FSA2367－Low R ${ }_{\text {ON }}$（0．75 $)$ Triple－SPDT， Negative－Swing Audio Source Switch

Features

－ $10 \mu \mathrm{~A}$ Maximum I $\mathrm{I}_{\text {ст }}$ Current Over Expanded Control Voltage Range（ $\mathrm{V}_{\mathrm{IN}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$ ）
－On Capacitance 55pF Typical（Con）
－0．75 Typical On Resistance（Ron）
－Common Ports 1A，2A，3A with Negative Swing Audio to－2V
－－3db Bandwidth：＞150 MHz
－Low Power Consumption（1 1 A Maximum）
－Power－Off Feature for $1 \mathrm{~A} / 2 \mathrm{~A} / 3 \mathrm{~A}$ Pin $\left(\mathrm{I}_{\mathrm{N}}<2 \mu \mathrm{~A}\right)$
－Packaged in Pb－Free 14－Pin TSSOP and DQFN

Applications

－Cell Phone，PDA，Digital Camera，and Notebook
－LCD Monitor，TV，and Set－Top Box

Description

The FSA2367 is a triple Single－Pole Double－Throw （SPDT）switch that multiplexes three sources of data or audio under independent control pins．The FSA2367 has special circuitry on the 1A，2A，3A pins that allows a power－off feature．With the V_{Cc} supply removed and a voltage on the $1 \mathrm{~A} / 2 \mathrm{~A} / 3 \mathrm{~A}$ pins，there is minimal leakage current into the $1 A / 2 A / 3 A$ data pins．In addition，the FSA2367 also features very low quiescent current to extend battery life．The low quiescent current allows mobile handset applications direct interface with the baseband processor general－purpose I／Os．Typical applications involve switching in portables and consumer applications such as cell phones，digital cameras，and notebooks with hubs or controllers．

IMPORTANT NOTE：

For additional information，please contact analogswitch＠fairchildsemi．com．

Ordering Information

Part Number	Top Mark	Eco Status	Package
FSA2367BQX	2367	Green	14－Terminal Depopulated very thin Quad Flat－pack No leads $($ DQFN $2.5 \times 3.0 \mathrm{~mm}$, JEDEC MO－241
FSA2367MTCX	FSA2367	RoHS	14－Lead Thin Shrink Small Outline Package（TSSOP），4．4mm Wide，JEDEC MO－153

For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

Analog Symbol

Figure 1．Analog Symbol

Pin Assignments

Figure 2. Pin Assignment TSSOP-14 (Top View)

Figure 3. Pad Assignment DQFN-14 (Top View)

Pin Descriptions

Pin Name	Description
S1, S2, S3	Switch Control Selects
$1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$	A Data Bus (Common)
$1 \mathrm{Bn}, 2 \mathrm{Bn}, 3 \mathrm{Bn}$	Multiplexed Source inputs

Truth Table

S1, S2, S3	Function
LOW	$1 B 0=1 A ; 2 B 0=2 A ; 3 B 0=3 A$
HIGH	$1 B 1=1 A ; 2 B 1=2 A ; 3 B 1=3 A$

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Supply Voltages		-0.5	6.0	V
$\mathrm{V}_{\text {Sw }}$	Switch I/O Voltage ${ }^{(1)}$	1Bn, 2Bn Pins	$\mathrm{V}_{\text {cc }}-5.5 \mathrm{~V}$	$\mathrm{V} \mathrm{cc}-0.3 \mathrm{~V}$	V
		1A, 2A Pins	$\mathrm{V}_{\mathrm{cc}}-5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{cc}}-0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$	S0, S1	-0.5	6.0	V
	Input Clamp Diode Current		-50		mA
	Switch I/O Current	Continuous		350	mA
	Peak Switch Current	Pulsed at 1ms duration, <10\% Duty Cycle		500	mA
PD	Power Dissipation at $85^{\circ} \mathrm{C}$	DQFN14 package		2.5	$\mu \mathrm{W}$
		TSSOP14 package		2.5	$\mu \mathrm{W}$
TSTG	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature	Soldering, 10 seconds		+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)	All Pins		5500	kV
		I/O to GND		8000	
		VCC to GND		8000	
	Charged Device Model (JEDEC-JESD22-C101)			2000	kV

