CMOS LSI

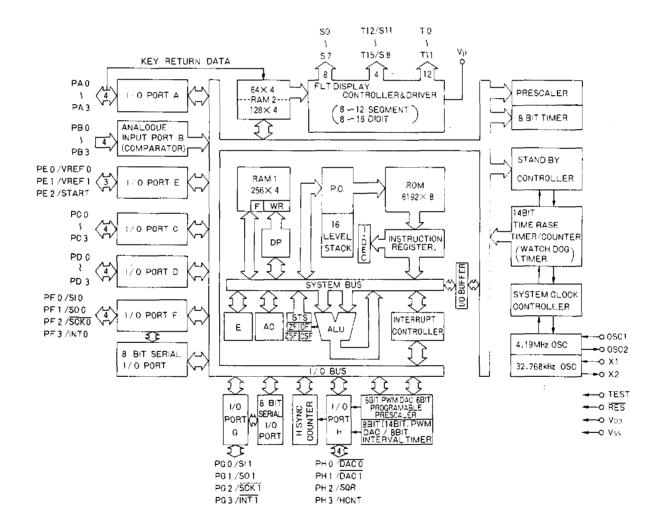


No.2577B

LC6538D

# SINGLE-CHIP 4-BIT MICROCOMPUTER FOR LARGE-SCALE CONTROL-ORIENTED APPLICATIONS

(with FLT Controller/Drivers, Comparator, PWM Output, 8K Byte-ROM)


The LC6538D is a single-chip 4-bit microcomputer placed in a 64-pin package. It contains a high-speed CPU (minimum cycle time: 0.92 $\mu$ s) which is the heart of the LC6538D, an 8K-byte ROM, a 448-word RAM, an automatic FLT display controller/drivers, a dual 8-bit serial I/O port, an 8-bit timer, an interval timer capable of delivering 14-bit PWM output signal or 8-bit + 6-bit PWM output signal, a 14-bit time-keeping time base timer which can be also used as an event counter or watchdog timer, a 4-channel comparator input port, a horizontal sync detection counter, and provides 8 interrupt sources with 4 vector addresses. The LC6358D has 2 crystal oscillators (4.19MHz and 32.768kHz) which make it possible to select either clock signal for system clock or time-keeping as required and also make it possible to use either clock signal to continue time-keeping in the standby mode. The LC6538D is especially suited for use in VCR, CD, ECR applications. In particular, the LC6538D is so designed as to facilitate processing of the time-keeping/timer function, voltage/frequency synthesizer tuner control, remote control signal reception, tape counter, etc. on a single chip. Since the FLT display controller has the static output mode and structure capable of being also used as a general-purpose output port, the LC6538D is also especially suited for use in VCR, CD system/servo controller applications.

#### **Features**

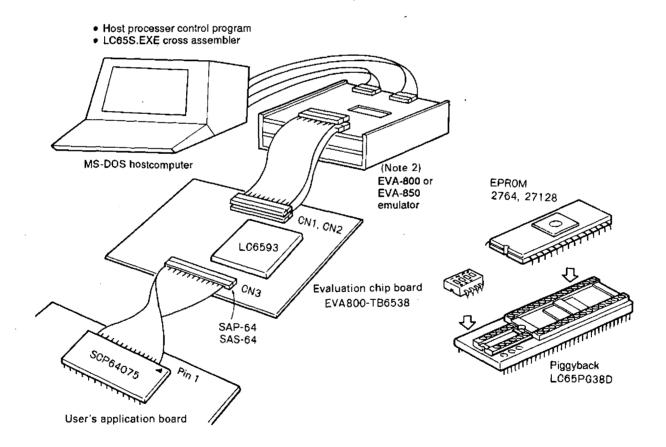
- 78 instructions
- On-chip 8192-byte ROM, 448x4-bit RAM (64x4 bits of the 448x4-bit RAM are used both for data memory and display, KEY Return Data memory.)
- Minimum instruction cycle time:  $0.92\mu s$  (4.33MHz,  $V_{DD} \ge 4.5V$ )
  - $61\mu s (32.768 \text{kHz}, V_{DD} \ge 2.7 \text{V})$
- Power-down function available when a system clock signal is selected (program-selectable)
  - When 4.19MHz clock signal is selected:  $0.95\mu s$ ,  $1.9\mu s$ ,  $30.6\mu s$
- When 32.768kHz clock signal is selected: 61µs
   Working register/flag function
- (16 flags + 8 working registers) x 4 banks
- Stack level: 16 levels
- I/O port: 55 pins in all
  - Input-only port
     4 pins (common with comparator input)
  - Input/output common port 27 pins (high-current port for LED drive: 8 pins)
  - Output-only port
     24 pins (FLT direct drive capability, high-current output for digits: 16 pins)
- On-chip FLT display controller
  - Number of segments: 8 to 12 Program-selectable
     Number of digits: 16 to 8 Program-selectable
- On-chip automatic KEY Return Data input function
  - 4x15-bit
- Timer: 3 channels
- 6-bit prescaler + 8-bit programmable timer
- Interval timer: Common with PWM DAC, capable of frequency division for melody generation
- Time-keeping time base timer: On-chip 14-stage frequency divider
- PWM DAC output: Common with Timer 1 (Interval Timer)
  - 6-bit PWM DAC + 8-bit PWM DAC or 14-bit PWM DAC
- Serial input/output interface (LSB first)
- 8-bit input/output x 2 channels or 16-bit input/output x 1 channel
- Interrupt function: 8 sources, 4 vector addresses
  - External interrupt 2 lines
- Timer interrupt 3 lines
- Serial I/O interrupt 2 lines
- Digit interrupt
   1 line
   On-chip comparator for AFC signal detection (4 channels)

- On-chip watchdog timer: Common with time-keeping time base timer (Option)
- On-chip 9-bit counter for horizontal sync detection
- · On-chip OSC stabilizing time wait function in the reset mode
- OSC curcuit: 2 channels
  - Main clock: 4.19MHz crystal OSC or 4.0MHz ceramic resonator OSC
  - Subclock: 32.768kHz crystal OSC
- Standby function: 2 modes of HALT and HOLD
- Supply voltage: 2.7 to 6.0V
- Package: DIP-64S
- Evaluation LSI: LC6593 (evaluation chip) + EVA800-TB6593 (evaluation chip board) LC65PG38D (piggyback)

## System Block Diagram

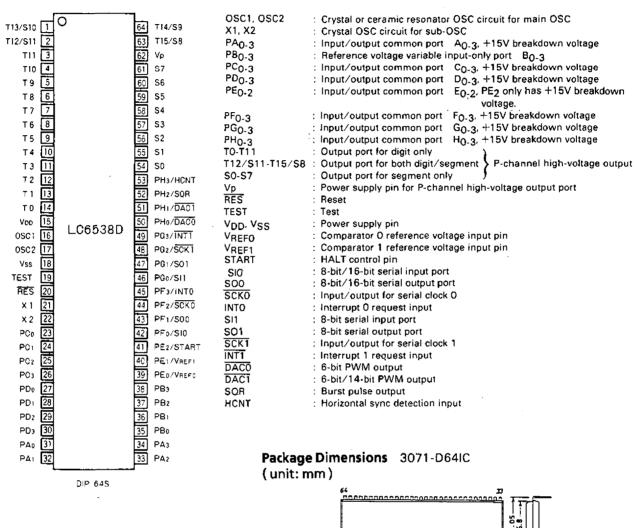


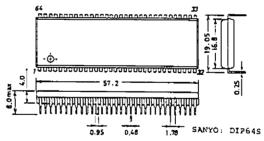
### **Development Support Tools**


The following tools are provided to support the program development for the LC6538D microcomputer.

- (1) User's Manual
  - "LC6538D User's Manual" (Issued in February, 1988)
- (2) Developement Tool Manual

This contains the basic information on the EVA-800. For more detailed information on the LC6538D, refer to the description of Development Support Tools in "LC6538D User's Manual".


- (3) Development Tools
  - ① For program development (Note 1)
    - i. MS-DOS-based host system and cross-assembler
    - ii. Cross assembler ..... MS-DOS base cross assembler: (LC65S.EXE)
  - ② For program evaluation
    - i. Evaluation chip
- : LC6593
- iii. Emulator
- ii. Piggyback microcomputer: LC65PG38D
  - ulator : The EVA-800 controller board and evaluation chip board, or the EVA-850
    - emulator and evaluation chip board


## Appearance of Development Support System



- (Note 1) MS-DOS: Trademark of MicroSoft Corporation
- (Note 2) The EVA-800, EVA-850 is a general term for emulator. A suffix (A, B, ---) is added at the end of EVA-800e EVA-850 as the EVA-800, EVA-850 is improved to be a newer version. Do not use the EVA-800, EVA-850 with no suffix added.

### Pin Assignment





## Pin Description

PU: Output with pull-up MOS OD: Open drain output

| Pin Name                                            | Pins | 1/0      | Functions                                                                                                                                                                               | Output<br>Driver                                            | Option                                                                   | During<br>Reset           |
|-----------------------------------------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------|
| V <sub>DD</sub> · · · · · · · · · · · · · · · · · · | 1    |          | Power supply pin                                                                                                                                                                        | <u> </u>                                                    | _                                                                        |                           |
| TEST                                                | 1    | <u> </u> | LSI test pin. Must be connected to VSS.                                                                                                                                                 | _                                                           | _                                                                        |                           |
| RES                                                 | 1    | 1        | System reset input<br>Initial reset at RES=L                                                                                                                                            | _                                                           | _                                                                        |                           |
| OSC1                                                | 1    | 1        | Pin used for main system clock OSC                                                                                                                                                      |                                                             | -                                                                        |                           |
| OSC2                                                | 1    | 0        | For the external clock mode, the OSC2 is made open and the external clock is applied to the OSC1.  With feedback resistance                                                             |                                                             |                                                                          |                           |
| X1                                                  | 1    | ı        | Pin used for sub-clock OSC                                                                                                                                                              |                                                             | _                                                                        | _                         |
| X2                                                  | 1    | 0        | For the external clock mode, the X2 is made open and the external clock is applied to the X1.  With feedback resistance, damping resistance                                             |                                                             |                                                                          |                           |
| TO to T11                                           | 12   | 0        | Output for FLT digit only Outputs a fixed address in the display RAM at the static mode.                                                                                                | Pch high<br>breakdown<br>voltage<br>High-current<br>type    | Presence or<br>absence of pull-<br>down resistance<br>(in bit units)     | L                         |
| T12/S11<br>to T15/S8                                | 4    | 0        | Output for FLT digit/segment Outputs a fixed address in the display RAM at the static mode.                                                                                             | Pch high<br>breakdown<br>voltage<br>High-current<br>type    | Presence or<br>absence of pull-<br>down resistance<br>(in bit units)     | L.                        |
| S0 to S7                                            | 8    | 0        | Output for FLT segment only Outputs a fixed address in the display RAM at the static mode.                                                                                              | Pch high<br>breakdown<br>voltage<br>Medium-<br>current type | Presence or<br>absence of pull-<br>down resistance<br>(in bit units)     | L                         |
| Vρ                                                  | 1    |          | Power supply pin for FLT output pull-down resistance                                                                                                                                    | -                                                           | _                                                                        | _                         |
| PA <sub>0</sub> to PA <sub>3</sub>                  | 4    | 1/0      | 4-bit and single-bit input/output The input is of low threshold type for key scan and has the function to automatically fetch the key scan data into the RAM.                           | +15V<br>breakdown<br>voltage<br>Medium-<br>current type     | PU or OD to be<br>specified in bit<br>units                              | н                         |
| PB <sub>O</sub> to PB <sub>3</sub>                  | 4    | l        | With 4-channel independint comparator Internal/external reference voltage selectable 4-bit/single-bit input The input function stops at the low-speed mode (1/32 mode, sub-clock mode). | _                                                           | _                                                                        | Input<br>function<br>stop |
| PCO to PC3                                          | 4    | 1/0      | 4-bit and single-bit input/output                                                                                                                                                       | +15V<br>breakdown<br>voltage<br>High-current<br>type        | PU or OD to<br>be specified<br>in bit units  Output at the<br>reset mode | H/L (option)              |
| PD <sub>0</sub> to PD <sub>3</sub>                  | 4    | 1/0      | 4-bit and single-bit input/output                                                                                                                                                       | +15V<br>breakdown<br>voltage<br>High-current<br>type        | PU or OD to<br>be specified<br>in bit units  Output at the<br>reset mode | H/L (option)              |

| Pin Name                           | Pins | 1/0 | Functions                                                                                                                                                                                                                                                                | Output<br>Driver                                        | Option                                      | During<br>Reset |
|------------------------------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-----------------|
| PEO to PE2                         | 3    | 1/0 | 3-bit and single-bit input/output PEO/VREFO Common with external reference voltage input of PB1.3 PE1/VREF1 Common with external reference voltage input of PB0 PE2/START Common with HALT mode control START                                                            | breakdown                                               | PU or OD to be<br>specified in bit<br>units | Н               |
| PF <sub>O</sub> to PF <sub>3</sub> | 4    | 1/0 | 4-bit and single-bit input/output PF0/SI0 Common with serial input SI0 PF1/SO0 Common with serial output SO0 PF2/SCKO Common with serial clock input/output SCKO PF3/INTO Common with INTO interrupt input                                                               | +15V<br>breakdown<br>voltage<br>Medium-<br>current type | PU or OD to be<br>specified in bit<br>units | Н               |
| PG <sub>O</sub> to PG <sub>3</sub> | 4    | 1/0 | 4-bit and single-bit input/output PG0/SI1 Common with serial input SI1 PG1/SO1 Common with serial output SO1 PG2/SCK1 Common with serial clock input/output SCK1 PG3/INT1 Common with INT1 interrupt input                                                               | +15V<br>breakdown<br>voltage<br>Medium-<br>current type | PU or OD to be<br>specified in bit<br>units | Н               |
| PH <sub>O</sub> to PH <sub>3</sub> | 4    | 1/0 | 4-bit and single-bit input/output PH <sub>0</sub> /DAC0 Common with 6-bit PWM D/A output PH <sub>1</sub> /DAC1 Common with 8/14-bit PWM D/A output PH <sub>2</sub> /SQR Common with burst pulse output PH <sub>3</sub> /HCNT Common with horizontal sync detection input | +15V<br>breakdown<br>voltage<br>Medium-<br>current type | PU or OD to be<br>specified in bit<br>units | н               |

