LM748 Operational Amplifier

General Description

The LM748 is a general purpose operational amplifier with external frequency compensation.

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. It is possible to optimize compensation for best high frequency performance at any gain. As a comparator, the output can be clamped at any desired level to make it compatible with logic circuits.

The LM748C is specified for operation over the 0° C to $+70^{\circ}$ C temperature range.

Features

- Frequency compensation with a single 30 pF capacitor
- Operation from ±5V to ±20V
- Continuous short-circuit protection
- Operation as a comparator with differential inputs as high as ±30V
- No latch-up when common mode range is exceeded
- Same pin configuration as the LM101

Connection Diagram

Dual-In-Line Package

TL/H/11478-2

Top View
Order Number LM748CN
See NS Package Number N08B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

±22V

Power Dissipation (Note 1) ±30V

Differential Input Voltage

500 mW

Input Voltage (Note 2)

Output Short-Circuit Duration (Note 3)

Operating Temperature Range: LM748C

Storage Temperature Range

0°C to +70C -65°C to +150°C

Lead Temperature (Soldering, 10 sec.)

+300°C

±15V

Electrical Characteristics (Note 4)

Parameter	Conditions	Min	Тур	Max	Units
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 10 \text{ k}\Omega$		1.0	5.0	mV
Input Offset Current	T _A = 25°C		40	200	nA
Input Bias Current	T _A = 25°C		120	500	nA
Input Resistance	T _A = 25°C	300	800		kΩ
Supply Current	$T_A = 25^{\circ}C, V_S = \pm 15V$		1.8	2.8	- mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 k\Omega$	50	160	- 11	V/m\
Input Offset Voltage	$R_S \leq 10 k\Omega$			6.0	mV
Average Temperature Coefficient of Input Offset Voltage	R _S ≤ 50Ω		3.0		μV/°C
	R _S ≤ 10 kΩ		6.0		μV/°(
Input Offset Current	$T_A = 0$ °C to $+70$ °C			300	nA
	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$			500	nA
Input Bias Current	$T_A = 0^{\circ}C \text{ to } + 70^{\circ}C$			0.8	μА
	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$			1.5	μΑ
Supply Current	$T_A = +125^{\circ}C, V_S = \pm 15V$		1.2	2.25	mA
	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$		1.9	3.3	mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	25			V/m\
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 10 k\Omega$	±12	±14		٧
	$V_S = \pm 15V$, $R_L = 2 k\Omega$	±10	±13		>
Input Voltage Range	V _S = ±15V	± 12			٧
Common-Mode Rejection Ratio	R _S ≤ 10 kΩ	70	90		dB
Supply Voltage Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	77	90		dB

Note 1: For operating at elevated temperatures, the device must be derated based on a maximum junction to case thermal resistance of 45°C per watt, or 150°C per watt junction to ambient. (See Curves).

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +70°C.

Note 4: These specifications apply for $\pm 5V \le V_S \le +15V$ and $0^{\circ}C \le T_A \le +70^{\circ}C$, unless otherwise specified.

Typical Applications

Inverting Amplifier with Balancing Circuit

Voltage Comparator for Driving DTL or TTL Integrated Circuits

TL/H/11478-4

†May be zero or equal to parallel

combination of R1 and R2 for minimum offset.

Voltage Comparator for Driving RTL Logic or High Current Driver

TL/H/11478-5

Guaranteed Performance Characteristics (Note 4)

TL/H/11478-6

Typical Performance Characteristics

TL/H/11478-7