x Freescale Semiconductor, Inc.

als
o

MOTOROLA digitaldna

intelligence everywhere”

8-Bit Software
Development Kit
for Motor Control

Algorithms Library
User's Guide
M68HCO08
Microcontrollers

Rev. 1, 11/2002

MOTOROLA.COM/SEMICONDUCTORS

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

8-Bit Software Development Kit
for Motor Control Algorithms
Library

User’'s Guide

To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://motorola.com/semiconductors/

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. © Motorola, Inc., 2002
DigitalDNA is a trademark of Motorola, Inc. All rights reserved.
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA 3

For More Information On This Product,
Go to: www.freescale.com

http://motorola.com.semiconductors

Freescale Semiconductor, Inc.

Revision History

Revision History

Revision _ Page
Date Level Description Number(s)
July, 2002 N/A Original release N/A
November, 2002 1 Added Section 5. Dead-Time Distortion Correction Algorithm 73

User’s Guide

8-Bit Software Development Kit for Motor Control Algorithms Library

4

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

User’'s Guide — 8-Bit SDK for Motor Control Algorithms Library

Freescale Semiconductor, Inc.

List of Sections

Section 1. Basic Fractional Math Library 13
Section 2. Controllers. 35
Section 3. Motor Control 3-Phase
Wave Generation 49
Section 4. Volts-per-Hertz (V/IHz) Table 65
Section 5. Dead-Time Distortion
Correction Algorithm 73
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA List of Sections 5

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

List of Sections

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

6 List of Sections MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK for Motor Control Algorithms Library

Table of Contents

Section 1. Basic Fractional Math Library

1.1 Contents. e 13
1.2 Introduction. 14
1.3 APIDefinition 14
1.3.1 8-Bit Fractional Math Interface 14
1.3.2 16-Bit Fractional Math Interface 14
1.3.3 Other Function Math Interface 15
1.4 APISpecification. 15
1.5 Function Description. 18
151 add . .. 18
1.5.2 M. 19
1.5.3 T2 20
154 Shl. .. 21
1.5.5 SUD .. 22
1.5.6 udiv_16t08 23
1.5.7 umul _16X8 . .. 24
158 SMUl_16X8 25
1.5.9 SMUl_8 ... 26
1510 sdiv 8. ... 27
1.6 MacroDescription. 28
1.6.1 LIM 28
1.7 Trigonometric Math Functions 29
1.7.1 APIDefinition 29
1.7.2 SINPIXLUT . ..o 30
1.7.3 APl Specification 31
1.7.4 SINPIXLUT 32
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Table of Contents 7

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Table of Contents

2.1
2.2
2.3

2.4

24.1
2.4.2
2.4.3
24.4

Section 2. Controllers

CoNteNntS e 35
Introduction. 35
APIDefinition 35
API Specification. 37
controllerPl_8. 38
controllerPl_Scl_ 8 40
controllerPl_Lim_8........ 43
controllerPl 46

Section 3. Motor Control 3-Phase Wave Generation

3.1
3.2

3.3
3.3.1
3.3.2

3.4
3.4.1

3.4.2
3.4.3

4.1
4.2
4.3

4.4
44.1
4.4.2

User’s Guide

Contents 49
INntroduction. 49
APIDefinitions e 50
Public Interface Function(s) 51
Public Data Structure(s):cc i 52
API Specification. 53
mcgenRippleCancel — DC-Bus Ripple
Cancellation Function 54
mcgen3PhWaveSine — 3-Phase Sine Wave 56
mcgen3PhWaveSine3rdH — 3-Phase Sine
Wave with Third Harmonic 61

Section 4. Volts-per-Hertz (V/Hz) Table

CoNteNntS 65
Introduction. 65
APIDefinitions 65
API Specification. 67
VHZ CREATE_TABLE — Create the V/Hz Table. 68
vhzGetVoltage — Calculate the Phase
Voltage Amplitude.. 69

8-Bit Software Development Kit for Motor Control Algorithms Library

8

Table of Contents MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table of Contents

Section 5. Dead-Time Distortion Correction Algorithm

5.1 Contents. e 73
5.2 Introduction. 73
5.3 Dead-Time Distortion Correction 73
54 APIDefinitions e 80
55 APl Specification. 82
55.1 dtCorrectlnit () - Initialize Dead-Time
Correction Algorithm 82
5.5.2 dtCorrectFull () - Perform Dead-Time
Correction Algorithm 83
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Table of Contents 9

For More Information On This Product,

Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Table of Contents

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

10 Table of Contents MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK for Motor Control Algorithms Library

List of Figures and Tables

Figure Title Page
1-1 Since Wave Generation i, 30
3-1 mcgen3PhWaveSine Data Explanation — Sine

(HNlustration only for Phase A. Phase B and C are

shifted 120x with respectto Phase A). 50
3-2 3-Phase Sine Waves with 3rd Harmonic Injection

Amplitude =2100% 57
3-3 3-Phase Sine Waves with 3rd Harmonic Injection

Amplitude =50% 58
3-4 3-Phase Sine Waves with 3rd Harmonic Injection

Amplitude =2100% 62
3-5 3-phase Sine Waves with 3rd Harmonic Injection

Amplitude =50% 62
4-1 Volt-per-Hertz Characteristics. 70
5-1 Dead-Time Distortion, 74
5-2 Topology of Current Polarity Sensing. 75
5-3 Proposed Current Threshold for Correction Toggling. 78
5-4 Dead-Time Correction State Machine 84
Table Title Page
1-1 Mathematical Function Description 16
1-2 Memory Consumption an Execution Time 17
1-3 sinPIXLUT Parameterst 32
2-1 Controller Function Types 36
2-2 sPlparams Data Structure Members 37
2-3 Memory Consumption and Execution Time 37

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA List of Figures and Tables 11

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

List of Figures and Tables

User’s Guide

Table
2-4
2-5
2-6
2-7
3-1
3-2
3-3
3-4
3-5
3-7
4-2
4-3
5-1
5-3

5-4
5-5

5-7
5-8

5-9

5-10

Title Page
controllerPI_8 Arguments 38
controllerPl_Scl_8arguments 40
controllerPl_Lim_8arguments 43
controllerPlarguments 46
mc_s3PhaseSystem Structure Elements 52
mcgenRippleCancel Arguments 54
mcgenRippleCancel Performance 55
mcgen3PhWaveSine Parameters 56
mcgen3PhWaveSine Performance 59
mcgen3PhWaveSine3rdH Parameters 61
mcgen3PhWaveSine3rdH Performance 63
vhz_sStructure Elements 67
VHZ_CREATE_TABLE Parameters 68
vhzGetVoltage Parameter 69
vhzGetVoltage Performance 70
PWM Values Loaded into Registers PVAL1-PVALG 76
PWM Prescaler 77
Sensing of the Current Polarity and Magnitude
forPhase 1l 79
dtCorrect_s Structure Elements 81
dtCorrectlnit Parameters i 82
dtCorrectlnit Performance 83
dtCorrectFull Parameter 83
Meaning of State Machine Flag Registers
diStateFlagsAB 86
Meaning of State Machine Flag Registers
ditStateFlagsC 86
dtCorrectFull Performance 87

8-Bit Software Development Kit for Motor Control Algorithms Library

12

List of Figures and Tables MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK for Motor Control Algorithms Library

Section 1. Basic Fractional Math Library

1.1 Contents

1.2 Introduction. 14
1.3 APIDefinition 14
1.3.1 8-Bit Fractional Math Interface 14
1.3.2 16-Bit Fractional Math Interface. 14
1.3.3 Other Function Math Interface 15
1.4 APISpecification. 15
1.5 Function Description. 18
151 add . .. 18
1.5.2 M. 19
153 T 20
154 Shl. .. 21
155 SUD . . 22
1.5.6 udiv_16t08 23
1.5.7 UMUL 1BX8 . .o 24
1.5.8 SMUl_16X8 25
159 SMUl_8 ... 26
1510 sdiv 8. ... 27
1.6 MacroDescription. 28
16.1 LIM . e 28
1.7 Trigonometric Math Functions 29
1.7.1 APIDefinition 29
1.7.2 SINPIXLUT . . . 30
1.7.3 APl Specification 31
1.74 SINPIXLUT . ..o 32
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Basic Fractional Math Library 13

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.2 Introduction

The software development kit (SDK) basic fractional math library
performs the basic math for 8-bit and 16-bit fractional values.

1.3 API Definition
This section defines the Application Programming Interface (API).

Required Files:

#include "types.h"
#include "sdkmath.h"

NOTE: The included files must be kept in order.

1.3.1 8-Bit Fractional Math Interface

SByte add _8(SByte x, SByte y)
SByte lim_8(SByte x, SByte limit)
SByte neg_8(SByte x)

SByte shl_8(SByte x, UByte n)
SByte sub_8(SByte SByte y)
SByte sdiv 8(SWord16 X, UByte y)
SWord16 smul_8(SByte x, UByte y)
LIM_S8(x, limit)

1.3.2 16-Bit Fractional Math Interface

SWord16 add(SWordl6 x, SWordl6 y)
SWordl16 Bim(SWordl6 x, SWordl6 Bimit)
SWord16 neg(SWord16 x)

SWord16 shl (SWord16 x, UByte n)
SWord1l6 sub(SWordl6 x, SWordl6 y)
LIM_S16(x, limit)

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

14 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
API Specification

1.3.3 Other Function Math Interface

UWordl16 umul_16x8(UWordl6 x, UByte x)
SWord16 smul_16x8(SWordl6 x, UByte y)
UByte udiv_16to8(UWordl6 x, UWordl6 y)

1.4 API Specification
The following specifies the Application Programming Interface (API).
Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

» out argument means that the parameter value is an output only
from the function.

* inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

Implemented as description:
fc — function in C code
fa — function in assembly code

M — macro
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Basic Fractional Math Library 15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library

Table 1-1. Mathematical Function Description

Function Parameters R(%tlljtr)n Description Notes®
SWord16 add X |in|<-32768..32767> return saturated value

(SWord16 x, SWord16 y) y |in|<32768.32767> | <"32768.32767> | "1y fa
SByte add_8 X |in|<-128..127> return saturated value

(SByte x, SByte y) y |in|<-128..127> <-128..127> (x+y) fa
SWord16 lim X |in) <-32768.32767> <-limit..limit> return limited value fc

(SWord16 x, SWord16 limit) limit | in | <0..32767> "

SByte lim_8 X |in|<-128..127> o _

(SByte x, SByte limit) imit | in | <0..127> <-limit..limit> return limited value fc
SWord16 neg(SWord16 x) X |in |<-32768..32767> | <-32768..32767> | return saturated value -x) fa
SByte neg_8(SByte x) X |in|<-128..127> <-128..127> return saturated value (-x) fa
SWord16 shl X |in |<-32768..32767> return saturated value

(SWord16 x, UByte n) n |in|<o0.16> <-32768.32767> | uonn) fa
SByte shl_8 X |in|<-128..127> return saturated value

(SByte x, UByte n) n |in|<0..8> <-128.127> (x*27n) fa
SWord16 sub X |in |<-32768..32767> return saturated value

(SWord16 x, SWord16 y) y |in|<32768.32767> | <"32768.32767> | " fa

X |in|<-128..127> return saturated value
SByte sub_8(SByte x, SByte y) v |in|<128.127> <-128..127> (x-y) fa
UByte udiv_16to8 X |in|<0..65535> N

(UWord16 x, UWord16 y) y |in|<0..65535> <0..255> return 256"x/y fa
UWord16 umul_16x8 X |in|<0..65535> N N

(UWord16 x, UByte y) vy |in|<0.255> <0..65535> return x(L)*y/256+x(H)*y) fc
SWord16 smul_16x8 X |in |<-32768..32767> N N

(SWord16 x, UByte y) y |in|<0.255> <-32768..32767> | return x(L)*y/256+x(H)*y) fc
SWord16 smul_8 X |in|<-128..127> N

(SByte x, UByte y) y |in|<0.255> <-32385..32385> | return x*y fc
SByte sdiv_8 X |in|<-32768..32767> i .