### **User Options**

1) Option of ports C, D Output Level at the Reset Mode. For input/output common ports C, D, either of the following two output levels may be selected in a group of 4 bits during reset by option.

| Option Name                             | Conditions, etc.            |
|-----------------------------------------|-----------------------------|
| Output at the reset mode:     "H" level | All of 4 bits of ports C, D |
| Output at the reset mode:     "L" level | All of 4 bits of ports C, D |

## 2) Option of Port Output Configuration

For each input/output common port, either of the following two output configurations may be selected by option (in bit units).

| Option Name                      | Circuit | Conditions, etc.              |
|----------------------------------|---------|-------------------------------|
| 1. Open drain output             |         | Ports A, C, D, E, F, G, H     |
|                                  |         | T0~T11, T12/S11~T15/S8, S0~S7 |
| Output with pull-up resistance   |         | Ports A, C, D, E, F, G, H     |
| Output with pull-down resistance | RD Vp   | T0~T11, T12/S11~T15/S8, S0~S7 |

3) Watchdog Reset Option
The presence or absence of the time base timer-used watchdog reset function may be selected by option.

| Option Name                        | Conditions, etc.                                                                                                                                                                             |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| With watchdog reset function       | Programming must be made so that the time base interrupt request flag is reset within a certain period of time not to cause the watchdog reset to be performed as long as no runaway occurs. |
| 2. Without watchdog reset function | _                                                                                                                                                                                            |

## LC6538D Electrical Characteristics

1. Absolute Maximum Ratings at Ta=25°C, VSS=0V

| Absolute Maximum Rat<br>Parameter         | Symbol               | Applicable Pins, Remarks     | Conditions                             | Limits                       | Unit         |
|-------------------------------------------|----------------------|------------------------------|----------------------------------------|------------------------------|--------------|
| Maximum Supply                            | V <sub>DD</sub> max  | V <sub>D</sub> D             | ************************************** | -0.3 to +7.0                 | V            |
| Voltage                                   | 1271244111           |                              |                                        |                              |              |
| Output Voltage                            | V <sub>O</sub> (1)   | X2,OSC2                      |                                        | Allowable up to              | V            |
|                                           |                      |                              |                                        | voltage generated            |              |
|                                           | V <sub>O</sub> (2)   | To to T11,                   |                                        | V <sub>DD</sub> -45 to       | ٧            |
|                                           |                      | T12/S11 to                   |                                        | V <sub>DD</sub> +0.3         |              |
| Input Voltage                             | 14/11                | T15/S8, S0 to S7<br>X1, OSC1 |                                        | Allowable up to              | V            |
| input voitage                             | V <sub>I</sub> (1)   | XI, USCI                     |                                        | voltage generated            | V            |
|                                           | V <sub>I</sub> (2)   | TEST, RES, PBO               |                                        | -0.3 to V <sub>DD</sub> +0.3 | V            |
|                                           | V [( 2 /             | to 3, OSC1, X1 at            |                                        | 0.0 to 100 70.0              |              |
|                                           |                      | external clock               |                                        | •                            |              |
|                                           |                      | mode                         |                                        |                              |              |
|                                           | V <sub>i</sub> (3)   | Vp                           | · ·                                    | V <sub>DD</sub> -45 to       | V            |
|                                           | • ·                  | ,                            |                                        | V <sub>DD</sub> +0.3         |              |
| Input/Output Voltage                      | V <sub>IO</sub> (1)  | Ports                        | At open drain                          | −0.3 to +15                  | V            |
|                                           |                      | A,C,D,E2,F,G,H               | output option                          |                              |              |
|                                           | V <sub>IO</sub> (2)  | Ports E0,E1                  |                                        | -0.3 to V <sub>DD</sub> +0.3 | V            |
|                                           |                      | Ports                        | At pull-up MOS-                        | -0.3 to V <sub>DD</sub> +0.3 | V            |
|                                           |                      | A,C,D,E2,F,G,H               | provided output                        |                              | }            |
|                                           |                      |                              | option                                 |                              |              |
| Peak Output Current                       | IOP(1)               | Ports A,E,F,G,H              |                                        | -2 to 10                     | mA           |
|                                           | IOP(2)               | Ports C,D<br>TO to T11,      |                                        | -2 to 30<br>-30 to 0         | mA           |
|                                           | IOP(3)               | T12/S11 to                   |                                        | -30 to 0                     | mA           |
|                                           |                      | T15/S8                       |                                        |                              |              |
|                                           | IOP(4)               | S0 to S7                     | -                                      | -10 to 0                     | mA           |
| Average Output Current                    | IOA(1)               | Ports A,E,F,G,H              | Per pin                                | -2 to 10                     | mA           |
|                                           | 'OA(')               | 1013 4,2,7,0,11              | Average over the                       | 2 10 10                      | 1110         |
|                                           |                      | ļ                            | period of 100 msec.                    |                              |              |
|                                           | I <sub>OA</sub> (2)  | Ports C,D                    | Per pin                                | -2 to 30                     | mA           |
|                                           | 104/                 |                              | Average over the                       |                              |              |
|                                           |                      |                              | period of 100 msec.                    |                              |              |
|                                           | I <sub>OA</sub> (3)  | TO to T11,                   | Per pin                                | −30 to 0                     | mA           |
|                                           |                      | T12/S11 to                   | Average over the                       |                              |              |
|                                           |                      | T15/S8                       | period of 100 msec.                    | ,                            |              |
|                                           | I <sub>OA</sub> (4)  | S0 to S7                     | Per pin                                | -10 to 0                     | mA           |
|                                           |                      |                              | Average over the                       |                              |              |
|                                           |                      |                              | period of 100 msec.                    |                              |              |
|                                           | ΣΙΟΑ(1)              | Ports A,E                    | Total current of all                   | -14 to 20                    | mA           |
|                                           |                      |                              | applicable pins                        |                              |              |
|                                           |                      |                              | Average over the                       |                              | 1            |
|                                           |                      |                              | period of<br>100msec.                  |                              |              |
|                                           | ΣΙΟΑ(2)              | Ports F,G,H                  | Total current of all                   | -24 to 60                    | mA           |
|                                           | -iOA(2)              | rona r,u,n                   | applicable pins                        | -24 10 00                    | 1014         |
|                                           |                      |                              | Average over the                       |                              |              |
|                                           |                      | 1                            | period of                              |                              |              |
|                                           |                      |                              | 100msec.                               |                              |              |
|                                           | ΣI <sub>OA</sub> (3) | Ports C,D                    | Total current of all                   | -16 to 80                    | mA           |
|                                           | J                    |                              | applicable pins                        |                              |              |
|                                           |                      |                              | Average over the                       |                              |              |
|                                           |                      |                              | period of                              |                              |              |
|                                           |                      |                              | 100msec.                               |                              |              |
|                                           | ΣIOA(4)              | TO to T11,                   | Total current of all                   | -100 to 0                    | mA           |
|                                           |                      | T12/S11 to                   | applicable pins                        |                              | 1            |
|                                           |                      | T15/S8, S0 to S7             | Average over the                       |                              | 1            |
|                                           |                      |                              | period of                              |                              |              |
| AP                                        | 5.1                  | DIDOAG                       | 100msec.                               |                              | ļ            |
| Allowable Power                           | Pd max               | DIP64S                       | $T_a = -30 \text{ to}$                 | 600                          | mW           |
| Dissipation                               | <u> </u>             |                              | +70°C                                  |                              |              |
|                                           | I T                  | 1                            |                                        | -30 to +70                   | °C           |
| Operating Temperature Storage Temperature | Topr<br>Tstg         |                              |                                        | -55 to +125                  | <del>c</del> |

