
e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 1

e200z759n3 Core Reference Manual
Supports:

e200z759n3

e200z759n3CRM
Rev. 2

January 2015

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 3

Chapter 1
e200z759n3 Overview

1.1 Overview of the e200z759n3 ..23
1.1.1 Features ...23
1.1.2 Microarchitecture summary ..24

1.1.2.1 Instruction unit features ..26
1.1.2.2 Integer unit features ..27
1.1.2.3 Load/store unit features ..27
1.1.2.4 Cache features ...27
1.1.2.5 MMU Features ..28
1.1.2.6 e200z759n3 system bus features ...28

Chapter 2
Register Model

2.1 PowerPC Book E registers ..33
2.2 Zen-specific special purpose registers ...35
2.3 Zen-specific device control registers ...37
2.4 Special-purpose register descriptions ..37

2.4.1 Machine State Register (MSR) ...37
2.4.2 Processor ID Register (PIR) ...39
2.4.3 Processor Version Register (PVR) ..40
2.4.4 System Version Register (SVR) ..41
2.4.5 Integer Exception Register (XER) ..41
2.4.6 Exception Syndrome Register ..42

2.4.6.1 PowerPC VLE mode instruction syndrome ..44
2.4.6.2 Misaligned instruction fetch syndrome ...44

2.4.7 Machine Check Syndrome Register (MCSR) ...45
2.4.8 Timer Control Register (TCR) ..47
2.4.9 Timer Status Register (TSR) ...48
2.4.10 Debug registers ...49
2.4.11 Hardware Implementation Dependent Register 0 (HID0) ..50
2.4.12 Hardware Implementation Dependent Register 1 (HID1) ..52
2.4.13 Branch Unit Control and Status Register (BUCSR) ...53
2.4.14 L1 Cache Control and Status Registers (L1CSR0, L1CSR1) ...54
2.4.15 L1 Cache Configuration registers (L1CFG0, L1CFG1) ...54
2.4.16 L1 Cache Flush and Invalidate registers (L1FINV0, L1FINV1)55
2.4.17 MMU Control and Status Register (MMUCSR0) ..55
2.4.18 MMU Configuration register (MMUCFG) ...55
2.4.19 TLB Configuration registers (TLB0CFG, TLB1CFG) ...55

2.5 SPR register access ..55
2.5.1 Invalid SPR references ..55
2.5.2 Synchronization requirements for SPRs ...56
2.5.3 Special purpose register summary ..57

2.6 Reset settings ...60

e200z759n3 Core Reference Manual, Rev. 2

4 Freescale Semiconductor

Chapter 3
Instruction Model

3.1 Unsupported instructions and instruction forms ...65
3.2 Implementation-specific instructions ..65
3.3 Book E instruction extensions ...66
3.4 Memory access alignment support ..66
3.5 Memory synchronization and reservation instructions ...66
3.6 Branch prediction ..68
3.7 Interruption of instructions by interrupt requests ..68
3.8 New Zen instructions and APUs ...68
3.9 ISEL APU ...69
3.10 Debug APU ...69

3.10.1 Debug notify halt instructions ...71
3.11 Machine Check APU ...73
3.12 WAIT APU ..75
3.13 Enhanced reservations APU ..76
3.14 Volatile Context Save/Restore APU ..79
3.15 Unimplemented SPRs and read-only SPRs ...87
3.16 Invalid forms of instructions ...87

3.16.1 Load and store with update instructions ...87
3.16.2 Load multiple word (lmw, e_lmw) instruction ...87
3.16.3 Branch conditional to count register instructions ...87
3.16.4 Instructions with reserved fields non-zero ..88

3.17 Instruction summary ..88
3.17.1 Instruction index sorted by mnemonic ..89
3.17.2 Instruction index sorted by opcode ...102

Chapter 4
Instruction Pipeline and Execution Timing

4.1 Overview of operation ...117
4.1.1 Control unit ...119
4.1.2 Instruction unit ..119
4.1.3 Branch unit ..119
4.1.4 Instruction decode unit ..119
4.1.5 Exception handling ...120

4.2 Execution units ..120
4.2.1 Integer execution units ..120
4.2.2 Load / store unit ..120
4.2.3 Embedded floating-point execution units ...120

4.3 Instruction pipeline ..120
4.3.1 Description of pipeline stages ...122
4.3.2 Instruction prefetch buffers and branch target buffer ...123
4.3.3 Single-cycle instruction pipeline operation ..125
4.3.4 Basic load and store instruction pipeline operation ..125
4.3.5 Change-of-flow instruction pipeline operation ...126

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 5

4.3.6 Basic multi-cycle instruction pipeline operation ..128
4.3.7 Additional examples of instruction pipeline operation for load and store129
4.3.8 Move to/from SPR instruction pipeline operation ..131

4.4 Control hazards ...133
4.5 Instruction serialization ...133

4.5.1 Completion serialization ...133
4.5.2 Dispatch serialization ..134
4.5.3 Refetch serialization ...134

4.6 Concurrent instruction execution ..135
4.7 Instruction Timings ...136
4.8 Operand placement on performance ...141

Chapter 5
Embedded Floating-Point APU (EFPU2)

5.1 Nomenclature and conventions ...143
5.2 EFPU programming model ...143

5.2.1 Signal Processing Extension / Embedded Floating-point Status and Control Register
(SPEFSCR) 143
5.2.2 GPRs and PowerISA 2.06 instructions ...147
5.2.3 SPE/EFPU available bit in MSR ..147
5.2.4 Embedded floating-point exception bit in ESR ..147
5.2.5 EFPU exceptions ...147

5.2.5.1 EFPU unavailable exception ...148
5.2.5.2 Embedded floating-point data exception ..148
5.2.5.3 Embedded floating-point round exception ...148

5.2.6 Exception Priorities ...149
5.3 Embedded floating-point APU operations ..149

5.3.1 Floating-point data formats ...149
5.3.1.1 Single-precision floating-point format ..150
5.3.1.2 Half-precision floating-point format ...151

5.3.2 IEEE 754 compliance ...152
5.3.3 Floating-point exceptions ...153
5.3.4 Embedded scalar single-precision floating-point instructions ..153
5.3.5 EFPU Vector Single-precision Embedded Floating-Point Instructions186

5.4 Embedded floating-point results summary ...238
5.5 EFPU instruction timing ..253

5.5.1 EFPU single-precision vector floating-point instruction timing254
5.5.2 EFPU single-precision scalar floating-point instruction timing255

5.6 Instruction forms and opcodes ..256
5.6.1 Opcodes for EFPU vector floating-point instructions ..257
5.6.2 Opcodes for EFPU scalar single-precision floating-point instructions259

Chapter 6
Signal Processing Extension APU (SPE APU)

6.1 Nomenclature and conventions ...261

e200z759n3 Core Reference Manual, Rev. 2

6 Freescale Semiconductor

6.2 SPE programming model ..261
6.2.1 SPE Status and Control Register (SPEFSCR) ..261
6.2.2 Accumulator ..263

6.2.2.1 Context switch ..264
6.2.3 GPRs and PowerPC Book E instructions ...264
6.2.4 SPE available bit in MSR ...264
6.2.5 SPE exception bit in ESR ...264
6.2.6 SPE exceptions ...264

6.2.6.1 SPE APU Unavailable exception ..265
6.2.7 Exception priorities ...265

6.3 Integer SPE simple instructions ..265
6.4 Integer SPE multiply, multiply-accumulate, and operation to accumulator instructions (complex
integer instructions) 307

6.4.1 Multiply halfword instructions ...308
6.4.2 Multiply words instructions ..372
6.4.3 Add/subtract word to accumulator instructions ..412
6.4.4 Initializing and reading the accumulator ..420

6.5 SPE vector load/store instructions ...422
6.6 SPE instruction timing ..458

6.6.1 SPE integer simple instructions timing ...458
6.6.2 SPE load and store instruction timing ...460
6.6.3 SPE complex integer instruction timing ...461

6.7 Instruction forms and opcodes ..465
6.7.1 SPE vector integer simple instructions ...466
6.7.2 Opcodes for SPE load and store instructions ..468
6.7.3 Opcodes for SPE complex integer instructions ..469

Chapter 7
Interrupts and Exceptions

7.1 e200z759n3 interrupts ...479
7.2 Exception Syndrome Register (ESR) ..482
7.3 Machine State Register (MSR) ..484

