

FSA2259 Low-Voltage, Dual-SPDT (0.8 Ω) Analog Switch with 16kV ESD

Features

- 0.8Ω Typical On Resistance (R_{ON}) for +3.0V Supply
- 0.40Ω Maximum Ron Flatness for +3.0V Supply
- -3db Bandw idth: > 50MHz
- Low I_{CCT} Current Over an Expanded Control Input Range
- Packaged in 10-Lead UMLP (1.4 x 1.8mm)
- Pow er-Off Protection on Common Ports
- Broad V_{CC} Operating Range: 1.65 to 4.4V
- ESD HBM JEDEC: JESD22-A114
 - I/O to GND: 8.5kV
 - Pow er to GND: 16.0kV

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSA2259 is a high-performance, dual, Single Pole Double Throw (SPDT) analog switch that features low R_{ON} of 0.8Ω (typical) at 3.0V V_{CC} . The FSA2259 operates over a wide V_{CC} range of 1.65V to 4.4V and is designed for break-before-make operation. The select input is TTL-level compatible.

The FSA2259 features very low quiescent current even when the control voltage is lower than the V_{CC} supply. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose I/Os with minimal battery consumption.

rdering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA2259UMX	JT	-40 to +85°C	10-Lead, Quad, Ultrathin Molded Leadless Package (UMLP), 1.4 x 1.8mm

Analog Symbol

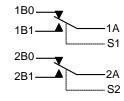


Figure 1. FSA2259

Pin Configuration

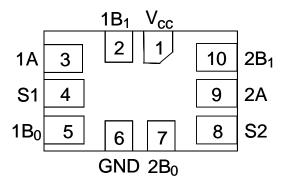


Figure 2. 10-Pin UMLP (Top Through View)

Pin Description

Pin#	Name	Description
1	Vcc	Supply Voltage
2	1B ₁	Data Ports
3	1A	Data Ports
4	S1	Sw itch Select Pins
5	1B ₀	Data Ports
6	GND	Ground
7	2B ₀	Data Ports
8	S2	Sw itch Select Pins
9	2A	Data Ports
10	2B ₁	Data Ports

Truth Table

Control Input, Sn	Function
LOW Logic Level	nB0 Connected to nA
HIGH Logic Level	nB1 Connected to nA

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Units	
Vcc	Supply Voltage		-0.5	5.5	V
V _{SW}	Sw itch I/O Voltage ⁽¹⁾	-0.5	V _{CC} + 0.3	V	
V _{IN}	Control Input Voltage ⁽¹⁾	S1, S2	-0.5	5.5	V
lık	Input Clamp Diode Current			-50	mA
Isw	Sw itch I/O Current (Continuous)		350	mA	
ISWPEAK	Peak Switch Current (Pulsed at 1ms Dura		500	mA	
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature (Soldering, 10 seconds	s)		+260	°C
	_	I/O to GND		8.5	
ESD	Human Body Model, JEDEC: JESD22-A114	Pow er to GND		16.0	kV
EOD	000000		8.0		
	Charged Device Model, JEDEC: JESD22-0		2.0	kV	

Note:

1. Input and output negative ratings may be exceeded if input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
Vcc	Supply Voltage	1.65	4.40	V
V _{IN}	Control Input Voltage	0	V _{CC}	V
Vsw	Sw itch I/O Voltage	0	Vcc	V
T _A	Operating Temperature	-40	+85	°C