(SWord16 x, UByte y) y |in|<0..255> <-128..127> return X7y fe
SWord16 LIM X || <-32768.32767> | _jimit_limit> return limited value M

(SWord16 x, SWord16 limit) limit | in | <0..32767> "

SByte LIM_8 X |in|<-128..127> o -
(SByte x, SByte limit) y |in|<0.127> <-limit..limit> return limited value M
1. fc — function in C code
fa — function in assembly code
M — macro
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
16 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
API Specification

Table 1-2. Memory Consumption an Execution Time

1
Function Name (Bsyitzees) — Clock C.:ycles() :
Minimum Typical®@ Maximum
add 25 58 58 62
add_8 16 34 34 36
lim 64 76 79 94
lim_8 31 45 45 53
neg 12 29 29 38
neg_8 7 20 23 24
shl 46 53 65+n*11 233
shl_8 24 24 31+n*7 86
sub 30 68 68 72
sub_8 16 34 34 36
udiv_16to8 35 44 150 338
umul_16x8 26 76 76 76
smul_16x8 54 83 137 146
smul_8 36 42 87 91
sdiv_8 52 73 85 94

1. The execution time includes both parameters passing and function calls. This is true
because the execution time can be different according to change of parameters passing
time.

2. The typical clock cycles represent time for common parameter values. These are typically
parameters which do not cause any saturation.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Basic Fractional Math Library 17

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.5 Function Description

1.5.1 add
Call(s):
SByte add_8 (SByte x, SByte y);
SWord16 add (SWord16 x, SWordl6 y);
Description:
The add function returns addition of two fractional numbers
result = x +y. The result is limited to the maximum or minimum
fractional values.
Range Issues: None
Example:
SByte x8, y8, z8;
SWord16 x16, yl6, z16;
x8 = 100; y = 30;
x16 = 3400; y = -5200;
z8 = add_8(x8, y8);
z16 = add(x16, yl16);
Result:
z8: 127
z16: -1800
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
18 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Function Description

1.5.2 lim
call(s):
SByte lim 8 (SByte x, SByte limit);
SWord16 Iim (SWord16 x, SWordl6 limit);
Description:
The lim function returns values limited in range specified by limit.
Range Issues:
limit: <0..127> (1im_8)
<0..32767> (lim)
Example:
SByte x8, 1im8, z8;
SWord16 x16, 1iml6, z16;
x8 = 115; 1im8= 100;
x16 = -2456; 1iml6 = 1000;
z8 = 1im_8(x8, y8);
z16 = lim(x16, y16);
Result:
z8: 100
z16: -1000
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Basic Fractional Math Library 19

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.5.3 neg

call(s):

SByte neg_8 (SByte x);
SWord16 neg (SWord16 x)

Description:
The sub function returns the negation of a fractional input result = —x.
The result is limited to the maximum or minimum fractional values.

Range Issues: None

Example:
SByte x8, z8;
SWord16 x16, z16;
X8 = -128;

x16 = 12500;

z8 = neg_8(x8);
z16 = neg(x16);

Result:
z8: 127
z16: -12500
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
20 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Function Description

1.5.4 shl
Call(s):
SByte shl_8 (SByte x, UByte n);
SWord16 shl (SWord16 x, UByte n);
Description:
The sub function returns the value x arithmetical shifted by n bits
result = x * 2". The result is limited to the maximum or minimum
fractional values.
Range Issues:
n : <0..7> (shl_8)
<0..15> (shl)
Example:
SByte x8, z8;
SWord16 x16 z16;
UByte n;
x8 = -108;
x16 = 7000;
n = 2;
z8 = shl_8(x8, n);
z16 = shl(x16, n);
Result:
z8: -128
z16: 28000
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Basic Fractional Math Library 21

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.5.5 sub

call(s):

SByte sub_8 (SByte x, SByte y);
SWord16 sub (SWord16 x, SWordl6 y);

Description:
The sub function returns the subtraction of two fractional numbers
result = x —y. The result is limited to the maximum or minimum
fractional values.

Range Issues: None

Example:
SByte x8, y8, z8;
SWord16 x16, yl6, z16;

x8 = 100; y8 = 30;
x16 = 25400; yl16 = -9200;

z8 = sub_8(x8, y8);
z16 = sub(x16, yl6);

Result:
z8: 70
z16: 32767
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
22 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Function Description

1.5.6 udiv_16to8

call(s):
UByte6 udiv_16to8 (UWord16 x, UWordl6 y);

Description:
Unsigned dividing 16 bit x by high 8 bit from 16 bit y, result = 256*x/y.
Both divisor and dividend are scaled to get high result precision. The
result is saturated at 256 if overflow occurs.

Range Issues:
if y=0 the result is saturated at OXFF

Example:
UByte z8;
UWord16 x16, yl6;

x16=3426 /* 1101 01100010b */
y1l6 =14835 /* 111001 11110011 */

z8 = udiv_16_to _8(x16, yl6);

Result:

z8: 59 /* 13704 (110101 10001000b) / 231 (11100111b) */

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Basic Fractional Math Library 23

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.5.7 umul_16x8

call(s):

UWord16 umul_16x8 (UWord16 x, UByte y);

Description:
Unsigned multiply 16 bit x by 8 bit y, result = x(L) * y/256 + x(H) *y.

Simplified Description:
return x *y / 256

Range Issues: None

Example:
UByte y8;
UWord16 x16, z16;
x16=3426
y8 =148

z16 = umul_16x8(x16, y8);

Result:

z16: 1980

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

24 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

1.5.8 smul_16x8

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Function Description

call(s):

SWord16 smul_16x8 (SWord16 x, UByte y);

Description:
Signed multiply 16 bit signed x by 8 bit unsigned v,
result = x(L) * y/256 + x(H) *y.

Simplified Description:
return x *y / 256

Range Issues: None

Special Issues:
This function uses the absolute value of x. If x = -32768, the value is
limited at —32767. For that reason, the function can return unexpected
results (e.g., 6399 instead of —6400 for x = -32768 and y = 50).

Example:
UByte y8;
SWord16 x16, z16;
x16=-3426
y8 =148

z16 = smul_16x8(x16, y8);

Result:
z16: -1980
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA

Basic Fractional Math Library 25

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.5.9 smul_8
Call(s):
SWord16 smul_8 (SByte x, UByte y);
Description:
Signed multiply 8 bit signed x by 8 bit unsigned y, result = x *y
Range Issues: None
Special Issues:
This function uses the absolute value of x. If the x = -128, the value
is limited at —127. For that reason, the function can return unexpected
result (e.g., —6350 instead of —6400 for x = -128 and y = 50).
Example:
UByte y8;
SByte Xx8;
SWord16 z16;
x8= -100
y8 = 80
z16 = smul_8(x8, y8);
Result:
z16: -8000
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
26 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Function Description

1.5.10 sdiv_8
Call(s):
SByte sdiv_8 (SWord16 x, UByte y);
Description:
Signed division 16 bit signed x by 8 bit unsigned y, result =x/y
Range Issues:
If y = 0 and x is positive, the result is saturated at 127. If y = 0 and x
iS negative the result is saturated at -128.
Example:
UByte y8;
SWord16 x16;
SByte z8;
x16= -8000
y8 = 80
z8 = sdiv_8(x8, y8);
Result:
z8: -100
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Basic Fractional Math Library 27

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.6 Macro Description

1.6.1 LIM
Call(s):
SByte LIM_8 (SByte x, SByte limit);
SWord16 LIM (SWord16 x, SWordl6 limit);
Description:
The lim function returns value limited in range specified by limit.
Range Issues:
limit: <0..127> (LIM_8)
<0..32767> (LIM)
Example:
SByte x8, 1im8, z8;
SWord16 x16, 1iml6, z16;
x8 = 115; 1im8= 100;
x16 = -2456; liml6 = 1000;
z8 = LIM_8(x8, y8);
z16 = LIM(x16, y16);
Result:
z8: 100
z16: -1000
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
28 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Trigonometric Math Functions

1.7 Trigonometric Math Functions

This subsection describes the trigonometric functions, which are
included in 8-bit SDK.

1.7.1 API Definition

This section defines the Application Programming Interface (API).

Required files:

“sin.asm”
“sinlut.asm”

Required includes:
#include ""types.h"
#include "'sin.h"

NOTE: The include files must be kept in this order.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Basic Fractional Math Library 29

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.7.2 sinPIXLUT

Public Interface:

SWord16 sinPIXLUT(UByte amplitude, SWordl6 phase);

Description:
This function calculates the sine value of an argument phase
multiplied by amplitude utilizing the 256 x 8 bit look-up table.

Ox7fff
Actual Phase (n) A

Phase Increment

Actual Phase (n-1)

(DutyCycle.PhaseA) — --------- .

1 .___,..--"0x0000 |
‘ 1
0x8000 = -180° 0 Ox7fff = 180°

Figure 1-1. Since Wave Generation

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

30 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Basic Fractional Math Library
Trigonometric Math Functions

1.7.3 API Specification

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

* out argument means that the parameter value is an output only
from the function.

* inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Basic Fractional Math Library 31

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

1.7.4 sinPIXLUT

call(s):

SWord16 sinPIxXLUT(UByte amplitude, SWordl6 phase);

Table 1-3. sinPIxLUT Parameters

Variable Direction Range Explanation
return out —0x8000..0x7FFF Wave output value (-1..1)
amplitude in 0..0xFF Desired phase voltage amplitude
phase in 0..0xFFFF Actual phase
Description:

The sinPIXLUT function from given amplitude and phase calculates
an immediate value of the sinus. The shape of the generated
waveforms depends on the data stored in the sine table. In motor
control applications data usually describes the pure sinewave of
sinewave with addition of third harmonic component.

Returns:
Sine value multiplied by the required amplitude for the actual phase.

Range Issues:

To ensure proper wave generation, arguments must be within the
following limits:

amplitude must be within the fractional range:

0x00 <= amplitude <= OxFF for 0%..100% of generated sine
amplitude

0x8000 <= phase <= 0x7FF for —100%..100% of sine period
(0Ox8000..0x7FFF)

Execution Time:
Minimum of 75 cycles and maximum 81 cycles including function call

Memory Consumption:
27 bytes

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

32 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Special Issues:
The result is saturated.

Basic Fractional Math Library
Trigonometric Math Functions

Example:
UByte amplitude;
SWord16 phase,sineoutput;

amplitude = 115;
phase = -2456;

sineoutput = sinPIxLUT(amplitude, phase);

Result:

sineoutput: -3392

8-Bit Software Development Kit for Motor Control Algorithms Library

User’s Guide

MOTOROLA

Basic Fractional Math Library

For More Information On This Product,

Go to: www.freescale.com

33

4\ Freescale Semiconductor, Inc.

Basic Fractional Math Library

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

34 Basic Fractional Math Library MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’s Guide — 8-Bit SDK for Motor Control Algorithms Library

2.1 Contents

2.2 Introduction

2.3 API Definition

Section 2. Controllers

2.2 Introduction. 35
2.3 APIDefinition 35
2.4 APl Specification. 37
24.1 controllerPl_8. 38
2.4.2 controllerPl_Scl 8 40
2.4.3 controllerPL_Lim_8....... 43
244 controllerPl 46

This section describes the API for standard controllers (e.g., Pl and PID)
for use in motor control applications in general.

The controller algorithms are used to control motor speed, current, shaft
position, etc. operating in closed loop.