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltages	2.7	4.3	V
$\mathrm{~V}_{\mathrm{SO}: \mathrm{S} 1}$	Control Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	$\mathrm{V}_{\mathrm{CC}}-5.5$	$\mathrm{~V}_{\mathrm{CC}}-0.3$	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (free air)		145	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Vcc (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
	Analog Signal Range			$\begin{gathered} \text { Vcc- } \\ 5.5 \end{gathered}$		Vcc	V
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	3.0			-1.2	V
$\mathrm{V}_{\text {IH }}$	Input Voltage High		2.7 to 3.6	1.2			V
			3.6 to 4.3	1.5			
VIL	Input Voltage Low		2.7 to 3.6			0.5	V
			3.6 to 4.3			0.7	
1 N	Control Input Leakage	$\mathrm{V}_{\text {IN }}=0$ to $\mathrm{V}_{\text {cc }}$	4.3			± 1	$\mu \mathrm{A}$
loff	Power-Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, $2 \mathrm{~A}), \mathrm{V}_{\mathrm{SW}}=0$ to 4.3 V , $\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$	OV			± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{NO}(\text { (OFF) }}$	Off-Leakage Current of Port 1Bn, 2Bn	$1 \mathrm{Bn}, 2 \mathrm{Bn}=0.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ or Floating $1 \mathrm{~A}, 2 \mathrm{~A}=0.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{Cc}}-0.5 \mathrm{~V}$ Figure 8	4.3	-250	10	250	nA
$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$	On-Leakage Current of Port 1Bn, 2Bn	$1 \mathrm{Bn}, 2 \mathrm{Bn}=$ Floating $1 \mathrm{~A}, 2 \mathrm{~A}=0.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{cc}}-0.5 \mathrm{~V}$ Figure 10	4.3	-250	10	250	nA
Ron	Switch On Resistance ${ }^{(2)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0 \mathrm{~V}, 0.7 \mathrm{~V} \text {, } \\ & 2.0 \mathrm{~V}, 2.7 \mathrm{~V} \text {, } \\ & \text { lon=- } 100 \mathrm{~m} \\ & \text { Figure } 9 \end{aligned}$	2.7		0.75	2.00	Ω
$\Delta \mathrm{R}_{\text {on }}$	Delta RoN ${ }^{(3)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0.7 \mathrm{~V}, \\ & \text { lon }=-100 \mathrm{~mA} \end{aligned}$	2.7		0.5		Ω
$\mathrm{R}_{\text {FLAT(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\begin{aligned} & 1 \mathrm{Bn} \text { or } 2 \mathrm{Bn}=0 \mathrm{~V}, 0.7 \mathrm{~V} \text {, } \\ & 2.0 \mathrm{~V}, 2.7 \mathrm{~V}, \\ & \mathrm{l}=-100 \mathrm{~mA} \end{aligned}$	2.7 to 4.3		0.23	0.40	Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\mathrm{SW}}=0$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {OUT }}=0$	4.3			500	nA
$\mathrm{I}_{\text {cct }}$	Increase in Icc Current per Control Voltage and Vcc	$\mathrm{V}_{\text {CNTRL }} 2.6 \mathrm{~V}$	4.3		2.2	10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}$	4.3		6.5	15.0	

Notes:

2. Measured by the voltage drop between the $1 \mathrm{Bn}(2 \mathrm{Bn}, 3 \mathrm{Bn})$ and $1 \mathrm{~A}(2 \mathrm{~A}, 3 \mathrm{~A})$ pins at the indicated current through the switch. On resistance is determined by the lower voltage on the two.
3. Guaranteed by characterization; not tested in production.
4. Flatness is defined as the difference between minimum and maximum on resistance over the specified range.

AC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Vcc (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
ton	Turn-On Time, S to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{Bn}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Figure 10, Figure 12	2.7 to 4.3		45	60	ns
toff	Turn-Off Time, S to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{Bn}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Figure 10, Figure 12	2.7 to 4.3		25	45	ns
$t_{\text {PD }}$	Propagation Delay ${ }^{(5)}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 10, Figure 13	3.3		0.25		ns
$\mathrm{t}_{\text {BBM }}$	Break-Before-Make ${ }^{(5)}$	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\text {IN } 1}=\mathrm{V}_{\text {IN } 2}=\mathrm{V}_{\text {IN3 } 3}=1.5 \mathrm{~V} \end{aligned}$ Figure 11	2.7 to 4.3	1	6		ns
Q	Charge Injection	$\begin{aligned} & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=\mathrm{OPEN} ; \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{aligned}$ Figure 14	2.7 to 4.3		9		pC
OIRR	Off-Isolation	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 4, Figure 16	2.7 to 4.3		-70		dB
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ Figure 5, Figure 17	2.7 to 4.3		-100		dB
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{sw}}=0.5 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=20$ Hz to 20 kHz Figure 20	2.7 to 4.3		0.01		\%
BW	-3db bandwidth	$R_{L}=50 \Omega, C_{L}=0,5 p F$ Figure 6, Figure 15	2.7 to 4.3		150		MHz

Note:
5. Guaranteed by characterization; not tested in production.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	
$\mathrm{Cl}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$		2.5		pF
Con	A/B On Capacitance	$\mathrm{V}_{\mathrm{cc}}=3.3, \mathrm{f}=1 \mathrm{MHz}$ Figure 19			55	
Coffb	Port 1Bn, 2Bn,3Bn Off Capacitance	$\mathrm{V}_{\mathrm{cc}}=3.3, \mathrm{f}=1 \mathrm{MHz}$ Figure 18			16	
Coffa	Port 1A, 2A, 3A Off Capacitance	$\mathrm{V}_{\mathrm{cc}}=3.3, \mathrm{f}=1 \mathrm{MHz}$ Figure 18			20	