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	T _A =+25°C			T _A =-40 to +85°C		Unit	
				Min.	Тур.	Max.	Min.	Max.		
			3.60 to 4.30				1.7			
\ /	On a tool Law of Walter on LEak		2.70 to 3.60				1.5		.,	
V_{IH}	Control Input Voltage High		2.30 to 2.70				1.4		V	
			1.65 to 1.95				0.9			
			3.60 to 4.30					0.7		
\/	Control Innut Valtage Law		2.70 to 3.60					0.5	V	
V_{IL}	Control Input Voltage Low		2.30 to 2.70					0.4	V	
			1.65 to 1.95					0.4		
I _{IN}	Control Input Leakage (S1,S2)	V _{IN} =0 to V _{CC}	1.65 to 4.30				-0.5	0.5	μΑ	
I _{NO(0FF)} , I _{NC(OFF)}	Off Leakage Current of Port nB0 and nB1	nA=0.3V, V_{CC} =0.3V nB0 or nB1= V_{CC} =0.3V, 0.3V, or Floating Figure 4	1.95 to 4.30	-10		10	-50	50	nA	
I _{A(ON)}	On Leakage Current of Port nA	$\begin{array}{l} \text{nA=0.3V, V}_{\text{CC}}\text{-0.3V} \\ \text{nB0 or nB1=V}_{\text{CC}}\text{-0.3V}, \\ \text{0.3V, or Floating} \\ \text{Figure 5} \end{array}$	1.95 to 4.30	-20		20	-100	100	nA	
I _{OFF}	Power-Off Leakage Current (Common Port Only 1A, 2A)	Common Port (1A, 2A), V_{IN} =0V to 4.3V, V_{CC} =0V nB0, nB1=Floating	0V					±1	μA	
		I_{ON} =100mA, nB0 or nB1=0.7V, 3.6V Figure 3	4.30		0.50			1.00		
		I_{ON} =100mA, nB0 or nB1=0.7V, 2.3V Figure 3	3.00		0.80			1.20		
R _{on}	Switch On Resistance ^(2,5)	I _{ON} =100mA, nB0 or nB1=0V, 0.7V, 1.6V, 2.3V Figure 3	2.30		1.10				Ω	
		I_{ON} =100mA, nB0 or nB1=0V, 0.7V, 1.65V Figure 3	1.65		1.50					
			4.30		0.08			0.25		
ΛD - · ·	On Resistance Matching	I _{ON} =100mA, nB0 or	3.00		0.20			0.25	Ω	
ΔR_{ON}	Between Channels (3,5)	nB1=0.7V	2.30		0.40				22	
			1.65		0.50				1	
-			4.30					0.4		
P	On Resistance Flatness ^(4,5)	I _{OUT} =100mA, nB0 or	3.00					0.4		
R _{FLAT(ON)}	On Resistance Flathess	nB1=0V to V_{CC}	2.30		0.9				Ω	
			1.65		1.2					
Icc	Quiescent Supply Current	$V_{IN}=0$ or V_{CC} , $I_{OUT}=0$	4.30	-100		100	-500	500	nA	
l	Increase in I _{CC} per Input	Input at 2.6V	4.30		3			7	^	
I _{CCT}	morease in icc per input	Input at 1.8V	4.30		7	1		15	μA	

Notes:

- 2. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
- 3. $\Delta R_{ON} = R_{ON \ max} R_{ON \ min}$ measured at identical V_{CC} , temperature, and voltage.
- 4. Flatness is defined as the difference between the maximum and minimum value of on resistance (RoN) over the specified range of conditions.
- 5. Guaranteed by characterization, not production tested for $V_{CC}=1.65-3.0V$.

AC Electrical Characteristics

All typical value are for V_{CC} =3.3V at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C		°C	T _A =-40 to +85°C		Unit	Figure
				Min.	Тур.	Max.	Min.	Max.		
		nB0 or	3.60 to 4.30			55		60		
tou	Turn-On	nB1=1.5V,	2.70 to 3.60			60		65	ns	
t _{ON}	Time	R _L =50Ω,	2.30 to 2.70			65		70	115	
		C _L =35pF	1.65 to 1.95		70					Figure 6
		nB0 or	3.60 to 4.30			30	5	35		Figure 7
4	Turn-Off	nB1=1.5V,	2.70 to 3.60			35	5	40	20	
toff	Time	R _L =50Ω,	2.30 to 2.70			40	5	45	ns	
		C _L =35pF	1.65 to 1.95		40				1	
	Break- Before-Make Time ⁽⁶⁾	nB0 or nB1=1.5V, R _L =50Ω, C _L =35pF	3.60 to 4.30		15		2		ns	Figure 8
t			2.70 to 3.60		15		2			
t _{BBM}			2.30 to 2.70		15		2			
			1.65 to 1.95		16		2			
Q	Charge Injection ⁽⁶⁾	$C_L=1.0nF$, $V_S=0V$, $R_S=0\Omega$	1.65 to 4.30		25				рС	Figure 12
OIRR	Off Isolation ⁽⁶⁾	$\begin{array}{l} \text{f=100kHz,} \\ \text{R}_{\text{L}}\text{=}50\Omega, \ C_{\text{L}}\text{=}0\text{pF} \end{array}$	1.65 to 4.30		-80				dB	Figure 10
Xtalk	Crosstalk ⁽⁶⁾	$\begin{array}{l} \text{f=100kHz,} \\ \text{R}_{\text{L}} = 50\Omega, \ C_{\text{L}} = 0 \text{pF} \end{array}$	1.65 to 4.30		-100				dB	Figure 11
BW	-3db Bandw idth ⁽⁶⁾	R _L =50Ω, C _L =0pF	1.65 to 4.30		>50				MHz	Figure 9
THD+N	Total Harmonic Distortion + Noise ⁽⁶⁾	f=20Hz to 20kHz, R _L =32 Ω , V _{IN} =2V _{pp}	1.65 to 4.30		.06				%	Figure 15

Notes:

6. Guaranteed by characterization, not production tested

Capacitance

All capacitance specifications are guaranteed by characterization and are not production tested.

