20 ns max

LM160/LM260/LM360 High Speed Differential

Comparator

General Description

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu A760/\mu A760C$, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV.

Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

Features

- Guaranteed high speed
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Connection Diagrams

Metal Can Package

TL/H/5707-4

Order Number LM160H, LM260H or LM360H See NS Package Number H08C

Dual-In-Line Package

TL/H/5707-5

Order Number LM360M or LM360N See NS Package Number M08A or N08E

Dual-In-Package

TL/H/5707-6

Order Number LM160J-14, LM360J-14 or LM360N-14 See NS Package Number J14A or N14A

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 7)

Positive Supply Voltage +8VNegative Supply Voltage -8VPeak Output Current 20 mADifferential Input Voltage $\pm 5V$ Input Voltage $V^+ \ge V_{\text{IN}} \ge V^-$

ESD rating is to be determined.

Operating Temperature Range

 LM160
 −55°C to + 125°C

 LM260
 −25°C to +85°C

 LM360
 0°C to +70°C

 Storage Temperature Range
 −65°C to +150°C

Lead Temperature (Soldering, 10 sec.)

Soldering Information
Dual-In-Line Package

Soldering (10 seconds) 260°C

Small Outline Package

Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C

260°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics $(T_{MIN} \le T_A \le T_{MAX})$

Parameter Parameter	Conditions	Min	Тур	Max	Units
Operating Conditions Supply Voltage V _{CC} + Supply Voltage V _{CC} -		4.5 4.5	5 -5	6.5 -6.5	>>
Input Offset Voltage	R _S ≤ 200Ω		2	5	mV
Input Offset Current			0.5	3	μΑ
Input Bias Current			5	20	μΑ
Output Resistance (Either Output)	V _{OUT} = V _{OH}		100		Ω
Response Time	$T_A = 25^{\circ}C$, $V_S = \pm 5V$ (Notes 1, 6) $T_A = 25^{\circ}C$, $V_S = \pm 5V$ (Notes 2, 6) $T_A = 25^{\circ}C$, $V_S = \pm 5V$ (Notes 3, 6)		13 12 14	25 20	ns ns ns
Response Time Difference between Outputs $(t_{pd} ext{ of } + V_{IN1}) - (t_{pd} ext{ of } - V_{IN2})$ $(t_{pd} ext{ of } + V_{IN2}) - (t_{pd} ext{ of } - V_{IN1})$ $(t_{pd} ext{ of } + V_{IN1}) - (t_{pd} ext{ of } + V_{IN2})$ $(t_{pd} ext{ of } - V_{IN1}) - (t_{pd} ext{ of } - V_{IN2})$	T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6) T _A = 25°C (Notes 1, 6)		2 2 2 2		ns ns ns
Input Resistance	f = 1 MHz		17		kΩ
Input Capacitance	f = 1 MHz		3		pF
Average Temperature Coefficient of Input Offset Voltage	$R_S = 50\Omega$		8		μV/°C
Average Temperature Coefficient of Input Offset Current			7		nA/°C
Common Mode Input Voltage Range	V _S = ±6.5V	±4	±4.5		٧
Differential Input Voltage Range		±5			V
Output High Voltage (Either Output)	$I_{OUT} = -320 \mu\text{A}, V_{S} = \pm 4.5 \text{V}$	2.4	3		V
Output Low Voltage (Either Output)	I _{SINK} = 6.4 mA		0.25	0.4	V
Positive Supply Current	V _S = ±6.5V		18	32	mA
Negative Supply Current	$V_S = \pm 6.5V$		-9	-16	mA

Note 1: Response time measured from the 50% point of a 30 mVp-p 10 MHz sinusoidal input to the 50% point of the output.

Note 2: Response time measured from the 50% point of a 2 Vp-p 10 MHz sinusoidal input to the 50% point of the output.

Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.

Note 4: Typical thermal impedances are as follows:

Cavity DIP (J): Molded DIP (N):

 θ_{jA}

135°C/W 130°C/W Header (H)

230°C/W

(Still Air) (400 LF/min Air Flow)

θ_{iC} 25°C/W

Note 5: The device may be damaged if used beyond the maximum ratings.

Note 6: Measurements are made in AC Test Circuit, Fanout = 1

Note 7: Refer to RETS 160X for LM160H, LM160J-14 and LM160J military specifications.

Typical Performance Characteristics

AC Test Circuit