7.3.1 Machine Check Syndrome Register (MCSR) ...486
7.4 Interrupt Vector Prefix Registers (IVPR) ..489
7.5 Interrupt Vector Offset Registers (IVORxx) ...490
7.6 Hardware Interrupt Vector Offset Values (p_voffset[0:15]) ..490
7.7 Interrupt definitions ...491

7.7.1 Critical Input interrupt (IVOR0) ...491
7.7.2 Machine Check interrupt (IVOR1) ...492

7.7.2.1 Machine check causes ...492
7.7.2.1.1Error report machine check exceptions ..492
7.7.2.1.2Non-maskable interrupt machine check exceptions497
7.7.2.1.3Asynchronous machine check exceptions ..497

7.7.2.2 Machine check interrupt actions ...504
7.7.2.3 Checkstop state ...505

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 7

7.7.3 Data Storage interrupt (IVOR2) ..505
7.7.4 Instruction Storage interrupt (IVOR3) ..506
7.7.5 External Input interrupt (IVOR4) ...507
7.7.6 Alignment interrupt (IVOR5) ...508
7.7.7 Program interrupt (IVOR6) ..508
7.7.8 Floating-Point Unavailable interrupt (IVOR7) ...509
7.7.9 System Call interrupt (IVOR8) ...510
7.7.10 Auxiliary Processor Unavailable interrupt (IVOR9) ..510
7.7.11 Decrementer interrupt (IVOR10) ..510
7.7.12 Fixed-Interval Timer interrupt (IVOR11) ...511
7.7.13 Watchdog Timer interrupt (IVOR12) ..512
7.7.14 Data TLB Error interrupt (IVOR13) ...512
7.7.15 Instruction TLB Error interrupt (IVOR14) ...513
7.7.16 Debug interrupt (IVOR15) ..514
7.7.17 System Reset interrupt ..516
7.7.18 SPE/EFPU APU Unavailable interrupt (IVOR32) ...518
7.7.19 Embedded Floating-point Data interrupt (IVOR33) ...518
7.7.20 Embedded Floating-point Round interrupt (IVOR34) ..519
7.7.21 Performance monitor interrupt (IVOR35) ..519

7.8 Exception recognition and priorities ...520
7.8.1 Exception priorities ...522

7.9 Interrupt processing ...525
7.9.1 Enabling and disabling exceptions ...526
7.9.2 Returning from an interrupt handler ...527

7.10 Process switching ..527

Chapter 8
Performance Monitor

8.1 Overview ...529
8.2 Performance Monitor APU instructions ..530
8.3 Performance Monitor APU registers ...531

8.3.1 Invalid PMR references ..532
8.3.2 References to read-only PMRs ...532
8.3.3 Performance Monitor Global Control Register 0 (PMGC0) ..532
8.3.4 User Performance Monitor Global Control Register 0 (UPMGC0)534
8.3.5 Performance Monitor Local Control A Registers (PMLCa0–PMLCa3)534
8.3.6 User Performance Monitor Local Control A Registers (UPMLCa0–UPMLCa3)535
8.3.7 Performance Monitor Local Control B Registers (PMLCb0–PMLCb3)535
8.3.8 User Performance Monitor Local Control B registers (UPMLCb0–UPMLCb3)540
8.3.9 Performance Monitor Counter registers (PMC0–PMC3) ...540
8.3.10 User Performance Monitor Counter registers (UPMC0–UPMC3)541

8.4 Performance monitor interrupt ..541
8.5 Event counting ...542

8.5.1 MSR-based context filtering ...542
8.6 Examples ...543

e200z759n3 Core Reference Manual, Rev. 2

8 Freescale Semiconductor

8.6.1 Chaining counters ...543
8.6.2 Thresholding ...543

8.7 Event selection ..544

Chapter 9
Power Management

9.1 Power management ...555
9.1.1 Active state ...555
9.1.2 Waiting state ..555
9.1.3 Halted state ...555
9.1.4 Stopped state ...556
9.1.5 Power management pins ...556
9.1.6 Power management control bits ..557
9.1.7 Software considerations for power management using wait instructions557
9.1.8 Software considerations for power management using Doze, Nap or Sleep558
9.1.9 Debug considerations for power management ..558

Chapter 10
Memory Management Unit

10.1 Overview ...559
10.2 Effective to real address translation ..559

10.2.1 Effective addresses ..559
10.2.2 Address spaces ..559
10.2.3 Process ID ...560
10.2.4 Translation flow ..560
10.2.5 Permissions ...562
10.2.6 Restrictions on 1 KB and 2 KB page size usage ...563

10.3 Translation Lookaside Buffer (TLB) ...563
10.4 Configuration information ...564

10.4.1 MMU Configuration Register (MMUCFG) ...564
10.4.2 TLB0 Configuration Register (TLB0CFG) ..565
10.4.3 TLB1 Configuration Register (TLB1CFG) ..566

10.5 Software interface and TLB instructions ..567
10.5.1 TLB read entry instruction (tlbre) ...568
10.5.2 TLB write entry instruction (tlbwe) ..568
10.5.3 TLB search instruction (tlbsx) ..568
10.5.4 TLB Invalidate (tlbivax) Instruction ...569
10.5.5 TLB synchronize instruction (tlbsync) ...570

10.6 TLB operations ..571
10.6.1 Translation reload ...571
10.6.2 Reading the TLB ...571
10.6.3 Writing the TLB ..571
10.6.4 Searching the TLB ..571
10.6.5 TLB miss exception update ..572
10.6.6 IPROT invalidation protection ..572

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 9

10.6.7 TLB load on reset ...572
10.6.8 The G bit ...573

10.7 MMU control registers ..573
10.7.1 Data Exception Address Register (DEAR) ...573
10.7.2 MMU Control and Status Register 0 (MMUCSR0) ...573
10.7.3 MMU assist registers (MAS) ..574

10.7.3.1 MMU Read/Write and Replacement Control register (MAS0)574
10.7.3.2 Descriptor Context and Configuration Control register (MAS1)575
10.7.3.3 EPN and Page Attributes register (MAS2) ...576
10.7.3.4 RPN and Access Control register (MAS3) ...577
10.7.3.5 Hardware Replacement Assist Configuration register (MAS4)578
10.7.3.6 TLB Search Context Register 0 (MAS6) ..579

10.7.4 MAS registers summary ...580
10.7.5 MAS register updates ..580

10.8 TLB coherency control ..581
10.9 Core interface operation for MMU control instructions ...581

10.9.1 Transfer type encodings for MMU control instructions ...581
10.10 Effect of hardware debug on MMU operation ..582
10.11 External translation alterations for realtime systems ..583

Chapter 11
L1 Cache

11.1 Overview ...585
11.2 16 KB cache organization ...586
11.3 Cache lookup ...587
11.4 Cache control ...589

11.4.1 L1 Cache Control and Status Register 0 (L1CSR0) ...589
11.4.2 L1 Cache Control and Status Register 1 (L1CSR1) ...593
11.4.3 L1 Cache Configuration Register 0 (L1CFG0) ..595
11.4.4 L1 Cache Configuration Register 1 (L1CFG1) ..596

11.5 Data cache software coherency ...597
11.6 Address aliasing ..597
11.7 Cache Operation ..598

11.7.1 Cache enable/disable ...598
11.7.2 Cache fills ...598
11.7.3 Cache line replacement ...599
11.7.4 Cache miss access ordering ..599
11.7.5 Cache-inhibited accesses ..599
11.7.6 Guarded accesses ..600
11.7.7 Cache-inhibited guarded accesses ..600
11.7.8 Cache invalidation ..600
11.7.9 Cache flush/invalidate by set and way ..601

11.7.9.1 L1 Flush and Invalidate Control Register 0 (L1FINV0)601
11.7.9.2 L1 Flush and Invalidate Control Register 1 (L1FINV1)602

11.8 Cache parity and EDC protection ..603

e200z759n3 Core Reference Manual, Rev. 2

10 Freescale Semiconductor

11.8.1 Cache error action control ...604
11.8.1.1 L1CSR[0,1][I,D]CEA = 00, machine check generation on error604
11.8.1.2 L1CSR[0,1][I,D]CEA = 01, correction/auto-invalidation on error605

11.8.1.2.1Instruction cache errors ..605
11.8.1.2.2Data cache errors ..606
11.8.1.2.3Data cache line flush or invalidation due to reservation instructions

(l[b,h,w]arx, st[b,h,w]cx.) ...607
11.8.2 Parity/EDC error handling for cache control operations and instructions607

11.8.2.1 L1FINV[0,1] operations ...607
11.8.2.2 Cache touch instructions (dcbt, dcbtst, icbt) ...608
11.8.2.3 icbi instructions ...608
11.8.2.4 dcbi instructions ..608
11.8.2.5 dcbst instructions ..609
11.8.2.6 dcbf instructions ..609
11.8.2.7 dcbz instructions ...609
11.8.2.8 Cache locking instructions (dcbtls, dcbtstls, dcblc, icbtls, icblc)610

11.8.3 Cache inhibited accesses and parity/EDC errors ..610
11.8.4 Snoop operations and parity/EDC errors ..611
11.8.5 EDC checkbit/syndrome coding scheme generation — ICache611
11.8.6 EDC checkbit/syndrome coding scheme generation — DCache612
11.8.7 Cache error injection ...612

11.9 Push and store buffers ...613
11.10 Cache management instructions ..614

11.10.1Instruction cache block invalidate (icbi) instruction ...614
11.10.2Instruction cache block touch (icbt) instruction ...614
11.10.3Data cache block allocate (dcba) instruction ..614
11.10.4Data cache block flush (dcbf) instruction ...615
11.10.5Data cache block invalidate (dcbi) instruction ...615
11.10.6Data cache block store (dcbst) instruction ..615
11.10.7Data cache block touch (dcbt) instruction ..615
11.10.8Data cache block touch for store (dcbtst) instruction ...615
11.10.9Data cache block set to zero (dcbz) instruction ..615

11.11 Touch instructions ...616
11.12 Cache line locking/unlocking APU ...616

11.12.1Overview ...616
11.12.2dcbtls — data cache block touch and lock set ..618
11.12.3dcbtstls — data cache block touch for store and lock set ...619
11.12.4dcblc — data cache block lock clear ..619
11.12.5icbtls — instruction cache block touch and lock set ...620
11.12.6icblc — instruction cache block lock clear ...621
11.12.7Effects of other cache instructions on locked lines ...622
11.12.8Flash clearing of lock bits ...622

11.13 Cache instructions and exceptions ..623
11.13.1Exception conditions for cache instructions ...623
11.13.2Transfer type encodings for cache management instructions ...624

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 11

11.14 Sequential consistency ..625
11.15 Self-modifying code requirements ..625
11.16 Page table control bits ...625

11.16.1Writethrough stores ...626
11.16.2Cache-inhibited accesses ..626
11.16.3Memory coherence required ...626
11.16.4Guarded storage ..626
11.16.5Misaligned accesses and the endian (E) bit ..626

11.17 Reservation instructions and cache interactions ..626
11.18 Effect of hardware debug on cache operation ...627
11.19 Cache memory access for debug / error handling ...627

11.19.1Cache memory access via software ..627
11.19.2Cache memory access through JTAG/OnCE port ..628
11.19.3Cache Debug Access Control register (CDACNTL) ..629

11.19.3.1 Cache Debug Access Data register (CDADATA) ..630
11.20 Hardware Debug (Cache) Control Register 0 ...631
11.21 Hardware cache coherency ..632

11.21.1Coherency protocol ...633
11.21.2Snoop command port ..633
11.21.3Snoop request queue ...635
11.21.4Snoop lookup operation ..635
11.21.5Snoop errors ..636
11.21.6Snoop collisions ..636
11.21.7Snoop synchronization ..636

11.21.7.1 Synchronization port request ..636
11.21.7.2 Snoop command port request ...637

11.21.8Starvation control ..637
11.21.9Queue flow control ...637
11.21.10Snooping in low power states ...638

Chapter 12
Debug Support

12.1 Overview ...639
12.1.1 Software debug facilities ..639

12.1.1.1 PowerISA 2.06 compatibility ..640
12.1.2 Additional debug facilities ..640
12.1.3 Hardware debug facilities ...640
12.1.4 Sharing debug resources by software/hardware ...641

12.1.4.1 Simultaneous hardware and software debug event handing641
12.2 Software debug events and exceptions ..642

12.2.1 Instruction Address Compare event ..643
12.2.2 Data Address Compare event ...644

12.2.2.1 Data Address Compare event status updates ..645
12.2.3 Linked Instruction Address and Data Address Compare event655
12.2.4 Trap debug event ...656

e200z759n3 Core Reference Manual, Rev. 2

12 Freescale Semiconductor

12.2.5 Branch Taken debug event ..656
12.2.6 Instruction Complete debug event ..656
12.2.7 Interrupt Taken debug event ...657
12.2.8 Critical Interrupt Taken debug event ..657
12.2.9 Return debug event ...657
12.2.10Critical Return debug event ..658
12.2.11Debug Counter debug event ...658
12.2.12External debug event ..658
12.2.13Unconditional debug event ...658

12.3 Debug registers ..659
12.3.1 Debug address and value registers ..659
12.3.2 Debug Counter register (DBCNT) ..660
12.3.3 Debug Control and Status registers ...660

12.3.3.1 Debug Control Register 0 (DBCR0) ...661
12.3.3.2 Debug Control Register 1 (DBCR1) ...663
12.3.3.3 Debug Control Register 2 (DBCR2) ...665
12.3.3.4 Debug Control Register 3 (DBCR3) ...669
12.3.3.5 Debug Control Register 4 (DBCR4) ...674
12.3.3.6 Debug Control Register 5 (DBCR5) ...675
12.3.3.7 Debug Control Register 6 (DBCR6) ...677
12.3.3.8 Debug Status register (DBSR) ..679

12.3.4 Debug External Resource Control register (DBERC0) ..681
12.3.5 Debug Event Select register (DEVENT) ..688
12.3.6 Debug Data Acquisition Message register (DDAM) ..689

12.4 External debug support ..689
12.4.1 External debug registers ..690

12.4.1.1 External Debug Control Register 0 (EDBCR0) ..691
12.4.1.2 External Debug Status Register 0 (EDBSR0) ...692
12.4.1.3 External Debug Status Register Mask 0 (EDBSRMSK0)694

12.4.2 OnCE introduction ..696
12.4.3 JTAG/OnCE pins ..698
12.4.4 OnCE internal interface signals ..698

12.4.4.1 CPU debug request (dbg_dbgrq) ..699
12.4.4.2 CPU debug acknowledge (cpu_dbgack) ...699
12.4.4.3 CPU address, attributes ...699
12.4.4.4 CPU data ...699

12.4.5 OnCE interface signals ...699
12.4.5.1 OnCE enable (jd_en_once) ...699
12.4.5.2 OnCE debug request/event (jd_de_b, jd_de_en) ..700
12.4.5.3 e200z759n3 OnCE debug output (jd_debug_b) ...700
12.4.5.4 e200z759n3 CPU clock on input (jd_mclk_on) ...700
12.4.5.5 Watchpoint events (jd_watchpt[0:29]) ..700

12.4.6 e200z759n3 OnCE controller and serial interface ..701
12.4.6.1 e200z759n3 OnCE Status Register (OSR) ...701
12.4.6.2 e200z759n3 OnCE Command register (OCMD) ..702

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 13

12.4.6.3 e200z759n3 OnCE Control Register (OCR) ..706
12.4.7 Access to debug resources ..708
12.4.8 Methods of entering debug mode ...710

12.4.8.1 External debug request during RESET ...710
12.4.8.2 Debug request during RESET ...710
12.4.8.3 Debug request during normal activity ..711
12.4.8.4 Debug request during Waiting, Halted, or Stopped state711
12.4.8.5 Software request during normal activity ...711
12.4.8.6 Debug notify halt instructions ...711

12.4.9 CPU Status and Control Scan Chain Register (CPUSCR) ...712
12.4.9.1 Instruction Register (IR) ...712
12.4.9.2 Control State register (CTL) ...713
12.4.9.3 Program Counter register (PC) ...716
12.4.9.4 Write-Back Bus Register (WBBRlow, WBBRhigh)716
12.4.9.5 Machine State Register (MSR) ...717
12.4.9.6 Exiting debug mode and interrupt blocking ...717

12.4.10Instruction Address FIFO buffer (PC FIFO) ..717
12.4.10.1 PC FIFO ..717

12.4.11Reserved registers (reserved) ..719
12.5 Watchpoint support ..719
12.6 MMU and cache operation during debug ..721
12.7 Cache array access during debug ..722
12.8 Basic steps for enabling, using, and exiting external debug mode ...722
12.9 Parallel Signature unit ...723