Symbol	Parameter	Conditions	V _{cc} (V)	T _A =+25°C			Unit	Figure
Symbol	raiailletei	Conditions		Min.	Тур.	Max.	Oilit	riguie
C _{IN}	Control Pin Input Capacitance	f=1MHz	0		1.5		pF	Figure 13
Coff	B Port Off Capacitance	f=1MHz	3.3		30		pF	Figure 13
Con	A Port On Capacitance	f=1MHz	3.3		50		pF	Figure 14

Test Diagrams

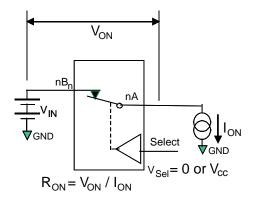
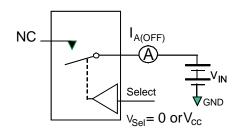



Figure 3. On Resistance

**Each switch port is tested separately.

Figure 4. Off Leakage (Ports Tested Separately)

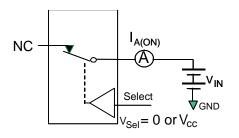


Figure 5. On Leakage

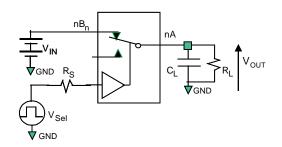


Figure 6. Test Circuit Load

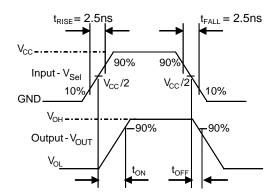


Figure 7. Turn-On / Turn-Off Waveforms

Test Diagrams (Continued)

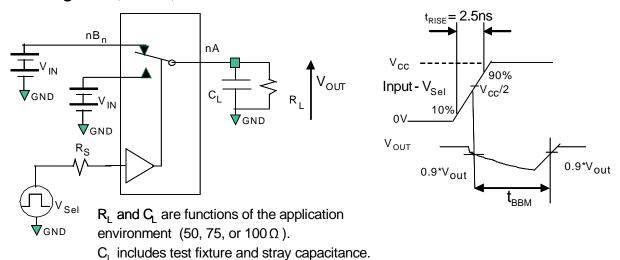


Figure 8. Break-Before-Make Interval Timing

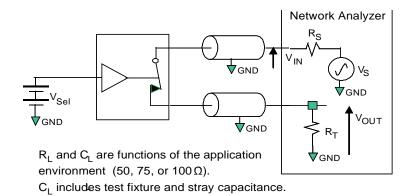


Figure 9. Bandwidth

Figure 10. Channel Off Isolation

Test Diagrams (Continued)

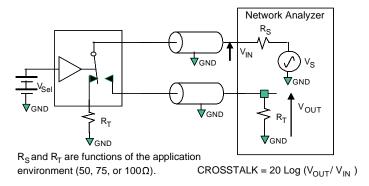


Figure 11. Adjacent Channel Crosstalk

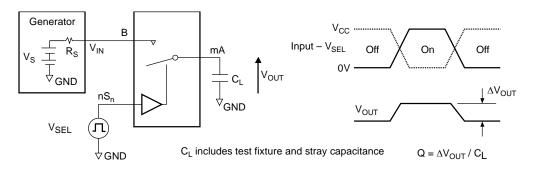


Figure 12. Charge Injection Test

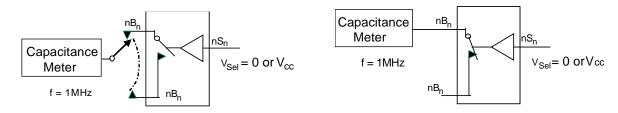
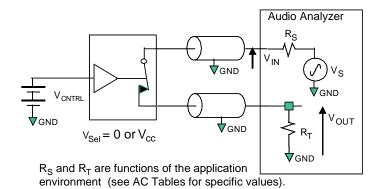
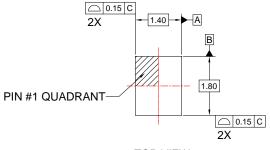
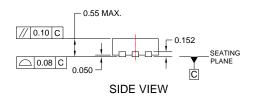
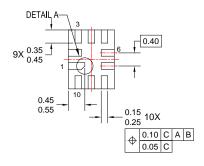


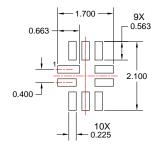
Figure 13. Channel Off Capacitance

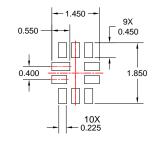
Figure 14. Channel On Capacitance


Figure 15. Total Harmonic Distortion

Physical Dimensions




BOTTOM VIEW

NOTES:

- A. DIMENSIONS ARE IN MILLIMETERS.
- B. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- C. DRAWING FILENAME: UMLP10Arev2

RECOMMENDED LAND PATTERN

OPTIONAL MINIMIAL TOE LAND PATTERN

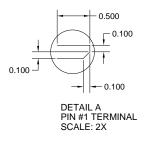


Figure 16. 10-Lead Quad Ultrathin Molded Leadless Package (UMLP)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employ

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com **N. American Technical Support**: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative