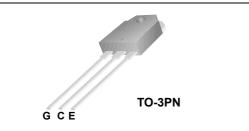
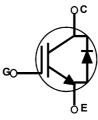
November 2012

FGA25S125P Shorted Anode™ IGBT

Features


- · High speed switching
- Low saturation voltage: V_{CE(sat)} =1.8V @ I_C = 25A
- High input impedance
- RoHS compliant


Applications

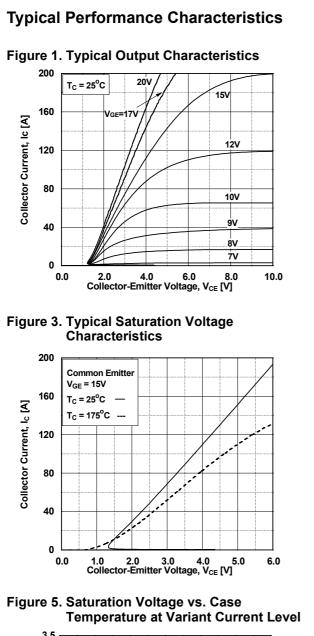
- Induction Heating and Microwave Oven
- Soft Switching Applications

General Description

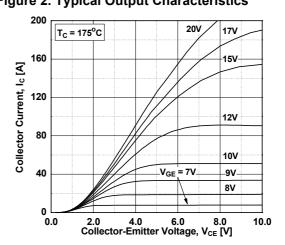
Using advanced Field Stop Trench and Shorted Anode technology, Fairchild's Shorted AnodeTM Trench IGBTs offer superior conduction and switching performances, and easy parallel operation with exceptional avalanche capability. This device is desingned for induction heating and microwave oven.

Absolute Maximum Ratings

Symbol	Description		Rating	Units
V _{CES}	Collector to Emitter Voltage		1250	V
V _{GES}	Gate to Emitter Voltage		± 25	V
1.	Collector Current	@ T _C = 25°C	50	A
I _C	Collector Current	@ T _C = 100°C	25	А
I _{CM (1)}	Pulsed Collector Current		75	A
l _F	Diode Continuous Forward Current	@ T _C = 25°C	50	А
۰F	Diode Continuous Forward Current	@ T _C = 100 ^o C	25	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	250	W
١D	Maximum Power Dissipation	@ T _C = 100 ^o C	125	W
TJ	Operating Junction Temperature		-55 to +175	°C
T _{stg}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JC}$ (IGBT)	(IGBT) Thermal Resistance, Junction to Case, Max		0.6	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max	-	40	°C/W


Notes:

1: Limited by Tjmax

Device N	larking	Device	Package	Reel Size	Таре	Width	Qua	antity
FGA25S125P FGA25S125P 1		TO-3PN	го-зрn -		-		30	
Electric	al Chara	acteristics of	the IGBT т	c = 25°C unless otherwise noted				
Symbol		Parameter	Т	est Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics							
I _{CES}	Collector C	Cut-Off Current	V _{CE} = 12	250V, V _{GE} = 0V	-	-	1	mA
I _{GES}	G-E Leakage Current			_{GES} , V _{CE} = 0V	-	-	±500	nA
On Change	to viation		ł			1		
On Charac		hold Voltago	L. = 25n	$\lambda = - \lambda = -$	4.5	6.0	7.5	V
V _{GE(th)}		hold Voltage		nA, V _{CE} = V _{GE} , V _{GE} = 15V	4.0	0.0	-	v
	Collector to Emitter Saturation Voltage		$T_{\rm C} = 25^{\circ}$	C	-	1.8	2.35	V
V _{CE(sat)}			oltage $I_C = 25A$ $T_C = 125$, V _{GE} = 15V 5°C	-	2.05	-	V
			I _C = 25A T _C = 175	, V _{GE} = 15V, 5°C	-	2.16	-	V
. ,	Diode Forward Voltage		I _F = 25A	, T _C = 25°C	-	1.7	2.4	V
V _{FM}			I _F = 25A	, T _C = 175 ^o C	-	2.1	-	V
Dvnamic C	haracterist	ics						
C _{ies}	Input Capa				-	2150	-	pF
C _{oes}	Output Ca	pacitance		$V_{\rm V}$ V _{GE} = 0V,	-	48	-	pF
C _{res}	Reverse Tr	Reverse Transfer Capacitance		f = 1MHz		36	-	pF
Switching	Characteris	tics	·					
t _{d(on)}	Turn-On D				_	24	_	ns
t _r	Rise Time				-	250	-	ns
t _{d(off)}	Turn-Off D	elay Time	V = 6			502	-	ns
t _f	Fall Time		R _G = 10	Ω, V _{GE} = 15V,	-	138	179	ns
E _{on}	Turn-On S	witching Loss	Resistiv	e Load, T _C = 25ºC	-	1085	-	uJ
E _{off}	Turn-Off S	witching Loss			-	580	754	uJ
E _{ts}	Total Switc	hing Loss		1		1665	-	uJ
t _{d(on)}	Turn-On D	elay Time			-	21.2	-	ns
t _r	Rise Time				-	304	-	ns
t _{d(off)}	Turn-Off D	elay Time		00V, I _C = 25A,	-	490	-	ns
t _f	Fall Time			$Ω, V_{GE} = 15V,$	-	232	-	ns
E _{on}	Turn-On S	witching Loss	Kesistiv	e Load,, T _C = 175 ^o C	-	1310	-	uJ
E _{off}	Turn-Off S	witching Loss			-	952	-	uJ
E _{ts}	Total Switc	hing Loss			-	2262	-	uJ
Qg	Total Gate	Charge			-	204	-	nC
Q _{ge}	Gate to En	nitter Charge	V _{CE} = 60 V _{GE} = 1	00V, I _C = 25A, 5V	-	15	-	nC
Q _{gc}	Gate to Co	llector Charge	GE - I	· ·	-	103	-	nC

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

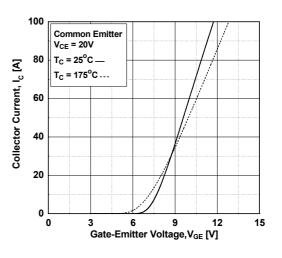
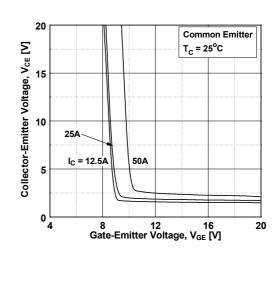
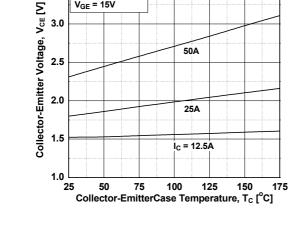
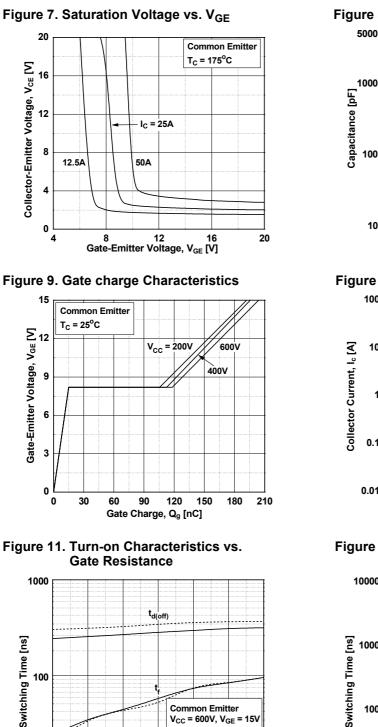





Figure 6. Saturation Voltage vs. V_{GE}

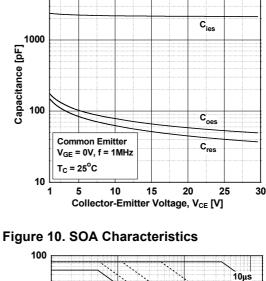
Common Emitter

I_C = 25A

T_C = 25^oC

T_C = 175°C ---

50


V_{CC} = 600V, V_{GE} = 15V

60

70

Typical Performance Characteristics

Figure 8. Capacitance Characteristics

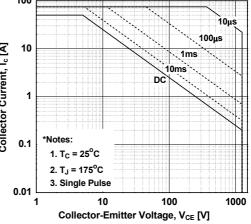
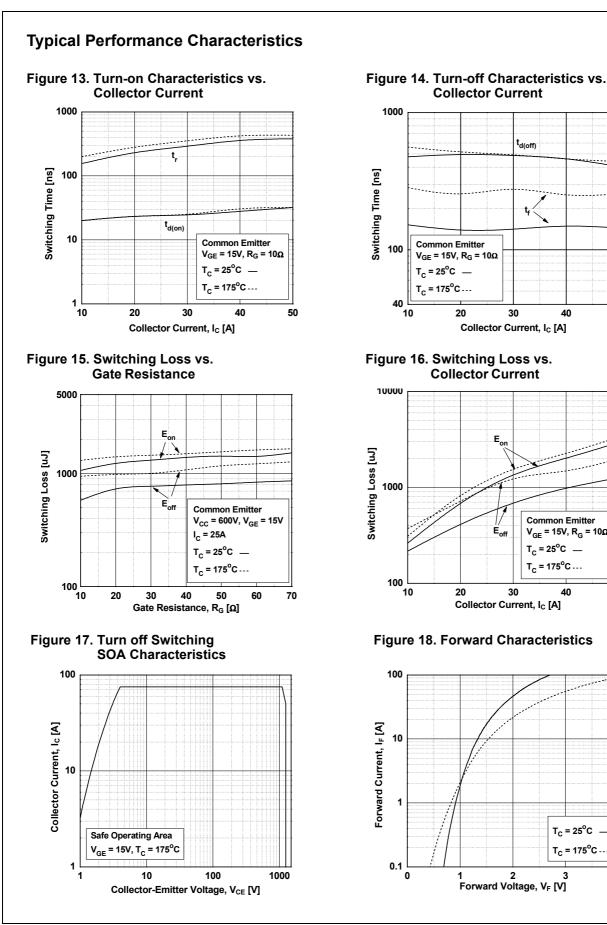
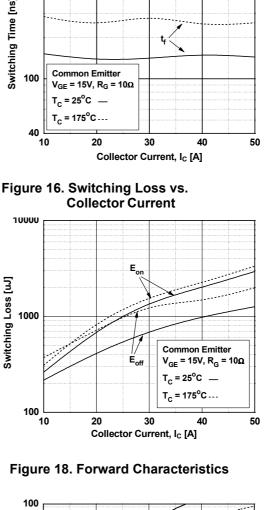



Figure 12. Turn-off Characteristics vs. **Gate Resistance**

100

10 └ 10

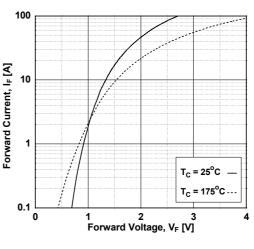

20

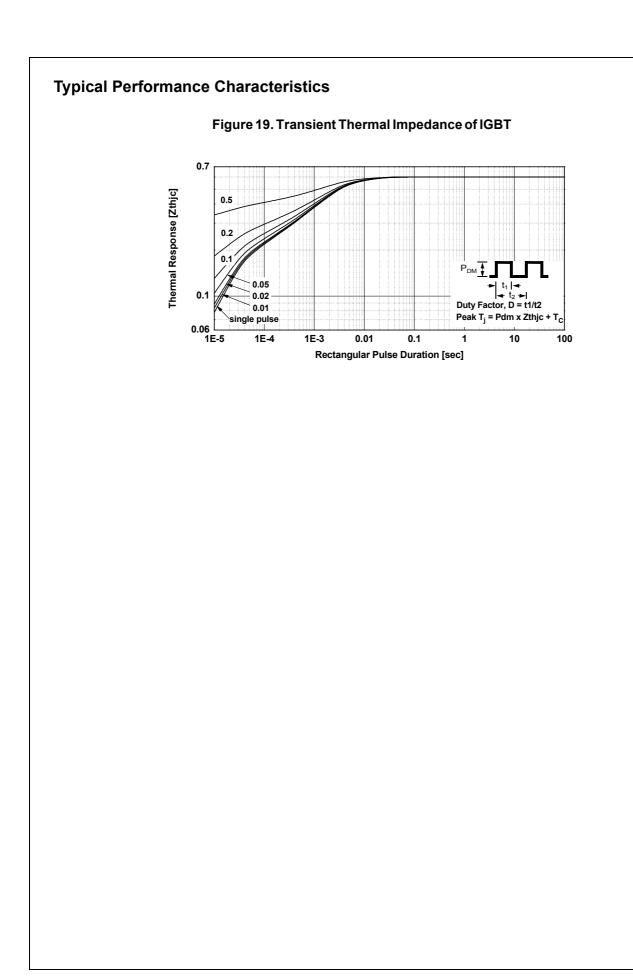

30

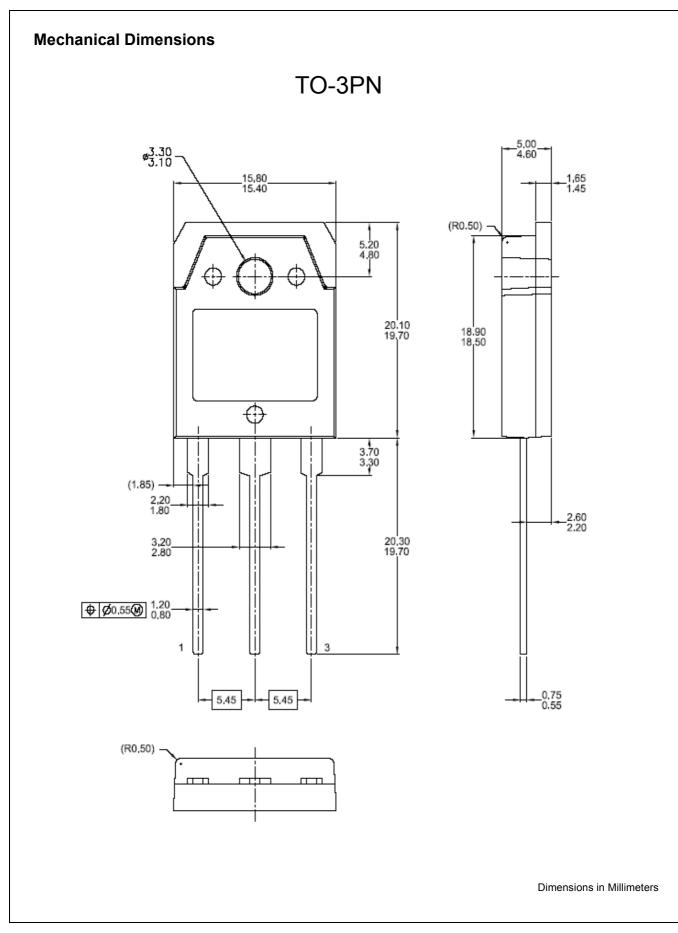
40

Gate Resistance, $R_G [\Omega]$

FGA25S125P Shorted AnodeTM IGBT




Collector Current


.....

t_{d(off)}

FGA25S125P Rev. C0

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not

intended to be an exhaustive list of	all such trademarks.		
2Cool™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
AccuPower™	FRFET [®]	PowerXS™	the ®
AX-CAP™*	Global Power Resource SM	Programmable Active Droop™	puwer [®]
BitSiC [®]	Green Bridge™	QFET®	franchise TinyBoost™
Build it Now™	Green FPS [™]	QS™	
CorePLUS™	Green FPS™ e-Series™	Quiet Series™	TinyBuck™
CorePOWER™	Gmax™	RapidConfigure™	TinyCalc™ TinyLogic [®]
CROSSVOLT™	GTO™	TM TM	TINYOPTO™
CTL™	IntelliMAX [™]		TinyPower™
Current Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™	TinyPWM™
DEUXPEED®	Marking Small Speakers Sound Lo		TinyWire™
Dual Cool™	and Better™	Smartiviax	TranSiC [®]
EcoSPARK®	MegaBuck™	JWARTSTART	TriFault Detect™
EfficentMax™	MICROCOUPLER™	Solutions for Your Success™	TRUECURRENT®*
ESBC™	MicroFET™	SPM°	µSerDes™
R	MicroPak™	SIEALIN	
+	MicroPak2™	SuperFET®	SerDes"
Fairchild®	MillerDrive™	SuperSOT™-3	UHC®
Fairchild Semiconductor [®]	MotionMax™	Superson -0	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	Superson -6	UniFET™
FACT®	mWSaver™	Supremoo	VCX™
FAST [®]	OptoHiT™ OptoAlo®	Synci Ei	VisualMax™
FastvCore™		Sync-Lock	VoltagePlus™
FETBench™	OPTOPLANAR®		XS™
FlashWriter [®] *	CO _®	GENERAL	
FPS™			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FGA25S125P Shorted AnodeTM IGBT