12.9.1 Parallel Signature Control Register (PSCR) ...725
12.9.2 Parallel Signature Status Register (PSSR) ..725
12.9.3 Parallel Signature High Register (PSHR) ...726
12.9.4 Parallel Signature Low Register (PSLR) ..726
12.9.5 Parallel Signature Counter Register (PSCTR) ..727
12.9.6 Parallel Signature Update High Register (PSUHR) ...727
12.9.7 Parallel Signature Update Low Register (PSULR) ...727

Chapter 13
Nexus 3 Module

13.1 Introduction ...729
13.1.1 General description ...729
13.1.2 Terms and definitions ..729
13.1.3 Feature list ...730
13.1.4 Functional block diagram ...732

13.2 Enabling Nexus 3 operation ..732
13.3 TCODEs supported ...733
13.4 Nexus 3 programmer’s model ...739

13.4.1 Client Select Control register (CSC) ..741
13.4.2 Port Configuration Register (PCR) — reference only ..741
13.4.3 Nexus Development Control Register 1 (DC1) ..742

e200z759n3 Core Reference Manual, Rev. 2

14 Freescale Semiconductor

13.4.4 Nexus Development Control Registers 2 and 3 (DC2, DC3) ...744
13.4.5 Nexus Development Control Register 4 (DC4) ..748
13.4.6 Development Status register (DS) ..749
13.4.7 Watchpoint Trigger registers (WT, PTSTC, PTETC, DTSTC, DTETC)749
13.4.8 Nexus Watchpoint Mask register (WMSK) ..754
13.4.9 Nexus Overrun Control Register (OVCR) ..755
13.4.10Data Trace Control Register (DTC) ..756
13.4.11Data Trace Start Address Registers (DTSA1–4) ..758
13.4.12Data Trace End Address registers (DTEA1–4) ...758
13.4.13Read/Write Access Control/Status register (RWCS) ..760
13.4.14Read/Write Access Data (RWD) ...761
13.4.15Read/Write Access Address register (RWA) ..763

13.5 Nexus 3 register access via JTAG/OnCE ..763
13.6 Nexus message fields ..764

13.6.1 TCODE field ...764
13.6.2 Source ID field (SRC) ...764
13.6.3 Relative address field (U-ADDR) ...764
13.6.4 Full address field (F-ADDR) ..765
13.6.5 Address space indication field (MAP) ..765

13.7 Nexus message queues ..766
13.7.1 Message queue overrun ..766
13.7.2 CPU stall ...766
13.7.3 Message suppression ...766
13.7.4 Nexus message priority ...767
13.7.5 Data Acquisition Message (DQM) priority loss response ..768
13.7.6 Ownership Trace Message (OTM) priority loss response ..768
13.7.7 Program Trace Message (PTM) priority loss response ...768
13.7.8 Data Trace Message (DTM) priority loss response ..768

13.8 Debug Status messages ...768
13.9 Error messages ..769
13.10 Ownership trace ...769

13.10.1Overview ...769
13.10.2Ownership Trace Messaging (OTM) ..769

13.11 Program trace ..770
13.11.1Branch Trace messaging types ..770

13.11.1.1 Zen Indirect Branch message instructions ..771
13.11.1.2 Zen Direct Branch Message instructions ..771
13.11.1.3 BTM using Branch History Messages ..772
13.11.1.4 BTM using Traditional Program Trace messages ...772

13.11.2BTM Message formats ..772
13.11.2.1 Indirect Branch Messages (history) ..772
13.11.2.2 Indirect Branch Messages (traditional) ...773
13.11.2.3 Direct Branch Messages (traditional) ...773

13.11.3Program Trace message fields ..773
13.11.3.1 Sequential Instruction Count field (ICNT) ...773

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 15

13.11.3.2 Branch/Predicate Instruction History (HIST) ...774
13.11.3.3 Execution mode indication ...774

13.11.4Resource Full Messages ..775
13.11.5Program Correlation Messages (PCM) ...775

13.11.5.1 Program Correlation Message generation for TLB update with new address
translation ...777
13.11.5.2 Program Correlation Message generation for TLB invalidate (tlbivax)
operations ..778
13.11.5.3 Program Correlation Message generation for PID updates or MSRIS updates ..
...778

13.11.6Program trace overflow error messages ..778
13.11.7Program trace synchronization messages ...778
13.11.8Enabling Program Trace ...780
13.11.9Program Trace timing diagrams (2 MDO / 1 MSEO configuration)781

13.12 Data Trace ..782
13.12.1Data Trace Messaging (DTM) ..782
13.12.2DTM Message formats ...782

13.12.2.1 Data Write Messages ..782
13.12.2.2 Data Read Messages ...782
13.12.2.3 Data Trace Synchronization Messages ...783

13.12.3DTM operation ...784
13.12.3.1 Data trace windowing ...784
13.12.3.2 Data access / instruction access data tracing ..785
13.12.3.3 Data trace filtering ..785
13.12.3.4 Zen bus cycle special cases ...785

13.12.4Data Trace Timing Diagrams(8 MDO / 2 MSEO configuration)786
13.13 Data Acquisition messaging ..786

13.13.1Data Acquisition ID Tag field ...787
13.13.2Data Acquisition Data field ..787
13.13.3Data Acquisition Trace event ..787

13.14 Watchpoint Trace Messaging ..787
13.14.1Watchpoint Timing Diagram (2 MDO / 1 MSEO configuration)789

13.15 Nexus 3 read/write access to memory-mapped resources ...790
13.15.1Single write Access ...790
13.15.2Block write access ..791
13.15.3Single read access ...791
13.15.4Block read access ..792
13.15.5Error handling ...792

13.15.5.1 AHB read/write error ..793
13.15.5.2 Access termination ..793

13.15.6Read/write access error message ..793
13.16 Nexus 3 pin interface ...793

13.16.1Pins implemented ..793
13.16.2Pin protocol ...796

13.17 Rules for output messages ...798

e200z759n3 Core Reference Manual, Rev. 2

16 Freescale Semiconductor

13.18 Auxiliary port arbitration ..798
13.19 Examples ...798
13.20 Electrical characteristics ..801
13.21 IEEE 1149.1 (JTAG) RD/WR sequences ..801

13.21.1JTAG sequence for accessing internal Nexus registers ..801
13.21.2JTAG sequence for read access of memory-mapped resources802
13.21.3JTAG sequence for write access of memory-mapped resources802

Chapter 14
External Core Complex Interfaces

14.1 Signal index ...806
14.2 Signal descriptions ..813

14.2.1 e200z759n3 processor clock (m_clk) ...814
14.2.2 Reset-related signals ...814

14.2.2.1 Power-on reset (m_por) ..814
14.2.2.2 Reset (p_reset_b) ..814
14.2.2.3 Watchdog reset status (p_wrs[0:1]) ..815
14.2.2.4 Debug reset control (p_dbrstc[0:1]) ..815
14.2.2.5 Reset base (p_rstbase[0:29]) ...815
14.2.2.6 Reset endian mode (p_rst_endmode) ..815
14.2.2.7 Reset VLE Mode (p_rst_vlemode) ...815
14.2.2.8 JTAG/OnCE reset (j_trst_b) ...815

14.2.3 Address and data buses ...816
14.2.3.1 Address bus (p_d_haddr[31:0], p_i_haddr[31:0]) ..816
14.2.3.2 Read data bus (p_d_hrdata[63:0], p_i_hrdata[63:0])816
14.2.3.3 Write data bus (p_d_hwdata[63:0]) ..816

14.2.4 Transfer attribute signals ...817
14.2.4.1 Transfer type (p_d_htrans[1:0], p_i_htrans[1:0]) ...817
14.2.4.2 Write (p_d_hwrite, p_i_hwrite) ..817
14.2.4.3 Transfer size (p_d_hsize[1:0], p_i_hsize[1:0]) ...817
14.2.4.4 Burst type (p_d_hburst[2:0], p_i_hburst[2:0]) ..818
14.2.4.5 Protection control (p_d_hprot[5:0], p_i_hprot[5:0])818
14.2.4.6 Transfer data error (p_d_htrans_derr) ...820
14.2.4.7 Globally coherent access — (p_d_gbl) ...820
14.2.4.8 Cache way replacement (p_d_wayrep[0:1], p_i_wayrep[0:1])820

14.2.5 Byte lane specification ..820
14.2.5.1 Unaligned access (p_d_hunalign, p_i_hunalign) ..821
14.2.5.2 Byte strobes (p_d_hbstrb[7:0], p_i_hbstrb[7:0]) ..821