This section defines the API for general controllers.

The header files controller.h and types.h include all required prototypes
and structure/type definitions.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA

Controllers 35

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Controllers

Public Interface Function(s):

SWord16 controllerPl_8(SByte desiredValue, SByte measuredValue,
sPlparams *pParams)

SWord16 controllerPl_Scl _8(UByte scale, SByte desiredvValue, SByte
measuredValue, sPlparams *pParams)

SWord16 controllerPl_Lim 8(SByte desiredvalue, SByte
measuredValue, sPlparams *pParams, SWordl6 NegativePILimit,
SWord16 PositivePILimit)

SWord16 controllerP1(SWord1l6 desiredValue, SWordl6 measuredValue,
sPlparams *pParams)

Controller Function Types:
See Table 2-1.

Table 2-1. Controller Function Types

The function calculates the standard Pl (proportional-integral)
controller. The integral calculation is approximated by using the
Backward Euler method, also known as Backward Rectangular
or right-hand approximation. All variables are saturated.

controllerPIl_8()

The function calculates the standard Pl controller. The integral
calculation is approximated by using the Backward Euler

controllerPl_Scl_8() method, also known as Backward Rectangular or right-hand

approximation. All variables are saturated. The control error is

scaled by 25cale,

The function calculates the standard Pl controller. The integral
calculation is approximated by using Backward Euler method,
also known as Backward Rectangular or right-hand
approximation. The limitations are independently used for
integral portion and controller output and the limits can be set
differently for positive and negative limitation.

controllerPl_Lim 8()

The function calculates the standard PI controller. The integral

calculation is approximated by using Backward Euler method,
controllerPI() also known as Backward Rectangular or right-hand
approximation. All variables are saturated. Both measured and
desired value are SWord16.

Public Data Structure(s):

typedef struct
{

UByte ProportionalGain;

UByte IntegralGain;

SWord16 IntegralPortionK 1;
}sPlparams;

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

36 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Controllers
API Specification

Members:
See Table 2-2.

Table 2-2. sPIparams Data Structure Members

The scaled gain of the proportional

ProportionalGain UByte controller portion

The scaled gain of the integral

IntegralGain UByte controller portion

IntegralPortionK_1 SWord16 The integral portion in k-1 step

2.4 API Specification
This section specifies the exact usage for each API function.

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

* out argument means that the parameter value is an output only
from the function.

* inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

See Table 2-3.

Table 2-3. Memory Consumption and Execution Time

) SIZE Clock Cycles
Function Name
(Bytes) Minimum Typical Maximum
controllerPl_8 168 286 309 341
controllerPl_Scl_8 174 309 353 421
controllerPI_Lim_8 273 382 416 466
controllerPl 221 449 471 511
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Controllers 37

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Controllers

2.4.1 controllerPI_8

This function offers one method to calculate the PI algorithm.

call(s):

SWord16 controllerPl_8(SByte desiredvalue,
SByte measuredValue,
sPlparams *pParams)

Arguments:
See Table 2-4.
Table 2-4. controllerP1_8 Arguments
desiredValue in Desired value
measuredValue in Measured value
Params inout Pointer to variable containing controller

P parameters and the integral portion in k-1 step

Description:

The controllerPl_8 function calculates the PI algorithm according to
the following equations:

The PI algorithm in continuous time domain:

U= Kele(+ Til J;e(f)dt} Equation: 1

The transfer function is shown below:

= 1 17_up) ion-
F(p)= KC[1+TI p} e(p) Equation: 2
The PI algorithm in discrete time domain:

u(k)= K, -e(k)+u(k—1)+ KC._IJ_——.e(k) Equation: 3
e(k)= w(k) —m(k)

The integral is approximated by Backward Euler method, also known
as Backward Rectangular or right - hand approximation. For this
method, 1/p is approximated by u (k)= u(k-1)+T-e(k)

u(k)= up(k) +u,(k)
up(k)= K. -e(k)

uy (k)= u(k—1)+ KCTII -e(k)

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

38 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

where:

e(k) = inputerrorin step k
w(k) = desired value in step k
m(k) = measured value in step k
u(k) = controller output in step k
up(k) = proportional output portion in step k
ui(k) = integral output portion in step k
u(k-1) = integral output portion in step k-1
T = integral time constant
T sampling time
Ke controller gain
t time
p = Laplace variable

Returns:

Controllers

API Specification

The controllerP1_8 function returns the SWord16 value representing

the controller output in step k.

Range Issues: None

Special Issues:

Set proper value to IntegralPortionK_1 before first calling is

recommended.

Example 1. controllerP1_8

#include ""types.h"
#include "controller.h”

void main(void)

{

result -

sPlparams piParams;

SByte desiredvalue, measuredvValue;
SWord16 piOutput;
piParams.ProportionalGain = 34;
piParams. IntegralGain = 25;
piParams. IntegralPortionK_1 = 0;
desiredvalue = 84;

measuredValue = 115;

piOutput = controllerPl_8(desiredvValue, measuredValue, &piParams);

Ploutput: -1829 [(84 - 115) * 25 + (84 - 115) * 34]
piParams. IntegralPortionK_1: -775 [(84 - 115) * 25]

8-Bit Software Development Kit for Motor Control Algorithms Library

User’s Guide

MOTOROLA

Controllers

For More Information On This Product,
Go to: www.freescale.com

39

4\ Freescale Semiconductor, Inc.

Controllers

2.4.2 controllerPIl_Scl_8

This function offers one method to calculate the PI algorithm.

Call(s):
SWord16 controllerPl_Scl 8 (UByte scale, SByte desiredvalue,
SByte measuredvValue, sPlparams
*pParams)
Arguments:
See Table 2-5.
Table 2-5. controllerPl_Scl_8 arguments
scale in ProportionalGain and IntegralGain scale
desiredValue in Desired vaIugProportlonaIGaln and
IntegralGain scale
measuredValue in Measured value
Pointer to variable containing controller
pParams inout parameters and the integral portion in k-1
step
Description:

The controllerP1_Scl_8 function calculates the Pl algorithm according
to the following equations:

The PI algorithm in continuous time domain:

()= Ko+ £ e(oer] Equation: 4

The transfer function is shown below:

= . !’-l :%E) H .
F(p)= K¢ [1+TI p} e(p) Equation: 5

The PI algorithm in discrete time domain:

u(k)= KCAe(k)+u|(k—l)+KCA%Ae(k) Equation: 6

|

e(k)= (27 (w(k)-m(k))
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
40 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Controllers
API Specification

The integral is approximated by Backward Euler method, also known
as Backward Rectangular or right-hand approximation. For this
method, 1/p is approximated by u k)= u,(k=1)+T-e(k)

u(k)= up(k) +u,(k)

up(k)= K, - e(k)

uy (k)= u(k—1)+ KC% -e(k)

where:
e(k) = inputerrorin step k
w(k) = desired value in step k
m(k) = measured value in step k
u(k) = controller output in step k

up(k) = proportional output portion in step k

ui(k) = integral output portion in step k
u(k-1) = integral output portion in step k-1
T = integral time constant
T sampling time
Ke = controller gain
t = time
p = Laplace variable
Returns:

The controllerPI_Scl_8 function returns the SWord16 value
representing the controller output in step k.

Range Issues: None

Special Issues:
Set proper value to IntegralPortionK 1 before first calling is
recommended.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Controllers 41

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Controllers

Example 2. controllerPl_Scl_8

#include '"types.h"
#include "controller.h"

void main(void)

sPlparams piParams;

UByte scale;

SByte desiredvalue, measuredValue;
SWord16 piOutput;
piParams.ProportionalGain = 130;
piParams. IntegralGain = 25;
piParams. IntegralPortionK 1 = 0;

desiredvalue = 84;
measuredValue = 115;
scale = 2

piOutput = controllerPl_Scl_8(scale, desiredvalue, measuredValue, &piParams);

}
result - Ploutput: -19220 [(84 - 115) * 4 * 25 + (84 - 115) * 4 * 34]
piParams. IntegralPortionK_1: -3100 [(84 - 115) * 4 * 25]

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

42 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

2.4.3 controllerPl_Lim_8

Controllers

API Specification

This function offers one method to calculate the PI algorithm.

call(s):

SWordl16 controllerLimPl_Lim 8 (SByte desiredvValue,
SByte MeasuredValue,
sPlparams *pParams,

SWordl16 NegativePILimit,
SWordl16 PositivePILimit)

Arguments:

See Table 2-6.

Table 2-6. controllerPl_Lim_8 arguments

desiredValue

Desired value

measuredValue

Measured value

pParams

Pointer to variable containing controller

parameters and the integral portion in k-1 step

NegativePILimit

Negative limit for controller output and integral portion

PositivePILimit

Positive limit for controller output and integral portion

Description:

The controllerPl_Lim_8 function calculates the Pl algorithm according
to the following equations:

The PI algorithm in continuous time domain:

u(t)= Kc[e(t)+lfe(r)d«.} Equation: 7
TI 0
The transfer function is shown below:
= . i . 1 = !LE) i "

F(p)= K, [1+TI p} T Equation: 8

The PI algorithm in discrete time domain:
u(k)= K. -e(k) +u(k-1) +K;- TI -e(k) Equation: 9

|
e(k)= w(k)—m(k)

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Controllers 43

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Controllers

User’s Guide

The integral is approximated by Backward Euler method, also known
as Backward Rectangular or right-hand approximation. For this
method, 1/p is approximated by u,(k)= u,(k-1)+T-e(k)

u(k)= up(k) +u,(k)
up(k)= K, -e(k)

u(k)= u(k—1) + KC% e (k)

where:
e(k) = inputerrorin step k
w(k) = desired value in step k
m(k) = measured value in step k
u(k) = controller output in step k
up(k) = proportional output portion in step k
ui(k) = integral output portion in step k
u(k-1) = integral output portion in step k-1

T = integral time constant

T = sampling time

Ke = controller gain

t = time

p = Laplace variable
Returns:

The controllerPl_Lim_8 function returns the SWord16 value
representing the controller output in step k.

Range Issues:
Controller output u and integral portion u, are limited
<NegativePILimit .. PositivePILimit>

Special Issues:
Setting proper value to IntegralPortionK_1 before first calling is
recommended.

8-Bit Software Development Kit for Motor Control Algorithms Library

44

Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Controllers
API Specification

Example 3. controllerPl_Lim_8

#include '"types.h"
#include "controllers.h"

void main(void)

#define POSITIVE_LIMIT 1000

#define NEGATIVE_LIMIT -(POSITIVE_LIMIT)
sPIparams piParams;

SByte desiredvalue, measuredvValue;
SWord16 piOutput;
piParams.ProportionalGain = 34;
piParams. IntegralGain = 25;
piParams. IntegralPortionK 1 = 0;
desiredvValue = 84;

measuredValue = 115;

piOutput = controllerPl_Lim _8(desiredvalue, measuredValue, &piParams,
NEGATIVE_LIMIT, POSITIVE_LIMIT);

result - Ploutput: -1000 [(84 - 115) * 25 + (84 - 115) * 34]
piParams. IntegralPortionK 1: -775 [(84 - 115) * 25]

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Controllers 45

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Controllers

2.4.4 controllerPlI

This function offers one method to calculate the PI algorithm.

call(s):

SWordl16 controllerPl (SWordl6 desiredvalue,
SWord16 measuredValue,
sPlparams *pParams

Arguments:
See Table 2-7.
Table 2-7. controllerPl arguments
desiredValue in Desired value
measuredValue in Measured value
. Pointer to variable containing controller parameters
pParams inout . L
and the integral portion in k-1 step
Description:

The controllerPI function calculates the Pl algorithm according to the
following equations:

The PI algorithm in continuous time domain:

_ 1 S
u(t)= Kc[e(t)+_|7|_|-0e(r)dr} Equation: 10
The transfer function is shown below:
= . i . 1 = !LE) i "
F(p)= K, [1+T| p} (p) Equation: 11

The PI algorithm in discrete time domain:
T

u(k)= Kg-e(k) +u(k=1) + K- - e(k) Equation: 12
|
e(k)= w(k) —m(k)
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
46 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Controllers
API Specification

The integral is approximated by Backward Euler method, also known
as Backward Rectangular or right - hand approximation. For this
method, 1/p is approximated by u(k)= u;(k—1)+T-e(k)
u(k)= up(k) +u,(k)
up(k)= K. -e(k)
u (k)= u(k—1) + KCTI-e(k)
|

where:

e(k) input error in step k
w(k) = desired value in step k

m(k) = measured value in step k

u(k) = controller output in step k

up(k) = proportional output portion in step k
ui(k) = integral output portion in step k
u(k-1) = integral output portion in step k-1

T = integral time constant

T sampling time

Ke controller gain

t = time

p = Laplace variable
Returns:

The controllerPI function returns the SWord16 value representing the
controller output in step k.

Range Issues: None

Special Issues:
Setting proper value to IntegralPortionK_1 before first calling is
recommended.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Controllers 47

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Controllers

Example 4. controllerPI

#include '"types.h"
#include "controllers.h"

void main(void)

sPlparams piParams;

SWord16 desiredValue, measuredValue, piOutput;
piParams.ProportionalGain = 34;

piParams. IntegralGain = 25;

piParams. IntegralPortionK 1 = 0;

desiredvValue = 6540;

measuredValue = 6180;

piOutput = controllerPl(desiredvalue, measuredValue, &piParams);

}

result - Ploutput: 82[((6540 - 6180) * 25)/256 + ((6540 - 6180) * 34)/256]
piParams. IntegralPortionK 1: 35 [((6540 - 6180) * 25)/256]

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

48 Controllers MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’s Guide — 8-Bit SDK for Motor Control Algorithms Library

Section 3. Motor Control 3-Phase Wave Generation

3.1 Contents

3.2 Introduction

3.2 Introduction. 49
3.3 APIDefinitions 50
3.3.1 Public Interface Function(s) 51
3.3.2 Public Data Structure(s): ... 52
3.4 APl Specification. 53
34.1 mcgenRippleCancel — DC-Bus Ripple

Cancellation Function 54
3.4.2 mcgen3PhWaveSine — 3-Phase Sine Wave 56
3.4.3 mcgen3PhWaveSine3rdH — 3-Phase Sine

Wave with Third Harmonic 61

This section describes the algorithm for 3-phase sine wave generation
used for general motor control. The signal generated and controlled by
this algorithm is shown in Figure 3-1.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA

Motor Control 3-Phase Wave Generation 49

For More Information On This Product,
Go to: www.freescale.com

A Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

Actual Phase (n) A

Phase Increment

100%

Actual Phase (n—1)

Amplitude

(DUtyCycle.PhaseA) —i—-----

]
|
0x8000 = —-180° 0 Ox7fff = 180°

1--~""8xoooo

Figure 3-1. mcgen3PhWaveSine Data Explanation — Sine
(Illustration only for Phase A. Phase B and C are
shifted 120° with respect to Phase A)

3.3 API Definitions

This section defines the application programming interface (API). The
header files types.h and mcgen.h include all required prototypes and
structure/type definitions. This information is included here for the
programmer’s reference.

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

50 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Definitions

3.3.1 Public Interface Function(s)

i
i
I
|
§
|
|
!
i
:
i
i

Module:
UByte mcgenRippleCancel (UByte Amplitude, UByte u_dc bus)

Description:
Function eliminates the influence of DC bus voltage ripples to generated
phase voltage waveforms.
Arguments: The function has two arguments:
in - Amplitude - desired phase voltage amplitude
in - u_dc bus - voltage in DC bus link

Returns:
UByte - corrected amplitude related to voltage in DC bus link

Range Issues: None

Special Issues: None

Ok X b o o X X b b ok X X X b ok

AEAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAALAAAAAAAAAAALAAAAAAAAAALAAAAAALAAAAAAAAAXK /

UByte mcgenRippleCancel (UByte Amplitude, UByte u dc bus);

:
;
|
|
:
|
|
:
i
:
|
:
|
%

Module:
void mcgen3PhWaveSine(UByte Amplitude, SWordl6 Phase, mc_s3PhaseSystem *pHandle)

Description:
Function calculates an immediate value of the three phase sine wave system
using a sine table. Individual waves are shifted 120 Deg. each other.

Phase = Phase + Phaselnc

PWMA = 0.5 + Amplitude * sin(Phase)

PWB = 0.5 + Amplitude * sin(Phase - 120 deg.)
PWMC = - 0.5 - PWMA - PWMB

Arguments: The function has three arguments:
in - Amplitude - desired wave amplitude
in - Phase - desired phase of system
out - pHandle - pointer to structure of mc_s3PhaseSystem type
which contains the output data three phase system

Range Issues: None

b Gk X X b b o X X b b 3k X X % o o % X X % F

Special Issues: None

B R o L R R T R R R R T T R /

void mcgen3PhWaveSine (UByte Amplitude, SWordl6 Phase, mc_s3PhaseSystem * pHandle);

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Motor Control 3-Phase Wave Generation 51

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

3
%
|
i
|
|
¥
|
|
|
|
|
|
%

Module:
void mcgen3PhWaveSine3rdH(UByte Amplitude, SWordl6 Phase,
mc_s3PhaseSystem *pHandle)

Description:
Function calculates an immediate value of the three phase sine wave system
using a sine table. Individual waves are shifted 120 Deg. each other.

Phase = Phase + Phaselnc

PWMA = 0.5 + Amplitude * 2/sqrt(3) * ((sin(Phase) - 1/6 * sin(3*Phase))

PWB = 0.5 + Amplitude * 2/sqrt(3) * ((sin(Phase - 120 deg) - 1/6 * sin(3*Phase))

PWC = 0.5 + Amplitude * 2/sqrt(3) * ((sin(Phase + 120 deg) - 1/6 * sin(3*Phase))
Arguments: The function has three arguments:

in - Amplitude - desired wave amplitude

in - Phase - desired phase of system

out - pHandle - pointer to structure of mc_s3PhaseSystem type

which contains the output data three phase system
Range Issues: None

Special Issues: None

Ok % b b ok X X b b o X X X o o % X X % b % X X

FEAEAIXAAAAXAXAX AL AKX AXAAXAAAAAAXAAXAAXAAXA AL AXAALAALAALAALAAAAAXAAAAAAXAAXAALAALTALAALAAhITdhAdhAdhAdhiix /

void mcgen3PhWaveSine3rdH(UByte Amplitude, SWordl6 Phase,
mc_s3PhaseSystem * pHandle);

3.3.2 Public Data Structure(s):

Data structure mc_s3PhaseSystenm is defined in types.h header file. See
Table 3-1.

typedef struct
{

SWord16 PhaseA;

SWord16 PhaseB;

SWordl16 PhaseC;
} mc_s3PhaseSystem;

Table 3-1. mc_s3PhaseSystem Structure Elements

Variable Explanation

PhaseA Percentage of the wave output value for Phase A voltage (0%..100%)

PhaseB Percentage of the wave output value for Phase B voltage (0%..100%)

PhaseC Percentage of the wave output value for Phase C voltage (0%..100%)
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
52 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

3.4 API Specification
This section specifies the exact usege for each API function.
Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

» out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Motor Control 3-Phase Wave Generation 53

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

3.4.1 mcgenRippleCancel — DC-Bus Ripple Cancellation Function

call(s):

UByte mcgenRippleCancel (UByte Amplitude, UByte u dc_bus);

Arguments:
See Table 3-2.

Table 3-2. mcgenRippleCancel Arguments

Amplitude in | Desired phase voltage amplitude
u_dc_bus in | Measured DC-bus voltage
Description:

The function mcgenRippleCancel converts the phase voltage
amplitude (Amplitude) to the sine wave amplitude
(AmplitudeAmplScale) based on the actual value of the DC-bus
voltage (u_dc_bus). This eliminates the influence of DC-Bus voltage
ripple to the generated phase voltage sine wave.

NOTE: Both voltages must be in the same scale.

The conversion coded in this function is described by the following
formula:

AmplitudeAmplScale = Amplitude / (u_dc_bus / 2)
If the numerator (phase voltage amplitude) is greater than or equal to
the denominator (half of the DC-bus voltage), the function returns sine
wave amplitude equal to the maximum UByte value (the generated

phase voltage sine wave amplitude is the maximum available, but still
limited by the level of the DC-bus voltage).

Returns:
UByte value of the sine wave amplitude (AmplitudeAmplScale).

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

54 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

Range Issues:
To ensure proper functionality, arguments must be within specified
limits:
u_dc_bus must be within the range:
0 <= u_dc_bus <=1 for 0% — 100% of maximum voltage
Amplitude must be within the fractional range:
0 <= AmplitudeVoltScale <= 1 for 0% — 100% of maximum
voltage
AmplitudeAmplScale must be within the fractional range:
0 <= AmplitudeAmplScale <= 1 for 0% — 100% of sine
amplitude

All input values must be in interval <0, max. UByte value>

Special Issues:
The mcgenRippleCancel function is intended to be used periodically;
(e.g., called from within a timer interrupt or PWM update interrupt).
This function usually precedes the 3-phase waveform generation
function.

Design/Implementation:

The mcgenRippleCancel function is implemented as a library function
call.

Performance:
See Table 3-3.

Table 3-3. mcgenRippleCancel Performance

Code size 35B

Execution cycles 150 c

Code Examples:

See Example 5". mcgen3PhWaveSine" and Example 6 ".
mcgen3PhWaveSine3rdH"

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Motor Control 3-Phase Wave Generation 55

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

3.4.2 mcgen3PhWaveSine — 3-Phase Sine Wave

call(s):
void mcgen3PhWaveSine (UByte Amplitude,
SWord16 ActualPhase,
mc_s3PhaseSystem *sPhaseVoltage);
Parameters:
See Table 3-4.
Table 3-4. mcgen3PhWaveSine Parameters
Variable Direction Range Explanation
Percentage of the wave output value
PhaseA out 0..0xFFFF for Phase A voltage (0%..100%)
Percentage of the wave output value
Phases out 0..OxFFFF for Phase B voltage (0%..100%)
Percentage of the wave output value
PhaseC out 0..0xFFFF for Phase C voltage (0%..100%)
Amplitude in 0..0xFF Desired phase voltage amplitude
ActualPhase in 0..0xFFFF ActualPhase
Description:

The mcgen3PhWaveSine function from given Amplitude and
ActualPhase calculates an immediate value of the three phase
sinusoidal system:

* Phase A — sPhaseVoltage.PhaseA

* PhaseB — sPhaseVoltage.PhaseB

* Phase C — sPhaseVoltage.PhaseC

The individual waves are shifted 120° from each other. The shape of
the generated waveforms depends on the data stored in the sine
table. In motor control applications, data usually describes the pure

sinewave or sinewave with the addition of a third harmonic
component.

Figure 3-2 shows the duty cycles generated by the
mcgen3PhWaveSine function when the Amplitude is 100%.

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

56 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

Figure 3-3 shows the duty cycles generated by the
mcgen3PhWaveSine function when Amplitude is 50%.

1.0

09 +

0.8 +

0.7 +

0.6

0.5 1

04+

03 +

0.2 1

0.1

0.0

N

1
DutyCycle.PhaseA
DutyCycle.PhaseB
DutyCycle.PhaseC

T

Figure 3-2. 3-Phase Sine Waves with 3rd Harmonic Injection

Amplitude = 100%

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA

Motor Control 3-Phase Wave Generation 57

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

—— DutyCycle.PhaseA
——— DutyCycle.PhaseB

—— DutyCycle.PhaseC
| | [

0.1+

0.0

Figure 3-3. 3-Phase Sine Waves with 3rd Harmonic Injection
Amplitude = 50%

Returns:
Modifies the output structure pointed to by sPhaseVoltage.

Range Issues:

To ensure proper wave generation, arguments must be within the
following limits.
Amplitude must be within the fractional range:

0x00 <= Amplitude <= OxFF for 0%..100% of generated sine
amplitude

The increment (Phaselncrement) of the ActualPhase added to each
function call should be at most 1/16 of whole sine period in order to
generate smooth sinewaves.
0x800 <= ActualPhase <= 0x7FF for — 100%..100% of sine
period (0x8000..0x7FFF)

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

58 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

Special Issues:
The mcgen3PhWaveSine function is intended to be used periodically,
(e.g., called from within a timer interrupt or PWM update interrupt).
The input parameter Phaselncrement must be calculated properly
with respect to the mcgen3PhWaveSine function access period in
order to generate the correct sine wave frequency.

Example:
Access frequency of function mcgen3PhWaveSine based on interrupt
frequency = 4 kHz

Desired generated sine wave frequency = 100 Hz
Phaselncrement must be set to 1638 (65535*100/4000 = 1638)

Design/Implementation:
The mcgen3PhWaveSine is implemented as a library function call.

Performance:
See Table 3-5.

Table 3-5. mcgen3PhWaveSine Performance

. . mcgen3PhWaveSine + Sine
Code size (function) 110 B + 34 B
Code size (table) 256 B
Execution cycles 288 ¢c
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Motor Control 3-Phase Wave Generation 59

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

Example 5. mcgen3PhWaveSine

/***************************‘*‘** /

/* INCLUDE */

V felaiaisialaisisiaiaisiaiaiaisiaiaiaisialainisiaiaiaiaiaiaisiaiaisioiaiaisiaiaisisiaiaioisiaiaiaiaiaiaisialaioiaiaiaiaialaiaiaiaiaiaialasaioie /
#include '"types.h" /* Generic SDK types */

#include "'mcgen.h™ /* Waveform generation library */
/*****WM*M*MMM*W*M*MM*MM*W*M*W /
/* GLOBAL STATIC VARIABLES */

Y felaiaisiaiaisisiaiaioioiaiaisiaiaiaisiaiainisiaiaisialaiaisiaiaisiaiaiaisialaioisiaiaiaiaiaiaiaiaiaiaisialaiaiaiaiaiaiolaiaisiaiaiaiaiasaiaie /

static mc_s3PhaseSystem sPhaseVoltage; /* generated phase voltage
amplitudes passed to PW driver */

static SWordl16 Phaselncr;
static SWordl6 ActualPhase;
static UByte u_dc_bus /* DC - bus voltage */
static UByte u_ramp; /* Output voltage from ripple
cancelation function */
static UByte Amplitude; /* Amplitude of sinewaves
(in % of max. phase voltage ampl.) */
static UByte Voltage; /* desired phase voltage

in the level of dc-bus volt. */

/*********H********H*************************************H********m* /

’* FUNCTION PROTOTYPES */
i i /

void pwn Reload ISR (void); /* PW reload interrupt callback */
void main (void)

/* initialization of PWM driver */

I-Enablelnterruptso; /* Enable ISR */

Phaselncr = 819; /* defines sine frequency */
Amplitude = 128; /* 50% sine amplitude */
while(l); /* endless loop */

}

void pwm Reload ISR (void) /* PW Interrupt subroutine */
ActualPhase += Phaselncrement; /* new value of ActualPhase */
u_ramp = mcgenRippleCancel (Amplitude, u_dc bus);

/* calculates the phase voltages for individual phases */
mcgen3PhWaveSine (u_ramp, ActualPhase, &sPhaseVoltage);

/> call PW Driver function */

}

User’s Guide

8-Bit Software Development Kit for Motor Control Algorithms Library

60

Motor Control 3-Phase Wave Generation

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

3.4.3 mcgen3PhWaveSine3rdH — 3-Phase Sine Wave with Third Harmonic

call(s):

void mcgen3PhWaveSine3rdH (UByte
SWord16

Amplitude,
ActualPhase,

mc_s3PhaseSystem*sPhaseVoltage) ;

Table 3-6. mcgen3PhWaveSine3rdH Parameters

Variable Direction Range Explanation
Percentage of the wave output value
PhaseA out 0.-OxFFFF for Phase A voltage (0%..100%)
Percentage of the wave output value
PhaseB out | 0-OXFFFF | ¢ phase Buoltage (0%..100%)
Percentage of the wave output value
PhaseC out 0. OxFFFF for Phase C voltage (0%..100%)
Amplitude in 0..0xFF Desired phase voltage amplitude
ActualPhase in 0..0xFFFF ActualPhase

Description:

The mcgen3PhWaveSine3rdH function from given Amplitude and
ActualPhase calculates an immediate value of the three phase
sinusoidal system:

* Phase A — sPhaseVoltage.PhaseA
* PhaseB — sPhaseVoltage.PhaseB
* Phase C — sPhaseVoltage.PhaseC

The individual waves are shifted 120° from each other. The shape of
the generated waveforms depends on the data stored in the sine
table. In motor control applications, data usually describes the pure
sinewave or sinewave with addition of third harmonic component.
shows the duty cycles generated by the mcgen3PhWaveSine3rdH
function when Amplitude is 100%.

Figure 3-4 shows the duty cycles generated by the
mcgen3PhWaveSine3rdH function when the Amplitude is 100%.

Figure 3-5 shows the duty cycles generated by the
mcgen3PhWaveSine3rdH function when the Amplitude is 50%.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA

Motor Control 3-Phase Wave Generation 61

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

1st Harmonic A

1st Harmonic B

1st Harmonic B

3rd Harmonic
—— DutyCycle.PhaseA
—— DutyCycle.PhaseB

Figure 3-4. 3-Phase Sine Waves with 3rd Harmonic Injection
Amplitude = 100%

12+ | | 1st Harmonic A
: : 1st Harmonic B
K i B)
| | 1st Harmonic B
1.0 + : : 3rd Harmonic
091 : : DutyCycle.PhaseA
| | DutyCycle.PhaseB
0.8 : : DutyCycle.PhaseC
0.7 1 ! !
06 - NN NN NN e
05 | ‘ \
YN P/ 7 4
03| 1 1
02+ | |
o] 3 3
0.0 ;\//\;\L//\\L/
0 A . .
02+ : :
Figure 3-5. 3-phase Sine Waves with 3rd Harmonic Injection
Amplitude = 50%
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
62 Motor Control 3-Phase Wave Generation MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation
API Specification

Returns:
Modifies the output structure pointed by sPhaseVoltage.

Range Issues:
To ensure proper wave generation, arguments must be within the
following limits:
Amplitude must be within the fractional range:
0x00 <= Amplitude <= OxFF for 0%..100% of generated sine
amplitude

The increment (Phaselncrement) of the ActualPhase added each
function call should be at most 1/16 of whole sine period in order to
generate smooth sinewaves.
0x800 <= ActualPhase <= 0x7FF for -100%..100% of sine period
(0x8000..0x7FFF)

Special Issues:
The mcgen3PhWaveSine3rdH function is intended to be used
periodically (e.qg., called from within a timer interrupt or PWM update
interrupt). The input parameter Phaselncrement must be calculated
properly with respect to the mcgen3PhWaveSine3rdH function
access period in order to generate the correct sine wave frequency.

Example:

Access frequency of function mcgen3PhWaveSine3rdH based on
interrupt frequency = 4 kHz

Desired generated sine wave frequency = 100 Hz
Phaselncrement must be set to 1638 (65535*100/4000 = 1638)

Design/Implementation:

The mcgen3PhWaveSinerdH is implemented as a library function
call.

Performance:

Table 3-7. mcgen3PhWaveSine3rdH Performance

. . mcgen3PhWaveSine3rdH + Sine3rdH.
Code size (function) 122 B+ 34 B
Code size (table) 256 B
Execution cycles 329c
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Motor Control 3-Phase Wave Generation 63

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Motor Control 3-Phase Wave Generation

Example 6. mcgen3PhWaveSine3rdH

/***************************‘*‘** /

/* INCLUDE */

V felaiaisialaisisiaiaisiaiaiaisiaiaiaisialainisiaiaiaiaiaiaisiaiaisioiaiaisiaiaisisiaiaioisiaiaiaiaiaiaisialaioiaiaiaiaialaiaiaiaiaiaialasaioie /
#include '"types.h" /* Generic SDK types */

#include "'mcgen.h™ /* Waveform generation library */
/*****WM*M*MMM*W*M*MM*MM*W*M*W /
/* GLOBAL STATIC VARIABLES */

Y felaiaisiaiaisisiaiaioioiaiaisiaiaiaisiaiainisiaiaisialaiaisiaiaisiaiaiaisialaioisiaiaiaiaiaiaiaiaiaiaisialaiaiaiaiaiaiolaiaisiaiaiaiaiasaiaie /

static mc_s3PhaseSystem sPhaseVoltage; /* generated phase voltage
amplitudes passed to PW driver */

static SWordl16 Phaselncr;
static SWordl6 ActualPhase;
static UByte u_dc_bus /* DC - bus voltage */
static UByte u_ramp; /* Output voltage from ripple
cancelation function */
static UByte Amplitude; /* Amplitude of sinewaves
(in % of max. phase voltage ampl.) */
static UByte Voltage; /* desired phase voltage

in the level of dc-bus volt. */

/*********H********H*************************************H********m* /

’* FUNCTION PROTOTYPES */
i i /

void pwn Reload ISR (void); /* PW reload interrupt callback */
void main (void)

/* initialization of PWM driver */

I-Enablelnterruptso; /* Enable ISR */

Phaselncr = 819; /* defines sine frequency */
Amplitude = 128; /* 50% sine amplitude */
while(l); /* endless loop */

}

void pwm Reload ISR (void) /* PW Interrupt subroutine */
ActualPhase += Phaselncrement; /* new value of ActualPhase */
u_ramp = mcgenRippleCancel (Amplitude, u_dc bus);

/* calculates the phase voltages for individual phases */
mcgen3PhWaveSine3rdH (u_ramp, ActualPhase, &sPhaseVoltage);

/> call PW Driver function */

User’s Guide

8-Bit Software Development Kit for Motor Control Algorithms Library

64

Motor Control 3-Phase Wave Generation

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

User’s Guide — 8-Bit SDK for Motor Control Algorithms Library

Section 4. Volts-per-Hertz (V/Hz) Table

4.1 Contents

4.2 IntroducCtion. 65
4.3 APIDefinitions 65
4.4 APl Specification. 67
44.1 VHZ_CREATE_TABLE — Create the V/Hz Table........ 68
4.4.2 vhzGetVoltage — Calculate the Phase

Voltage Amplitude 69

4.2 Introduction

This section describes the the Application Programming Interface (API)
for the volts-per-hertz (V/Hz) table.

4.3 API Definitions

The header files types.h and vhz.h include all required prototypes and
structure/type definitions. This information is included here for the
programmer’s reference.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Volts-per-Hertz (V/Hz) Table 65

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table

Public Interface Function(s):

N
>(.
¥
i
¥
*
i
¥

EXAMPLE:

RETURNS:

UByte
UByte
SByte
SByte

ARGUMENTS:

#define V_BOOST
#define V_BASE

KAKXAKXAXAXAXAXAAAAAAAAAXAAXAALAALTALAALAAAAAAAAAAAdiix

MAKRO: VHZ_CREATE_TABLE ()

DESCRIPTION: This macro calculates the parameters of V/Hz table from given

parameters.
20 /=0 .. 100 */
80 /* 0 .. 100 */
5 /=0 .. 100 */
40 /=0 .. 100 */

#define F_BOOST
#define F_BASE

Vv_boost
Vv_base
T _boost
T base

RANGE I1SSUES: None

V_base - v_boost

T base - f boost

SPECIAL 1SSUES:

const vhz_sTable vhzTable = VHZ MAKE_TABLE(V_BOOST, V_BASE, F_BOOST, F_BASE);

vhz_sTable type structure with V/Hz data elements.

boost voltage in % to max. phase voltage amplitude
base voltage in % to max. phase voltage amplitude
boost frequency in % to max. generated output frequency
base frequency in % to max. generated output frequency

< 4 to make sure that slope will not overflow

Ok X X b o ok X X b b o 3 X X b o 3k X X o o ok X X X o ok X X X

*hhkk

*hhkk

const vhz_sTable vhzTable = VHZ CREATE_TABLE(v_boost, v_base, f boost, T base);

/***

*

RETURNS:
UByte

ARGUMENTS:

ook ok X X % b ok X X X ok ok X X X

RANGE 1SSUES:

based on

MODULE: vhzGetVoltage()

DESCRIPTION: Function calculates the required phase voltage amplitude

V/Hz motor specific parameters and required frequency

required phase voltage amplitude

vhz_sTable *vhzTable V/Hz table pointer
SWord16

frequency required frequency

None

SPECIAL ISSUES: None

AEA A A A AAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAALAAAAAAAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXX /

UByte vhzGetVoltage(vhz_sTable *vhzTable, SWordl6 frequency);

User’s Guide

8-Bit Software Development Kit for Motor Control Algorithms Library

66

Volts-per-Hertz (V/Hz) Table MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table
API Specification

Public Data Structure(s):
Data structure vhz_sTable is defined in vhz.h header file.
See Table 4-1.

typedef struct {
UByte v_boost;
UByte v_base;
UByte T boost;
UByte T base;
UByte slope;
} vhz_sTable;

Table 4-1. vhz_sTable Structure Elements

Variable Explanation
v_boost Boost voltage (0..100%) of the max. phase voltage amplitude
v_base Base voltage (0..100%) of the max. phase voltage amplitude
f_boost Boost frequency (0..100%) of the max. output frequency
f_base Base frequency (0..100%) of the max. output frequency
slope Slope of V/Hz ramp between Boost and Base point

4.4 API Specification

This section specifies the exact usage for each API function.

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the

function

» out argument means that the parameter value is an output only

from the function.

* inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the

function.

NOTE: Inout parameters are typically input pointer variables in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of

the inout pointer parameter is not changed.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Volts-per-Hertz (V/Hz) Table

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table

4.4.1 VHZ_CREATE_TABLE — Create the V/Hz Table

User’s Guide

call(s):

vhz_sTable vhzTable = VHZ CREATE_TABLE(v_boost, v_base,
T _boost, T base);

Parameters:
See Table 4-2.
Table 4-2. VHZ_CREATE_TABLE Parameters
Variable Direction Explanation
. Boost voltage (0..100%) of the maximum
v_boost in .
- phase voltage amplitude
. Base voltage (0..100%) of the maximum
v_base in .
- phase voltage amplitude
5 -
f_boost in Boost frequency (0..100%) of the maximum
output frequency
f base in Base frequency (0..100%) of the maximum
output frequency
Description:

The VHZ_CREATE_TABLE macro calculates the parameters of a
volt per hertz (V/Hz) table from parameters which are set in:

» Percentages related to maximal phase voltage amplitude

» Or Percentages maximal output frequency.

Returns:
Modifies the output structure of vhz_sTable type

Range Issues:
To ensure correct calculation of the V/Hz ramp parameters the
following condition must be fulfilled. Otherwise, the slope parameter
may overflow.

v_base - v_boost <
f base - f boost

Special Issues:
The macro VHZ_CREATE_TABLE must be called before the
function vhzGetVoltage is used to ensure proper functionality.

Design/Implementation:
The VHZ_CREATE_TABLE is implemented as a macro.

8-Bit Software Development Kit for Motor Control Algorithms Library

68

Volts-per-Hertz (V/Hz) Table MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table
API Specification

4.4.2 vhzGetVoltage — Calculate the Phase Voltage Amplitude

call (s):

UByte vhzGetVoltage(vhz_sTable *vhzTable, SWordl1l6 frequency);

Parameters:
See Table 4-3.
Table 4-3. vhzGetVoltage Parameter
Variable Direction Explanation
vhzTable in structure of vhz_sTable type with volt-per-hertz
parameters
frequenc in electrical frequency applied to the motor
q y <-32768, 32767> ~ <-max_freq , max_frex>

Description:

The algorithm vhzGetVoltage returns voltage for the required
frequency according to a defined table. The volt-per-hertz control
method is the most popular method of scalar control and controls the
magnitude of variables such as frequency, voltage, or current. The
command and feedback signals are DC quantities which are
proportional to the respective variables.

This scheme is defined as volt-per-hertz control because the voltage
applied command is calculated directly from the applied frequency in
order to maintain the air-gap flux of the machine constant. In steady
state operation, the machine air-gap flux is approximately
proportional to the ratio Vs/fs, where Vs is the amplitude of motor
phase voltage and fs is the synchronous electrical frequency applied
to the motor. The characteristic is defined by base point and boost
point. In Figure 4-1, the boost point the minimal boost voltage is
required to maintain the motor excited at the startup. Between the
boost point and the base point the motor operates at optimum
excitation, called constant torque operation, because of the constant
Vs/fs ratio. Above this point the motor operates under-excited, called
constant power operation, because of the rated voltage limit.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Volts-per-Hertz (V/Hz) Table 69

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table

Q

g

o B

Q

0

s

o

>

Amplitude

—> . —>

(]

o

g

>

' 100%
f_boost f_base f_max Frequency
Frequency Frequency

& >

Figure 4-1. Volt-per-Hertz Characteristics

Returns: UByte
Range Issues: None

Special Issues:
The function vhzGetVoltage must be called before the function
vhzGetVoltage is used to ensure proper functionality.

Design/Implementation:
vhzGetVoltage is implemented as a macro.

Performance:
Table 4-4. vhzGetVoltage Performance
Code size (function) 578B
Code size (table) 5B

minimum/maximum/typical

Execution cycles 96/ 147 / 147

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

70 Volts-per-Hertz (V/Hz) Table MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table
API Specification

Example 7. Volt-per-Hertz Table Usage

/***** AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXAAAAAAAAAAAALAAAAXAAAAAAXA XXX /
/* INCLUDE */
/** /
#include '"types.h" /* Generic SDK types */

#include "‘vhz._h" /* Volt per Hertz Ramp */

/* Parameters of Volt per Hertz specific to chozen induction motor */
#define V_BOOST 17 /* [%] to nominal voltage */
#define V_BASE 84 /* [%] to nominal voltage */
#define F_BOOST 7 /* [%] to maximal speed */
#define F_BASE 46 /* [%] to maximal speed */

/* PUT FOLLOWING CONSTANTS INTO FLASH */
#pragma CONST_SEG CONST_ROM

const vhz_sTable vhzTable = VHZ CREATE_TABLE(V_BOOST, V_BASE, F BOOST, F _BASE);
#pragma CONST_SEG DEFAULT
static mc_s3PhaseSystem sPhaseVoltage; /* generated phase voltage

amplitudes passed to
PW driver */

static UByte Amplitude; /* Amplitude of sinewaves

(in % of max. phase voltage

ampl.) */

static SWordl6 Phase /* Actual phase of the stator phase voltage vector */
static UByte u_dc bus /* DC bus voltage */

static UByte u_ramp; /* desired phase voltage

in the level of dc-bus volt. */
void main (void)

{
/* initialization of PW driver */

Enablelnterrupts(); /* Enable ISR */

Phaselncr = 819; /* defines sine frequency */
Amplitude = Ox3fff; /* 50% sine amplitude */
\ivhile(l); /* endless loop */

void pwm Reload ISR (void) /* PW Interrupt subroutine */

{

/* calculates the */

u_ramp = vhzGetVoltage(&vhzTable, frequency);

/* removes the dc-bus voltage ripples from the phase voltage amplitude */

Amplitude = mcgenRippleCancel(u_ramp, u_dc bus);

ActualPhase += Phaselncrement; /* new value of ActualPhase */
/* calculates the phase voltages for individual phases */
mcgen3PhWaveSine (Amplitude, Phase, &sPhaseVoltage);

/* call PW Driver function */

¥
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Volts-per-Hertz (V/Hz) Table 71

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Volts-per-Hertz (V/Hz) Table

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

72 Volts-per-Hertz (V/Hz) Table MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

User’'s Guide — 8-Bit SDK for Motor Control Algorithms Library

Section 5. Dead-Time Distortion Correction Algorithm

5.1 Contents

5.2 Introduction. 73
5.3 Dead-Time Distortion Correction 73
54 APIDefinitions 80
55 APl Specification. 82
55.1 dtCorrectlnit () - Initialize Dead-Time

Correction Algorithm 82
55.2 dtCorrectFull () - Perform Dead-Time

Correction Algorithm 83

5.2 Introduction

This section describes the Application Programming Interface (API) for
the dead-time correction algorithm and the detailed algorithm
description.

5.3 Dead-Time Distortion Correction

Six-transistor inverter is the most used topology for AC motor drives. The
dead time must be inserted between the turning off of one transistor in
the inverter half bridge and turning on of the complementary transistor.
The dead time causes distortion to the generated voltage, and thus a
non-sinusoidal phase current.

In order to achieve a sinusoidal phase current, and thus limit the
harmonic losses, noise, and torque ripple, the dead-time distortion
correction needs to be implemented. The on-chip Pulse-Width-
Modulation (PWM) module, of the MC68HC908MRxx Family of Motorola

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Dead-Time Distortion Correction Algorithm 73

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

Desired load voltage

PWM to top transistor

microcontrollers, contains the patented hardware block that simplifies
the task.

The dead-time correction is based on the evaluation of the phase current
polarity of the respective phase, and proper counter modulation of the
dead-time distortion. The basic situation is shown in Figure 5-1. The
desired load voltage is affected by the dead time. During dead time, load
inductance defines the voltage needed to keep inductive current flowing
through diodes. So full positive or full negative voltage is applied to the
phase, according to the phase current polarity. For positive current (i+),
the actual voltage pulses are shortened by dead time, for negative phase
current the voltage pulses are lengthened by dead time.

Ton +U/2

deadtime

i-
PWM to bottom transistor [J

_ Ton - 2xdeadtime

—>

Actual load voltage (for i+) -ur2

Actual load voltage (for i-) ‘

User’s Guide

Ton + 2xdeadtime
—> <

Figure 5-1. Dead-Time Distortion

To achieve distortion correction, one of two different correction factors
must be added to the desired PWM value, depending on whether the top
or bottom transistor is controlling the output voltage during the dead
time.

When the voltage pulse is shortened due to dead time, the control PWM
signal is extended by dead time, so the actual voltage pulse matches the

8-Bit Software Development Kit for Motor Control Algorithms Library

74

Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
Dead-Time Distortion Correction

desired voltage. Vice versa, when the voltage pulse is lengthened due to
dead time, the control PWM signal is shortened by dead time, so again
the actual voltage pulse matches the desired voltage. Therefore, the
actual signal equals the desired one, and the generated phase current
is sinusoidal.

