FDZ2040L

Integrated Load Switch

Features

－Optimized for low－voltage core ICs in portable systems
－Very small package dimension：WL－CSP 0．8X0．8X0．5 mm^{3}
－Current $=1.2 \mathrm{~A}, \mathrm{~V}_{\text {IN }} \max =4 \mathrm{~V}$
－Current $=2 \mathrm{~A}, \mathrm{~V}_{\text {IN }} \max =4 \mathrm{~V}$（Pulsed）
－$R_{\mathrm{DS}(\mathrm{ON})}=80 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}$
－ $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=85 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}$
－$\quad \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=90 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3 \mathrm{~V}$
－RoHS Compliant

General Description

This device is particularly suited for compact power management in portable application where 1.6 V to 4 V input and 1.2 A output current capability are needed．This load switch integrates a level shifting function that drives a P － Channel Power MOSFET in the very small $0.8 \times 0.8 \times 0.5 \mathrm{~mm}^{3}$ WL－CSP package．

Applications

－Load switch
－Power management in portable applications

BOTTOM

TOP

Ordering Information

Part Number	Device Marking	Ball Pitch	Operating Temperature Range	Switch	Eco Status	Package	Packing Method
FDZ2040L	ZL	0.4 mm	-25 to $75^{\circ} \mathrm{C}$	$80 \mathrm{~m} \Omega$, P－ch FET	RoHS	$0.8 \times 0.8 \times 0.5 \mathrm{~mm}^{3}$ WL－CSP	Tape and Reel

For Fairchild＇s definition of Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

Application Diagram and Block Diagram

Figure 1.Block Diagram and Typical Application Pin Configuration

Top View: Bumps Facing Down
Bottom View: Bumps Facing Up
Figure 2. Pin Assignment

Pin Definitions

Pin \#	Name	Description
A1	V IN	Supply Input: Input to the load switch
A2	V $_{\text {OUT }}$	Switch Output: Output of the load switch
B1	ON	ON/OFF Control Input, active LOW
B2	GND	Ground

Absolute Maximum Ratings

Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {out }}, \mathrm{ON}$ to GND		-0.3	4.2	V
$\mathrm{I}_{\text {out }}-$ Load Current (Continuous)	(Note 1a)		1.2	A
$\mathrm{I}_{\text {out }}$ - Load Current (Pulsed)	(Note 2)		2	A
Power Dissipation @ $\mathrm{TA}^{\text {a }}=25^{\circ} \mathrm{C}$	(Note 1a)		0.9	W
Operating Temperature Range		-40	105	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Capability	Human Body Model, JESD22-A114	8		kV
	Charged Device Model, JESD22-C101	2		

Thermal Characteristics

Thermal Resistance, Junction to Ambient	(Note 1a)		117	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Recommended Operating Conditions

Parameter	Min.	Typ.	Max.	Unit
V_{IN}	1.6		4	V
Ambient Operating Temperature, T_{A}	-25		75	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\quad \mathrm{T}_{\mathrm{I}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {IN }}$	Operation Voltage		1.6		4	V
$\mathrm{V}_{\text {II }}$	ON Input Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=1.6 \mathrm{~V}$, Ramp down $\mathrm{V}_{\text {ON }}$ from 1 V to 0 V , $\mathrm{V}_{\text {OuT }}$ Low to High, $\mathrm{T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$	0.35			V
		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$, Ramp down $\mathrm{V}_{\text {ov }}$ from 1 V to 0 V , $V_{\text {Out }}$ Low to High, $\mathrm{T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$	0.35			V
$\mathrm{V}_{\text {IH }}$	ON Input Logic High Voltage	$\mathrm{V}_{\text {IN }}=1.6 \mathrm{~V}$, Ramp up $\mathrm{V}_{\text {of }}$ from 0 V to 1 V , $V_{\text {Out }}$ High to Low, $\mathrm{T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$			1.35	V
		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$, Ramp up $\mathrm{V}_{\text {on }}$ from 0 V to 1 V , $V_{\text {Out }}$ High to Low, $\mathrm{T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$			1.35	V
I_{Q}	Quiescent Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0.35 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=-25 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		1.55	2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Q_off }}$	Off Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=1.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=-25 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		2.4	6.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SD_off }}$	Off Switch Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=1.3 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=-25 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		0.1	3.5	$\mu \mathrm{A}$
$\begin{gathered} \mathrm{I}_{\mathrm{Q} _ \text {off }} \\ \text { (von float) } \end{gathered}$	Off Supply Current with ON pin floating	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=$ floating, $\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$,		1.6	2.3	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\text { floating, } \mathrm{I}_{\text {out }}=0 \mathrm{~A}, \\ & \mathrm{~T}_{\mathrm{J}}=-25 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		1.6	4	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	On Resistance	$\begin{aligned} & \mathrm{V}_{\text {IN }}=1.6 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IN }}=4 \mathrm{~V}, \quad \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=300 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=-25 \\ & \text { to } 75^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \hline 68 \\ & 50 \\ & 48 \\ & 47 \end{aligned}$	$\begin{gathered} \hline 120 \\ 90 \\ 85 \\ 80 \end{gathered}$	$\mathrm{m} \Omega$
$\mathrm{C}_{\mathrm{V} \text {-ON(INP) }}$	ON Input Capacitance	$\mathrm{T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$			5	pF
$\mathrm{I}_{\text {ON(PULL-UP) }}$	ON Pull Up Current	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-25$ to $75^{\circ} \mathrm{C}$	0.3	0.76	1.2	$\mu \mathrm{A}$

Switching Characteristics

$\mathrm{T}_{\text {on }}$	Turn on time ($\mathrm{V}_{\mathrm{ON}} 50 \%$ to $\mathrm{V}_{\text {Out }}$ 90\%)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V} \text { as logic low and } 1.3 \mathrm{~V} \text { as } \\ & \text { logic high, } \mathrm{C}_{\mathrm{OUT}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{L}}=30 \Omega \text {, } \\ & \mathrm{T}_{\mathrm{J}}=-25 \text { to } 75^{\circ} \mathrm{C} \end{aligned}$	45	150	ns
$\mathrm{T}_{\text {don }}$	Turn on delay time ($\mathrm{V}_{\mathrm{ON}} 50 \%$ to $\mathrm{V}_{\text {OUT }} 10 \%$)		35	100	ns
$\mathrm{T}_{\text {rise }}$	Turn on rise time (Vout 10% to 90\%)		10	50	ns
$\mathrm{T}_{\text {off }}$	Turn off time ($\mathrm{V}_{\text {ON }} 50 \%$ to $\mathrm{V}_{\text {Out }}$ 10\%)		60	150	ns
$\mathrm{T}_{\text {doff }}$	Turn off delay time ($\mathrm{V}_{\text {ON }} 50 \%$ to Vout 90%)		25	100	ns
$\mathrm{T}_{\text {fall }}$	Turn off fall time ($\mathrm{V}_{\text {out }} 90 \%$ to 10\%)		35	65	ns
$\mathrm{T}_{\text {don }}-\mathrm{T}_{\text {doff }}$	Turn on Turn off Delay Delta time			50	ns

Notes:

1. $R_{\theta J A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\mathrm{R}_{\text {ӨJC }}$ is guaranteed by design while $\mathrm{R}_{\mathrm{\theta JA}}$ is determined by the user's board design.

2. Pulse Test: Pulse Width $<300 \mu \mathrm{~s}$, Duty Cycle $<2.0 \%$.
b. $277^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a minimum pad of 2 oz copper.

Typical Performance Characteristics

Figure 3. Quiescent Current vs. Temperature

Figure 5. Off Supply Current vs. Temperature

Figure 7. Off Supply Current($V_{\text {ON }}$ Float) vs. Temperature

Figure 4. Quiescent Current vs. Supply Voltage

Figure 6. Off Supply Current vs. Supply Voltage

Figure 8. Off Supply Current($V_{\text {ON }}$ Float) vs. Supply Voltage

Typical Performance Characteristics (Continued)

Figure 9. ON Pin Pull Up Current vs. Temperature

Figure 11. ON Pin Logic High Voltage vs. Temperature

Figure 13. ON Pin Logic Low Voltage vs. Temperature

Figure 10. ON Pin Pull Up Current vs. Supply Voltage

Figure 12. ON Pin Logic High Voltage vs. Supply Voltage

Figure 14. ON Pin Logic Low Voltage vs. Supply Voltage

Typical Performance Characteristics(Continued)

Figure 15. Output Pull Down Resistance vs.
Temperature

Figure 17. Static Drain to Source ON Resistance vs. Temperature

Figure 16. Output Pull Down Resistance vs. Supply Voltage

Figure 18. Static Drain to Source ON Resistance vs. Supply Voltage

Typical Performance Characteristics(Continued)

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{OUT}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{L}}=30 \Omega$
Figure 19. $\mathrm{T}_{\text {on }}$ Response

Figure 20. Toff Response

Operation Description

The FDZ2040L is a low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \mathrm{P}$-Channel load switch packaged in space saving $0.8 \mathrm{x} 0.8 \mathrm{WL}-\mathrm{CSP}$.
The core of the device is a $80 \mathrm{~m} \Omega$ P-Channel MOSFET and capable of functioning over a wide input operating range of $1.6-4 \mathrm{~V}$.

Applications Information

Figure 21. Typical Application

Input Capacitor

To reduce device inrush current effect, a 0.1 uF ceramic capacitor, $\mathrm{C}_{\text {IN }}$ is recommended close to $\mathrm{V}_{\text {IN }}$ pin. A higher value of $\mathrm{C}_{\text {IN }}$ can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

FDZ2040L switch works without an output capacitor. However, if parasitic board inductance forces Vout below GND when switching off, a 1 nF capacitor, $\mathrm{C}_{\text {Out }}$, should be placed between Vout and GND.

Notes: The intrinsic diode for P-Channel load switch would conduct if $\mathrm{V}_{\text {OUT }}$ is greater than $\mathrm{V}_{\text {IN }}$, by a diode drop

Demo Board Layout

Figure 22. Top View

Figure 23. Bottom View

Dimensional Outline and Pad Layout

Figure 24. Official FSC Drawings
Product-Specific Dimensions

Product	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FDZ2040L	$0.8 \pm 0.03 \mathrm{~mm}$	$0.8 \pm 0.03 \mathrm{~mm}$	0.21 mm	0.21 mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/products/analog/pdf/mlp tr.pdf (XXX This link should be SPECIFIC to the package!)

TRADEMARKS

The following indudes registered and unregistered trademarks and serviœ marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

Auto-SPM ${ }^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	PowerTrench ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {e }}$
Build it Now ${ }^{\text {m }}$	FRFET ${ }^{\text {® }}$	Power $\times S^{\text {TM }}$	苗 Mer
CorePLUSTM	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {m }}$	Pranchisa
CorePOWER ${ }^{\text {™ }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TinyBoost ${ }^{\text {mam }}$
CROSSVOLT ${ }^{\text {Tm }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {m }}$	QS ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {m }}$
CTLTM	Gmax ${ }^{\text {Tm }}$	Quiet Series ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Current Transfer Logic ${ }^{\text {TM }}$	GTOTM	RapidConfigure ${ }^{\text {TM }}$	TINYOPTOTM
Ecospark ${ }^{\text {® }}$	IntelliMAX'm	()	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	ISOPLANARTM	$\mathrm{Tm}^{\text {T }}$	TinyPWM ${ }^{\text {™ }}$
EZSWTCH ${ }^{\text {TM* }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{mW/W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	Tiny Mire'm
E-7 ${ }^{\text {M* }}$	MICROCOUPLERTM	SmartMax ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
E-	MicroFETM	SMART STARTTM	TRUECURRENTTM*
$5^{(8)}$	MicroPak ${ }^{\text {TM }}$	SPM ${ }^{\text {® }}$	μ SerDes ${ }^{\text {™ }}$
	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	M
Fairchild ${ }^{\text {® }}$ Fairchild ${ }^{\text {a }}$ (emiconducto ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	SerDes
Fairchild Semiconductor ${ }^{\circ}$ FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {M }}$ OPTOLOGIC ${ }^{\text {a }}$	SuperSOTTM-3	UHC ${ }^{\text {® }}$
${ }_{\text {FACT }}{ }^{\text {FACT }}$ (${ }^{\text {a }}$ (${ }^{\text {a }}$	OPTOLOGIC ${ }^{\text {OPTOPLANAR }}$	SuperSOTTM-6	Ultra FRFET'M
FAST ${ }^{\text {- }}$	-	SuperSOTTM-8	UniFET ${ }^{\text {tm }}$
FastvCore ${ }^{\text {m }}$		SuncFETTM	VCX ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$	PDP SPM ${ }^{\text {TM }}$	Sync-Lock ${ }^{\text {Tm }}$	VisualMax ${ }^{\text {TM }}$
FlashWriter ${ }^{\text {®t }}$	Pomer-SPM ${ }^{\text {™ }}$	5 SYSTEM ©*	XS ${ }^{\text {TM }}$
FPS ${ }^{\text {™ }}$		$\checkmark \mathrm{GENERAL}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES MTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE REUABIUTY, FUNCTON, OR DESIGN. FAIRCHIDDOES NOTASSUME ANY LIABIUTY ARISING OUTOF THE APPLICATON OR USE OF ANY PRODUCT OR CIRCUIT DESCFBED HEREIN; NEITHER DOES IT CONVEY ANY UCENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'SWORLDMDE TERMSAND CONDITIONS, SPECIFICALY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESSWRITIEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITNG POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, waw.fairchildsemi.com, underSales Support

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts, Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is ommmited to combat this global problem and encourage our customers to do their part in stopping this practice bybuying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