14.2.6 Transfer control signals ...831
14.2.6.1 Transfer ready (p_d_hready, p_i_hready) ...831
14.2.6.2 Transfer response (p_d_hresp[2:0], p_i_hresp[1:0])831
14.2.6.3 Bus stall global write request (p_stall_bus_gwrite)832

14.2.7 AHB clock enable signals ...832
14.2.7.1 Instruction AHB clock enable (p_i_ahb_clken) ...832
14.2.7.2 Data AHB clock enable (p_d_ahb_clken) ..833

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 17

14.2.8 Master ID configuration signals ...833
14.2.8.1 CPU master ID (p_masterid[3:0]) ...833
14.2.8.2 Nexus master ID (nex_masterid[3:0]) ..833

14.2.9 Coherency control signals ...833
14.2.9.1 Snoop ready (p_snp_rdy) ..833
14.2.9.2 Snoop request (p_snp_req) ...834
14.2.9.3 Snoop command input (p_snp_cmd_in[0:1]) ...834
14.2.9.4 Snoop request ID input (p_snp_id_in[0:3]) ..834
14.2.9.5 Snoop address input (p_snp_addr_in[0:26]) ...835
14.2.9.6 Snoop acknowledge (p_snp_ack) ...835
14.2.9.7 Snoop request ID output (p_snp_id_out[0:3]) ..835
14.2.9.8 Snoop response (p_snp_resp[0:4]) ..835
14.2.9.9 Cache stalled (p_cac_stalled) ..836
14.2.9.10 Data cache enabled (p_d_cache_en) ...836

14.2.10Memory synchronization control signals ..836
14.2.10.1 Synchronization request in (p_sync_req_in) ..836
14.2.10.2 Synchronization request acknowledge out (p_sync_ack_out)836
14.2.10.3 Synchronization request out (p_sync_req_out) ..837
14.2.10.4 Synchronization request acknowledge in (p_sync_ack_in)837

14.2.11Interrupt signals ..837
14.2.11.1 External input interrupt request (p_extint_b) ..837
14.2.11.2 Critical input interrupt request (p_critint_b) ...838
14.2.11.3 Non-maskable input interrupt request (p_nmi_b) ...838
14.2.11.4 Interrupt pending (p_ipend) ..838
14.2.11.5 Autovector (p_avec_b) ...838
14.2.11.6 Interrupt vector offset (p_voffset[0:15]) ...838
14.2.11.7 Interrupt vector acknowledge (p_iack) ...839
14.2.11.8 Machine check (p_mcp_b) ..839

14.2.12External translation alteration signals ...839
14.2.12.1 External PID enable (p_extpid_en) ...839
14.2.12.2 External PID in (p_extpid[6:7]) ..839

14.2.13Timer facility signals ..840
14.2.13.1 Timer disable (p_tbdisable) ..840
14.2.13.2 Timer external clock (p_tbclk) ..840
14.2.13.3 Timer interrupt status (p_tbint) ...840

14.2.14Processor reservation signals ..840
14.2.14.1 CPU reservation status (p_rsrv) ..840
14.2.14.2 CPU reservation clear (p_rsrv_clr) ...840

14.2.15Miscellaneous processor signals ...841
14.2.15.1 CPU ID (p_cpuid[0:7]) ...841
14.2.15.2 PID0 outputs (p_pid0[0:7]) ...841
14.2.15.3 PID0 update (p_pid0_updt) ..841
14.2.15.4 System version (p_sysvers[0:31]) ...841
14.2.15.5 Processor version (p_pvrin[16:31]) ..841
14.2.15.6 HID1 system control (p_hid1_sysctl[0:7]) ...842

e200z759n3 Core Reference Manual, Rev. 2

18 Freescale Semiconductor

14.2.15.7 Debug event outputs (p_devnt_out[0:7]) ..842
14.2.16Processor state signals ..842

14.2.16.1 Processor mode (p_mode[0:3]) ...842
14.2.16.2 Processor execution pipeline status (p_pstat_pipe0[0:5], p_pstat_pipe1[0:5]) ..
...842
14.2.16.3 Branch prediction status (p_brstat[0:1]) ...843
14.2.16.4 Processor exception enable MSR values (p_msr_EE, p_msr_CE, p_msr_DE,
p_msr_ME) ...844
14.2.16.5 Processor return from interrupt (p_rfi, p_rfci, p_rfdi, p_rfmci)844
14.2.16.6 Processor machine check (p_mcp_out) ..844

14.2.17Power management control signals ..844
14.2.17.1 Processor waiting (p_waiting) ..844
14.2.17.2 Processor halt request (p_halt) ..845
14.2.17.3 Processor halted (p_halted) ...845
14.2.17.4 Processor stop request (p_stop) ..845
14.2.17.5 Processor stopped (p_stopped) ...845
14.2.17.6 Low-power mode signals (p_doze, p_nap, p_sleep)845
14.2.17.7 Wakeup (p_wakeup) ...845

14.2.18Performance monitor signals ..846
14.2.18.1 Performance monitor event (p_pm_event) ...846
14.2.18.2 Performance monitor counter 0 overflow state (p_pmc0_ov)846
14.2.18.3 Performance monitor counter 1 overflow state (p_pmc1_ov)846
14.2.18.4 Performance monitor counter 2 overflow state (p_pmc2_ov)846
14.2.18.5 Performance monitor counter 3 overflow state (p_pmc3_ov)846
14.2.18.6 Performance monitor counter 3 qualifier inputs (p_pmc[0,1,2,3]_qual)846

14.2.19Debug event input signals ...846
14.2.19.1 Unconditional debug event (p_ude) ..847
14.2.19.2 External debug event 1 (p_devt1) ...847
14.2.19.3 External debug event 2 (p_devt2) ...847

14.2.20Debug event output signals (p_devnt_out[0:7]) ...847
14.2.21Debug/emulation (Nexus 1/ OnCE) support signals ...847

14.2.21.1 OnCE enable (jd_en_once) ...848
14.2.21.2 Debug session (jd_debug_b) ...848
14.2.21.3 Debug request (jd_de_b) ...848
14.2.21.4 DE_b active high output enable (jd_de_en) ...849
14.2.21.5 Processor clock on (jd_mclk_on) ...849
14.2.21.6 Watchpoint events (jd_watchpt[0:29]) ..849

14.2.22Development support (Nexus 3) signals ...849
14.2.23JTAG support signals ..850

14.2.23.1 JTAG/OnCE serial input (j_tdi) ..850
14.2.23.2 JTAG/OnCE serial clock (j_tclk) ..850
14.2.23.3 JTAG/OnCE serial output (j_tdo) ...850
14.2.23.4 JTAG/OnCE test mode select (j_tms) ...850
14.2.23.5 JTAG/OnCE test reset (j_trst_b) ...851
14.2.23.6 Test-Logic-Reset (j_tst_log_rst) ...851

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 19

14.2.23.7 Run-Test/Idle (j_rti) ..851
14.2.23.8 Capture IR (j_capture_ir) ..851
14.2.23.9 Shift IR (j_shift_ir) ...851
14.2.23.10Update IR (j_update_ir) ...852
14.2.23.11Capture DR (j_capture_dr) ..852
14.2.23.12Shift DR (j_shift_dr) ..852
14.2.23.13Update DR w/write (j_update_gp_reg) ...852
14.2.23.14Register select (j_gp_regsel) ...852
14.2.23.15Enable OnCE register select (j_en_once_regsel) ..852
14.2.23.16External Nexus register select (j_nexus_regsel) ..853
14.2.23.17External LSRL register select (j_lsrl_regsel) ..853
14.2.23.18Serial data (j_serial_data) ..853
14.2.23.19Key data in (j_key_in) ...854

14.2.24JTAG ID signals ..854
14.2.24.1 JTAG ID sequence (j_id_sequence[0:1]) ..855
14.2.24.2 JTAG ID sequence (j_id_sequence[2:9]) ..855
14.2.24.3 JTAG ID version (j_id_version[0:3]) ..855

14.2.25Test signals ..856
14.3 Timing diagrams ..856

14.3.1 AHB clock enable and the internal HCLK ...856
14.3.2 Processor instruction/data transfers ..856

14.3.2.1 Basic read transfer cycles ...858
14.3.2.2 Read transfer with wait state ...859
14.3.2.3 Basic write transfer cycles ..860
14.3.2.4 Write transfer with wait states ..862
14.3.2.5 Read and write transfers ...863
14.3.2.6 Misaligned accesses ..867
14.3.2.7 Burst accesses ...870
14.3.2.8 Error termination operation ..874

14.3.3 Memory synchronization control operation ..877
14.3.4 Cache coherency interface operation ..880

14.3.4.1 Stop mode entry/exit and snoop ready signaling ..884
14.3.5 Power management ...885
14.3.6 Interrupt Interface ...886
14.3.7 Time base interface ...888
14.3.8 JTAG test interface ...889

Chapter 15
Internal Core Interfaces

15.1 Signal index ...891
15.2 Signal descriptions ..896

15.2.1 Address and data buses ...896
15.2.1.1 Data address bus (p_d_addr[0:31]) ...896
15.2.1.2 Instruction address bus (p_i_addr[0:31]) ..897
15.2.1.3 Data input data bus (p_d_data_in[0:63]) ..897

e200z759n3 Core Reference Manual, Rev. 2

20 Freescale Semiconductor

15.2.1.4 Instruction input data bus (p_i_data_in[0:63]) ...897
15.2.1.5 Data output data bus (p_d_data_out[0:63]) ..897

15.2.2 Transfer attribute signals ...897
15.2.2.1 Read/write (p_d_rw_b) ...897
15.2.2.2 Data transfer code (p_d_tc[0:1]) ...897
15.2.2.3 Instruction transfer code (p_i_tc[0:4]) ..897
15.2.2.4 Data transfer size (p_d_tsiz[0:2]) ...899
15.2.2.5 Element size (p_elsiz[0:1]) ...899
15.2.2.6 Instruction Transfer Size (p_i_tsiz[0:2]) ...900
15.2.2.7 Data Transfer Type (p_d_ttype[0:5]) ..900
15.2.2.8 Data sequential access (p_d_seq_b) ...901
15.2.2.9 Instruction sequential access (p_i_seq_b) ...901
15.2.2.10 Misaligned access (p_d_misal_b) ...901
15.2.2.11 Block data transfer (p_d_bdt) ...901
15.2.2.12 Error kill control (p_d_err_kill, p_i_err_kill) ...901

15.2.3 Transfer control signals ...902
15.2.3.1 Halt ZLB (p_d_halt_zlb, p_i_halt_zlb) ..902
15.2.3.2 Transfer request (p_d_treq_b, p_i_treq_b) ...902
15.2.3.3 Transfer busy (p_d_tbusy[0:1]_b, p_i_tbusy[0:1]_b)902
15.2.3.4 Transfer abort (p_d_abort_b, p_i_abort_b) ...902
15.2.3.5 Transfer acknowledge (p_d_ta_b, p_i_ta_b) ..903
15.2.3.6 Transfer error acknowledge (p_d_tea_b, p_i_tea_b)903
15.2.3.7 Translation miss (p_d_tmiss_b, p_i_tmiss_b) ..903
15.2.3.8 Byte ordering error (p_d_boerr_b, p_i_boerr_b) ..903
15.2.3.9 Alignment error (p_d_alignerr_b) ..903
15.2.3.10 Cache tag parity error (p_d_tag_perr_b, p_i_tag_perr_b)903
15.2.3.11 Cache data parity error (p_d_data_perr_b, p_i_data_perr_b)904
15.2.3.12 External termination error (p_d_xte_b, p_i_xte_b)904
15.2.3.13 Guarded termination status (p_d_ta_g) ...904
15.2.3.14 Cache-inhibited termination status (p_d_ta_ci) ..904
15.2.3.15 Access physical address (p_[d,i]_ta_addr[0:31]) ..904
15.2.3.16 Termination error signaling and qualification ...904
15.2.3.17 Store exclusive failure (p_d_xfail_b) ..905
15.2.3.18 Read endian mode select (p_d_rdbigend_b, p_i_rdbigend_b)906
15.2.3.19 Write endian mode select (p_d_wrbigend_b) ...906
15.2.3.20 VLE mode select (p_rd_vle) ...906

15.2.4 Byte lane specification ..906
15.2.5 External SPR interface signals ..929

15.2.5.1 SPR number (p_sprnum[0:9]) ...929
15.2.5.2 SPR read data (p_spr_in[0:31]) ..929
15.2.5.3 SPR write data (p_spr_out[0:31]) ...929
15.2.5.4 SPR read control (p_rd_spr) ...929
15.2.5.5 SPR write control (p_wr_spr) ...929

15.2.6 Miscellaneous processor signals ...929
15.2.6.1 PID0 outputs (p_pid0[0:7]) ...929

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 21

15.2.6.2 PID0 update (p_pid0_updt) ..929
15.2.7 Cache/MMU status signals ...930

15.2.7.1 Cache enabled (p_d_cache_enabled, p_i_cache_enabled)930
15.2.7.2 Cache/MMU busy (p_d_cmbusy, p_i_cmbusy) ...930
15.2.7.3 Cache set CUL (p_d_set_cul, p_i_set_cul) ...930
15.2.7.4 User cache lock DSI control (p_ucl_dsi) ..930
15.2.7.5 Cache push parity error (p_d_cp_perr) ...930
15.2.7.6 Cache push address (p_d_push_addr[0:31]) ...930
15.2.7.7 Bus write error (p_d_bus_wrerr) ..931
15.2.7.8 Bus write error address (p_d_bus_wrerr_addr[0:31])931
15.2.7.9 Cache linefill status (p_d_lf_status[0:3], p_i_lf_status[0:3])931
15.2.7.10 Linefill status address (p_d_lf_addr[0:31], p_i_lf_addr[0:31])931
15.2.7.11 Debug mode MMU disable (p_d_dmdis, p_i_dmdis)931
15.2.7.12 Debug mode MMU ‘VLE’ attribute (p_dbg_vle) ...931
15.2.7.13 Debug mode MMU ‘W’ attribute (p_d_dbg_w) ...932
15.2.7.14 Debug mode MMU ‘I’ attribute (p_d_dbg_i, p_i_dbg_i)932
15.2.7.15 Debug mode MMU ‘M’ attribute (p_d_dbg_m, p_i_dbg_m)932
15.2.7.16 Debug mode MMU ‘G’ attribute (p_d_dbg_g) ..932
15.2.7.17 Debug mode MMU ‘E’ attribute (p_d_dbg_e, p_i_dbg_e)932

15.2.8 EFPU interface signals ..932
15.2.9 Test signals ..932

15.3 Timing diagrams ..932
15.3.1 Processor instruction/data transfers ..932

15.3.1.1 Basic read transfer cycles ...934
15.3.1.2 Read transfer with wait states ...936
15.3.1.3 Basic write transfer cycles ..938
15.3.1.4 Write transfer with wait states ..940
15.3.1.5 Read and write transfers ...941
15.3.1.6 Misaligned accesses ..944
15.3.1.7 Abort operation ...949
15.3.1.8 Error termination and abort operation ..950

15.3.2 SPR interface operation ..953

Appendix A
Register Summary

Appendix B
Revision History

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 23

Chapter 1
e200z759n3 Overview

1.1 Overview of the e200z759n3
The e200z759n3 processor family is a set of CPU cores that implement low-cost versions of the PowerISA
2.06 architecture.

The e200z759n3 is a dual-issue, 32-bit PowerISA 2.06 compliant design with 64-bit general purpose
registers (GPRs). PowerISA 2.06 floating-point instructions are not supported by e200z759n3 in hardware,
but are trapped and may be emulated by software.

An Embedded Floating-point (EFPU2) APU is provided to support real-time single-precision embedded
numerics operations using the general-purpose registers.

A Signal Processing Extension (SPE) APU is provided to support real-time SIMD fixed point and
single-precision, embedded numerics operations using the general-purpose registers. All arithmetic
instructions that execute in the core operate on data in the general purpose registers (GPRs). The GPRs
have been extended to 64-bits in order to support vector instructions defined by the SPE APU. These
instructions operate on a vector pair of 16-bit or 32-bit data types, and deliver vector and scalar results.

In addition to the base PowerISA 2.06 instruction set support, the e200z759n3 core also implements the
VLE (variable-length encoding) technology, providing improved code density. The VLE technology is
further documented in “PowerPC VLE Definition, Version 1.03", a separate document.

The e200z759n3 processor integrates a pair of integer execution units, a branch control unit, instruction
fetch unit and load/store unit, and a multi-ported register file capable of sustaining six read and three write
operations per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching
is performed by the branch unit to allow single-cycle branches in many cases.