2. Allowable Operating Conditions at Ta=-30 to +70°C, VSS=0V

| Parameter                                  | Symbol               | Applicable Pins,<br>Remarks | Conditions                                             | V <sub>DD</sub> [V]      | min                                        | Limits<br>typ | max                                         | Unit      |
|--------------------------------------------|----------------------|-----------------------------|--------------------------------------------------------|--------------------------|--------------------------------------------|---------------|---------------------------------------------|-----------|
| Operating Supply<br>Voltage                | V <sub>DD</sub> (1)  | VDD                         | 0.92μs≨Tcyc<br><1.9μs                                  | _                        | 4.5                                        | ·             | 6.0                                         | V         |
| (Including supply voltage at standby mode) | V <sub>DD</sub> (2)  | $V_{DD}$                    | 1.9μs≦Tcyc ≦6μs                                        | _                        | 4.0                                        |               | 6.0                                         | ٧         |
|                                            | V <sub>DD</sub> (3)  | V <sub>DD</sub>             | 6 <i>μ</i> s <tcyc ≦67<i="">μs</tcyc>                  | _                        | 3.0                                        | Julie Julie   | 6.0                                         | ٧         |
|                                            | V <sub>DD</sub> (4)  | VDD                         | 4.19MHz OSC stop,<br>32kHz OSC<br>operating            | _                        | 2.7                                        |               | 6.0                                         | V         |
| Memory Retention<br>Supply Voltage         | Vsт                  | V <sub>DD</sub>             | At operation<br>completely stopped<br>mode (HOLD mode) | _                        | 1.8                                        |               | 6.0                                         | V         |
| "H"-Level Input                            | V <sub>IH</sub> (1)  | Port A of OD type           | Output Nch Tr OFF                                      |                          | 1.90                                       |               | 13.5                                        | V         |
| Voltage                                    | V <sub>IH</sub> (2)  | Port A of PU type           | Output Nch Tr OFF                                      |                          | 1.90                                       |               | VDD                                         |           |
|                                            | VIH(3)               | Ports C, D of OD            | Output Nch Tr OFF                                      | 4.5 to 6.0               | 0.70V <sub>DD</sub>                        |               | 13.5                                        |           |
|                                            | γ <sub>1</sub> η(ο)  | type                        | Odipar Hell II Oll                                     | 3.0 to 6.0               | 0.75V <sub>DD</sub>                        |               | 13.5                                        |           |
|                                            | V <sub>IH</sub> (4)  | Ports C, D of PU            | Output Nch Tr OFF                                      | 4.5.to.6.0               | 0.70V <sub>DD</sub>                        |               | $V_{DD}$                                    | v         |
|                                            | *IH(*)               | type                        | Output Non II OI I                                     | 3.0 to 6.0               | 0.75V <sub>DD</sub>                        |               | VDD                                         | Ÿ         |
|                                            | V <sub>1H</sub> (5)  | Ports E2, F to H of         | Output Nch Tr OFF                                      | 4.5 to 6.0               | 0.75V <sub>DD</sub>                        |               | 13.5                                        | V         |
|                                            | 11H(O)               | OD type                     | Output Non II OI                                       | 3.0 to 6.0               | 0.80V <sub>DD</sub>                        |               | 13.5                                        |           |
|                                            | V <sub>IH</sub> (6)  | Ports E2, F to H of         | Output Nch Tr OFF                                      | 4.5 to 6.0               | 0.75V <sub>DD</sub>                        |               | V <sub>DD</sub>                             | V         |
|                                            | VIA(O)               | PU type                     | Odipat Non II OII                                      | 3.0 to 6.0               | 0.80V <sub>DD</sub>                        |               | V <sub>DD</sub>                             | Ť         |
|                                            | V <sub>IH</sub> (7)  | Ports EO, E1                | Output Nch Tr OFF                                      |                          | 0.75V <sub>DD</sub>                        |               | V <sub>DD</sub>                             | v         |
|                                            | 110(1)               | . 0.10 20, 21               | output Hon H of F                                      | 3.0 to 6.0               | 0.80V <sub>DD</sub>                        |               | V <sub>DD</sub>                             | v         |
| i                                          | V <sub>IH</sub> (8)  | Port B                      | At internal reference voltage mode                     | 4.0 to 6.0               | 0.65V <sub>DD</sub>                        |               | VDD                                         | V         |
|                                            | V <sub>IH</sub> (9)  | OSC1, X1                    | Fig. 5, Fig. 6                                         | 4.5 to 6.0               | 0.70V <sub>DD</sub>                        |               | V <sub>DD</sub>                             | V         |
|                                            |                      |                             |                                                        | 3.0 to 6.0               | 0.80V <sub>DD</sub>                        |               | VDD                                         | V         |
|                                            | V <sub>IH</sub> (10) | RES                         | Fig. 7                                                 | 4.5 to 6.0<br>1.8 to 6.0 | 0.75V <sub>DD</sub><br>0.80V <sub>DD</sub> |               | V <sub>DD</sub>                             | V         |
| "L"-Level Input                            | V <sub>1</sub> (1)   | Port A                      | Output Nch Tr OFF                                      |                          | VSS                                        |               | V <sub>DD</sub><br>0.5                      |           |
| Voltage                                    | VIL.,                | TOTA                        | , Quipui Neil II Oll                                   | 3.0 to 6.0               | VSS                                        |               | 0.35                                        |           |
| voltage                                    | V <sub>IL</sub> (2)  | Ports C, D                  | Output Nch Tr OFF                                      |                          | VSS                                        |               | 0.30V <sub>DD</sub>                         | v         |
|                                            | 10,00                |                             |                                                        | 3.0 to 6.0               | V <sub>SS</sub>                            |               | 0.25V <sub>DD</sub>                         | Ť         |
|                                            | V <sub>IL</sub> (3)  | Ports E, F, G, H            | Output Nch Tr OFF                                      | 4.5 to 6.0               | Vss                                        |               | 0.25Vpp                                     | V         |
|                                            |                      |                             | ,                                                      | 3.0 to 6.0               | Vss                                        |               | 0.20V <sub>DD</sub>                         | V         |
| ·                                          | V <sub>IL</sub> (4)  | Port B                      | At internal reference voltage mode                     | 4.0 to 6.0               | Vss                                        |               | 0.35V <sub>DD</sub>                         |           |
|                                            | V <sub>IL</sub> (5)  | RES                         | Fig. 7                                                 | 4.5 to 6.0               | VSS                                        |               | 0.25V <sub>DD</sub>                         | V         |
|                                            |                      |                             |                                                        | 1.8 to 6.0               |                                            |               | $0.20V_{DD}$                                |           |
|                                            | V <sub>IL</sub> (6)  | OSC1, X1                    | Fig. 5, Fig. 6                                         | 4.5 to 6.0               | Vss                                        |               | 0.30V <sub>DD</sub>                         | V         |
|                                            |                      | TEAT                        |                                                        | 3.0 to 6.0               | Vss                                        |               | 0.20V <sub>DD</sub>                         |           |
|                                            | V <sub>IL</sub> (7)  | TEST                        |                                                        | 4.5 to 6.0               |                                            |               | 0.30V <sub>DD</sub>                         | V         |
| Common-Mode Input                          | Vсмм                 | Port B                      | Offset voltage                                         | 3.0 to 6.0<br>4.5 to 6.0 | V <sub>SS</sub> +1.0                       |               | 0.25V <sub>DD</sub><br>V <sub>DD</sub> =1.5 |           |
| Voltage Range                              | Tave                 |                             | ≦V <sub>OFS</sub>                                      | (Note 1)                 | 0.00                                       |               |                                             |           |
| Instruction Cycle Time Main Clock OSC      | TCYC                 | OSC1, OSC2                  | (Note 1) Crystal, ceramic                              | (Note 1)<br>3.0 to 6.0   | 0.92<br>3.5                                | 4.19          | 67                                          | μs<br>MHz |
| Frequency Range                            | fosc                 | V3C1, V3C2                  | resonator OSC (Note 1) Fig. 1                          | 3.0 10 6.0               | 3.0                                        | 4.19          | 4,2                                         | IVITIZ    |
| Main Clock Input                           | fEOSC                | OSC1                        | External clock                                         | 3.0 to 6.0               | 2.0                                        |               | 4 33                                        | MHz       |
| Frequency Range                            | ·EU36                |                             | (Note 1) Fig. 5                                        | 3.5 .5 5.6               | ****                                       |               | 7,55                                        | '''''     |
| Main Clock Input "H"-Level Pulse Width     | twosch               | OSC1                        | External clock Fig. 5                                  | 3.0 to 6.0               | 100                                        |               |                                             | ns        |
| Main Clock Input "L"-Level Pulse Width     | twoscl               | OSC1                        | External clock<br>Fig. 5                               | 3.0 to 6.0               | 100                                        |               |                                             | ns        |
| Main Clock Rise Time                       | tOSCR                | OSC1                        | External clock<br>Fig. 5                               | 3.0 to 6.0               |                                            |               | 30                                          | ns        |

## LC6538D

Continued from proceding page.

| Parameter                                | Symbol          | Applicable    | Conditions               |                     | •    | Limits        |     |      |
|------------------------------------------|-----------------|---------------|--------------------------|---------------------|------|---------------|-----|------|
| rarameter                                | Symbol          | Pins, Remarks | Conditions               | V <sub>DD</sub> [V] | min  | typ           | max | Unit |
| Main Clock Fall Time                     | toscf           | OSC1          | External clock<br>Fig. 5 | 3.0 to 6.0          |      |               | 30  | ns   |
| Main Clock OSC<br>Constant               | CO1, CO2        |               | Fig. 1                   | 3.0 to 6.0          | Refe | r to Table 1  | -   | _    |
| Sub-clock OSC<br>Frequency Range         | fx              | X1, X2        | Crystal OSC<br>Fig. 2    | 2.7 to 6.0          | 30   | 32.768        | 35  | kHz  |
| Sub-clock Input<br>Frequency Range       | fEX             | X1            | External clock<br>Fig. 6 | 2.7 to 6.0          | 30   |               | 35  | kHz  |
| Sub-clock Input<br>"H"-Level Pulse Width | tWXH            | X1            | External clock<br>Fig. 6 | 2.7 to 6.0          | 6    |               | 34  | μs   |
| Sub-clock Input<br>"L"-Level Pulse Width | tWXL            | X1            | External clock<br>Fig. 6 | 2.7 to 6.0          | 6    |               | 34  | μs   |
| Sub-clock Input Rise<br>Time             | tXR             | X1            | External clock<br>Fig. 6 | 2.7 to 6.0          |      |               | 0.2 | μs   |
| Sub-clock Input Fall<br>Time             | <sup>t</sup> XF | X1            | External clock<br>Fig. 6 | 2.7 to 6.0          |      |               | 0.2 | μs   |
| Sub-clock OSC<br>Constant                | CX1, CX2        |               | Fig. 2                   | 2.7 to 6.0          | Refe | er to Table 2 |     | _    |

(Note 1) Since the frequency also depends on the supply voltage and operating cycle time, both must be referred to.

## 3. Electrical Characteristics at $T_a = -30$ to $+70^{\circ}$ C, $V_{SS} = 0$ V

| Parameter                                                                 | Symbol               | Applicable                                                 | Conditions                                                                                   | ,                        | l                    | Limits |             |          |
|---------------------------------------------------------------------------|----------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------|----------------------|--------|-------------|----------|
|                                                                           | эуппоот              | Pins, Remarks                                              |                                                                                              | $V_{DD}[V]$              | min                  | typ    | max         | Uni      |
| "H"-Level Input<br>Current                                                | <del>կ</del> ႕(1)    | Ports A, C, D, E2,<br>F to H of OD<br>type                 | Output Nch Tr OFF<br>(Including Nch Tr<br>OFF leakage<br>current)<br>V <sub>IN</sub> =+13.5V | 2.7 to 6.0               |                      | ;      | <b>5</b> .0 | μΑ       |
|                                                                           | l <sub>iH</sub> (2)  | Ports EO, E1                                               | Output Nch Tr OFF<br>(Including Nch Tr<br>OFF leakage<br>current)<br>VIN=VDD<br>VIN=VDD      | 2.7 to 6.0               |                      |        | 1.0         | μΑ       |
|                                                                           | I <sub>JH</sub> (3)  | OSC1, X1                                                   | VIN=VDD                                                                                      | 2.7 to 6.0               |                      |        | 10          | μΑ       |
| "L"-Level Input<br>Current                                                | I <sub>IL</sub> (1)  | Ports A, C to H of<br>OD type                              | Output Nch Tr OFF<br>VIN=VSS                                                                 | 2.7 to 6.0               | -1.0                 |        |             | μΑ       |
|                                                                           | I <sub>IL</sub> (2)  | Port B Ports A, C to H of PU type                          | V <sub>IN</sub> =V <sub>SS</sub> Output Nch Tr OFF V <sub>IN</sub> =V <sub>SS</sub>          | 2.7 to 6.0<br>2.7 to 6.0 | -1.0<br>-1.3         | -0.35  |             | μA<br>mA |
|                                                                           | lլ <u>է</u> (3)      | OSC1, X1                                                   | V <sub>IN</sub> =V <sub>SS</sub>                                                             | 2.7 to 6.0               | -10                  |        |             | μΑ       |
|                                                                           | I <sub> L</sub> (4)  | RES                                                        | V <sub>IN</sub> =V <sub>SS</sub>                                                             | 2.7 to 6.0               | -60                  | -25    |             | μΑ       |
| "H"-Level Output<br>Voltage                                               | V <sub>OH</sub> (1)  | Ports A, C to H of PU type                                 | I <sub>OH</sub> =50μA                                                                        | 4.0 to 6.0               |                      |        |             | ٧        |
|                                                                           | V <sub>OH</sub> (2)  | Ports A, C to H of PU type                                 | Ι <sub>ΟΗ</sub> =-10μΑ                                                                       | 3.0 to 6.0               |                      |        |             | V        |
|                                                                           | VOH(3)               | TO to T11,<br>T12/S11 to<br>T15/S8                         | I <sub>OH</sub> =-20mA                                                                       |                          | V <sub>DD</sub> -1.8 |        |             | V        |
|                                                                           | V <sub>OH</sub> (4)  | TO to T11,<br>T12/S11 to<br>T15/S8                         | IOH=-1mA<br>IOH in other ports<br>is less than -1mA.                                         | 3.0 to 6.0               | V <sub>DD</sub> -1.0 |        | •           | V        |
|                                                                           | VOH(5)               | S0 to S7                                                   | I <sub>OH</sub> =-5mA                                                                        | 4.0 to 6.0               | V <sub>DD</sub> -1.8 |        |             | V        |
|                                                                           | VOH(6)               | S0 to S7                                                   | IOH=-1 mA<br>IOH in other ports<br>is less than -1 mA.                                       | 3.0 to 6.0               | V <sub>DD</sub> -1.0 |        |             | ٧        |
| "L"-Level Output<br>Voltage                                               | V <sub>OL</sub> (1)  | Ports C, D                                                 | I <sub>OL</sub> =20mA                                                                        | 4.0 to 6.0               |                      |        | 1.5         | ٧        |
|                                                                           | V <sub>OL</sub> (2)  | Ports C, D                                                 | IOL=2mA IOL in other ports is less than 1mA.                                                 | 3.0 to 6.0               |                      |        | 0.5         | V        |
|                                                                           | V <sub>OL</sub> (3)  | Ports A, E to H                                            | I <sub>OL</sub> =5mA                                                                         | 4.0 to 6.0               |                      |        | 1.5         | V        |
|                                                                           | V <sub>OL</sub> (4)  | Ports A, E to H                                            | IOL=1mA<br>IOL in other ports is<br>less than 1mA.                                           | 3.0 to 6.0               |                      |        | 0.5         | V        |
| "L"-Level Output<br>Current<br>(Current flowing in<br>pull-down resistor) | lor                  | TO to T11,<br>T12/S11 to<br>T15/S8, S0 to S7<br>of PD type | Output Pch Tr OFF<br>VOUT=3.0V<br>Vp=-35V                                                    | 5.0                      | 190                  | 362    | 760         |          |
| Output OFF-State<br>Leakage Current                                       | I <sub>OFF</sub> (1) | TO to T11,<br>T12/S11 to<br>T15/S8, S0 to S7<br>of OD type | VOUT=VDD                                                                                     |                          |                      |        | 30          | μΑ       |
|                                                                           | I <sub>OFF</sub> (2) | TO to T11,<br>T12/S11 to<br>T15/S8, S0 to S7<br>of OD type | Output Pch Tr OFF<br>VOUT=VDD-40V                                                            | 3.0 to 6.0               | -30                  |        |             | μΑ       |
| Resistance of Pull-up<br>MOS Transistor                                   | R <sub>Tru</sub>     | Ports A, C to H of<br>PU type                              |                                                                                              | 5.0                      | 6                    | 15     |             | kΩ       |
| Pull-up Resistance                                                        | Ru                   | RES                                                        |                                                                                              | 5.0                      | 100                  | 220    | 400         |          |
| Pull-down Resistance                                                      | Rd                   | TO to T11,<br>T12/S11 to<br>T15/S8, S0 to S7<br>of PD type |                                                                                              | 5.0                      | 50                   | 105    | 200         | kΩ       |
| Main Clock OSC<br>Stabilizing Period                                      | tMXS                 | OSC1, OSC2                                                 | 4.19MHz crystal<br>OSC                                                                       | 3.0 to 6.0               |                      |        | 30          |          |
|                                                                           | tMCFS                | OSC1, OSC2                                                 | 4.0MHz ceramic resonator OSC                                                                 | 3.0 to 6.0               |                      |        | 10          | ms       |

