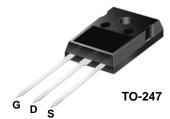
October 2012

SuperFET®II

FCH041N60E N-Channel MOSFET


Features

- Max. R_{DS(on)} = 41mΩ
- Ultra Low Gate Charge (Typ. Q_g = 285nC)
- Low Effective Output Capacitance (Typ. Coss.eff = 735pF)
- 100% Avalanche Tested
- RoHS Compliant

Description

The SuperFET[®]II is, Fairchild's proprietary, new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET[®]II is very suitable for various AC/DC power conversion in switching mode operation for system miniaturization and higher efficiency.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DSS}	Drain to Source Voltage			600	V	
V _{GSS}	Cata ta Sauraa Valtaga	-DC		±20	V	
	Gate to Source Voltage	-AC	(f>1Hz)	±30	V	
	Drain Current	-Continuous (T _C = 25 ^o C)		77	Α	
D		-Continuous ($T_C = 100^{\circ}C$)		48.7	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	231	А	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	2025	mJ	
I _{AR}	Avalanche Current		(Note 1)	15	А	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	5.92	mJ	
du /dt	Peak Diode Recovery dv/dt (Note 3			20	V/ns	
dv/dt	MOSFET dv/dt			100	V/ns	
P _D	Power Dissipation	$(T_{C} = 25^{\circ}C)$		592	W	
		- Derate above 25°C		4.74	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.21	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	40	-0/10

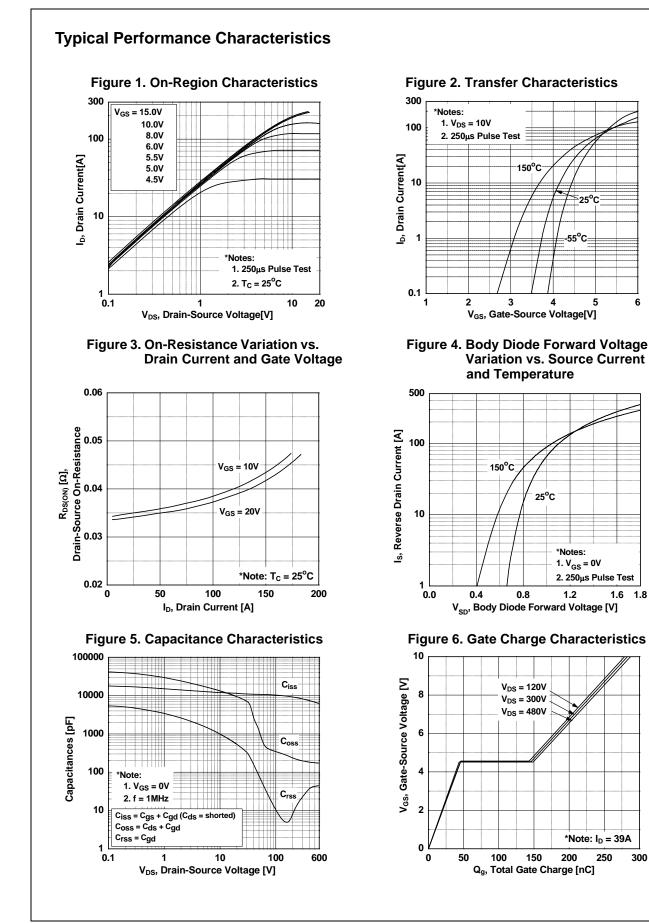
Device Ma	arking	Device	Package	age Reel Size Tap		Тар	e Width		Quantity	y
		TO-247	7	-		-		30		
Electrica	I Char	acteristics T _c =	25°C unless of	otherwise	e noted					
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Units
Off Charac	teristic	S								
	Drain to Source Breakdown Voltage		I _D = 10	mA, $V_{GS} = 0V$, $T_C = 1$	25°C	600	-	-	V	
BV _{DSS}			onage	$I_D = 10 \text{mA}, V_{GS} = 0 \text{V}, T_C = 150^{\circ} \text{C}$		650	-	-	V	