The e200z759n3 contains a 16 KB instruction cache (ICache), a 16 KB Data Cache, as well as a Memory
Management Unit. A Nexus Class 3+ module is also integrated.

1.1.1 Features

The following is a list of some of the key features of the e200z759n3:

• Dual issue, 32-bit PowerISA 2.06 compliant CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch target prefetching using BTB

— Return Address Stack

e200z759n3 Core Reference Manual, Rev. 2

24 Freescale Semiconductor

• Load/store unit

— 3 cycle load latency

— Fully pipelined

— Big and Little endian support

— Misaligned access support

• 64-bit General Purpose Register file

• Dual AHB 2.v6 64-bit System buses

• Memory Management Unit (MMU) with 32-entry fully-associative TLB and multiple page size
support

• 16Kbyte, 4-Way Set Associative Harvard I and D Caches

• Embedded Floating-point APU (EFPU2) supporting scalar and SIMD single-precision
floating-point operations

• Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations, using the
64-bit General Purpose Register file.

• Performance Monitor APU supporting execution profiling

• Nexus Class 3-plus Real-time Development Unit

• Power management

— Low power design - extensive clock gating

— Power saving modes: doze, nap, sleep, wait

— Dynamic power management of execution units, caches and MMUs

• Testability

— Synthesizeable, MuxD scan design

— Optional ABIST/MBIST for arrays

— Built-in Parallel Signature Unit

1.1.2 Microarchitecture summary

The e200z759n3 processor utilizes a ten stage instruction pipeline, with four stages for execution. The
Instruction Fetch 0, Instruction Fetch 1, Instruction Fetch 2, Instruction Decode0, Instruction Decode
1/Register file Read/ EA Calc, Execute 0/ Memory Access0, Execute1/Memory Access1,
Execute2/Memory Access2, Execute 3, and Register Writeback stages operate in an overlapped fashion,
allowing single clock instruction execution for most instructions.

The integer execution units each consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit
Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a
Count-Leading-Zeros unit (CLZ), a 32x32 Hardware Multiplier array, and result feed-forward hardware.
Integer EU1 also supports hardware division.

Most arithmetic and logical operations are executed in a single cycle with the exception of multiply, which
is implemented with a pipelined hardware array, and the divide instructions. A Count-Leading-Zeros unit
operates in a single clock cycle.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 25

The Instruction Unit contains a PC incrementer and dedicated Branch Address adders to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching is performed to accelerate taken branches.
Prefetched instructions are placed into an instruction buffer.

Branch target addresses are calculated in parallel with branch instruction decode, resulting in execution
time of four clocks for correctly predicted branches. Conditional branches that are not taken execute in a
single clock. Branches with successful BTB target prefetching have an effective execution time of one
clock if correctly predicted.

Memory load and store operations are provided for byte, halfword, word (32-bit), and doubleword data
with automatic zero or sign extension of byte and halfword load data as well as optional byte reversal of
data. These instructions can be pipelined to allow effective single cycle throughput. Load and store
multiple word instructions allow low overhead context save and restore operations. The load/store unit
contains a dedicated effective address adder to allow effective address generation to be optimized.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the PowerPC architecture. The condition register consists of eight 4-bit fields that reflect the results of
certain operations, such as move, integer and floating-point compare, arithmetic, and logical instructions,
and provide a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

The SPE1.1 APU supports vector instructions operating on 16 and 32-bit fixed-point data types. The
EFPU2 APU supports 32-bit IEEE-754 single-precision floating-point formats, and supports scalar and
vector single-precision floating-point operations in a pipelined fashion. The 64-bit general purpose register
file is used for source and destination operands, and there is a unified storage model for scalar
single-precision floating-point data types of 32-bits and the normal integer type. Low latency fixed-point
and floating-point add, subtract, mixed add/subtract, sum, diff, min, max, multiply, multiply-add,
multiply-sub, divide, square root, compare, and conversion operations are provided, and most operations
can be pipelined.

e200z759n3 Core Reference Manual, Rev. 2

26 Freescale Semiconductor

Figure 1-1. e200z759n3 block diagram

1.1.2.1 Instruction unit features

The features of the e200z759n3 Instruction unit are:

• 64-bit path to cache supports fetching of two 32-bit instruction per clock

• Instruction buffer holds up to 10 32-bit instructions

• Dedicated PC incrementer supporting instruction prefetches

CPU

CONTROL LOGIC

LOAD/

DATA

MEMORY
MANAGEMENT

UNIT

ADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNITS

DATA BUS INTERFACE UNIT

CONTROL

32 64 N

SIMD and EFP

OnCE/NEXUS

CONTROL LOGIC
UNITS

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNITS

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
64

N

DATA CACHE

IN
S

T
R

U
C

T
IO

N
 C

A
C

H
E

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 27

• Branch unit with dedicated branch address adder, and branch lookahead logic (BTB) supporting
single cycle execution of successfully predicted branches

1.1.2.2 Integer unit features

The e200z759n3 integer units support single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in 4-15 clocks with minimized execution timing (EU1
only)

• Pipelined 32x32 hardware multiplier array supports 32 × 32 32 multiply with 3 clock latency, 1
clock throughput

1.1.2.3 Load/store unit features

The e200z759n3 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring of up to two registers per cycle
for load multiple and store multiple word instructions

1.1.2.4 Cache features

The features of the cache are as follows:

• Separate 16 KB, 4-way set-associative instruction and data caches (Harvard architecture)

• Copyback and Writethrough Support

• 8-entry store buffer

• Push buffer

• Linefill buffer

• 32-bit address bus plus attributes and control

• Separate uni-directional 64-bit read data bus and 64-bit write data bus

• Support for cache line locking

• Support for way allocation

• Support for write allocation policies

• Support for tag and data parity

• Support for multi-bit EDC for the ICache

• Correction/auto-invalidation capability for the I and D caches

• Hardware cache coherency support for the data cache

e200z759n3 Core Reference Manual, Rev. 2

28 Freescale Semiconductor

1.1.2.5 MMU Features

The features of the MMU are as follows:

• Virtual memory support

• 32-bit virtual and physical addresses

• 8-bit process identifier

• 32-entry fully-associative TLB

• Multiple page size support from 1 KB to 4 GB

• Entry flush protection

1.1.2.6 e200z759n3 system bus features

The features of the e200z759n3 system bus interface are as follows:

• Independent Instruction and Data interfaces

• AMBA AHB2.v6 protocol

• 32-bit address bus, 64-bit data bus, plus attributes and control

• Data interface provides separate uni-directional 64-bit read and write data buses

• Support for HCLK running at a slower rate than CPU clock

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 29

Chapter 2
Register Model
This section describes the registers implemented in the e200z759n3 core. It includes an overview of
registers defined by the Power Architecture Book E architecture, highlighting differences in how these
registers are implemented in the e200z759n3 core, and provides a detailed description of
e200z759n3-specific registers. Full descriptions of the architecture-defined register set are provided in
Book E: Enhanced PowerPCtm Architecture.

The Power Architecture Book E architecture defmines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or are provided as
immediate values embedded in the opcode. The three-register instruction format allows specification of a
target register distinct from the two source registers, thus preserving the original data for use by other
instructions. Data is transferred between memory and registers with explicit load and store instructions
only.

e200z759n3 extends the General Purpose Registers to 64-bits for supporting SPE and EFPU APU
operations. PowerPC Book E instructions operate on the lower 32 bits of the GPRs only, and the upper 32
bits are unaffected by these instructions. SPE vector instructions operate on the entire 64-bit register. The
SPE APU defines load and store instructions for transferring 64-bit values to/from memory.

Figure 1 and Figure 3 show the complete e200z759n3 register set. Figure 1 shows the registers that are
accessible while in supervisor mode, and Figure 3 shows the set of registers that are accessible while in
user mode. The number to the right of the special-purpose registers (SPRs) is the decimal number used in
the instruction syntax to access the register (for example, the integer exception register (XER) is SPR 1).