| Symbol   | Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conditions (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V D-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limits                                           |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · ·      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | тур                                              |                                                          | Uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| tsxs     | X1, X2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.768kHz crystal<br>OSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.7 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 10                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _ 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          | μ\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | _                                                        | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKL(2)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKH(1)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKH(2)  | SCKO, SCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKB(1)  | SCKO, SCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 3.0                                                      | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1CKR(2)  | SCKO, SCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 0.1                                                      | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKE(1)  | SCKO, SCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 3.0                                                      | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKF(2)  | SCKÖ, SCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77784                                            | 0.1                                                      | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| чск      | SIO, SI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specified for ∫of<br>SCKO, SCK1<br>Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tCKI     | SIO, SI1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                                          | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tcko     | S00, S01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Specified from of SCKO, SCK1 External 1kΩ External 50pF Fig. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 0.5                                                      | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vuve     | Ports E to H. RES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1Vnn                                           |                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | Port B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | At 100mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 50                                                       | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,,,,     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | overdrive mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vors     | Port B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>IN</sub> =1.0V to<br>V <sub>DD</sub> -1.5V<br>V <sub>REF</sub> =1.0V to<br>V <sub>DD</sub> -1.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ±20                                              | ±100                                                     | m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IDDOP(1) | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.19MHz x 1/1<br>high-speed<br>operation mode<br>(Tcyc=0.95\mus)<br>32.768kHz sub-<br>clock oscillating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5 to 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                              |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | high-speed<br>operation mode<br>(T <sub>C</sub> Y <sub>C</sub> =1.9µs)<br>32.768kHz sub-<br>clock oscillating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IDDOP(3) | $v_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 0.7                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operation mode<br>(TCYC=30.5µs)<br>32.768kHz sub-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                              | 3                                                        | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IDDOp(4) | VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.035                                            | 0.12                                                     | m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 550117   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | speed operation<br>mode<br>(T <sub>CYC</sub> =61µs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4                                              |                                                          | . mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | tckcy(1) tckcy(2) tckcy(2) tckcy(2) tckcy(2) tckcy(2) tckcy(1) tckcy(2) tckcy(1) tckcy(2) tckcy(1) tckcy(2) trkcy(2) trkcy(2) trkcy(2) trkcy(3) trkcy(4) trkcy(5) trkcy(6) trkcy(7) trkcy(8) trk | Symbol   Pins, Remarks   tsxs   X1, X2     tckcy(1)   SCKO, SCK1     tckcy(2)   SCKO, SCK1     tckcy(2)   SCKO, SCK1     tckcy(2)   SCKO, SCK1     tckcy(2)   SCKO, SCK1     tckh(1)   SCKO, SCK1     tckh(2)   SCKO, SCK1     tckg(1)   SCKO, SCK1     tckg(2)   SCKO, SCK1     tckf(2)   SCKO, SCK1     tckcy(3)   SCKO, SCK1     tckcy(4)   SCKO, SCK1     tckcy(5)   SCKO, SCK1     tckcy(6)   SCKO, SCK1     tckcy(7)   SCKO, SCK1     tckcy(8)   SCKO, SCK1     tckcy(8)   SCKO, SCK1     tckcy(9)   SCKO, SCK1     tckcy(1)   SCKO, SCK1     tckc | Symbol   Pins, Remarks   Symbol   Pins, Remarks   Symbol   Six   Six | Symbol   Pins, Remarks   Schillatins   VDD(V)     ISXS   X1, X2   32,768kHz crystal   2,7 to 6.0     ICKCY(1)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKCY(2)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKL(1)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKL(1)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKH(1)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKH(2)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKH(2)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKR(1)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKR(2)   SCKO, SCK1   Fig. 8   4.5 to 6.0     ICKR(3)   SIO, SI1   Specified for | Symbol   Pins, Remarks   Schillar   Vpp(V)   min | Symbol   Pins. Remarks   Conditions   VDD[V]   min   typ | Symbol   Pins, Remarks   Conditions   VDD(V)   min   typ   max     SXS   X1, X2   32.768kHz crystal   2.7 to 6.0   10     OSC   OSC   5CK1   Fig. 8   4.5 to 6.0   1.6     CKCY(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.7     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.7     TCKL(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.92     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKL(1)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKL(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKL(2)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKL(3)   SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKL(4)   SIO, SI1   Specified for for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.2     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     TCKO   SOO, SO1   Specified from for SCK0, SCK1   Fig. 8   4.5 to 6.0   0.1     T |

(Note 2) When using the internal clock, T<sub>ckual</sub> and T<sub>ckual</sub> (pins SCKO and SCK1) have a minimum pulsewidth of 0.92  $\mu$ s. This value is, however, dependent on the pull-up resistor and may, in some cases, be less than the above rating. The value of the pull-up resistance should be selected to ensure a minimum pulsewidth for T<sub>ckull</sub> and T<sub>ckull</sub> that is greater than the rated 0.7  $\mu$ s.

## LC6538D

## Continued from preceding page.

| D                    | 0               | Applicable<br>Pins, Remarks | Conditions                                                       |                     | Limits |      |     |      |
|----------------------|-----------------|-----------------------------|------------------------------------------------------------------|---------------------|--------|------|-----|------|
| Parameter            | Symbol          |                             |                                                                  | V <sub>DD</sub> [V] | min    | typ  | max | Unit |
| Standby Current      | IDDST(1)        | V <sub>DD</sub>             | 4.19MHz main                                                     | 2.7                 |        | 4    | 18  | μΑ   |
| Dissipation (Note 3) | <b>200</b> 1(4) |                             | clock stop<br>32.768kHz sub-<br>clock oscillating<br>(HALT mode) | 6.0                 |        | 120  | 300 | μA   |
|                      | IDDST(2)        | VDD                         | Complete standby                                                 | 1.8                 | ·      | 0.02 | 4   | μA   |
|                      |                 |                             | (HOLD mode)                                                      | 6.0                 |        | 0.05 | 10  | μA   |

(Note 3) The current flowing in the I/O port transistors and pull-up/pull-down resistors is excluded.

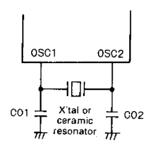



Fig. 1 Main Clock OSC Circuit

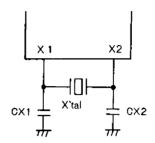



Fig. 2 Sub-clock Crystal OSC Circuit

crystal OSC

Table 1 Main Clock OSC-Guaranteed Constants Table 2 Sub-clock Crystal OSC-Guaranteed Constants

| OSC Mode                           | Maker          | Resonator                                   | CO1              | CO2              |
|------------------------------------|----------------|---------------------------------------------|------------------|------------------|
| 4.194304 MHz                       | Tokyo<br>Denpa | HC-43/u<br>CL=18pF<br>Drive level<br>=100mW | 22pF             | 22pF             |
| crystal OSC                        |                | HC-49/u<br>CL=16pF                          | 15pF             | 15pF             |
|                                    | Kinseki        | HC-49/u<br>CL=24pF                          | 27pF             | 27pF             |
|                                    | Murata         | C\$A-4.00MG                                 | 33pF             | 33pF             |
| 4.0MHz<br>ceramic<br>resonator OSC | Withata        | CST-4.00MG*1                                | Unnec-<br>essary | Unnec-<br>essary |
|                                    | Kyocera        | KBR-4.0MS                                   | 33pF             | 33pF             |
| The differential                   | ,              | KBR-4.0MES*1                                | Unnec-<br>essary | Unnec-<br>essary |

The differential between CO1 and CO2 should be within

± 10%, including wiring capacitance.

<sup>\*1: 3-</sup>pin ceramic resonator with on-chip capacitor

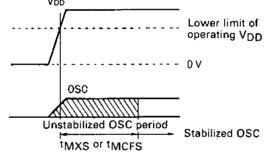



Fig. 3 Main Clock OSC Stalibizing Period

 OSC Mode
 Maker
 Resonator
 CX1
 CX2

 32.768kHz
 Kyocera
 Kyocera
 CL=13pF
 22pF
 22pF

KF-38G-10200

CL=10pF

20pF

22pF

(Note) CL: Internal load capacitance of crystal resonator

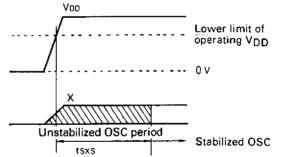



Fig. 4 Sub-clock OSC Stabilizing Period

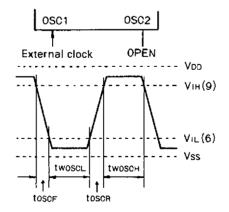



Fig. 5 Main Clock (External Clock) Input Waveform

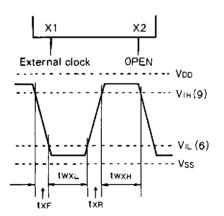
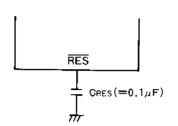
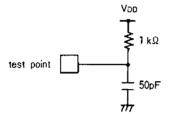




Fig. 6 Sub-clock (External Clock) Input
Waveform




## (Note)

When the rise time of the power supply is 0, the reset time becomes 10ms to 100ms at  $C_{RES}=0.1\mu F$ .

If the rise time of the power supply is long, the value of CRES must be fixed so that the reset time becomes longer than the main clock OSC stabilizing period.

Fig. 7 Reset Circuit



Serial Output Load

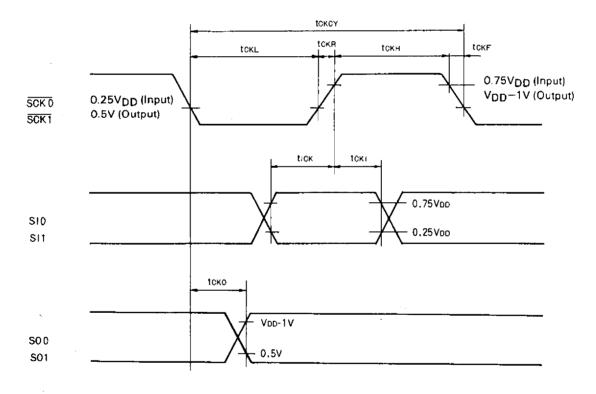



Fig. 8 Serial Clock Timing

Notes for Program Evaluation
When evaluating the LC6538D with the evaluation chip (LC6593, LC65PG38D), the following must be observed.

| sifi-                                | ltem                                             | Func                                                                                                               | tion                                                                                                                                                             | Notes for evaluation                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Classifi-<br>cation                  | Item                                             | Mass-production chip                                                                                               | Evaluation chip                                                                                                                                                  | Notes for evaluation                                                                                                                                                                                                                                                                        |  |  |
|                                      | Ports C, D<br>output level<br>at reset mode      | Ports C, D can be brought to "H" or "L" in a group of 4 bits.                                                      | Port C and port D can be brought to "H" or "L" by CHL pin and DHL pin, respectively.                                                                             | CHL pin and DHL pin must be set according to option specified for mass-production chip.                                                                                                                                                                                                     |  |  |
|                                      | Watchdog<br>reset<br>function                    | The presence or absence of time base timer-used watchdog reset function can be selected.                           | Whether or not to perform watchdog reset function with WDC pin can be determined.                                                                                | WDC pin must be set according to option specified for mass production chip.                                                                                                                                                                                                                 |  |  |
| Notes for option                     | Port output<br>configuration<br>PU/OD            | PU or OD can be selected in bit units.                                                                             | Only Nch OD configuration without pull-up resistance                                                                                                             | (LC6593-applied evaluation) External resistor (10kohms) on evaluation chip board must be connected to necessary port. (LC65PG38D-applied evaluation) Resistor must be connected to necessary port on application board.                                                                     |  |  |
| ų.                                   | PU resistor configuration                        | PU resistor brought to Hi-Z<br>at "L" output mode (Pch Tr is<br>turned OFF)                                        | PU resistor, being external resistor, whose impedance remains unchanged at "L" output mode.                                                                      | For mass-production chip, leakage current only flows in Pch Tr at "L" output mode; for evaluation chip, current continues flowing in PU resistor at "L" output mode.                                                                                                                        |  |  |
|                                      | Port output<br>configuration<br>PD/OD            | PD or OD can be selected in bit units.                                                                             | Only Pch OD configuration without pull-down resistance.                                                                                                          | (LC6593-applied evaluation) External resistor (100kohms) on evaluation chip board must be connected to necessary port. (LC65PG38D-applied evaluation) Resistor must be connected to necessary port on application board. Load power supply must be also supplied on application board side. |  |  |
| Notes for OSC                        | Constants for main clock                         | (Crystal OSC), (Ceramic resonator OSC) Catalog-guaranteed constants provide OSC at frequency specified in catalog. | (Crystal OSC), (Ceramic resonator OSC) Different from mass-production chip in circuit design and characteristic. OSC may be made unstable by wiring capacitance. | (Crystal OSC), (Ceramic resonator OSC) External constants must be fine-adjusted according to service conditions. Refer to note given below.                                                                                                                                                 |  |  |
| Notes                                | Constants for sub-clock                          | (Crystal OSC) Catalog-guaranteed constants provide OSC at frequency specified in catalog.                          | (Crystal OSC) Different from mass- production chip in circuit design and characteristic. OSC may be made unstable by wiring capacitance.                         | (Crystal OSC) External conostants must be fine- adjusted according to service conditions. Refer to note given below.                                                                                                                                                                        |  |  |
| ics                                  | OSC<br>frequency for<br>main clock,<br>sub-clock | OSC frequency<br>characteristic as indicated in<br>catalog                                                         | Different from mass-<br>production chip in circuit<br>design and characteristic.                                                                                 | ES, CS must be used to evaluate characteristic in detail.                                                                                                                                                                                                                                   |  |  |
| Notes for electrical characteristics | Operating<br>current,<br>standby<br>current      | Current characteristic as indicated in catalog                                                                     | Different from mass-<br>production chip in circuit<br>design and characteristic.                                                                                 | Standby current cannot be evaluated in detail. However, standby current can be confirmed roughly in the manner shown below. Be sure to confirm standby current. ES, CS must be used to evaluate characteristic in detail.                                                                   |  |  |
| Notes for ele                        | Operating voltage                                | Supply voltage range as indicated in catalog                                                                       | Restricted to the operating range of EPROM, other LSI                                                                                                            | Evaluation chip must be also used at $V_{DD} = 5V\pm5\%$ at which EPROM, other LSI are used. Therefore, $V_{DD} = 5V\pm5\%$ only can be used for evaluation of mass-production microcomputers.                                                                                              |  |  |
|                                      | Operating temperature                            | Temperature range as indicated in catalog                                                                          | Guaranteed temperature range: 10°C to 40°C                                                                                                                       | LC6593 and LC65PG38D must be used at 10°C to 40°C for evaluation.                                                                                                                                                                                                                           |  |  |

#### < Confirmation methods for the standby function >

The standby current at the standby mode of the evaluation chip can be evaluated not exactly but approximately. Then, do the following steps.