ΔBV _{DSS} ΔT,J	Breakdown Voltage Temperature Coefficient		ure	$I_D = 10$ mA, Referenced to 25°C		-	0.67	-	V/ºC	
Ŭ				V _{DS} = 480V, V _{GS} = 0V		-	-	1		
DSS	DSS Zero Gate Voltage Drain Current		ent		180V, V _{GS} = 0V, T _C =	125°C	-	-	10	μA
I _{GSS}	Gate to	Body Leakage Curren	ıt		±20V, V _{DS} = 0V		-	-	±100	nA
On Charac	teristic	S								
V _{GS(th)}	Gate Threshold Voltage			$V_{GS} = V$	V _{DS} , I _D = 250μA		2.5	-	3.5	V
R _{DS(on)}		Prain to Source On Res	sistance		10V, I _D = 39A		-	36	41	mΩ
9 _{FS}	Forward Transconductance				20V, I _D = 39A		-	71	-	S
Dynamic C	haracte	eristics								
C _{iss}	1	apacitance					-	10300	13700	pF
C _{oss}	Output Capacitance		$V_{DS} = 100V, V_{GS} = 0V$	-	355	475	pF			
C _{rss}	Reverse Transfer Capacitance		f = 1MHz		-	4	6	pF		
C _{oss}		Output Capacitance		V _{DS} = 380V, V _{GS} = 0V, f = 1MHz		-	187	-	pF	
C _{oss} eff.	Effective Output Capacitance			$V_{DS} = 0V$ to 480V, $V_{GS} = 0V$		-	735	-	pF	
Q _{g(tot)}	Total Gate Charge at 10V					-	285	380	nC	
Q _{gs}	Gate to Source Gate Charge		V _{DS} = 380V, I _D = 39A,		-	45	-	nC		
Q _{gd}		Drain "Miller" Charge		V _{GS} = 10V (Note 4)			-	105	-	nC
ESR	Equivalent Series Resistance(G-S)		G-S)	Drain Open		-	1.2	-	Ω	
Switching				1						
t _{d(on)}		n Delay Time					-	50	110	ns
t _r		n Rise Time		V _{DD} = 3	380V, I _D = 39A		-	50	110	ns
t _{d(off)}	Turn-Of	f Delay Time		$R_{GEN} = 4.7\Omega$			-	320	650	ns
t _f	Turn-Off Fall Time			(Note 4)		-	85	180	ns	
	rce Dio	de Characteristic	e					I	1	1
I _S	1	m Continuous Drain to		e Forwar	d Current		-	-	77	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Fo					-	-	231	Α	
V _{SD}		Source Diode Forward		$V_{GS} = 0V, I_{SD} = 39A$		-	-	1.2	V	
t _{rr}		e Recovery Time)V, I _{SD} = 39A		-	590	-	ns
Q _{rr}	Reverse	e Recovery Charge		$V_{GS} = 00, I_{SD} = 39A$ $dI_{E}/dt = 100A/\mu s$			-	18	-	μC

