Low－Voltage，Dual－SPDT（0．4 ${ }^{\text {）Analog Switch with }}$ Negative Swing Audio Capability

Features

－0．4 Typical On Resistance for +3.0 V Supply
－ 0.25Ω Maximum RoN Flatness for +3.0 V Supply
－－3db Bandwidth：＞50MHz
－Low Icct Current Over Expanded Control Input Range
－Packaged in 10－Lead UMLP
－Power－off Protection on Common Ports
－Broad V_{cc} Operating Range： 1.65 to 4.3 V
－Noise Immunity Termination Resistors
－ESD JEDEC：JESD22－A114 Human Body Model：
－Power to GND：16KV
－I／O to GND：10kV
－All other Pins：7kV
－ESD JEDEC：JESD22－A101 Charged Device Model：
－CDM：2kV

Applications

－Cell phone，PDA，Digital Camera，and Notebook
－LCD Monitor，TV，and Set－Top Box

Description

The FSA2271T is a high－performance，dual－single pole double throw（SPDT）analog switch with negative swing audio capability．It features ultra－low Ron of 0.4Ω （typical）at 3．0V Vcc．The FSA2271T operates over a wide V_{cc} range of 1.65 V to 4.3 V and is fabricated with sub－micron CMOS technology to achieve fast switching speeds．Designed for break－before－make operation，the FSA2271T select input is TTL level compatible．
The FSA2271T features very low quiescent current， even when the control voltage is lower than the V_{cc} supply．This feature is optimized for the mobile handset applications，allowing direct interface with baseband processor general－purpose I／Os with minimal battery consumption．

The FSA2271T includes termination resistors that improve noise immunity during overshoot excursions， ＂pop－minimization，＂or off－isolation coupling．

IMPORTANT NOTE：

For additional information，please contact analogswitch＠fairchildsemi．com．

Ordering Information

Part Number	Termination Resistors	Operating Temperature Range	Eco Status	Package
FSA2271TUMX	Yes	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	Green	10－Lead Quad Ultrathin Molded Leadless Package（UMLP）， $1.4 \times 1.8 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch

For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

Analog Symbol

Figure 1. FSA2271T

Pin Configuration

Figure 2. Pin Configuration

Pin Definitions

Pin\#	Name	
1,6	S2, S1	Switch Select Pins
2,7	$2 \mathrm{~A}, 1 \mathrm{~A}$	Data Points
3,8	$2 \mathrm{~B} 0,1 \mathrm{B0}$	Data Points
4,9	$2 \mathrm{~B} 1,1 \mathrm{~B} 1$	Data Ports
5	GND	Ground
10	$V_{c c}$	Supply Voltage Data Ports

Truth Table

Control Input,Sn	Function
LOW Logic Level	nB0 connected to nA; nB1 terminated to GND
HIGH Logic Level	nB1 connected to nA; nB0 terminated to GND

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Min.	Max.	Units
$V_{\text {cc }}$	Supply Voltage		-0.5	5.5	V
$V_{\text {sw }}$	Switch Voltage ${ }^{(1)}$	1B0, 1B1, 2B0, 2B1, 1A, 2A Pins	$\mathrm{V}_{\mathrm{cc}}-4.3 \mathrm{~V}$	$V_{C C}+0.3 V$	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage ${ }^{(1)}$	S1, S2	-0.5	$\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$	V
I_{K}	Input Clamp Diode Current			-50	mA
Isw	Switch I/O Current	Continuous		350	mA
Iswpeak	Peak Switch Current	Pulsed at 1ms Duration, <10\% Duty Cycle		500	mA
TSTG	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature	Soldering 10 seconds		+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND	10		kV
		All Other Pins	7		
		Power to GND	16		
	Charged Device Model, JEDEC-JESD-C101		2		

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{Cc}	Supply Voltage	1.65	4.30	V
$\mathrm{~V}_{\mathrm{S} 1, \mathrm{~S} 2}$	Control Input Voltage	0	$\mathrm{~V}_{\mathrm{cc}}$	V
V_{SW}	Switch I/O Voltage	$\mathrm{V}_{\mathrm{Cc}}-4.3$	$\mathrm{~V}_{\mathrm{Cc}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

