

LH0002/LH0002C Current Amplifier

General Description

The LH0002/LH0002C is a general purpose current amplifier

Features

□ High input impedance

400 k Ω

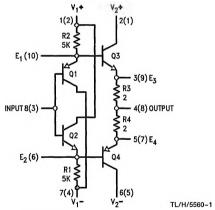
Low output impedance

400 KΩ

- □ High power efficiency
- Low harmonic distortion
- □ DC to 30 MHz bandwidth
- Output voltage swing that approaches supply voltage
- □ 400 mA pulsed output current
- ☐ Slew rate is typically 200 V/µs
- □ Operation from ±5V to ±20V

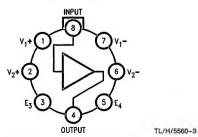
These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical output portion of the cir-

cuit also provides a low output impedance for both the positive and negative slopes of output pulses.

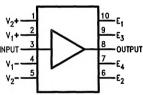

The LH0002 is available in an 8-lead low-profile TO-5 header and a 20-pin leadless chip carrier; the LH0002C is also available in an 8-lead TO-5, and a 10-pin molded dual-in-line package.

The LH0002 is specified for operation over the -55° C to $+125^{\circ}$ C military temperature range. The LH0002C is specified for operation over the 0°C to $+85^{\circ}$ C temperature range.

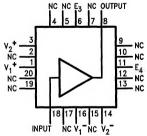
Applications


- □ Line driver
- ☐ 30 MHz buffer
- ☐ High speed D/A conversion
- Instrumentation buffer
- ☐ Precision current source

Schematic and Connection Diagrams


Pin numbers in parentheses denote pin connections for dual-in-line package.

Metal Can Package


Order Number LH0002H or LH0002CH See NS Package Number H08D

Dual-In-Line Package

Order Number LH0002CN See NS Package Number N10A

Leadless Chip Carrier

Order Number LH0002E See NS Package Number E20A TL/H/5560-6

TI /H/5560-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)

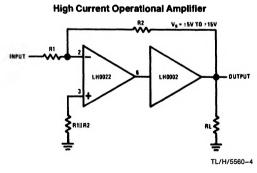
 $\begin{array}{lll} \mbox{Supply Voltage} & \pm 22 \mbox{V} \\ \mbox{Power Dissipation Ambient} & 600 \mbox{ mW} \end{array}$

Input Voltage (Equal to Power Supply Voltage)
Storage Temperature Range -65°C to +150°C

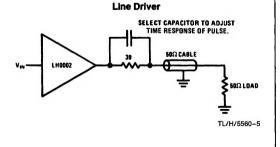
Operating Temperature Range

LH0002 -55°C to +125°C LH0002C 0°C to +85°C Steady State Output Current ± 100 mA
Pulsed Output Current (50 ms On/1 sec. Off) ± 400 mA
Lead Temperature Soldering (10 seconds)
Metal Can
Plastic 300°C
260°C

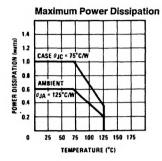
ESD rating to be determined.

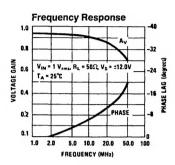

Electrical Characteristics (Note 1)

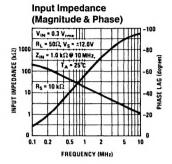
Parameter	Conditions	Min	Тур	Max	Units
Voltage Gain	$R_S = 10 \text{ k}\Omega$, $R_L = 1.0 \text{ k}\Omega$, $V_{\text{IN}} = \pm 10 \text{V}$	0.95	0.97		
AC Current Gain	V _{IN} = 1.0 Vrms, f = 1.0 kHz		40		A/mA
Input Impedance	$R_S = 200 \text{ k}\Omega, V_{1N} = \pm 1.0 \text{ V}, R_L = 1.0 \text{ k}\Omega$	180	400		kΩ
Output Impedance	$V_{IN} = \pm 1.0V$, $R_L = 50\Omega$, $R_S = 10 \text{ k}\Omega$		6.0	10	Ω
Output Voltage Swing	$R_{L} = 1.0 \text{ k}\Omega, V_{IN} = \pm 12V$	±10	±11		٧
Output Voltage Swing	$V_S = \pm 15V$, $V_{IN} = \pm 12V$, $R_S = 50\Omega$, $R_L = 100\Omega$, $T_A = 25^{\circ}C$	±10			٧
DC Output Offset Voltage	$R_S = 300\Omega$, $R_L = 1.0 \text{ k}\Omega$		±10	±30	m۷
DC Input Offset Current	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$		±6.0	±10	μΑ
Harmonic Distortion	V _{IN} = 5.0 Vrms, f = 1.0 kHz		0.1		%
Rise Time	$R_L = 50\Omega$, $\Delta V_{IN} = 100 \text{ mV}$		7.0	12	ns
Positive Supply Current	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$		+6.0	+10	mA
Negative Supply Current	$R_S = 10 \text{ k}\Omega$, $R_L = 1.0 \text{ k}\Omega$		-6.0	-10	mA

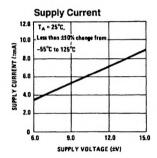

Note 1: Specification applies for T_A = 25°C with +12V on Pins 1 and 2; -12V on Pins 6 and 7 for the metal can package and +12V on Pins 1 and 2; -12V on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of 0°C to +85°C, while parameters for the LH0002 are guaranteed over the temperature range -55°C to +125°C unless otherwise specified.

Note 2: Refer to RETS0002X for LH0002 military specifications.

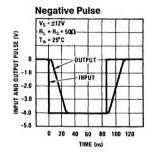

Typical Applications

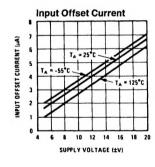



Previously called NH0002/NH0002C



Typical Performance Characteristics





TL/H/5560-7