FCH041N60E 600V N-Channel MOSFET

1. Repetitive Rating: Pulse width limited by maximum junction temperature

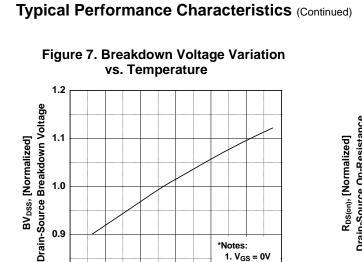
4. Essentially Independent of Operating Temperature Typical Characteristics

3. I_{SD} \leq 39A, di/dt \leq 200A/µs, V_{DD} \leq 380V, Starting T_J = 25°C


2. I_{AS} = 15A, R_G = 25 Ω , Starting T_J = 25°C

25°C

5


6

1.6 1.8

300

250

40

T_J, Junction Temperature [°C]

*Notes:

80

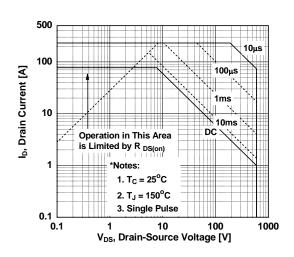
1. $V_{GS} = 0V$

120

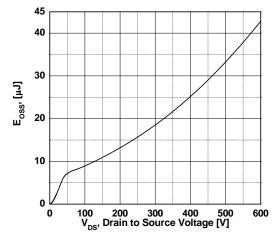
2. I_D = 10mA

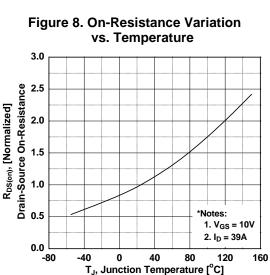
160

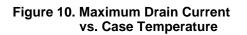
1.0

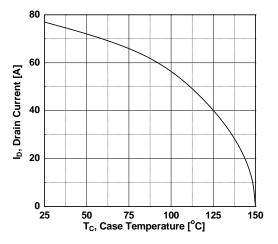

0.9

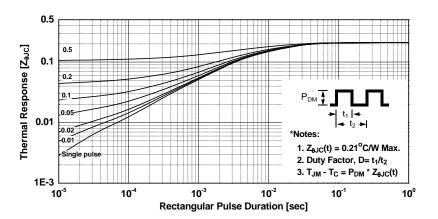
0.8


-80

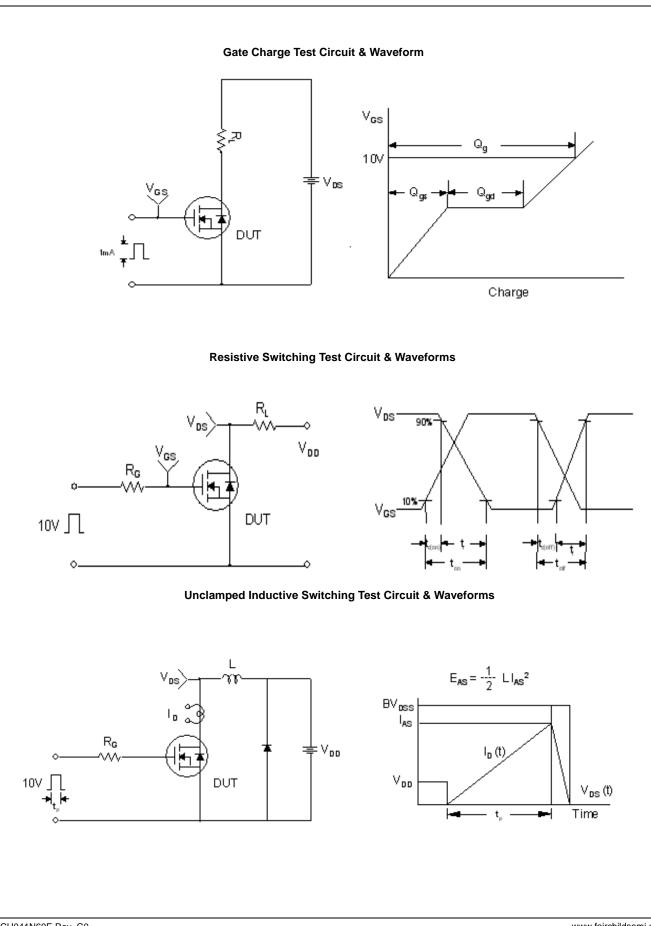

-40


0

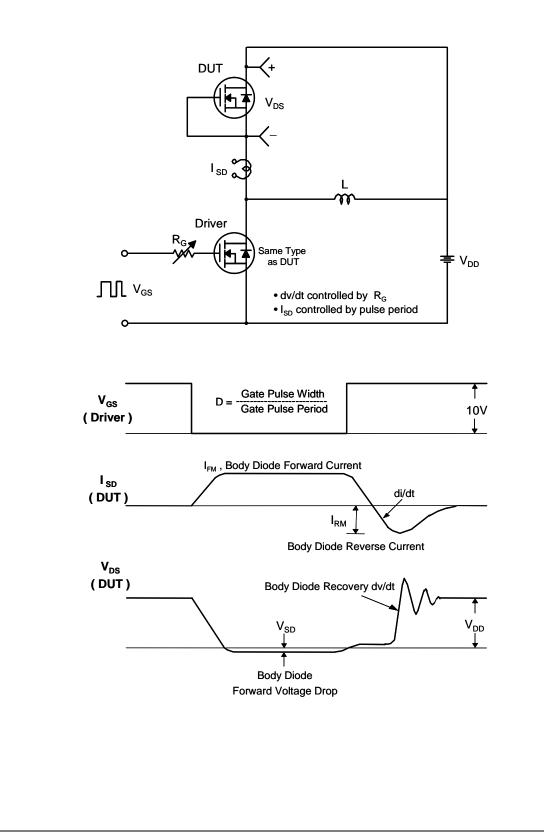


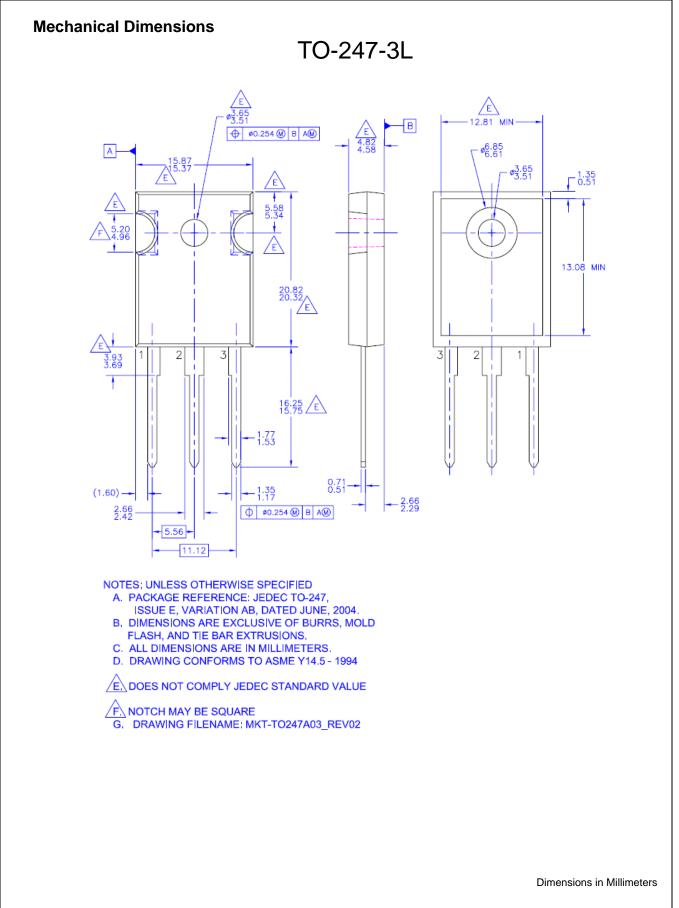


FCH041N60E Rev. C0



Typical Performance Characteristics (Continued)




FCH041N60E 600V N-Channel MOSFET

FCH041N60E 600V N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™	м	F-PFS™	PowerTrench [®]
AccuPo	ower™	FRFET [®]	PowerXS™
AX-CA	P™*	Global Power Resource SM	Programmable Active Droop [™]
BitSiC [®]	D	Green Bridge™	QFET®
Build it		Green FPS [™]	QS™
CorePL	_US™	Green FPS™ e-Series™	Quiet Series™
CorePC	OWER™	Gmax™	RapidConfigure™
CROSS	SVOLT™	GTO™	TM U
CTL™		IntelliMAX™	
	t Transfer Logic™	ISOPLANAR™	Saving our world, 1mW/W/kW at a time™
DEUXF	PEED®	Marking Small Speakers Sound Louder	SignalWise™
Dual Co		and Better™	SmartMax™
EcoSP/	ARK®	MegaBuck™	SMART START™
Efficent	tMax™	MICROCOUPLER™	Solutions for Your Success™
ESBC [⊤]	M	MicroFET™	SPM®
R		MicroPak™	STEALTH™
- - -		MicroPak2™	SuperFET [®]
Fairchil	ld®	MillerDrive™	SuperSOT™-3
Fairchil	ld Semiconductor [®]	MotionMax™	SuperSOT™-6
FACT (Quiet Series™	Motion-SPM [™]	SuperSOT™-8
FACT®)	mWSaver™	SupreMOS [®]
FAST®		OptoHiT™	SyncFET™
FastvC		OPTOLOGIC [®]	Sync-Lock™
FETBe		OPTOPLANAR®	SYSTEM ®*
FlashW	/riter [®] *	R	GENERAL
FPS™		\$	

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE TOODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

The Power Franchise[®]

wer

TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™

TRUECURRENT®* uSerDes™ $\mu_{_{
m Ser}}$ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™

Rev. 161