Typical Performance Characteristics

Figure 4. Off Isolation $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Figure 5. Non-Adjacent Crosstalk $\mathrm{V}_{\mathrm{cc}}=3.3, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Typical Performance Characteristics (Continued)

Figure 6. Bandwidth Characterization, Frequency Response at $\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$

Figure 7. On Resistance

Test Diagrams

**Each switch port is tested separately

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{ON}}$
Figure 9. On Resistance

Figure 8. Off Leakage
R_{L} and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance

Figure 11. Break-Before-Make Interval Timing

Test Diagrams (Continued)

Figure 12. Turn-On / Turn-Off Waveforms

Figure 13. Switch Propagation Delay Waveforms

$Q=\Delta V_{\text {OUT }} \cdot C_{L}$

Figure 14. Charge Injection Test $\left(Q=\Delta V_{\text {OUT }}{ }^{*} C_{L}\right)$

environment (see AC Tables for specific values)
Figure 15. Bandwidth

Off-Isolation $=20$ Log $\left(\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)$
Figure 16. Channel Off Isolation

Test Diagrams (Continued)

Figure 17. Non-Adjacent Channel-to-Channel Crosstalk

Figure 18. Channel Off Capacitance

Figure 19. Channel On Capacitance

Figure 20. Total Harmonic Distortion

Physical Dimensions

A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AA
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994

MLP14ArevA

Figure 21. 14-Terminal Depopulated very thin Quad Flat-pack No leads (DQFN)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://Mww.fairchildsemi.com/packagingl.

Physical Dimensions (Continued)

Figure 22. 4-Lead Thin Shrink Small Outline Package (TSSOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

TRADEMARKS

The following indudes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	FPS ${ }^{\text {TM }}$	PowerTrench ${ }^{*}$	The Power Franchise ${ }^{\text {® }}$
Auto-SPM ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerXS ${ }^{\text {TM }}$	H M M
Build it Now ${ }^{\text {TM }}$	FRFET ${ }^{\text {® }}$	Programmable Active Droop ${ }^{\text {m }}$	P werchisa
CorePLUSTM	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {m }}$
CorePONER ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }} \mathrm{e}$-Series ${ }^{\text {m }}$	Quiet Series ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {m }}$
CTL ${ }^{\text {TM }}$	Gmax ${ }^{\text {Tm }}$	RapidConfigure ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	O) TM	TINYOPTOTM
EcosPARK ${ }^{\text {EfficientMax }}{ }^{\text {™ }}$	IntelliMAX'm	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {m }}$	TinyPower ${ }^{\text {Tm }}$
	ISOPLANARTM	SignalWise ${ }^{\text {TM }}$,	TinyPMM ${ }^{\text {m }}$
	MegaBuck ${ }^{\text {™ }}$ M ${ }^{\text {a }}$	SmartMax ${ }^{\text {TM }}$	TinyMre ${ }^{\text {mm }}$
E-7	Microcoupler ${ }^{\text {Mm }}$	SMART STARTTM	TriFault Detect ${ }^{\text {m/M }}$
$\square^{(8)}$	MicroPak'm	SPM ${ }^{\text {® }}$	TRUECURRENT ${ }^{\text {TM* }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET'M	W
Fairchild Semiconductor ${ }^{(0}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOTTM 3	SerDes
FACT Quiet Series ${ }^{\text {TM }}$	OPTOLOGIC ${ }^{\circ}$	SuperSOTTM.6	UHC ${ }^{\text {® }}$
FACT ${ }^{\text {® }}$	OPTOPLANAR ${ }^{\circ}$	SuperSOTTM-8	Ultra FRFET ${ }^{\text {TM }}$
FAST ${ }^{\text {® }}$	Q	SupreMOSTM	UniFET ${ }^{\text {m }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {TM }}$	VCX ${ }^{\text {Tm }}$
FETBench ${ }^{\text {™ }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FlashWinter ${ }^{\text {®** }}$	Powner-SPM ${ }^{\text {TM }}$	$5_{\text {GENERAL }}$ SYSTEM	$\times S^{\text {TM }}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES MTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELABIUTY, FUNCTON, ORDESIGN. FAIRCHIDDOESNOTASSUME ANY LIABIUTY ARISING OUTOF THEAPFLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCFBED HEREIN: NEITHERDOES IT CONVEY ANY UCENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHIL'S WOR DWDE TERMS AND CONDITIONS, SPECAFICALY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATON.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Comoration's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experienaing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authonized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is commited to combat this global problem and encourage our customers to do their part in stopping this practice bybuying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