The dead-time distortion correction utilizes phase current sensing. The
on-chip PWM module of MC68HC908MRxx microcontrollers contains
the block that enables it to evaluate the polarity and the size of the phase
current without the need of an expensive current sensor. It is based on
the sampling and evaluation of the phase voltage level during the dead
time. The zero voltage during dead time reflects a positive phase
current, the full DC-Bus voltage during dead time reflects a negative
phase current. So comparing the phase voltage with the half DC-Bus
voltage, enables to evaluation of the current polarity. The topology is
illustrated in Figure 5-2. The output of the comparator is connected to
the current polarity sensing input of the microcontroller
MC68HC908MR32. The microcontroller contains the hardware that
samples the current sensing inputs during dead time. It enables
evaluation of the current polarity and also the region of low currents.

+U +U . +2
'r I1Sx
+
iy
i+
PWMO I >
i-
PWM1
Figure 5-2. Topology of Current Polarity Sensing
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Dead-Time Distortion Correction Algorithm 75

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

During PWM reload ISR, the desired PWM values for all three phases
are calculated as:

» PWM1 for phase 1
« PWM2 for phase 2
» PWMS3 for phase 3

The values loaded into the individual PVAL registers of the separate
phases are shown in Table 5-1. Since AC motor control utilizes center-
aligned PWM modulation, only half of the dead time needs to be added
to or subtracted from the desired PWM duty cycle to achieve the
distortion correction. Without dead-time correction, the even PVAL
registers are loaded with the required PWM value, but the odd PVAL
registers are not used. When dead-time correction is used, the even
PVAL registers are loaded with the desired PWM plus half of the dead
time (PWMx+DT/2), while the odd PVAL registers are loaded with the
desired PWM minus half of the dead time (PWMx-DT/2).

When calculating the values to be loaded into the PVAL registers, the
MRxx’s dead time register can be used.

The dead-time register (DEADTM) holds an 8-bit value which specifies
the number of CPU clock cycles to be used for the dead-time, when
complementary PWM mode is selected. Dead-time is not affected by
changes to the prescaler value. On the other hand, the PVAL values are
affected by the prescaler of the PWM counter.

Table 5-1. PWM Values Loaded into Registers PVAL1-PVALG6

e | ot | S | SR [s e
Dead-Time Correction Dead-Time Correction
PVAL1 PWM1 PWM1 + DT/2 PWM1 + DEADTM/2/PWM_PRESC
Phase 1 PVAL2 — PWM1 - DT/2 PWML1 - DEADTM/2/PWM_PRESC
PVAL3 PWM2 PWM2 + DT/2 PWM2 + DEADTM/2/PWM_PRESC
Phase 2 PVAL4 — PWM2 — DT/2 PWM2 - DEADTM/2/PWM_PRESC
PVALS5 PWM3 PWM3 + DT/2 PWM3 + DEADTM/2/PWM_PRESC
Phase 3 PVALG6 — PWM3 - DT/2 PWM3 - DEADTM/2/PWM_PRESC
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
76 Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
Dead-Time Distortion Correction

Therefore, the value stored into the dead time registers needs to be
scaled by the PWM prescaler (PWM_PRESC in Table 5-1). The PWM
Control Register 2 (PCTL2) contains the PWM generator prescaler. The
buffered read/write bits, PRSCO and PRSC1, select the PWM prescaler
according to Table 5-2.

Table 5-2. PWM Prescaler

PRZSSCE::SPBRH;C1 PWM Frequency Prescaler PWM_PRESC
00 fop 1
01 fop/2 2
10 fop/4 4
11 fop/8 8

The on-chip PWM module of MC68HC908MRxx microcontrollers
enables it to perform two types of dead-time distortion correction:

» Partial correction

e Full correction

Partial dead-time distortion correction is based only on polarity
detection of phase current. The hardware, sensing the current polarity
according to Figure 5-2, needs to be implemented. The software is
responsible for calculating both compensated PWM values and placing
them in an odd/even PWM register pair according to Table 5-1. The
distortion correction is fully implemented by the on-chip PWM module
according to the following scheme:

» If the current sensed at the motor for that PWM pair is positive
(voltage on current pin ISx is low), the odd PWM value is used
for the PWM pair.

» Likewise, if the current sensed at the motor for that PWM pair is
negative (voltage on current pin ISx is high), the even PWM
value is used.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Dead-Time Distortion Correction Algorithm 77

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

For partial correction, the on-chip dead-time correction block is set in the
automated mode — current sense correction bits ISENS1:ISENSO of
PWM Control Register 0 (PCTL1) are set to 10.

The disadvantage of the partial correction is that some dead-time
distortion still exist — the current is flattened out at the zero crossings.

Full dead-time distortion correction (implemented in dtCorrectFull
algorithm) improves the partial dead-time correction by sensing not only
the polarity, but also the magnitude of the actual phase current.

In the full dead-time correction method, the threshold where the
correction values should be toggled is not in the zero level, but slightly
advanced. The threshold is illustrated in Figure 5-3. Toggling of the
correction offset needs to occur before the current has a chance to
flatten out at a current zero-crossing. So, the current sense scheme
must sense that the current waveform is approaching the zero-crossing.

Current with Correction Disabled

Falling threshold —_|

High Positive
- Magnitude

Rising threshold]

b 1 Low Magnitude

_ High Negative
Magnitude

Figure 5-3. Proposed Current Threshold for Correction Toggling

User’s Guide

8-Bit Software Development Kit for Motor Control Algorithms Library

78

Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
Dead-Time Distortion Correction

To achieve the full distortion correction, again one of two different
correction factors must be added to the desired PWM value, depending
on whether the top or bottom transistor is controlling the output voltage
during the dead time. The software is responsible for calculating both
compensated PWM values and placing them in an odd/even PWM
register pair. Then the software needs to determine which PWM value is
to be used, according to the following scheme:

» If the current sensed at the motor for that PWM pair is positive
and of high magnitude, or negative and of small magnitude in
atrend approaching zero crossing, the odd PWM value is
used for the PWM pair.

* Likewise, if the current sensed at the motor for that PWM pair is
negative, or positive and of small magnitude in a trend
approaching zero crossing, the even PWM value is used.

The MR32 contains a hardware circuitry that enables it to sense the
current polarity together with the magnitude. The current polarity and
magnitude is sensed using the DT-DT6 of FTACK register in the
MC68HC908MR32 microcontroller. For Phase 1, the bits DT1 and DT2
are used as shown in Table 5-3.

Table 5-3. Sensing of the Current Polarity
and Magnitude for Phase 1

DT1 DT2 Current Condition of Phase 1
0 0 High magnitude I+
1 1 High magnitude I-
0 1 Low magnitude, either polarity

For phase 2, bits DT3 and DT4 are used. For phase 3, bits DT5 and DT6
are used.

As was stated the determination of the correct PVAL used for the PWM
generation is done purely by software. The on-chip dead-time correction
block is set in the manual mode — current sense correction bits

ISENS1:ISENSO of PWM Control Register 0 (PCTL1) are setto 00 or 01.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Dead-Time Distortion Correction Algorithm 79

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

5.4 API Definitions

The header files types.h and dtCorrect.h include all required prototypes
and structure/type definitions. This information is included here for the
programmer’s reference.

Public Interface Function(s):

MODULE: dtCorrectinit

DESCRIPTION:
Function initializes the structure of the dead time correction algorithm
RETURNS:
dtStateFlagsAB = 0 initialize dead-time correction flags phases A & B
dtStateFlagsC = 0 initialize dead-time correction flags phase C
pointA = O initialize internal capture of the pointer for ph. A
pointB = 0 initialize internal capture of the pointer for ph. B
pointC = 0 initialize internal capture of the pointer for ph. C

ipolBits = 0 clear the internal IPOL bits

ARGUMENTS:
dtCorrect_s *pDtCorrect pointer to dead time correction structure

RANGE ISSUES: None
SPECIAL ISSUES:

The function dtCorrectlnit must be called before the function
dtCorrectFull starts to be called to ensure proper functionality

Ok X X b b ok X X b b o 3 X % b o X X X % b XN

void dtCorrectinit (dtCorrect s *pDtCorrect);

/***
*

* MODULE: dtCorrectrFull O

*

* DESCRIPTION:

* Function calculates the IPOL bits, defining the PVAL registers to be

* used for PW generation for optimized dead time correction.

* The bits are determined according to the phase current polarity detection
* bits DT1-6, actual sine wave pointer and the actual state of the algorithm
* state machine.

*

* RETURNS:

* dtStateFlagsAB updates internal flag register for phases A and B

* according to the state of the algorithm state machine
* dtStateFlagsC updates internal flag register for phase C

* according to the state of the algorithm state machine
* pointA up-dates internal capture of the pointer for ph. A

* pointB up-dates internal capture of the pointer for ph. B

* pointC up-dates internal capture of the pointer for ph. C

* ipolBits updates the IPOL bits according to the actual current
*

polarity and the state of the algorithm state machine

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

80 Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
API Definitions

The dead time correction adds the correction factor to the originally
calculated sine waves. It is necessary to ensure that the calculated PWM

*

* ARGUMENTS:

* dtCorrect_s *pDtCorrect pointer to dead time correction structure
*

* RANGE ISSUES:

*

*

* duty cycles do not exceed the PWM modullus.

*

* SPECIAL ISSUES:

* The function dtCorrectInit must be called before the function

* dtCorrectFull starts to be called to ensure proper functionality
*

*hhkxk *hhkk *hhkhx

void dtCorrectFull (dtCorrect_s *pDtCorrect);

Public Data Structure(s):
Data structure dtCorrect_s is defined in dtCorrect.h header file.

See Table 5-4

typedef struct {
UByte dtBits;
UByte ipolBits;
type_uBits dtStateFlagsAB;
type uBits dtStateFlagsC;
SByte pointA;
SByte pointB;
SByte pointC;
SByte pointerA;

} dtCorrect_s;

Table 5-4. dtCorrect_s Structure Elements

Variable Explanation
dtBits INPUT: actual status of the dead time bits DTl-_6
format | x | x |DT6|DT5| |DT4|DT3|DT2|DT1| fits to FTACK of ‘MR32
ipolBits OUTPUT: ipolBits - new top/bottom correction_bits IPOL1-3 ‘
format | x | x | x [IPOL1| |IPOL2|IPOL3| x | x | fits to PCTL2 of ‘MR32
dtStateFlagsAB Internal dead-time correction flags for phases AB
dtStateFlagsC Internal dead-time correction flags for phase C
pointA Internal capture of the pointer for phase A
pointB Internal capture of the pointer for phase B
pointC Internal capture of the pointer for phase C
pointerA INPUT: actual pointer of the generated wave phase A
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Dead-Time Distortion Correction Algorithm 81

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

5.5 API Specification

NOTE:

This section specifies the exact usage of each API function.

Function arguments for each routine are described as in, out, or inout.

* inargument means that the parameter value is an input only to the
function

» out argument means that the parameter value is an output only
from the function.

e inout argument means that a parameter value is an input to the
function, but the same parameter is also an output from the
function.

Inout parameters are typically input pointer variables, in which the caller
passes the address of a pre-allocated data structure to a function. The
function stores its results within that data structure. The actual value of
the inout pointer parameter is not changed.

5.5.1 dtCorrectlinit () - Initialize Dead-Time Correction Algorithm

User’s Guide

call(s):

dtCorrectlnit (dtCorrect s *pDtCorrect);

Parameters:
See Table 5-5:
Table 5-5. dtCorrectinit Parameters
Variable Direction Explanation
dtCorrect_s in, out Structure of the dead-time correction algorithm
Description:

The function dtCorrectinit initializes the individual members of the
dead-time correction structure to zero. The function dtCorrectinit
must be called once before the dead-time correction algorithm is
enabled.

Returns:
dtCorrect_s

8-Bit Software Development Kit for Motor Control Algorithms Library

82

Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
API Specification

Range Issues:
None

Special Issues:
The function dtCorrectInit must be called before starting any calls to
the function dtCorrectFull, to ensure proper functionality.