DC Electrical Characteristics

All typical values are for $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Units
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IH }}$	Input Voltage High		3.60 to 4.30				1.7		
			2.70 to 3.60				1.5		V
			2.30 to 2.70				1.4		
			1.65 to 1.95				0.9		
$\mathrm{V}_{\text {IL }}$	Input Voltage Low		3.60 to 4.30					0.7	V
			2.70 to 3.60					0.5	V
			2.30 to 2.70					0.4	
			1.65 to 1.95					0.4	
In	Control Input Leakage (S1,S2)	$\mathrm{V}_{\text {IN }}=0$ to V_{cc}	1.65 to 4.30				-0.5	0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port nA	$n A=0.3 V, V_{c c}-0.3 V$; nB0 or nB1 (on) =nA or Floating; nB0 or nB1 (off) $=0 \mathrm{~V}$ or floating Figure 5	1.95 to 4.30				-1	1	$\mu \mathrm{A}$
loff	Power Off Leakage Current (Common Port Only 1A, 2A)	$\begin{aligned} & \text { Common Port }(1 \mathrm{~A}, 2 \mathrm{~A}) ; \\ & \mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V} \text { to } 4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V} ; \mathrm{nB0}, \\ & \mathrm{nB} 1=0 \mathrm{~V} \text { or Floating } \\ & \hline \end{aligned}$	0					± 45	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(2)}$	$\mathrm{I}_{\mathrm{on}}=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or } \mathrm{nB} 1=0 \mathrm{~V} \text {, }$ $0.7 \mathrm{~V}, 3.6 \mathrm{~V}, 4.3 \mathrm{~V}$ Figure 3	4.30		0.3				Ω
		$\mathrm{IoN}_{\mathrm{N}}=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or } \mathrm{nB} 1=0 \mathrm{~V} \text {, }$ $0.7 \mathrm{~V}, 2.3 \mathrm{~V}, 3.0 \mathrm{~V}$ Figure 3	3.00		0.4			0.8	
		$\begin{aligned} & \text { Ion }=100 \mathrm{~mA}, \mathrm{nB0} \text { or } \mathrm{nB} 1=0 \mathrm{~V} \text {, } \\ & 0.7 \mathrm{~V}, 1.6 \mathrm{~V}, 2.3 \mathrm{~V} \end{aligned}$ $\text { Figure } 3$	2.30		0.52				
		$\mathrm{I}_{\mathrm{N}}=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or } \mathrm{nB} 1=0 \mathrm{~V} \text {, }$ $0.7 \mathrm{~V}, 1.65 \mathrm{~V}$ Figure 3	1.65		1.00				
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching Between Channels ${ }^{(3}$	$\mathrm{I}_{\mathrm{ON}}=100 \mathrm{~mA}, \mathrm{nB} 0$ or $\mathrm{nB} 1=0.7 \mathrm{~V}$	4.30		0.04			0.13	Ω
			3.00		0.06			0.13	
			2.30		0.12				
			1.65		1.00				
$\mathrm{R}_{\text {FLAt(ON) }}$	On Resistance Flatness ${ }^{(4)}$	$\text { lout }=100 \mathrm{~mA}, \mathrm{nB} 0 \text { or nB1 }=0 \mathrm{~V}$$\text { to } V_{\mathrm{cc}}$	4.30					0.25	Ω
			3.00					0.25	
			2.30		0.5				
			1.65		0.6				
$\mathrm{R}_{\text {TERM }}$	Internal Termination Resistors ${ }^{(5)}$				10				k Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{1 \mathrm{~N}}=0$ or $\mathrm{V}_{\text {cc }}$, lout $=0$	4.30	-100		100	-500	500	nA
$\mathrm{I}_{\text {CCT }}$	Increase in Icc per Input	Input at 2.6 V	4.30		3.0			10.0	$\mu \mathrm{A}$
		Input at 1.8V			7.0			15.0	

Notes:

2. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.
3. $\quad \Delta R_{O N}=R_{o N ~ m a x ~}-R_{\text {ON min }}$ measured at identical V_{CC}, temperature, and voltage.
4. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
5. Guaranteed by characterization, not production tested.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		Units
				Min.	Typ.	Max.	Min.	Max.	
ton	Turn-On Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { Figure 4, Figure } 10 \end{aligned}$	3.60 to 4.30			60	15	65	ns
			2.70 to 3.60			65	15	70	
			2.30 to 2.70			80	15	85	
			1.65 to 1.95		100				
toff	Turn-Off Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { Figure 4, Figure } 10 \end{aligned}$	3.60 to 4.30			55	5	60	ns
			2.70 to 3.60			60	5	65	
			2.30 to 2.70			65	5	70	
			1.65 to 1.95		65				
$\mathrm{t}_{\text {BbM }}$	Break-Before-Make Time	$\begin{aligned} & \mathrm{nB0} \text { or } \mathrm{nB} 1=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { Figure } 11 \end{aligned}$	3.60 to 4.30		3		1		ns
			2.70 to 3.60		5		2		
			2.30 to 2.70		10		2		
			1.65 to 1.95		15		2		
Q	Charge Injection	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega$ Figure 14	1.65 to 4.30		25				pC
OIRR	Off Isolation	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ Figure 12	1.65 to 4.30		-70				dB
Xtalk	Crosstalk	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ Figure 13	1.65 to 4.30		-70				dB
BW	-3db Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ Figure 9	1.65 to 4.30		>50				MHz
THD	Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{SW}}=2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz , $\mathrm{V}_{\text {BIAS }}=0 \mathrm{~V}$ Figure 15	1.65 to 4.30		. 06				\%

Capacitance

Symbol	Parameter	Conditions	$V_{c c}$ (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{Cin}^{\text {N }}$	Control Pin Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Figure 7	0		2.5				pF
Coff	B port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Figure 7	3.3		30				pF
Con	A port On Capacitance	$\mathrm{f}=1 \mathrm{MHz}$ Figure 8	3.3		120				pF

Test Diagrams

Figure 3. On Resistance

Figure 5. On Leakage

Figure 7. Off Capacitance

C_{L} includes test fixture and stray capacitance.

Figure 9. Bandwidth

Figure 4. Test Circuit Load

Each switch port is tested separately.
Figure 6. Off Leakage (Each Port Tested Separately)

Figure 8. On Capacitance

Figure 10. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

Figure 11. Break-Before-Make Timing

Figure 13. Adjacent Channel Crosstalk

Figure 14. Charge Injection Test
 environment (see AC tables for specific values).

Figure 15. Total Harmonic Distortion

Physical Dimensions

TOP VIEW

BOTTOM VIEW
NOTES:

OPTIONAL MINIMIAL TOE LAND PATTERN

DETAIL A
PIN \#1 TERMINAL
SCALE: 2X
A. DIMENSIONS ARE IN MILLIMETERS.
B. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
C. DRAWING FILENAME: UMLP10Arev2

Figure 16. 10-Lead, Quad Ultrathin Molded Leadless Package (UMLP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm
Auto-SPM ${ }^{\text {™ }}$
Build it Now ${ }^{T M}$
CorePLUSTM
CorePOWERT™
CROSSVOLTTM
CTLTM
Current Transfer LogicTm
DEUXPEED ${ }^{\circ}$
Dual Cool ${ }^{\text {TM }}$
Ecospark ${ }^{\oplus}$
EfficientMax ${ }^{\text {™ }}$
EZSWITCHT**

$\underbrace{\text { E }}$
Fairchild ${ }^{\text {© }}$
Fairchild Semiconductor ${ }^{\text {© }}$
FACT Quiet Series ${ }^{\text {TM }}$
FACT ${ }^{\circ}$
FAST ${ }^{\text {© }}$
FastVCore ${ }^{\text {TM }}$
FETBench ${ }^{\text {TM }}$

FlashWriter ${ }^{\text {®* }}$
FPSTM
F-PFSTM
FRFET ${ }^{\text {® }}$
Global Power Resource ${ }^{\text {SM }}$
Green FPSTM
Green FPSTTM e-Series ${ }^{\text {TM }}$
Gmax ${ }^{\text {™ }}$
GTOTM
Intellimax'm
ISOPLANARTM
MegaBuck ${ }^{\text {TM }}$
MICROCOUPLERTM
MicroFETTM
MicroPak ${ }^{\text {TM }}$
MicroPak2 ${ }^{\text {Tm }}$
MillerDrive ${ }^{\text {TM }}$
MotionMax ${ }^{\text {TM }}$
Motion-SPM ${ }^{\text {TM }}$
OptoHiT ${ }^{\text {TM }}$
OPTOLOGIC ${ }^{\ominus}$
OPTOPLANAR ${ }^{\circledR}$
-

PDP SPM ${ }^{\text {TM }}$
Power-SPM ${ }^{\text {TM }}$
PowerTrench ${ }^{\circ}$
Power S $^{\text {TM }}$
Programmable Active Droop ${ }^{\text {™ }}$
QFET ${ }^{\text {® }}$
QS ${ }^{\text {TM }}$
Quiet Series ${ }^{\text {TM }}$
RapidConfigure ${ }^{\text {TM }}$
$0^{\text {TM }}$
Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$
SignalWise ${ }^{\text {TM }}$
SmartMax ${ }^{\text {TM }}$
SMART STARTTM
SPM ${ }^{\text {® }}$
STEALTH ${ }^{\text {TM }}$
SuperFETTM
SupersOTTM-3
SuperSOTTM-6
SuperSOTTM-8
SupreMOS'm
SyncFETTM
Sync-Lock ${ }^{\text {TM }}$

C SYSTEM © ${ }^{\text {® }}$
The Power Franchise ${ }^{\otimes}$

${ }^{\text {tha }} \mathbf{\rho}$ wer

TinyBoost ${ }^{\text {TM }}$
TinyBuckTM
TinyCalctm
TinyLogic ${ }^{\text {® }}$
TINYOPTOTM
TinyPowertm
TinyPMM ${ }^{\text {™ }}$
TinyMire ${ }^{\text {M }}$
TriFault Detect ${ }^{\text {TM }}$
TRUECURRENTTM*
μ SerDes ${ }^{\text {TM }}$

UHC ${ }^{\text {® }}$
Ultra FRFETTM
UniFETTM
VCX ${ }^{\text {TM }}$
VisualMax ${ }^{\text {TM }}$
$X S^{T M}$
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABILTY, FUNCTION, ORDESIGN. FAIRCHILDDOESNOT ASSUME ANY LIABILITY ARISING OUT OF THEAPPUCATION ORUSE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DCES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPEGFICATIONS DONOT EXPAND THE TERMS OF FAIRCHID'SWORLDMDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTORCORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semioonductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, wowv.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Faichild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by oountry on our web page ated above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and enouurage our customers to do their part in stopping this practioe by buying direct or from authorized distributors.

PRODUCT STA TUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 146