## (a) Confirmation of the standby state

Be sure to confirm whether or not the LSI enters the standby mode when the standby conditions are satisfied.

The following Table gives the current dissipation (typ.) at each mode as a guideline for confirmation of mode.

| Mode                         | Main clock (4.19MHz) | Sub-clock (32kHz) | Current dissipation (typ.)                   |  |
|------------------------------|----------------------|-------------------|----------------------------------------------|--|
| NORMAL, main clock 1/1 mode  | osc                  | osc               | Approx. 3.5mA to 3.7mA                       |  |
| NORMAL, main clock 1/2 mode  | osc                  | osc               | Approx. 2.3mA to 2.5mA                       |  |
| NORMAL, main clock 1/32 mode | osc                  | osc               | Approx. 1mA to 1.2mA                         |  |
| NORMAL, sub-clock mode       | osc                  | osc               |                                              |  |
| NORMAL, sub-clock mode       | Stop                 | osc               | Approx. $100\mu\text{A}$ to $300\mu\text{A}$ |  |
| HALT, main clock 1/1 mode    | OSC                  | osc               | Approx. 1 mA                                 |  |
| HALT, main clock 1/2 mode    | osc                  | osc               |                                              |  |
| HALT, main clock 1/32 mode   | osc                  | osc               |                                              |  |
| HALT, sub-clock mode         | osc                  | osc               |                                              |  |
| HALT, sub-clock mode         | Stop                 | osc               | Approx. 50μA                                 |  |
| HOLD mode                    | Stop                 | Stop              | Several nA to 300nA                          |  |

- Note 1) The current dissipation values shown above are the values obtained when a separate power supply is used for the EPROM power supply.
  - 2) The current dissipation values shown above are the values obtained when the WDC, CHL, DHL pins are brought to "L" level.
    - When brought to "H" level, the current dissipation value per pin increases by approximately  $30\mu A$ .
  - 3) The current dissipation at the NORMAL mode varies by the value of current dissipated in the pull-up resistor of IMO to IM7.
    - IMO to IM7: The current dissipation per bit at "L" level increases by approximately  $25\mu A$ .
  - 4) The current dissipation values at the HALT or HOLD mode are the values obtained when the EPROM is removed.
  - 5) All other pins for the evaluation chip are left open.

## (b) Confirmation by the load current

Your program must be designed so that the current is not transmitted to the input/output ports prior to the execution of the HALT instruction. This can reduce the useless dissipation of the load current at the standby mode and be confirmed on an oscilloscope.

- 1) Design your program so that the current is not transmitted to the output ports prior to the execution of the HALT instruction.
- 2) Design your program and peripherals so that the input/output ports are not brought to the floating state (Hi-Z) at the standby mode.

If brought to the floating state (Hi-Z), current flows in the microcomputer input circuit section, causing more current dissipation. Therefore, the backup enable time is shortened extremely in applications where the capacitor backup is used.

## < OSC constants when the EVA800-TB6538 is used >

When developing your program using evaluation chip board EVA800-TB6538, adjust the capacitor value according to the stray capacitance of the circuit because the crystal/ceramic resonator OSC constants for main clock and the crystal OSC constants for sub-clock depend on the conditions for evaluation and the cable length, etc.

## LC6538D INSTRUCTION SET (by function)

| Symbol                             | Description                                                                                                                                             |                                                              |                                                                                                                                                                                                                                       |                    |                                                                                                          |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|
| AC ACt CF CTL MSTEN OP E bFn M1 M2 | Accumulator Accumulator Accumulator bit t Carry flag Control register Master interrupt enable flag Data pointer E register Flag bit n Memory 1 Memory 2 | M1(DP) M2(DP) P(DPL) P(DPL) PC STACK TMO TMOF bA1,bHa,bLa ZF | : Memory 1 addressed by DP : Memory 2 addressed by DP ! Input/output port addressed by DPL ! Pseudo port specified by DP ! Program counter : Stack register : Timer 0 : Timer 0 interrupt request flag : Working register : Zero flag | ()()<br>+<br>+<br> | : Contents<br>: Transfer and direction<br>: Addition<br>: Subtraction<br>: AND<br>: OR<br>: Exclusive OR |

| Instruction                                  |          |                                                                            |                  |             | : Zero flag     |   |                                                  |                                                                                                                                                                                                                                |             |                                                                                                                             |
|----------------------------------------------|----------|----------------------------------------------------------------------------|------------------|-------------|-----------------|---|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                              |          | Managaria                                                                  | Instruction code |             | _ = =           |   | F41                                              | S!!                                                                                                                                                                                                                            | Status flag | Domodia                                                                                                                     |
|                                              |          | Mnemonic                                                                   | D7D6D5D4         | D3D2D1D0    | Bytes<br>Cycles |   | Function                                         | Description                                                                                                                                                                                                                    | affected    | Remerks                                                                                                                     |
| <b>F</b>                                     | CLA      | Clear AC                                                                   | 1100             | 0000        | 1               | 1 | AC ← O                                           | The AC contents are cleared.                                                                                                                                                                                                   | ζF          | <b>*</b> 1                                                                                                                  |
| manipulation instructions                    | crc      | Clear CF                                                                   | 1 1 1 0          | 0001        | 1               | 1 | CF ←0                                            | The CF contents are cleared.                                                                                                                                                                                                   | CF          |                                                                                                                             |
| <u> </u>                                     | STC      | Set CF                                                                     | 1 1 1 1          | 0001        | -               | 1 | CF ←1                                            | The CF is set.                                                                                                                                                                                                                 | ÇF          |                                                                                                                             |
| io (                                         | CMA      | Complement AC                                                              | 1110             | 1011        | 1               | 1 | AC + (AC)                                        | The AC contents are complemented.                                                                                                                                                                                              | ZF          |                                                                                                                             |
|                                              | INC      | Increment AC                                                               | 0000             | 1110        | 1               | 1 | AC -(AC) +1                                      | The AC contents are incremented +1.                                                                                                                                                                                            | ZF CF       |                                                                                                                             |
| <b>5</b>                                     | DEC      | Decrement AC                                                               | 0000             | 1 1 1 1     | 1               | 1 | AC ←(AC) -1                                      | The AC contents are decremented -1.                                                                                                                                                                                            | ZF CF       |                                                                                                                             |
| `= 1                                         | RAL      | Rotate AC left<br>through CF                                               | 0000             | 0001        | 1               | 1 | ACo ←(CF), ACn+1←<br>ACn), CF ←(AC3)             | The AC contents are shifted left through the CF.                                                                                                                                                                               | ZF CF       |                                                                                                                             |
| Į,                                           | T AE     | Transfer AC to E                                                           | 0000             | 0011        | -               | 1 | E - (AC)                                         | The AC contents are transferred to the E.                                                                                                                                                                                      |             |                                                                                                                             |
| ¥ 7                                          | XAE      | Exchange AC with E                                                         | 0000             | 1101        | 1               | 1 | (AC) ≒(E)                                        | The AC contents and the E conents are exchanged.                                                                                                                                                                               |             |                                                                                                                             |
| 5 I                                          | INM      | Increment M1                                                               | 0010             | 1 1 1 0     | -               | 1 | M1(DP) - [M1(DP)]+1                              | The M1(DP) contents are incremented +1.                                                                                                                                                                                        | ZF CF       |                                                                                                                             |
|                                              | DEM      | Decrement M1                                                               | 0010             | 1 1 1 1     | 1               | 1 | M1(DP) - [M1(DP)]-1                              | The M1(DP) contents are decremented -1                                                                                                                                                                                         | ZF CF       |                                                                                                                             |
| grueu                                        | SMB bit  | Set M1 data bit                                                            | 0000             | 1 O B 1 B 0 | 1               | 1 | M1(DP, B1B0)-1                                   | A single bit of the M1(DP) specified with B1B0 is set                                                                                                                                                                          |             |                                                                                                                             |
| Memory manipulation<br>instructions          | RMB bit  | Reset M1 data bit                                                          | 0010             | 1 0 8 18 0  | -               | 1 | M1 (DP,B1B0)0                                    | A single bit of the M1(OP) specified with B1B0 is reset.                                                                                                                                                                       | ZF          |                                                                                                                             |
|                                              | AD       | Add M1 to AC                                                               | 0110             | 0000        | 1               | 1 | AC - (AC)+[M1(DP)]                               | Binary addition of the AC contents and the M1(DP) contents is performed and the result is stored in the AC.                                                                                                                    | ZF CF       |                                                                                                                             |
| [/                                           | ADC      | Add M1 to AC with CF                                                       | 0010             | 0000        | 1               | - | AC - (AC)+[M1(DP)]<br>+(CF)                      | Binary addition of the AC, CF contents<br>and the M1 (DP) contents is performed<br>and the result is stored in the AC.                                                                                                         | ZF CF       |                                                                                                                             |
| [                                            | DAA      | Decimal adjust AC in addition                                              | 1110             | 0110        | 1               | 1 | AC -(AC) + 6                                     | 6 is added to the AC contents.                                                                                                                                                                                                 | ZF          |                                                                                                                             |
| _                                            | DAS      | Decimal adjust AC in submaction                                            | 1110             | 1010        | ,               | 1 | AC -(AC)+10                                      | 10 is added to the AC contents.                                                                                                                                                                                                | ZF          |                                                                                                                             |
| Ctions                                       | EXL      | Exclusive OR M1 to AC                                                      | 1 1 1 1          | 0101        | ١               | 1 | AC ← (AC) ¥ [M1(DP)]                             | The AC contents and the M1(DP) contents are exclusive-ORed and the result is stored in the AC.  The AC contents and the M1(DP) contents                                                                                        | ZF          |                                                                                                                             |
| instru                                       | AND      | AND M1 to AC                                                               | 1110             | 0 1 1 1     | 1               | 1 | AC -(AC) A [M1(DP)]                              | are ANDed and the result is stored in the AC.                                                                                                                                                                                  | ZF          |                                                                                                                             |
| perien                                       | OR       | OR M1 to AC                                                                | 1110             | 0101        | 1               | 1 | AC - (AC) V [M1(DP)]                             | The AC contents and the M1(DP) contents are ORed and the result is stored in the AC.                                                                                                                                           | ZF          |                                                                                                                             |
| Arithmetic operation/comparison instructions | СМ       | Compare AC with M1                                                         | 1111             | 1011        | 1               | 1 | [M1(DP)]+(AC)+1                                  | The AC contents and the M1(DP) contents are compared and the CF and ZF are set/reset.    Comparison result                                                                                                                     | ZF CF       |                                                                                                                             |
| Arit                                         | CI deta  | Compare AC with immediate data                                             | 0010             | 1 1 0 0     |                 | 2 | 13121110 +(AC)+1                                 | The AC contents and the immediate data $ a_1 a_1 a_1$ are compared and the ZF and CF are set/reset.  Comparison result CF ZF $ a_1 a_2 a_1 a_0 > (AC) = 0 = 0$ $ a_1 a_1 a_1 a_0 = (AC) = 1$ $ a_1 a_1 a_1 a_0 < (AC) = 1 = 0$ | ZF CF       |                                                                                                                             |
|                                              | CLI dala | Compare DPL with                                                           | 0 1 0 1          | 1 1 0 0     | 2               | 2 | 1DP <sub>1</sub> ) ¥1312(110                     | The DP <sub>L</sub> contents and the immediate data t <sub>3</sub> 1 <sub>2</sub> 1 <sub>1</sub> 1 <sub>0</sub> are compared.                                                                                                  | ZF          |                                                                                                                             |
| l ⊦                                          | LI data  | Load AC with immediate data                                                | 1 1 0 0          | 13 12 11 10 | 1               | , | AC -13121110                                     | The immediate data 1 <sub>3</sub> 1 <sub>2</sub> 1 <sub>1</sub> 1 <sub>0</sub> is loaded in the AC.                                                                                                                            | ZF          | <b>+</b> 1                                                                                                                  |
| [1                                           | S        | Store AC to M1                                                             | 0000             | 0010        | 1               | 1 | M1(DP) (AC)                                      | The AC contents are stored in the M1(DP).                                                                                                                                                                                      |             |                                                                                                                             |
| L                                            | ι .      | Load AC from M1                                                            | 0010             | 0001        | Ŀ               | 1 | AC - [M1(DP)]                                    | The M1(DP) contents are loaded in the AC.                                                                                                                                                                                      | ZF          |                                                                                                                             |
| ctions                                       | XM data  | Exchange AC with M1,<br>then modify DP <sub>H</sub><br>with immediate data | 1010             | 0 M2M1M0    | •               | 2 | (AC) == [M1(DP)]<br>  DPH ← (DPH) ←<br>  OM2M1M0 | The AC contents and the M1(DP) contents are exchanged and then the DP <sub>H</sub> contents are modified with the contents of (DP <sub>H</sub> ) ♥ OM <sub>2</sub> M <sub>1</sub> M <sub>0</sub> .                             | 2F          | The ZF is net/reset<br>according to the<br>result of (OP <sub>N</sub> )<br>vOM <sub>2</sub> M <sub>1</sub> M <sub>0</sub> . |
| Load/store instructions                      | x        | Exchange AC with M1                                                        | 1010             | 0000        | 1               | 2 | (AC) = [M1(DP)]                                  | The AC contents and the M1(DP) contents are exchanged.                                                                                                                                                                         | ZF          | The ZF is sel/reset according to the DP <sub>pg</sub> contents at the time of instruc                                       |
| Load/st                                      | XI       | Exchange AC with M1.                                                       |                  | 1110        | ļ-              | 2 | (AC) = [M1(DP)] DPL -(DPL) +1                    | The AC contents and the M1(DP) contents are exchanged and then the DP, coments are incremented +1.                                                                                                                             | ZF          | tion execution. The ZF is set/reset according to the result of (DP <sub>L</sub> +1)                                         |
|                                              | XD       | Exchange AC with M1, then decrement DP <sub>L</sub>                        | 1 1 1 1          | 1 1 1 1     | 1               | 2 | FACI \$ [M1(DP)]<br>DP c ←(DP c) = 1             | The AC contents and the M1[DP] contents are exchanged and then the DPL contents are decremented -1.                                                                                                                            | 2F          | The ZF is set/reset seconding to the result of IDF <sub>L</sub> =11                                                         |