Design/Implementation:
The dtCorrectlnit is implemented as a function.

Performance:

Table 5-6. dtCorrectlnit Performance

Code Size 57B

Minimum Maximum Typical

Execution Cycles 9% 147 147

5.5.2 dtCorrectFull () - Perform Dead-Time Correction Algorithm

call (s):

dtCorrectFull (dtCorrect s *pDtCorrect);

Parameters:
See Table 5-7.
Table 5-7. dtCorrectFull Parameter
Variable Direction Explanation
dtCorrect_s in, out Structure of the dead-time correction algorithm
Description:

The algorithm dtCorrectFull calculates the IPOL bits, defining the
PVAL registers to be used for MC68HC908MR32 PWM generation
for full dead-time correction. The IPOL bits are determined according
to the phase current polarity detection bits DT1-DT6, actual sine
wave pointer, and the actual state of the algorithm state machine.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Dead-Time Distortion Correction Algorithm 83

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

The algorithm state machine samples the actual state of the phase
current, and selects the appropriates PVAL registers to be used for
PWM generation. The state machine, implemented in the
dtCorrectFull algorithm is illustrated in Figure 5-4.

Algorithm
enabled

INITIAL
STATE

00 Initial recognition of
positive current

High positive Low negative
current current
X0/0

Waits for high
positive current

|0-0.]>80°/ 0

Change IPOL
(current treshold
crossing)

Waits for high
negative current

|0-0.>80°/1

High negative

Low positive current
current
1X/1

STATE TRANSITION KEY: DT1 DT2/IPOL

IPOL = 0: ODD NUMBERED PWM REGISTER CONTROLS OUTPUT

IPOL = 1: EVEN NUMBERED PWM REGISTER CONTROLS OUTPUT

Figure 5-4. Dead-Time Correction State Machine

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
84 Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
API Specification

When the algorithm is enabl

ed, the state machine is entered from initial state 0. It is waiting till the
high magnitude of positive current is detected (State 1, confirmed by
State 2), then the algorithm enters the state machine (State 3). The
state machine is performed in circle 3-4-5-6-3. As soon as the low
magnitude of negative current is detected, the IPOL is changed to 1,
requesting the even numbered PWM registers to be used for PWM
generation, the actual value of the wave pointer is recorded (6¢), and

State 4 is entered. State 4 is preserved for 85 electrical degrees, until
a high negative current can be expected. Then State 5 is entered. As
soon as the low magnitude of positive current is detected, the IPOL is
changed to 0, requesting the odd numbered PWM registers to be
used for PWM generation, the actual value of the wave pointer is
recorded (0¢), and State 6 is entered. State 6 is preserved for 85

electrical degrees, until a high positive current can be expected. Then
State 3 is entered and the state machine loop is repeated. In this way
it is ensured that the required IPOL changes when a small amplitude
of respective current is detected by the hardware.

NOTE: Please note, that the wave pointer is recorded into the algorithm variable
PointA, PointB, or PointC, in the moment when the respective phase
current crosses the low current threshold.

Such a state machine is independently implemented for each phase
(A, B, C). The algorithm contains two flag variables, determining the
actual state of the state machine for individual phases. Flag variable
dtStateFlagsAB determines state of state machine for phases A & B,
StateFlagsC determines the state of the state machine for phase C.

The meaning of the individual bits of dtStateFlagsAB are listed in
Table 5-8. The meaning of the individual bits of dtStateFlagsC are
listed in Table 5-9.

8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide

MOTOROLA Dead-Time Distortion Correction Algorithm 85

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

Table 5-8. Meaning of State Machine Flag Registers
dtStateFlagsAB

State
Phase Bits
1 2 3 4 5 6
Bit 0 — lock 0 0 1 1 1 1
Bit 1 0 1
Phase A
Bit 2 0 1 0 1
Bit 3 0 0 1 1
Bit 4 — lock 0 0 1 1 1 1
Bit 5 0 1
Phase B
Bit 6 0 1 0 1
Bit 7 0 0 1 1

Table 5-9. Meaning of State Machine Flag Registers
dtStateFlagsC

State
Phase Bits
1 2 3 4 5 6

Bit 0 — lock 0 0 1 1 1 1
Bit 1 0 1

Phase C
Bit 2 0 1 0 1
Bit 3 0 0 1 1
Bit 4 X X X X X X
Bit 5 X X X X X X

Reserved
Bit 6 X X X X X X
Bit 7 X X X X X X

NOTE: A detailed explanation of the dead-time distortion correction can be
found in the comprehensive application note of Motorola AN1728
“Making Low-Distortion Motor Waveforms with the
MC68HC708MP16" by David Wilson. Note that the MC68HC708MP16
is the predecessor of MC68HC908MRxx Family and contains identical
on-chip PWM block.

User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library

86 Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm
API Specification

Returns:
None

Range Issues:
The dead-time correction algorithm dtCorrectFull adds the
correction factor to the originally calculated sine wave. It is necessary
to ensure that the calculated PWM duty cycles do not exceed the
PWM modulus.

Special Issues:
The function dtCorrectInit must be called before starting any calls to
the function dtCorrectFull, to ensure proper functionality.

Design/Implementation:
The dtCorrectFull is implemented as a function

Performance:

Table 5-10. dtCorrectFull Performance

Code Size 57B

Execution Cycles Minimum Maximum Typical

96 147 147
Example 8. Dead-Time Correction Algorithm Usage
#include 'types.h" /* Generic SDK types */
#include "dtCorrect._h" /* dead time correction algorithm */
#include "'3ph_acim _dt correct.h" /* application header file */
static mc_s3PhaseSystem pOutputSystem; /* pointer to output phase
duty-cycles passed to PWM driver*/
static volatile SWordl6 phase_increment; /* phase increment between
the PW reloads */
static volatile SWordl6 phase_actual ; /* phase A voltage vector position */
static UByte amplitude; /* Amplitude of sinewaves(in % of max.
phase voltage ampl.) */
static dtCorrect_s pDtCorrectApp; /* structure of dead time correction

algorithm */

#define PWM_DEAD TIME Ox30 /* PWM Dead-Time Register (defined in appconfig.h) */
#define PWM_PRESC 1 /* PW prescaller = 1 */

void main (void)

{
phase_increment = 819; /* defines sine frequency */
amplitude = Ox3fff; /* 50% sine amplitude */
/* Initialize the dead time correction structure */
8-Bit Software Development Kit for Motor Control Algorithms Library User’s Guide
MOTOROLA Dead-Time Distortion Correction Algorithm 87

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Dead-Time Distortion Correction Algorithm

}

dtCorrectinit(&pDtCorrectApp) ;

/> set full s/w dead time correction */
10CTL(PWM, PWM_SET CURRENT_ CORRECTION, PWM CORRECTION_ SOFTWARE);

Enablelnterrupts(); /* Enable ISR */
while(l); /* endless loop */

void PwmReloadCal Iback(void)
{

/* calculates PWM duty cycle according to the waveform */

/* Update phase_actual by phase_increment */
phase_actual += phase_increment;

/* Calculate the duty-cycles of for phases A,B,C */
mcgen3PhWaveSine (amplitude, phase actual, &pOutputSystem);

/* Rescale the phase duty-cycles to PWM_MODULO and write to
value registers for 16kHz PWM */

PVAL1L = ((UWord16) (pOutputSystem.PhaseA))>>8;
PVAL3 = ((UWord16) (pOutputSystem.PhaseB))>>8;
PVALS5 = ((UWord16) (pOutputSystem.PhaseC))>>8;

/* calculate the modified PVAL values for ead Time Correction */

PVAL2 = PVAL1 - (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC);
PVALL = PVAL1 + (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC):
PVAL4 = PVAL3 - (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC);
PVAL3 = PVAL3 + (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC);
PVAL6 = PVAL5 - (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC):
PVALS = PVAL5 + (UWord16)(PWM_DEAD_TIME/2/PWM_PRESC);

/* The algorithm "dtCorrectFull' needs to be calculated as frequently as
possible. Ideally the correction should be applied to the individual phases
immediately when the phase current changes it"s magnitude to the low
values. Frequent calculation of the algorithm limits the effect of time
delay to the shape of the corrected waveforms */

/* load actual wave pointer into the dead-time correction structure */
pDtCorrectApp.pointerA = (SByte)(phase_actual>>8);

/* load actual DT bits into the dead time correction structure */
pDtCorrectApp.dtBits = I0CTL (PWM, PWM GET CURRENT SENSING, NULL);

/* call optimized dead time correction algorithm */
dtCorrectFul 1 (&pDtCorrectApp) ;

/* set bits IPOL1, IPOL2, IPOL3 according to the calculated dead
time correction output */
PCTL2 = (PCTL2 & 0xe3)|(pDtCorrectApp.ipolBits);

I0CTL(PWM, PWM_SET_LOAD OK, NULL); /* set LDOK */
}
User’s Guide 8-Bit Software Development Kit for Motor Control Algorithms Library
88 Dead-Time Distortion Correction Algorithm MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;

Silicon Harbour Centre, 2 Dai King Street,

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software
implementers to use Motorola products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.

@ MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

SDKALUG/D
Rev. 1
11/2002

For More Information On This Product,
Go to: www.freescale.com

	List of Sections
	Table of Contents
	List of Figures and Tables
	Section 1. Basic Fractional Math Library
	1.1 Contents
	1.2 Introduction
	1.3 API Definition
	1.3.1 8-Bit Fractional Math Interface
	1.3.2 16-Bit Fractional Math Interface
	1.3.3 Other Function Math Interface

	1.4 API Specification
	1.5 Function Description
	1.5.1 add
	1.5.2 lim
	1.5.3 neg
	1.5.4 shl
	1.5.5 sub
	1.5.6 udiv_16to8
	1.5.7 umul_16x8
	1.5.8 smul_16x8
	1.5.9 smul_8
	1.5.10 sdiv_8

	1.6 Macro Description
	1.6.1 LIM

	1.7 Trigonometric Math Functions
	1.7.1 API Definition
	1.7.2 sinPIxLUT
	1.7.3 API Specification
	1.7.4 sinPIxLUT

	Section 2. Controllers
	2.1 Contents
	2.2 Introduction
	2.3 API Definition
	2.4 API Specification
	2.4.1 controllerPI_8
	2.4.2 controllerPI_Scl_8
	2.4.3 controllerPI_Lim_8
	2.4.4 controllerPI

	Section 3. Motor Control 3-Phase Wave Generation
	3.1 Contents
	3.2 Introduction
	3.3 API Definitions
	3.3.1 Public Interface Function(s)
	3.3.2 Public Data Structure(s):

	3.4 API Specification
	3.4.1 mcgenRippleCancel — DC-Bus Ripple Cancellation Function
	3.4.2 mcgen3PhWaveSine — 3-Phase Sine Wave
	3.4.3 mcgen3PhWaveSine3rdH — 3-Phase Sine Wave with Third Harmonic

	Section 4. Volts-per-Hertz (V/Hz) Table
	4.1 Contents
	4.2 Introduction
	4.3 API Definitions
	4.4 API Specification
	4.4.1 VHZ_CREATE_TABLE — Create the V/Hz Table
	4.4.2 vhzGetVoltage — Calculate the Phase Voltage Amplitude

	Section 5. Dead-Time Distortion Correction Algorithm
	5.1 Contents
	5.2 Introduction
	5.3 Dead-Time Distortion Correction
	5.4 API Definitions
	5.5 API Specification
	5.5.1 dtCorrectInit () - Initialize Dead-Time Correction Algorithm
	5.5.2 dtCorrectFull () - Perform Dead-Time Correction Algorithm

