | -            | ±0.02       | -            | μΑ                |
|                                                                                         | Average Temperature Coefficient                                                                                                                         | TC <sub>lio1</sub> -TC <sub>lio2</sub>   |              | ±0.1        | -            | nA/°C             |
|                                                                                         | Input Offset Voltage                                                                                                                                    | $v_{io1}^{-}v_{io2}^{-}$                 | -            | ±0.1        | -            | mV                |
|                                                                                         | Average Temperature Coefficient                                                                                                                         | TC <sub>Vio1</sub> -TC <sub>Io2</sub>    |              | ±0.5        |              | μ <b>V</b> /°C    |
|                                                                                         | Channel Separation (See Fig. 10)<br>(f = 10 kHz)                                                                                                        | e <sub>out 1</sub><br>e <sub>out 2</sub> | -            | -60         | -            | dB .              |

① dV<sub>out</sub>/dt = Slew Rate

#### TYPICAL OUTPUT CHARACTERISTICS

 $V^{+}$  = +6.0 Vdc,  $V^{-}$  = -6.0 Vdc,  $T_{A}$  = 25°C

FIGURE 1 - TEST CIRCUIT



| FIGURE<br>NO. | CURVE<br>NO. | VOLTAGE<br>GAIN | TEST CONDITIONS |                    |                     |                    | OUTPUT              |          |
|---------------|--------------|-----------------|-----------------|--------------------|---------------------|--------------------|---------------------|----------|
|               |              |                 | $R_1(\Omega)$   | R <sub>2</sub> (Ω) | C <sub>1</sub> (pF) | R <sub>3</sub> (Ω) | C <sub>2</sub> (pF) | (mV rms) |
| 2             | 1            | ſ 100           | 4.7 k           | 470 k              | 1,000               | 150                | 0                   | 1.7      |
|               | 1 <b>A</b>   | lor 100         | 4.7 k           | 470 k              | 0                   | ∞ ∞                | 510                 | 2.1      |
|               | 2            | ſ 10            | 47 k            | 470 k              | 10,000              | 47                 | 1 0                 | 1.0      |
|               | 2A           | lor 10          | 47 k            | 470 k              | l o                 | ∞                  | 5,000               | 2.1      |
|               | 3            | J 1             | 47 k            | 47 k               | 100,000             | 4.7                | 0                   | 0.12     |
|               | 3A           | lor 1           | 47 k            | 47 k               | 0                   | ∞                  | 50,000              | 0.46     |
| 3             |              | 1 100           | 4.7 k           | 470 k              | 1,000               | 150                | 0                   | 1.7      |
|               |              | or 100          | 4.7 k           | 470 k              | 0 1                 | 00                 | 510                 | 2.1      |
|               | 2            | i 10            | 47 k            | 470 k              | 10,000              | 47                 | 0                   | 1.0      |
|               | 2            | or 10           | 47 k            | 470 k              | i o                 | ∞                  | 5,000               | 2.1      |
|               | 3            | li t l          | 47 k            | 47 k               | 100,000             | 4.7                | 0                   | 0.12     |
|               | 3            | for 1           | 47 k            | 47 k               | Ö                   | ∞0                 | 50,000              | 0.46     |
| 4             |              | I AVOL          | 100             | ∞                  | 1,000               | 150                | 0                   | 8.1      |
| '   '         | 1            | or AVOL         | 100             | ∞                  | 0                   | ∞                  | 510                 | 8.1      |
|               | 2            | 1 AVOL          | 100             | ∞0                 | 10,000              | 47                 | 0                   | 5.5      |
| - 1           | 4            | or AVOL         | 100             | ∞                  | 0                   | ∞                  | 5,000               | 5.5      |
|               | 3            | AVOL            | 100             | ∞ ∞                | 100,000             | 4.7                | 1 0                 | 4.4      |
|               | 3            | lor AVOL        | 100             | ∞                  | 0                   | ∞                  | 50,000              | 4.4      |

FIGURE 2 – LARGE SIGNAL SWING versus FREQUENCY



FIGURE 3 - VOLTAGE GAIN versus FREQUENCY



FIGURE 4 — OPEN LOOP VOLTAGE GAIN versus FREQUENCY



FIGURE 5 — INPUT OFFSET VOLTAGE versus TEMPERATURE



#### MC1435 (continued)





FIGURE 9 – OUTPUT NOISE VOLTAGE versus SOURCE RESISTANCE





# FIGURE 10 — INDUCED INPUT SIGNAL (CHANNEL SEPARATION) versus FREQUENCY





Induced input signal ( $\mu V$  of induced input signal in amplifier #2 per volt of output signal at amplifier #1)

 $e^{'}_{out_2} = e^{'}_{in_2} \times \frac{R_E}{R_S}$ , where  $e^{'}_{out_2}$  is the component of  $e_{out_2}$  due only to lack of perfect separation between the two amplifiers.