FPF2498

Adjustable OVP with 28 V Input OVT Load Switch

Features

Function	Advanced Load Switch
Input	3.5-12 V
Features	28 V Absolute Ratings on VIN 1.7 A Maximum Continuous Current Capability $80 \mathrm{~m} \Omega$ Ron Typical Over-Voltage Protection (OVP) Over-Current Protection (OCP) Thermal Shutdown Under-Voltage Lockout (UVLO) Reverse Current Blocking (RCB)
ESD	15 kV IEC 61000-4-2 Air Gap
Operating Temperature Range	-40 to $+85^{\circ} \mathrm{C}$
Package	6-Ball WLCSP ($1.05 \times 1.3 \mathrm{x}$ $0.625 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch $)$
Ordering Information	FPF2498BUCX
Top Mark	TK

Description

The FPF2498 advanced load-management switch targets applications requiring a highly integrated solution. It disconnects loads powered from the DC power rail ($<12 \mathrm{~V}$) with stringent off-state current targets and high load capacitances ($<100 \mu \mathrm{~F}$). The FPF2498 consists of a slew-rate controlled low-impedance MOSFET switch. FPF2498 has over-voltage protection and over-temperature protection.

Applications

- Cellular Phones, Smart Phones
- Tablets

Related Resources

- FPF2498 Evaluation Board

Figure 1. Block Diagram and Typical Application

Note:

1. Recommend Cload value be larger than $2.2 \mu \mathrm{f}$.

Pin Configuration

Figure 2. Pin Assignments

Pin Map

Name	Pin \#	Type	Default State	Description		
VIN	A2	Input	N/A	Input voltage path		
VOUT	B1	Output	N/A	Output voltage path		
ON	B2	Input	LOW	On / Off control of device	$\mathrm{V}_{\mathrm{IH}}=\mathrm{HIGH}$	Enabled
					$\mathrm{V}_{\text {IL }}=$ LOW	Disabled
OVLO	C1	Input		OVP Adjustment set by R1 and R2 and is compared to $1.2 \mathrm{~V}-\mathrm{V}_{\mathrm{IN}} \times$ R2 / (R1+R2) >1.2 V		
FLAGB	C2	Open- Drain Output	High-Z	Indicates a OVP / OCP / OTP fault	LOW / GND	Active - Indicates: OVP (over 6.5 V at $3-6 \mathrm{~V}$) OCP (over 2 A) OTP (over $150^{\circ} \mathrm{C}$)
					HIGH / V_IO	Normal Operation
GND	A1	GND	GND	Device ground		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters		Min.	Max.	Unit
Vpin	Voltage on VIN to GND, VIN to VOUT, OVLO Pins		-0.3	28.0	V
	Voltage on ON, FLAGB Pins		-0.3	6.0	
	Voltage on VOUT to GND Pins		-0.3	20.0	
Isw	Maximum Switch Current			1.75	A
tpd	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	W
TJ	Operating Junction Temperature		-40	+150	${ }^{\circ} \mathrm{C}$
Tsta	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient (1-inch Square Pad of 2 oz . Copper)			$95^{(2)}$ $1110^{(3)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI / ESDA / JEDEC JS-001-2012	3		kV
		Charged Device Model, JESD22-C101	2		
	IEC61000-4-2 System Level	Air Discharge (Vin, Von, Vout to GND)	15		
		Contact Discharge (Vin, Von, Vout to GND)	8		

Notes:

2. Measured using 2S2P JEDEC std. PCB.
3. Measured using 2S2P JEDEC PCB cold plate method.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
V_{IN}	Supply Voltage	3.5	12.0	V
I_{SW}	Maximum Continues Switch Current ${ }^{(4)}$		1.7	A
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Note:
4. Maximum Junction Temperature $=85^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted; $\mathrm{V}_{\mathrm{I}}=3.5$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{I}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Basic Operation						
ISD(OFF)	Shutdown Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, Vout=0 V, Von=GND		0.4	3.0	$\mu \mathrm{A}$
lQ	Quiescent Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\text { Floating, } \\ & \mathrm{lout}^{2}=0 \mathrm{~mA} \end{aligned}$		90	125	$\mu \mathrm{A}$
Ron	On Resistance	$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$, lout=200 mA		90		$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, lout=200 mA		80	95(5)	
		$\mathrm{V}_{\text {IN }}=9 \mathrm{~V}$, lout $=200 \mathrm{~mA}$				
		VIn=12 V, lout=200 mA				
$\mathrm{V}_{\text {IH }}$	ON Input Logic HIGH Voltage	$\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}$ to 5.5 V	1.15			V
VIL	ON Input Logic LOW Voltage	$\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}$ to 5.5 V			0.65	V
Vol_flag	FLAGB Output Logic LOW Voltage	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{ISINK}=1 \mathrm{~mA}$		0.10	0.20	V
Iflagb_Lk	FLAGB Output HIGH Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Switch On			0.5	$\mu \mathrm{A}$
RPD	Pull-Down Resistance on ON Pin	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{OVLO}=\mathrm{GND}$		3		$\mathrm{M} \Omega$
Over-Voltage Protection						
Vov_trip	Default Input OVP Lockout	VIN Rising Threshold OVLO=GND	6.2	6.5	6.8	V
		VIN Falling Threshold OVLO=GND		6.2		
Vovlo_sel	Voltage threshold for OVLO selection	$\mathrm{V}_{\text {IN }}=3.5 \mathrm{~V}$ to 5.5 V , OVLO=GND		0.3		V
Vovp_hys	Input OVP Hysteresis	VIN Falling Threshold OVLO=External Setting		0.3		V
VovLo_th	OVLO Set Threshold	$\mathrm{V}_{\text {IN }}=3.5$ to VovLo		1.20		V
tovp	Response Time	$\begin{aligned} & \text { lout }=0.5 \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=0 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\text {IN }}=6 \mathrm{~V} \text { to } 7 \mathrm{~V} \end{aligned}$		0.5	1	$\mu \mathrm{s}$
Vuvio	Under-Voltage Lockout	VIN Rising		3.2		V
		$\mathrm{V}_{\text {IN }}$ Falling		3.0		
Vuvio_hys	UVLO Hysteresis			200		mV
IRCB	RCB Current	$\mathrm{V}_{\text {ON }}=0 \mathrm{~V}$, V $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$		2	5	$\mu \mathrm{A}$
TSD	Thermal Shutdown	Shutdown Threshold		150		${ }^{\circ} \mathrm{C}$
		Return from Shutdown		130		
		Hysteresis		20		

Over-Current Protection

locp	Over-Current Protection Trip Point	Isw $>$ locp	2	A
Dynamic Characteristics				
toon	Turn-On Delay ${ }^{(7)}$	$\begin{aligned} & \mathrm{V}_{I N}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	4.3	ms
t_{R}	Vout Rise Time ${ }^{(7)}$		3.0	ms
ton	Turn-On Time ${ }^{(8)}$		7.3	ms
tooff	Turn-Off Delay ${ }^{(6,7)}$		600	$\mu \mathrm{s}$
t_{F}	Vout Fall Time ${ }^{(6,7)}$		2.0	ms
toff	Turn-Off Time ${ }^{(6,9)}$		2.5	ms
tready	Time for Device Ready for Large Load Current ${ }^{(10)}$	$\mathrm{CL}=10 \mu \mathrm{~F}$	5	ms

Continued on the following page...