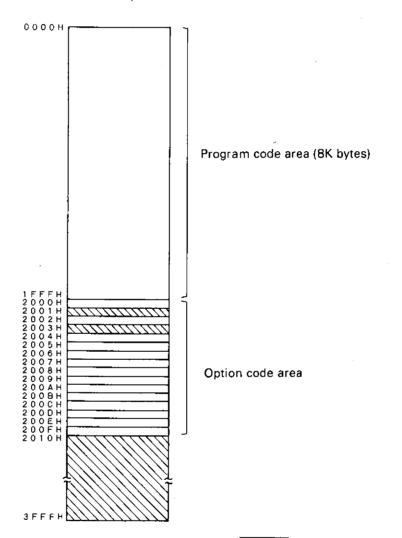
| 5                             |                                 | Massonic                                                    | Instruction code                                                       |                                          |         | Ē      | E                                                                  | Daniel et                                                                                                                                                                     | Status flag | Dam orbe                                                                                                                                                                                                                                    |
|-------------------------------|---------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|---------|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                 | Mnemonic                                                    | D 7 D 6 D 5 D 4                                                        | D3 D2 D1 D0                              | P.      | Cycles | Function                                                           | Description                                                                                                                                                                   | affected    | Remarks                                                                                                                                                                                                                                     |
|                               | ATBL                            | Read table data from program ROM                            | 0110                                                                   | 0011                                     | ,       | 2      | AC E←ROM<br>(PCh E. ACI                                            | The contents of ROM addressed by the PC whose low-order 8 bits are replaced with the E and AC contents are loaded in the AC and E.                                            |             |                                                                                                                                                                                                                                             |
| manipulation instructions     | LOZ data                        | Load OPH with Zero and OPL with immediate data respectively | 1000                                                                   | 13  2  1  0                              | 1       | 1      | DPH =0<br>DPL =13+21+10                                            | The DP <sub>H</sub> and DP <sub>L</sub> are loaded with 0 and the immediate data 1 <sub>3</sub> 1 <sub>2</sub> 1 <sub>1</sub> 1 <sub>0</sub> respectively.                    |             |                                                                                                                                                                                                                                             |
| Ition in                      | LHI data                        | Load OPH with immediate data                                | 0100                                                                   | 13 12 11 10                              | ī       | 1      | DPH ← 13 12 11 10                                                  | The DP <sub>H</sub> is loaded with the immediate data 1312110.                                                                                                                |             |                                                                                                                                                                                                                                             |
| 1                             | NO                              | Increment DPL                                               | 1110                                                                   | 1110                                     | 1       | ŀ      | DP <sub>L</sub> ← (DP <sub>L</sub> ) + 1                           | The DPL contents are incremented +1.                                                                                                                                          | 2 F         |                                                                                                                                                                                                                                             |
| Ē                             | Đ€D                             | Decrement DPs                                               | 1110                                                                   | 1111                                     | ī       | 1      | DPL ← ( DPL ) - 1                                                  | The DPL contents are decremented -1,                                                                                                                                          | ZF          |                                                                                                                                                                                                                                             |
| pointer                       | TAL                             | Transfer AC to DPL                                          | 1 1 1 1                                                                | 0111                                     | ī       | ī      | DP L - (AC)                                                        | The AC contents are transferred to the DPL                                                                                                                                    |             |                                                                                                                                                                                                                                             |
| 8                             | TLA                             | Transfer DPL to AC                                          | 1 1 1 0                                                                | 1001                                     | ī       | 1      | AC +(DPL)                                                          | The DPL contents are transferred to the AC                                                                                                                                    | ZF          |                                                                                                                                                                                                                                             |
| Data                          | ХАН                             | Exchange AC with DPH                                        | 0010                                                                   | 0011                                     | ī       | ī      | (AC) ≒(DPH)                                                        | The AC contents and the DP <sub>H</sub> contents are exchanged.                                                                                                               | •           |                                                                                                                                                                                                                                             |
| manuctions                    | XAI<br>XAO<br>XAI<br>XA2<br>XA3 | Exchange AC with working register At                        | 1 1 1 0                                                                | 0 0 0 0<br>0 1 0 0<br>1 0 0 0<br>1 1 0 0 | 1 1 1 1 | 1 1 1  | (AC) ≒ (bAO)<br>(AC) ≒ (bA1)<br>(AC) ≒ (bA2)<br>(AC) ≒ (bA3)       | The AC contents and the contents of working register At are exchanged. At is assigned one of bAO, bA1, bA2, bA3 according to 11to of specified register bank b.               |             |                                                                                                                                                                                                                                             |
| Ors                           | XHa<br>XHO<br>XH1               | Exchange DPH with working register Ha                       | 1 1 1 1                                                                | a<br>1 0 0 0<br>1 1 0 0                  | 1,      | 1      | ( DPH) = (bH0)<br>( DPH) = (bH1)                                   | The DP <sub>H</sub> contents and the contents of<br>working register Ha are exchanged. Ha is<br>assigned either of 6HO or bH1 according<br>to a of specified register bank b. |             |                                                                                                                                                                                                                                             |
| MORNING                       | XLa<br>XLO<br>XL1               | Exchange DP, with working register La                       | 1 1 1 1                                                                | 0 0 0 0<br>0 1 0 0                       | 1       | 1      | (DP L) ≒ (bL0)<br>(DP L) ≒ (bL1)                                   | The DPL contents and the contents of working register Le are exchanged. Le is assigned either of bLO to bL1 according to a of specified register bank b.                      |             |                                                                                                                                                                                                                                             |
|                               | SRBA                            | Set Register<br>Bank Address                                | 1 1 1 1                                                                | 0010                                     | 1       | 1      | RBF ← It lo of SB                                                  | The bank value specified by the SB instruc-<br>tion is set in the register bank flag.                                                                                         |             |                                                                                                                                                                                                                                             |
|                               | SFB 11ag                        | Set flag bit                                                | 0101                                                                   | B3 B2 B1 B0                              | ī       | 1      | bFn — 1                                                            | The flag specified with B3B2B1B0 of specified register bank b is set.                                                                                                         |             |                                                                                                                                                                                                                                             |
| Flagmanipulation instructions | RFB flag                        | Reset flag bil                                              |                                                                        | B3 B2 B1 B0                              | 1       | 1      | bFn 0                                                              | The flag specified with 83828180 of specified register bank bis reset.                                                                                                        | ZF          | The flags are divided into 16 groups of OFO to OF3. OF4 to OF7, 3F8 to 3F15. The ZF is set/reset according to the 4 bits including a single bit specified with immediate data B <sub>3</sub> B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> . |
|                               | JMP addr                        | Jump in the current<br>bank                                 | 0 1 1 0<br>P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> | 1 P10P9P8<br>P3P2P1P0                    | 2       | 2      | PC ← PC12 PC11<br>(or PC11)<br>P10P9 P8 P7 P6 P5<br>P4 P3 P2 P1 P0 | A jump to the address specified with the PC12PC11 (or PC11) and immediate data P10P9P8P7P6P5P4P3P2P1PO occurs.                                                                |             | If the SANK and<br>SS instructions a<br>executed consect<br>vely, the bank is<br>changed,                                                                                                                                                   |
| tions                         | JPEA                            | Jump in the current<br>page modified by E<br>and AC         | 1 1 1 1                                                                | 1010                                     | 1       | 1      | PC1~0 ←(E.AC)                                                      | A jump to the address specified with<br>the contents of the PC whose low-order<br>8 bits are replaced by the E and AC<br>contents occurs.                                     |             |                                                                                                                                                                                                                                             |
| tine instruc                  | CZP addr                        | Call subroutine in the zero page                            | 1011                                                                   | P3 P2 P1 P0                              | 1       | 1      | STACK ← (PC)+1<br>PC12-6, PC 1 ~0 ←0<br>PC5~2 ←P3P2P1P0            | A subroutine in page 0 of bank 0 is called.                                                                                                                                   |             |                                                                                                                                                                                                                                             |
| Jump/subroutine instructions  | CAL addr                        | Call subroutine in the zero bank                            | 1 D 1 O<br>P7P6P5P4                                                    | 1 PtoP9 P8<br>P3 P2 P1 P0                | 2       | 2      | STACK — ( PCI + 2<br>PC12~0 — QQP10P9P8<br>P7P6PSP4P3P2P1P0        | A subroutine in bank 0 is called.                                                                                                                                             |             |                                                                                                                                                                                                                                             |
| Ī                             | RT                              | Return from subroutine                                      | 0110                                                                   | 0010                                     | 1       | 1      | PC ← (STACK)                                                       | A return from a subroutine occurs.                                                                                                                                            |             |                                                                                                                                                                                                                                             |
|                               | RTI                             | Return from interrupt routine                               | 0010                                                                   | 0010                                     | ٦       | 1      | PC ←(STACK)<br>CF ZF ←CSF.ZSF                                      | A return from an interrupt service routine occurs.                                                                                                                            | ZF CF       |                                                                                                                                                                                                                                             |
|                               | BANK                            | Change bank                                                 | 1 1 1 1                                                                | 1101                                     | 1       | 1      | PC 11 ← (PC11)<br>GP(DP)<br>M2(DP)                                 | The bank of ROM is specified. The pseudo port is specified. The RAM2 is specified.                                                                                            |             |                                                                                                                                                                                                                                             |
|                               | SB                              | Sel bank                                                    | 0110                                                                   | 0 1 11 10                                | ī       | 1      | PC12 PC11 + 11, 10<br>RBF + 1110                                   | The bank of ROM is specified. The bank of working register, flag is specified.                                                                                                |             |                                                                                                                                                                                                                                             |

| Ę.                        | Mnemonic   |                               | Instruct               | ion code                                                    | 7 6       |        | 1                                                             |                                                                                                                                                                                                                                                                                                                                  | Centur fina             | Γ                                                                |
|---------------------------|------------|-------------------------------|------------------------|-------------------------------------------------------------|-----------|--------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------|
| instruction<br>group      | ]          | Mnemonic                      | O7 D6 D5 D4            | D <sub>3</sub> D <sub>2</sub> D <sub>1</sub> D <sub>0</sub> | Byte      | Cycles | Function                                                      | Description                                                                                                                                                                                                                                                                                                                      | Status flag<br>affected | Remarks                                                          |
|                           | BAt addr   | Branch on AC bil              | O 1 1 1<br>P7P6P5P4    | 0 0 tito<br>P3P2P1P0                                        | 2         | 2      | PC7 - 0 P7 P6P5P4<br>P3 P2P1P0<br>II AC1 = 1                  | If a single bit of the AC specified with the immediate data $t_1t_0$ is 1, a branch to the eddress specified with the immediate data $P_7P_6P_5P_4P_3P_2P_1P_0$ within the same page occurs.                                                                                                                                     |                         | Minerranic is BAO to BA3 according to the value of t.            |
|                           | BNAt addr  | Branch on no AC bit           | O O 1 1<br>P1P6P5P4    | 0 0 t 1 t o<br>P3 P2 P1 P0                                  | 2         | 2      | PC7 ~0 ← P7 P6P5P4<br>P3P2P1P0<br>if AC1 = 0                  | If a single bit of the AC specified with the Immediate data $\tau_1\tau_0$ is 0, a branch to the address specified with the immediate data $P_7P_8P_5P_4P_3P_2P_1P_0$ within the same page occurs.                                                                                                                               |                         | Mnemonic is SNAO<br>to BNA3 scoording<br>to the value of t.      |
| . 4                       | BMI addi   | Branch on M1 bit              | O 1 1 1<br>P/P6P5P4    | O Itito<br>P3P2P1Po                                         | 2         | 2      | PC 7 ~0 ← P7 P6 P5 P4<br>P3 P2 P1 P0<br>if [M1(DP, 11to)] = 1 | If a single bit of the M1(DP) specified with the immediate data 1, 10 is 1, a branch to the address specified with the immediate data P7PgPgP4P3P2P1P0 within the same page occurs.                                                                                                                                              |                         | Minimonic is BMC to<br>BM3 spoording to<br>the value of t.       |
|                           | BNMt addr  | Branch on no M1 bit           | O O 1 1<br>P7P6P5P4    | Oltita<br>PoP2PiPa                                          | 2         | 2      | PC7 ~0 P7 P6 P5 P4<br>P3 P2 P1 P0<br>If [M1(OP, tito)] = 0    | If a single bit of the M1(DP) specified with the immediate data 1, 10, is 0, a branch to the address specified with the immediate data P7PRP6PAP3P2P1P0 within the same page occurs.                                                                                                                                             |                         | Minemanic is 8 NMO<br>to 8 NM3 monording<br>to the value of t.   |
| SUO                       | BPt addr   | Branch on Port bit            |                        | 1 Ototo<br>P3P2P1P0                                         | 2         | 2      | PC7~0 ← P7P6P5P4<br>P3P2P1P0<br>if (P(DPL Lit 0)) = 1         | If a single bit of port P(DP <sub>L</sub> ) specified with the immediate data 1 <sub>1</sub> t <sub>0</sub> is 1, a branch to the address specified with the immediate data P <sub>7</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> within the same page occurs. |                         | terrements is 6P0 to<br>6P3 except ling to the<br>value of t.    |
| Branch instructions       | BNP( add)  | Branch on no Port bit         | O O 1 1<br>P7 P6 P5 P4 | 1 Otito<br>P3 P2 P1 P0                                      | 2         | 2      | PC7~0 - P7P6P5P4<br>P3P2P1P0<br>(1(PIDPL. t 1t 0))=0          | If a single bit of port P(DP <sub>L</sub> ) specified with the immediate data 1 <sub>1</sub> t <sub>0</sub> is 0, a branch to the address specified with the immediate data P <sub>2</sub> P <sub>6</sub> P <sub>5</sub> P <sub>4</sub> P <sub>3</sub> P <sub>2</sub> P <sub>1</sub> P <sub>0</sub> within the same page occurs. |                         | Minemonic is BNPO to<br>BNP3 according to<br>the value of t      |
| Brai                      | BC addr    | Branch on CF                  | 0 1 1 1<br>P7P6P5P4    |                                                             | 2         | 2      | PC7 ~ 0 ← P7 P6 P5 P4<br>P3 P2 P1 P0<br>if CF = 1             | If the CF is 1, a branch to the address specified with the immediate data PyPeP5PaP3P2P1P0 within the same page occurs.                                                                                                                                                                                                          | •                       |                                                                  |
|                           | BNC addr   | Branch on no CF               | 0 0 1 1<br>P7P6P5P4    |                                                             | 2         | 2      | PC 1 -0 ← P1 P6 P5 P4<br>P3 P2 P+ P0<br>if CF =0              | If the CF is 0, a branch to the address specified with the immediate data PyPgPgPaPaPaPaPP1P0 within the same page occurs.                                                                                                                                                                                                       |                         |                                                                  |
|                           | BZ addr    | Branch on ZF                  | O 1 1 1<br>P7P6P5P4    | 1 1 1 0<br>P3 P2 P1 P0                                      | 2         | 2      | PC7~0~P7P6P5P4<br>P3P2P1P0<br>of ZF=1                         | If the ZF is 1 a branch to the address specified with the immediate data 976959493929190 within the same page occurs.                                                                                                                                                                                                            |                         |                                                                  |
|                           | BNZ addr   | Branch on no ZF               | O O 1 1<br>P2P6P5P4    | 1 1 1 0<br>P3 P2 P1 P0                                      | 2         | 2      | PC7~0 - P7P6P5P4<br>P3P2P1P0<br>If ZF = 0                     | If the ZF is 0, a branch to the address specified with the immediate data P7P8P6P4P3P2P1P0 within the same page occurs.                                                                                                                                                                                                          |                         |                                                                  |
|                           | BFn addr   | Branch on flag bil            | 1 1 0 1<br>P2P6P5P4    | n 3 fi 2 n 1 n 0<br>P 3 P 2 P 1 P 0                         | 2         | 2      | PC 7 ~ 0 ← P7 P6 P5 P4<br>P3 P2 P1 P0<br>H bFn = 1            | If the immediate data nananning, specified flag bit of the 16 flags of specified register bank b is 1, a branch to the address specified with immediate data P7P6P5P4P3P2P1P0 within the same page occurs.                                                                                                                       |                         | Mnemonic is BFO to<br>BF15 according to<br>the value of n.       |
|                           | BNF - addi | Branch on no (lag             | P1P6P5P4               |                                                             |           | 2      | PC 7 ~ 0 P7 P6 P5 P4<br>P3 P2 P1 P0<br>H bFn = 0              | If the immediate data ngngnnng-<br>specified flag bit of the 16 flags of<br>specified register bank b is 0, a branch to<br>the address specified with immediate<br>data P788542872P1P0 within the<br>same page occurs.                                                                                                           |                         | Mnemonic is BNF0 to SNF15 scoording to the value of n.           |
| tions                     | 16         | Input port to AC              |                        |                                                             | -         | 1      | AC — [P(DPL)] or [GP(DP)]                                     | The contents of port P(DP <sub>1</sub> ) or pseudo port GP(DP) or RAM2 are loaded in the AC.                                                                                                                                                                                                                                     | ZF                      |                                                                  |
| struc                     | 90         | Output AC to port             | 0110                   | 0001                                                        | <u>را</u> | '      | P(DPL) or GP(DP) or<br>M2(DP) — (AC)                          | The AC contents are output to port P(DPL) or pseudo port GP(DP) or RAM2.                                                                                                                                                                                                                                                         |                         |                                                                  |
| Input/output instructions | SP8 b⊣     | Sel port bil                  | 0000                   | O 1 B1 Bo                                                   | 1         | 2      | P(DPL B180) or<br>GP(DP, B180) or<br>M2(DP, B182) 1           | A single bit in port P(DP <sub>1</sub> ) or pseudo port<br>GP(DP) or RAM2 specified with<br>immediate data B <sub>1</sub> B <sub>0</sub> is set.                                                                                                                                                                                 |                         | When this instruction is executed, the E contents are destroyed. |
| Input/                    | RPB bil    | Reset port bit                | 0010                   | O 1 B1 B0                                                   | 1         | 2      | P(DPL, B1B0) or<br>GP(DP, B1B0) or<br>M2(DP, B1B2) — 0        | A single bit in port P(DP <sub>1</sub> ) or pseudo port GP(DP) or RAM2 specified with immediate data B <sub>1</sub> B <sub>0</sub> is reset.                                                                                                                                                                                     | ZF                      | When this instruction is expouted, the E contents are destroyed  |
|                           | SCTL bit   | Set control register<br>bit   | 0010                   | 1 1 0 0<br>83 82 81 80                                      | 2         | 2      | CTL, B3B2B1B0 - 1<br>or MSTEN - 1                             | The immediate data B <sub>3</sub> B <sub>2</sub> B <sub>1</sub> B <sub>0</sub> -specified bits of the control register (individual interrupt enable flag) or the master interrupt enable flag is set.                                                                                                                            |                         | *2                                                               |
| instructions              | ACTL bil   | Reset control register<br>bit | 0010                   | 1 1 0 0<br>B3 B2 B1 B0                                      | 2         | 2      | CTL, B3B2B1B0 — 0<br>or MSTEN — 0                             | The immediate data 83828180-specified bits of the control register (individual interrupt enable flag) or the master interrupt enable flag is reset.                                                                                                                                                                              | ZF                      | *2                                                               |
| ij                        | WIIM       | Write timer = 0               | 1 1 1 1                | 1001                                                        | ,         | ١      | TMO (E), (AC)<br>TMOF 0                                       | The E and AC contents are loaded in the timer 0. The TMF is reset.                                                                                                                                                                                                                                                               | TIMOF                   |                                                                  |
| Other                     | HAL T      | Halt                          | 1 1 1 1                | 0110                                                        | 1         | 1      | Halt, Hold                                                    | The standby mode is entered.                                                                                                                                                                                                                                                                                                     |                         |                                                                  |
| i                         | NOP        | No operation                  | 0000                   | 0000                                                        | 1         | 1      | No operation                                                  | No operation is performed, but 1 machine cycle is consumed.                                                                                                                                                                                                                                                                      |                         |                                                                  |

<sup>\*1</sup> If the CLA instruction is used consecutively in such a manner as CLA, CLA, ...., the first CLA instruction only is effective and the following CLA instructions are changed to the NOP instructions. This is also true of the LI instruction.
\*2 B<sub>3</sub>B<sub>2</sub>B<sub>1</sub>B<sub>0</sub> = 0000B to 1000B

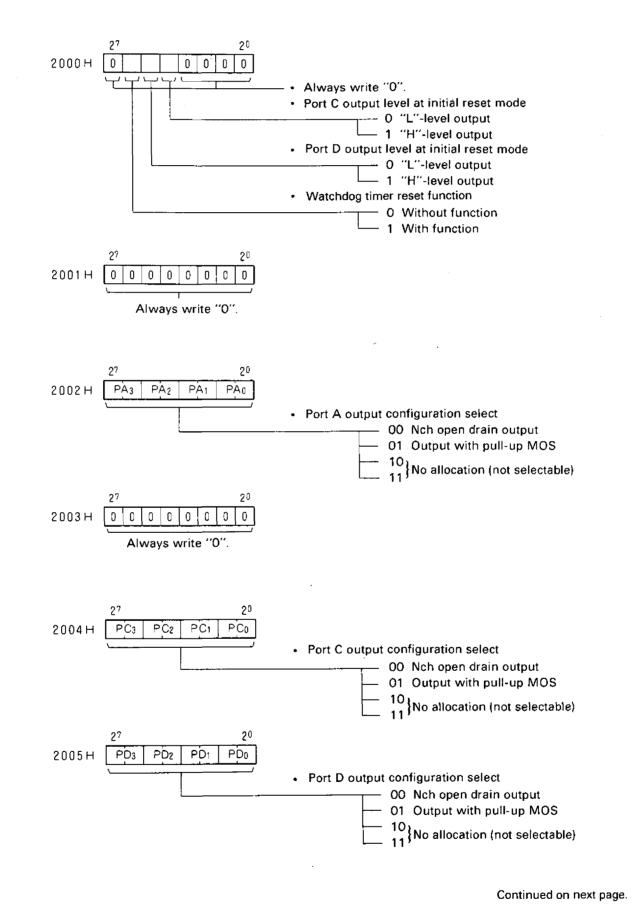
## LC6538D Option Code Specifying Method

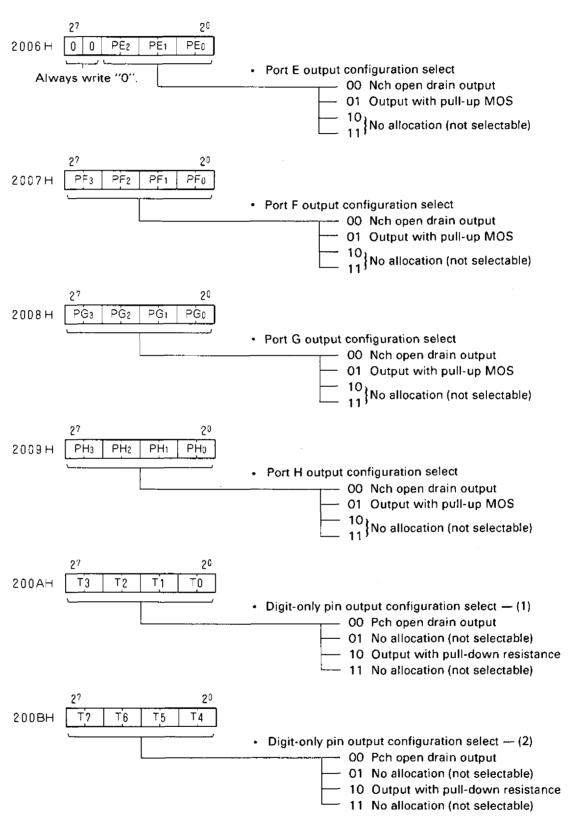
## **General Description**

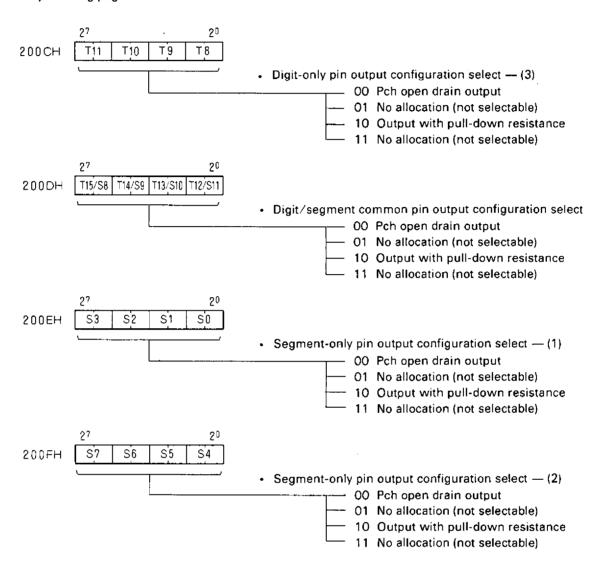

It is requested that you should submit to us various mask options of the LC6538D together with the program code which are stored in an EPROM.

By using our cross assembler for the LC6538D, the option code can be specified interactively and stored in the EPROM.

If our cross assembler is not used, specify the option code as shown below. (This is the same as the method where the cross assembler is created.)


The Type No. of the EPROM to be submitted is 27128.


### EPROM address map




Always write "00" in this shaded area.

### **Option Code Contents**







## Notes on Programming

• In this section, we shall describe the notes on developing programs for the LC6538D microcomputer.

|              | Item                              | <u></u>                                                                                                                           | Function                                                                                                                        | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | System clock<br>mode              |                                                                                                                                   | ode (T <sub>CYC</sub> =1.9μs)<br>node (T <sub>CYC</sub> =30.5μs)<br><sub>CYC</sub> =61μs)<br>94304MHz                           | <ul> <li>The main clock must be supplied at the system start-up.</li> <li>The sub-clock must be supplied when your application is designed to use the sub-clock mode.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| System clock | Main clock oscillation halt/start | the clock mode flag (C register.  CMF  O Main clock 1 Main clock 2 Main clock 3 Sub-clock operat setting data in the 4N register. | 1/2 mode                                                                                                                        | <ul> <li>System clock modes can be changed only when the main clock oscillation is stable or the clock signals are sent from external clock with the 4MSTPF flag set to "O".</li> <li>The clock mode newly selected by the CMF flag is actually activated up to 64/f0SC cycles later after data is set in that flag. To change high-speed mode to low-speed mode and then start the standby mode, execute the HALT instruction after the buffer time elapses.</li> <li>Clock modes should be changed, with supplied voltage at 4.0V or greater.</li> <li>If one of the main clock modes is selected as the system clock source, you must not set the 4MSTPF flag to "1".</li> <li>Set the 4MSTPF flag to "1" after the sub-clock mode becomes actually activated. That is, you have to set the flag to "1" after the sub-clock mode is specified by the flag data and then becomes activated after the buffer time elapses.</li> <li>To change the main clock modes, set the 4MSTPF flag to "0" and wait at least until the main clock oscillation becomes stable. Wait for tMXS or MCFS cycles.</li> </ul> |  |  |
| i            | Low-speed operation mode          |                                                                                                                                   | are forced to stop their functions when ion mode (main clock 1/32 mode or lected.                                               | <ul> <li>Do not use the blocks at the left column during the low-speed operation mode.</li> <li>Note that the low-speed</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|              |                                   | Port B (comparator input)                                                                                                         | Contents  If data is input to the accumulator (AC) from port B, 0 (zero) is input to the AC.  The contents of the H counter are | operation is selected at the system reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|              |                                   | Display controller                                                                                                                | cleared.  Not to support dynamic display mode operation                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

|                           | Item                                                                                         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standby mode              | HALT mode<br>activation/release                                                              | (Activation) The HALT mode can be activated by executing the HALT instruction when the SLPF flag of the standby control register has been already set to "O". However, the HALT instruction will be processed equally as the NOP instruction when the following HALT mode release conditions are satisfied.  (Release) ① Reset ② The PE2/START pin signal level is "H" with the WG2=1. ③ The interrupt release signal is delivered with the WG3=1. ① The overflow signal is generated by the time base timer circuit. | <ul> <li>If you want to release the HALT<br/>mode by using the PE2/START<br/>pin "H" level signal or interrupt<br/>release signal, set the WG2 or<br/>WG3 flag prior to the execution<br/>of the HALT instruction.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stand                     | HOLD mode<br>activation/<br>release                                                          | (Activation) The HOLD mode can be selected by executing the HALT instruction with the SLPF="1".  (Release) Reset                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>The HOLD mode can be released only by the reset signal.</li> <li>Execute a single NOP instruction prior to the execution of the HALT instruction for activating the HOLD mode.</li> <li>Never output logic "1" to bit 1 of the standby control register (STBC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| re<br>or<br>w<br>fu<br>se | Vatchdog timer eset (effective inly if the vatchdog timer unction has been elected by ption) | The time base timer can be used to detect runaway and cause watchdog reset to occur.                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>You have to create a routine which allows the TBF flag to be reset every program-defined time cycle (0.5sec. max.).</li> <li>The clock which has been already in operation must be selected as the time base timer source.</li> <li>If the time base interrupt request flag (TBF) is set to "1" prior to HALT activation, the HALT mode release signal triggered by time base overflow signal and watchdog reset signal are to be generated at the same time.</li> <li>To avoid the generation of watchdog reset signal in the above case, there are two methods as follows:</li> <li>① Reset the TBF flag immediately before the HALT instruction is executed.</li> <li>or</li> <li>② Set the time base interrupt enable flag (TBEN) and HALT release enable flag (WG3) before the HALT instruction is executed.</li> </ul> |
| Interrupt                 | Interrupt enable<br>flag (Control<br>register: 8 bits)                                       | <ul> <li>There are 8 interrupt enable flags, which are assigned to 8 interrupt sources. These flags are set to enable interrupt requests by SCTL0 to SCTL7 instructions. Note that two or more flags cannot be set at a time.</li> <li>All the interrupt enable flags are set to disable interrupt at the reset mode.</li> </ul>                                                                                                                                                                                      | <ul> <li>The interrupt enable flags are not reset after interrupt processing is carried out. If you want to reset interrupt enable flag, you have to use the RCTL instruction.</li> <li>All the interrupt enable flags are reset when the HOLD mode is started up. You have to set necessary flags after the HOLD mode is released.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                             | 11     | tem                                                                                                        | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------|--------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt                   | Inter  | rupt request                                                                                               | <ul> <li>There are 8 interrupt request flags, which are assigned to 8 interrupt sources. Four interrupt request flags are assigned as an interrupt extended register. That is, 8 interrupt request flags are assigned as two internal extended registers. Therefore, these registers can be accessed by executing the BANK and IP/OP instructions consecutively. If you input data to the accumulator (AC) from one of these registers, you can use the BANK and IP instructions consecutively. If you output data to one of these registers, you can use the BANK and OP instructions consecutively. However, you cannot set any bit of the internal extended register. If you are to reset some bits of the register, set data of 0 for them but 1 for other bits in the accumulator and output the data to interrupt request register by executing the BANK and OP instructions consecutively.</li> <li>Flags other than timer 1 interrupt request flag (TM1F) are set to "O" at the reset mode.</li> <li>The TMOF, SIOOF, SIO1F flags are reset at the time of WTTM instruction execution, SIOO, SIO1 data transfer start, respectively.</li> </ul> | <ul> <li>These flags are not reset even after interrupt processing is carried out.</li> <li>Reset the interrupt source flag of a corresponding interrupt source factor when interrupt processing is performed.</li> <li>All the flags are reset when the HOLD mode is started up.</li> <li>The interrupt request register cannot be manipulated by the BANK + SPB/RPB instructions.</li> </ul> |
|                             | Port E | PE <sub>0</sub> /V <sub>REFO</sub><br>PE <sub>1</sub> /V <sub>REF1</sub><br>PE <sub>2</sub> /START         | Port E <sub>O</sub> and E <sub>1</sub> can be also used as the external reference voltage input pins V <sub>REFO</sub> and V <sub>REF1</sub> for comparator input (port B).  Port E <sub>2</sub> can be also used as the HALT mode control pin START.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>If you want to use these pins as<br/>VREFO, VREF1, and START, you<br/>have to output logic "1" to the<br/>PEO, PE1, and PE2. (At the reset<br/>mode, the PEO to PE2 pins are all<br/>set to "1".)</li> </ul>                                                                                                                                                                          |
| on ports                    | Port F | PF <sub>0</sub> /Sl <sub>0</sub><br>PF <sub>1</sub> /SO0<br>PF <sub>2</sub> /SCK0<br>PF <sub>3</sub> /INTO | Port F <sub>O</sub> and F <sub>1</sub> , and F <sub>2</sub> can be also used as the SIO, SOO, and SCKO pins for serial data transfer O.  Port F <sub>3</sub> can be also used as the INTO pin for external interrupt 0 input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ● If you want to use these pins as SIO, SOO, SCKO, and INTO, you have to output logic "1" to the PF <sub>0</sub> , PF <sub>1</sub> , PF <sub>2</sub> , and PF <sub>3</sub> . (At the reset mode, the PF <sub>0</sub> to PF <sub>3</sub> pins are all set to "1".)                                                                                                                              |
| otes on use of common ports | Port G | PG <sub>0</sub> /SI1<br>PG <sub>1</sub> /SO1<br>PG <sub>2</sub> /SCK1<br>PG <sub>3</sub> /INT1             | Port G <sub>0</sub> , G <sub>1</sub> , and G <sub>2</sub> can be also used as the SI1, SO1, and SCK1 pins for serial data transfer 1.  Port G <sub>3</sub> can be also used as the INT1 pin for external interrupt 1 input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>If you want to use these pins as<br/>SI1, SO1, SCK1, and INT1, you<br/>have to output logic "1" to the<br/>PG<sub>0</sub>, PG<sub>1</sub>, PG<sub>2</sub>, and PG<sub>3</sub> (At the<br/>reset mode, the PG<sub>0</sub> to PG<sub>3</sub> pins<br/>are all set to "1".)</li> </ul>                                                                                                   |
| Notes                       | Port H | PH <sub>0</sub> /DAC0<br>PH <sub>1</sub> /DAC1<br>PH <sub>2</sub> /SQR                                     | Port Ho and H1 can be also used as the DACO and DAC1 pins for PWM type DAC output.  Port H2 can be also used as the SQR pin for burst pulse signal output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>If you want to use these pins as DACO, CAC1, and SQR pins, you have to output logic "O" to the PHO, PH1, and PH2. (At the reset mode, the PHO, PH1, and PH2 pins are all set to "1".)</li> </ul>                                                                                                                                                                                      |
|                             |        | PH3/HCNT                                                                                                   | <ul> <li>If you want to use these pins as<br/>HCNT, you have to output logic<br/>"1" to the PH3. (At the reset<br/>mode, the PH3 pin is set to "1".)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                |

|              | ltem                                               |                         | Function                                                                                                                                                                          | Notes                                                                                                                                     |  |  |
|--------------|----------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|              | Operational<br>status at system<br>clock selection | clock 1/32 mod          | has entered low-speed operation mode (main<br>de or sub-clock mode), dynamic display mode<br>t successfully carried out.                                                          | <ul> <li>When low-speed operation mod<br/>is employed, do not select the<br/>dynamic display mode.</li> </ul>                             |  |  |
| y controller | Operational<br>status at<br>standby mode           | Dynamic<br>display mode | <ul> <li>Segment output pin····'H''-level output at all the pins</li> <li>Digit output pin····Unpredictable</li> <li>Fixed address output pin·····-Keeps old contents.</li> </ul> | <ul> <li>Select display OFF mode prior to<br/>the standby mode activation so<br/>that no current is dissipated by<br/>FLT pin.</li> </ul> |  |  |
| —<br>Display |                                                    | Static display mode     | S0 to S7 pins"H"-level output at all the pins     T0 to T11     T12/S11 to T15/S8 pinsKeeps old contents.                                                                         |                                                                                                                                           |  |  |
|              |                                                    | Display OFF<br>mode     | All FLT pins"L"-level output at the all pins                                                                                                                                      |                                                                                                                                           |  |  |

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:

  ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use;
  - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.