

December 2009

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection

Features

- Low On Capacitance: 7.0pF Typical
- Low On Resistance: 3.9Ω Typical
- Low Power Consumption: 1µA Maximum
 - 15µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN} =1.8V, V_{CC} =4.3V)
- Wide -3db Bandwidth: > 720MHz
- Packaged in Pb-free, 8-Lead MicroPak™ (1.6mm wide), US8 (3.1mm wide), and UMLP (1.4x1.4mm)
- 8kV ESD Rating, >16kV Power/GND ESD Rating
- Power-Off Protection on All Ports When V_{CC}=0V
 D+/D- Pins Tolerate up to 5.25V

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

IMPORTANT NOTE:

For additional performance information, please contact <u>analogswitch@fairchildsemi.com</u>.

Description

The FSUSB46 is a bi-directional, low-power, Hi-Speed, USB2.0 switch. Configured as a double-pole, single-throw switch (DPST) switch, it is optimized for switching a Hi-Speed (480Mbps) source.

The FSUSB46 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (C_{ON}) of 3.9pF. The wide bandwidth of this device (720MHz) exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

The FSUSB46 contains special circuitry on the switch I/O pins for applications where the V_{CC} supply is powered-off (V_{CC} =0), which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{CC}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the general-purpose I/Os of the baseband processor. An additional feature is the detection of the 1-1 (high/high) state on D+/D- to signal an interrupt (INT) to the processor when entering a dedicated charging port mode of operation.

Ordering Information

Part Number	Operating Temperature Range	Package	Eco Status
FSUSB46L8X	-40 to +85°C	8-Lead MicroPak™ 1.6mm Wide	RoHS
FSUSB46K8X	-40 to +85°C	8-Lead US8, JEDEC MO187, Variation CA 3.1mm	Green
FSUSB46UMX	-40 to +85°C	8-Lead Ultrathin Molded Leadless Package (UMLP), 1.2 x 1.4mm	Green

For Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

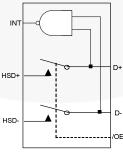
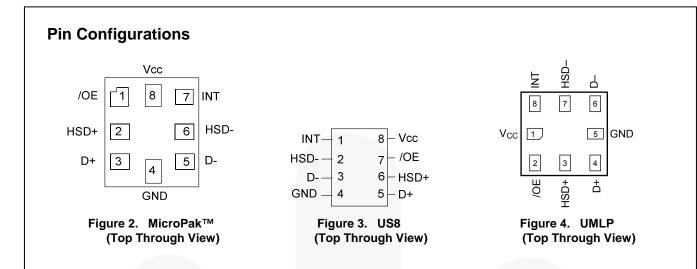



Figure 1. Analog Symbol

Pin Definitions

Pin Name	Description
INT	Interrupt Signaling Output Pin
/OE	Switch Enable
D+, D-	USB Data Bus Connector
HSD+, HSD-	USB Source Inputs
GND	Ground
Vcc	Supply Voltage

Truth Table

Data	ı Path	Charger Detect Path		
/OE	Switch Connection	D+ D-	INT Output	
HIGH	D+, D- = Open	1-1	LOW	
LOW	D+, D- = HSD+, HSD-	0X, X0	HIGH	

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.5	+5.5	V
V _{CNTRL}	DC Input Voltage (S) ⁽¹⁾		-0.5	V _{CC}	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.50	5.25	V
I _{IK}	DC Input Diode Current	DC Input Diode Current			mA
Ι _{Ουτ}	DC Output Current			50	mA
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		7	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
200		Power to GND		16	ιτν
	Charged Device Model, JEDEC: JESD22-C1	01		2	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	3.0	4.3	V
V _{CNTRL}	Control Input Voltage (/OE) ⁽²⁾	0	V _{CC}	V
V _{SW}	Switch I/O Voltage	-0.5	V _{CC}	V
TA	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical value are at 25°C, V_{CC} =3.3V unless otherwise specified.

O maked	Denemator	O an dition o		T _A =- 40°C to +85°C			Unite	
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	
VIK	Clamp Diode Voltage	I _{IN} =-18mA	3.0			-1.2	V	
VIH	Input Voltage High		3.0 to 3.6	1.3			V	
VIH	Input voltage riigh		4.3	1.7			V	
VII	Input Voltage Low		3.0 to 3.6			0.5	V	
۷IL	Input Voltage Low		4.3			0.7	V	
V	Output Voltage High	$L = 2m\Lambda$	3.0 to 3.6	2.4			V	
V _{OH}	Output Voltage High	I _{OH} =-2mA	4.3	2.4			v	
\/		1 0 m A	3.0 to 3.6			0.25	V	
V _{OL}	Output Voltage Low	l _{o∟} =2mA	4.3			0.25	V	
I _{IN}	Control Input Leakage	V_{SW} =0 to V_{CC}	4.3	-1		1	μA	
loz	Off State Leakage	HSD+ or HSD-=0V, 3.6V or floating	4.3	-2		2	μA	
I _{OFF}	Power-Off Leakage Current (All I/O Ports)	V _{SW} =0V to 4.3V, V _{CC} =0V Figure 6	0	-2		2	μA	
Ron	HS Switch On Resistance ⁽³⁾	V _{SW} =0.4V, I _{ON} =-8mA Figure 5	3.0		3.9	6.5	Ω	
ΔR_{ON}	HS Delta R _{ON} ⁽⁴⁾	V _{SW} =0.4V, I _{ON} =-8mA	3.0		0.65		Ω	
Icc	Quiescent Supply Current	V _{CNTRL} =0 or V _{CC} , I _{OUT} =0	4.3			1	μA	
	Increase in I _{CC} Current Per	V _{CNTRL} =2.6V V _{CC} =4.3V	4.3			10	μA	
I _{CCT}	Control Voltage and V _{CC}	V _{CNTRL} =1.8V V _{CC} =4.3V	4.3			20	μA	

Notes:

3. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).

4. Guaranteed by characterization.

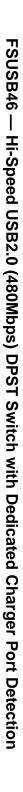
Units

ps

ps

Xtalk	Crosstalk	Figure 16	3.0 to 3.6		-45	
DW		$R_L=50\Omega$, $C_L=0pF$ Figure 14	0.0.4- 0.0		720	
BW	-3db Bandwidth	R_L =50 Ω , C_L =5pF Figure 14	3.0 to 3.6		550	
5. Guara	nteed by characterization.					
USB Hi-	Speed-Related AC	Electrical Characteri	stics			
				T _A =-	40ºC to	+8
USB Hi- Symbol	Speed-Related AC Parameter	Electrical Characteri Conditions	stics V _{cc} (V)	T _A =- Min.	40ºC to Typ.	+8
					1	1

6. Guaranteed by characterization.


Capacitance

0	Parameter		T _A =- 40°C to +85°C			
Symbol		Conditions	Min.	Тур.	Max.	Units
CIN	Control Pin Input Capacitance	V _{CC} =0V		1.5		pF
C _{OUT}	INT Pin Output Capacitance	V _{CC} =0V		2.5		pF
Con	D+, D- On Capacitance	V _{CC} =3.3V, f=1MHz Figure 12		7.0	7.9	pF
C_{OFF}	D+, D- Off Capacitance	V _{CC} =3.3V Figure 11		2.0		pF

AC Electrical Characteristics

All typical value are for V_{CC} =3.3V at 25°C unless otherwise specified.

Cumb al	Devenuetor	Conditions		T _A =- 4	40ºC to	+85⁰C	l lucito
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
t _{on}	Turn-On Time /OE to Output	R _L =50Ω, C _L =5pF V _{SW} =0.8V Figure 7, Figure 8	3.0 to 3.6		13	30	ns
t _{OFF}	Turn-Off Time /OE to Output	$R_L=50\Omega$, $C_L=5pF$ $V_{SW=}0.8V$ Figure 7, Figure 8	3.0 to 3.6		12	25	ns
t _{PD}	Propagation Delay ⁽⁵⁾	$C_L=5 \text{ pF}, R_L=50\Omega$ Figure 7, Figure 9	3.3		0.25		ns
t _{BBM}	Break-Before-Make	R_L =50 Ω , C_L =5pF V _{SW1} =V _{SW2} =0.8V Figure 13	3.0 to 3.6	2.0		6.5	ns
t _{PLH/HL}	INT Propagation Delay ⁽⁵⁾	R _L =500Ω, C _L =5pF	3.0 to 3.6		10		ns
O _{IRR}	Off Isolation	R _L =50Ω, f=240MHz Figure 15	3.0 to 3.6		-30		dB
Xtalk	Non-Adjacent Channel Crosstalk	R _L =50Ω, f=240MHz Figure 16	3.0 to 3.6		-45		dB
BW	-3db Bandwidth	$R_L=50\Omega$, $C_L=0pF$ Figure 14	3.0 to 3.6		720		MHz
DVV		$R_L=50\Omega$, $C_L=5pF$ Figure 14	3.0 10 3.0		550		MHz

D+, D-

t_{FALL} = 2.5ns

10%

90%

t_{FALL} = 500ps

10%

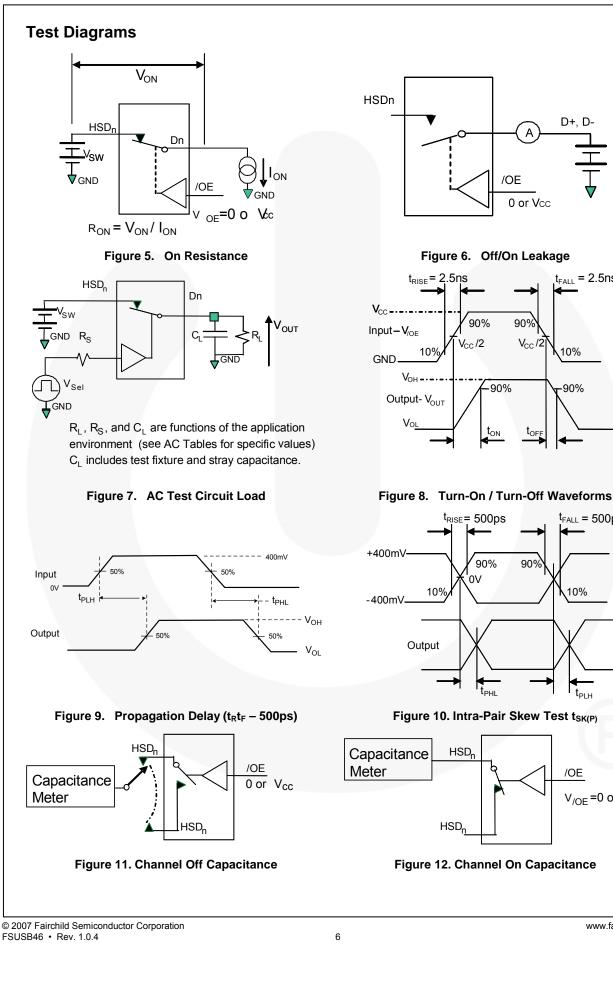
t_{PI H}

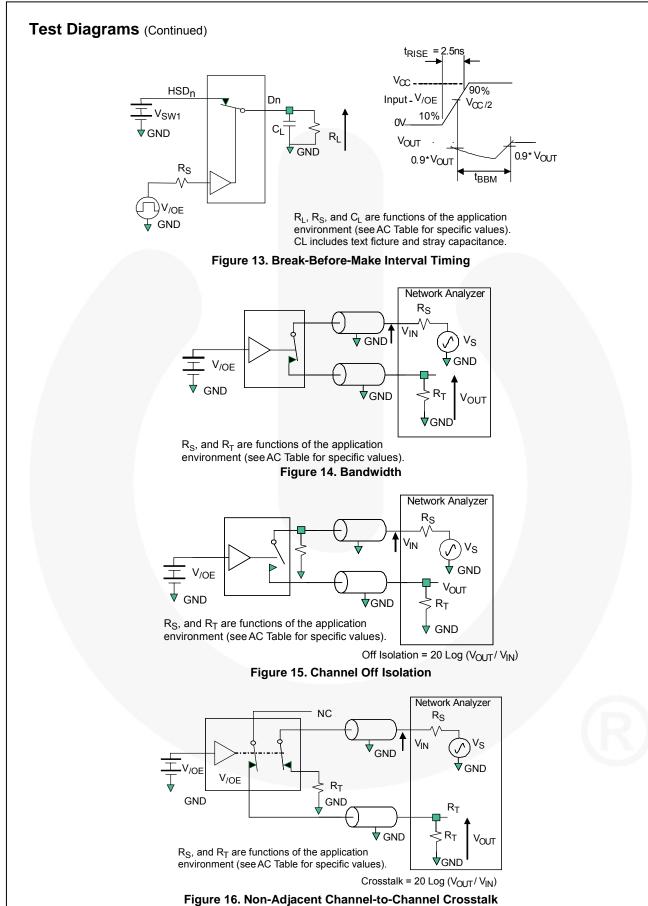
/OE

 V_{OE} =0 or V_{CC}

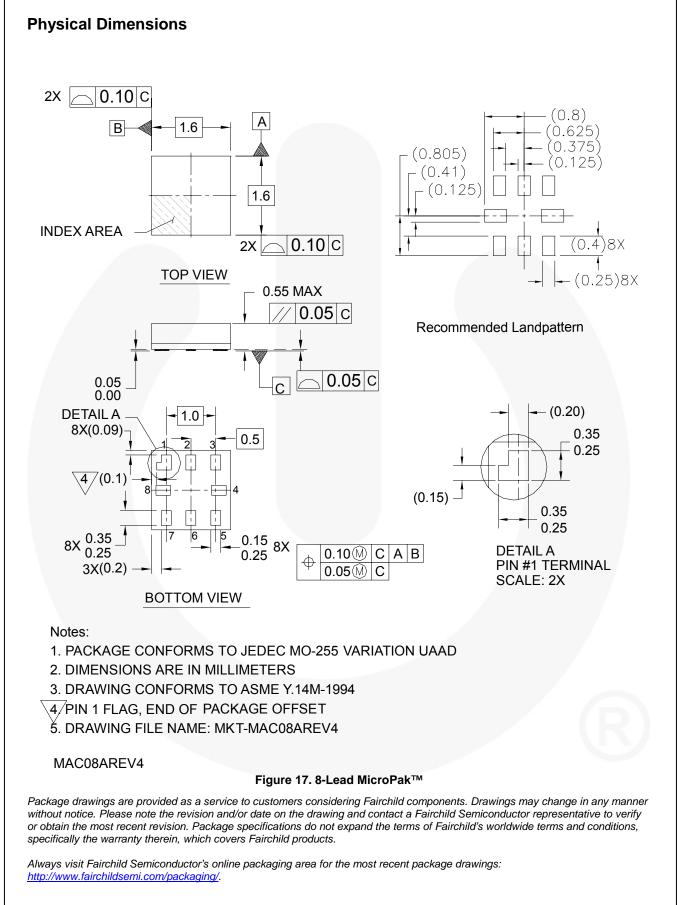
Vsw

А


0 or Vcc

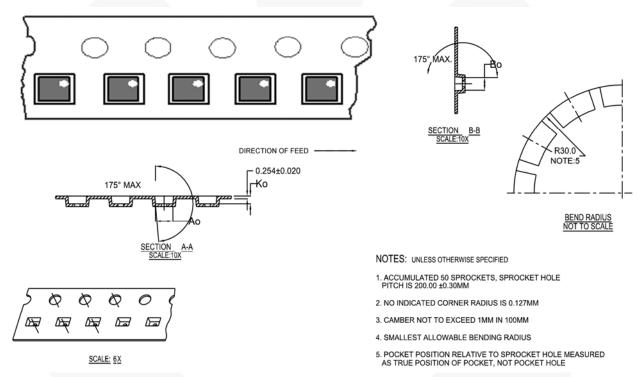

90%

V_{cc}/2

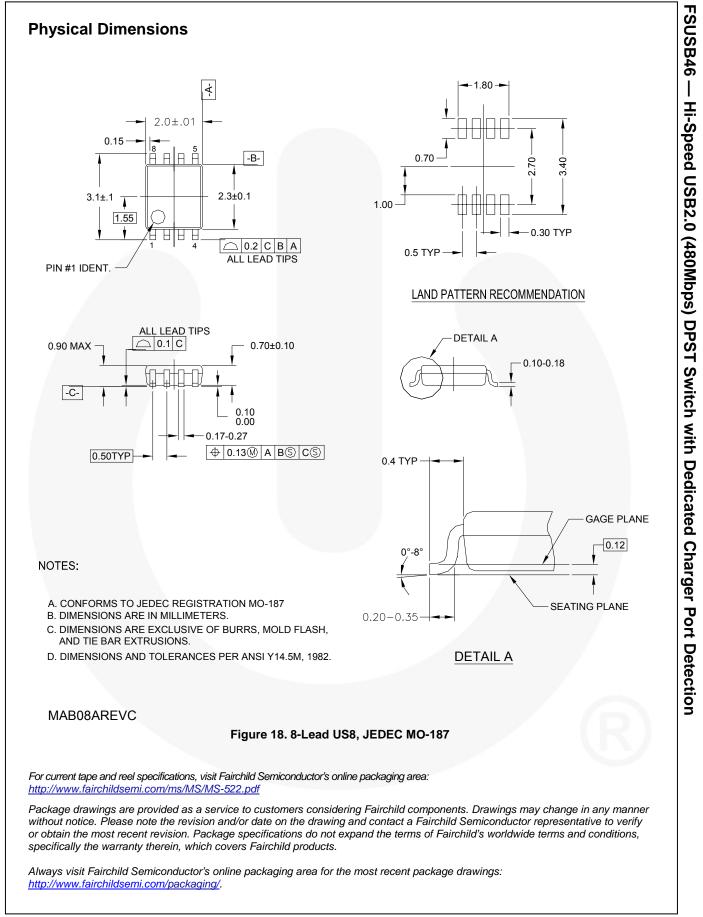

900

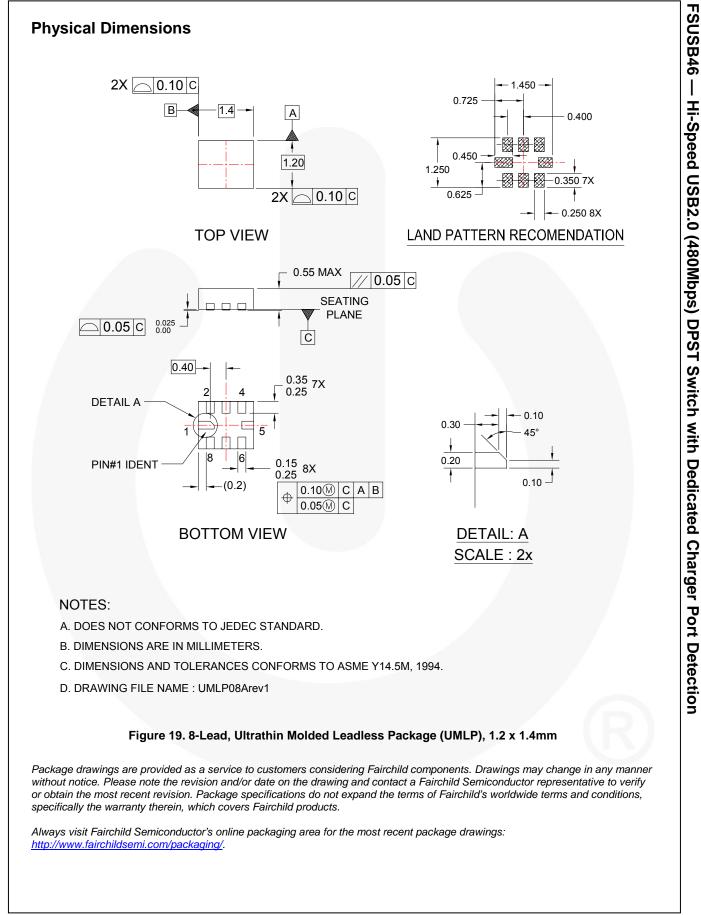
/OE

FSUSB46 — Hi-Speed USB2.0 (480Mbps) DPST Switch with Dedicated Charger Port Detection



Tape and Reel Specifications						
Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Tape Status		
	Leader (Start End)	125 (Typical)	Empty	Sealed		
L6X, L8X, L10X	Carrier	5000	Filled	Sealed		
	Trailer (Hub End)	75 (Typical)	Empty	Sealed		


Standard Tape and Reel Specifications


Standard tape and reel specifications for MicroPak are available at Fairchild Semiconductor's website: <u>http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf</u>

FSUSB46L8X_F130 Tape and Reel Specifications

10	30056	2.30 ± 0.1mm	1.78 ± 0.1mm	0.68 ± 0.1mm
8	30038	1.78 ± 0.1mm	1.78 ± 0.1mm	0.68 ± 0.1mm
6	30033	1.60 ± 0.1mm	1.15 ± 0.1mm	0.70 ± 0.1mm

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

1	
Definition of Terms	

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 144