Electrical Characteristics

Unless otherwise noted; $\mathrm{V}_{\mathrm{IN}}=3.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V} \operatorname{IN}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
trestart	Over-Current Blanking Time ${ }^{(6)}$	VIN=5 V lout ≥ 1.7 A		64		ms
tocP	Over-Current Response Time ${ }^{(6)}$	Moderate Over-Current Condition; lout \geq ILIM Vout \leq VIN		4		$\mu \mathrm{~s}$
thocp	Hard Over-Current Response Time	Moderate Over-Current Condition; lout \geq ILIM Vout ≤ 0 V	3		$\mu \mathrm{~s}$	
tfLAGB_Release	Over-Current/Voltage/Temp. Flag Release Time					

Notes:
5. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
6. This parameter is guaranteed by design and characterization; not production tested.
7. $t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{\text {F }}$ are defined in figure below.
8. $\mathrm{t}_{\mathrm{O}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}$ toon.
9. toff=tf + tdoff.
10. After tready, the device is ready for maximum DC current load condition.

Timing Diagram

Figure 3. Timing Diagram
where:
toon=Delay On Time;
$\mathrm{t}_{\mathrm{R}}=\mathrm{V}_{\text {out }}$ Rise Time;
ton=Turn-On Time;
tooff=Delay Off Time;
$\mathrm{t}_{\mathrm{F}}=\mathrm{V}_{\text {Out }}$ Fall Time; and
toff=Turn Off Time

Device Fault Behavior Timing

Figure 4. OCP Turn-Off Timing Diagram

Operation and Application Description

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into discharge load capacitor; a capacitor must be placed between the VIN and GND pins. A high-value C_{IN} capacitor can be used to reduce the voltage drop in high-current applications.

Output Capacitor

An output capacitor should be placed between the VOUT and GND pins. This capacitor prevents parasitic board inductance from forcing Vout below ground when the switch is on. This capacitor also prevents reverse inrush current from creating a voltage spike that could damage the device in the case of a Vout short.

Fault Reporting

Upon the detection of an over-voltage, over-current, or over-temperature condition, the FLAGB signals the fault by activating LOW.

Under-Voltage Lockout (UVLO)

The under-voltage lockout turns the switch off if the input voltage drops below the lockout threshold. With the ON pin active, the input voltage rising above the UVLO threshold releases the lockout and enables the switch.

Over-Voltage Lockout (OVLO)

The OVLO pin sets the over-voltage lockout trip point with a resistor-divider network. OVLO adjustment is set by R1 and R 2 and is compared to $1.2 \mathrm{~V}-\mathrm{V} \operatorname{IN} \times \mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2)$ $>1.2 \mathrm{~V}$. when $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {ovlo }}$ the switch turns off to ensure protection to devices connected to VOUT. A $1 \mathrm{M} \Omega$ or larger resistor is recommended on R1 to reduce standby power consumption. To use the default values of 6.5 V for Vovio, connect the OVLO pin directly to GND.

Reverse-Current Blocking (RCB)

The reverse-current blocking feature protects the input source against current flow from output to input. When the load switch is OFF, no current flows from the output to input.

Thermal Shutdown (TSD)

Thermal shutdown protects the die from internally or externally generated excessive temperature. During an over-temperature condition, the switch is turned off. The switch automatically turns on again if the temperature of the die drops below the threshold temperature.

Current Limit

The current limit ensures that the current flow though the switch doesn't exceed a maximum value, which can damage the device. If the current flow though the switch exceeds the trip point, the switch turns off and enters the blanking time. After the blanking time, the switch is re-enabled and checks if the fault still exists.

Board Layout

For best performance, all traces should be as short as possible. The input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance may have on normal and short-circuit operation. Using wide traces for VIN, VOUT, GND minimizes parasitic electrical effects along with minimizing the case-to-ambient thermal impedance.

Package Specific Dimensions

\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
1.300 ± 0.030	1.050 ± 0.030	0.325	0.250

Physical Dimensions

TOP VIEW

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

SIDE VIEWS

BOTTOM VIEW

Figure 5. 6-Ball, Wafer-Level Chip-Scale Package (WLCSP), 2×3 Array, 0.4 mm Pitch

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada.
Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit
Phone: 421337902910
Japan Customer Focus Center For additional information, please contact your local Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Sales Representative