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor30

Figure 1. e200z759n3 supervisor mode programmer’s model SPRs

ESR SPR 62

Exception Syndrome

Data Exception Address

SPR General

Exception Handling/Control Registers
Save and Restore

MMU Assist1

Memory Management Registers

SUPERVISOR Mode Programmer’s Model SPRs

Decrementer

Timers
Time Base (writeonly)

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPRG8

SPRG9

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

SPR 604

SPR 605

DEAR SPR 61

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

SPR 570

SPR 571

TBL SPR 284

TBU SPR 285

DEC SPR 22

Process ID

PID0 SPR 48

DECAR SPR 54

IVOR0

IVOR1

IVOR15

SPR 400

SPR 401

SPR 415

Interrupt Vector Prefix

IVPR SPR 63

Interrupt Vector Offset

Control and Status

TCR SPR 340

TSR SPR 336

SPR 528

SPR 531

IVOR321

IVOR351

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

Cache Control1

SPR 1010L1CSR0

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 256

User SPR

USPRG0

SPE /EFPU APU
Status and
Control Register

SPR 512SPEFSCR

SPE/EFPU Registers

SPR 1016L1FINV0

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

SPR 516L1CFG1

SPR 1011L1CSR1

SPR 959L1FINV1

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

MCSRR01

MCSRR11

Machine Check
Address Register

MCAR SPR 573
Machine State

MSR

PVR

Processor Control Registers

Processor ID

PIR SPR 286

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

System Version1

SVR SPR 1023

Accumulator

ACC

IAC1

IAC2

IAC3

IAC4

IAC5

IAC6

IAC7

IAC8

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

DBCR31

DBCR41

DBCR51

DBCR61

DBERC01

DEVENT1

DDAM1

SPR 308

SPR 309

SPR 310

SPR 561

SPR 563

SPR 564

SPR 603

SPR 569

SPR 975

SPR 576

Instruction Address
Compare

SPR 312

SPR 313

SPR 314

SPR 315

SPR 565

SPR 566

SPR 567

SPR 568

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317
Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562

Data Value Compare

DVC1

DVC2

SPR 318

SPR 319

1 - These Zen-specific registers may not be supported by other Power
Architecture processors

2 - Optional registers defined by the Power Architecture Book-E architecture

3 - Read-only registers

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 31

Figure 2. e200z759n3 supervisor mode programmer’s model DCRs and PMRs

Supervisor Mode Programmer’s Model DCRs and PMRs

PSU Registers1

1 - These Zen-specific registers may not be supported
by other Power Architecture processors

Performance Monitor
Registers1

Control

PMGC0

PMLCa0

PMLCa1

PMLCa2

PMLCa3

PMLCb0

PMLCb1

PMLCb2

PMLCb3

PMR 400

PMR 144

PMR 145

PMR 146

PMR 147

PMR 272

PMR 273

PMR 274

PMR 275

User Control
(read-only)

UPMGC0

UPMLCa0

UPMLCa1

UPMLCa2

UPMLCa3

UPMLCb0

UPMLCb1

UPMLCb2

UPMLCb3

PMR 384

PMR 128

PMR 129

PMR 130

PMR 131

PMR 256

PMR 257

PMR 258

PMR 259

Counters

PMC0

PMC1

PMC2

PMC3

PMR 16

PMR 17

PMR 18

PMR 19

User Counters
(read-only)

UPMC0

UPMC1

UPMC2

UPMC3

PMR 0

PMR 1

PMR 2

PMR 3

PSU

PSCR

PSSR

PSHR

PSLR

PSCTR

PSUHR

PSULR

DCR 272

DCR 273

DCR 274

DCR 275

DCR 276

DCR 277

DCR 278

Cache Access Registers1

CDACNTL

CDADATA

DCR 351

DCR 350

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor32

Figure 3. e200z759n3 user mode programmer’s model SPRs

Figure 4. e200z759n3 user mode programmer’s model PMRs

General purpose registers (GPRs) are accessed through instruction operands. Access to other registers can
be explicit (by using instructions for that purpose such as Move to Special Purpose Register (mtspr) and
Move from Special Purpose Register (mfspr) instructions) or implicit as part of the execution of an
instruction. Some registers are accessed both explicitly and implicitly.

USER Mode Programmer’s Model SPRs

Timers (Read only)

Time Base

SPR 515

Cache Configuration

L1CFG0

TBL SPR 268

TBU SPR 269

Cache Register (Read-only)

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR

SPR 1

XER

XER

General Registers

SPR General (Read-only)

Control Registers

SPRG4

SPRG5

SPRG6

SPRG7

SPR 260

SPR 261

SPR 262

SPR 263

SPR 256

User SPR

USPRG0

SPE/EFPU APU Status
and
Control Register

SPR 512SPEFSCR

APU Registers

GPR0

GPR1

GPR31

Accumulator

ACC

SPR 516L1CFG1

Debug

DEVENT SPR 975

DDAM SPR 576

User Mode Programmer’s Model PMRs

1 - These Zen-specific registers may not be supported by
other Power Architecture processors

Performance Monitor
Registers1

User Control
(read-only)

UPMGC0

UPMLCa0

UPMLCa1

UPMLCa2

UPMLCa3

UPMLCb0

UPMLCb1

UPMLCb2

UPMLCb3

PMR 384

PMR 128

PMR 129

PMR 130

PMR 131

PMR 256

PMR 257

PMR 258

PMR 259

User Counters
(read-only)

UPMC0

UPMC1

UPMC2

UPMC3

PMR 0

PMR 1

PMR 2

PMR 3

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 33

2.1 PowerPC Book E registers
e200z759n3 supports most of the registers defined by Book E: Enhanced PowerPCtm Architecture.
Notable exceptions are the Floating Point registers FPR0-FPR31 and FPSCR. e200z759n3 does not
support the Book E Floating Point Architecture in hardware. The General Purpose registers have been
extended to 64-bits. The Zen supported Power Architecture Book E registers are described as follows
(Zen-specific registers are described in the next sub-section):

• User-level registers —The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following:

— General-purpose registers (GPRs). The thirty-two 64-bit GPRs (GPR0–GPR31) serve as data
source or destination registers for integer instructions and provide data for generating
addresses. PowerPC Book E instructions affect only the lower 32 bits of the GPRs. SPE and
EFP APU instructions are provided, which operate on the entire 64-bit register.

— Condition register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect
results of certain arithmetic operations and provide a mechanism for testing and branching. See
“Condition Register (CR),” in Chapter 3, “Branch and Condition Register Operations, Book E:
Enhanced PowerPCtm Architecture.

The remaining user-level registers are SPRs. Note that the Power Architecture architecture
provides the mtspr and mfspr instructions for accessing SPRs.

— Integer exception register (XER). The XER indicates overflow and carries for integer
operations. See “XER Register (XER),” in Chapter 4, “Integer Operations” of Book E:
Enhanced PowerPCtm Architecture for more information.

— Link register (LR). The LR provides the branch target address for the Branch [Conditional] to
Link Register (bclr, bclrl, se_blr, se_blrl) instructions, and is used to hold the address of the
instruction that follows a branch and link instruction, typically used for linking to subroutines.
See “Link Register (LR)”, in Chapter 3, “Branch and Condition Register Operations” of Book
E: Enhanced PowerPCtm Architecture.

— Count register (CTR). The CTR holds a loop count that can be decremented during execution
of appropriately coded branch instructions. The CTR also provides the branch target address
for the Branch [Conditional] to Count Register (bcctr, bcctrl, se_bctr, se_bctrl) instructions. See
“Count Register (CTR)”, in Chapter 3, “Branch and Condition Register Operations” of Book
E: Enhanced PowerPCtm Architecture.

— The Time Base facility (TB) consists of two 32-bit registers—Time Base Upper (TBU) and
Time Base Lower (TBL). These two registers are accessible in a read-only fashion to user-level
software. See “Time Base”, in Chapter 8, “Timer Facilities” of Book E: Enhanced PowerPCtm
Architecture.

— SPRG4-SPRG7. The PowerPC Book E architecture defines Software-Use Special Purpose
Registers (SPRGs). SPRG4 through SPRG7 are accessible in a read-only fashion by user-level
software. Zen does not allow user mode access to the SPRG3 register (defined as
implementation dependent by Book E).

— USPRG0. The Power Architecture Book E architecture defines User Software-Use Special
Purpose Register USPRG0, which is accessible in a read-write fashion by user-level software.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor34

• Supervisor-level registers — In addition to the registers accessible in user mode, Supervisor-level
software has access to additional control and status registers used for configuration, exception
handling, and other operating system functions. The Power Architecture Book E architecture
defines the following supervisor-level registers:

— Processor Control registers

– Machine State Register (MSR). The MSR defines the state of the processor. The MSR can
be modified by the Move to Machine State Register (mtmsr), System Call (sc, se_sc), and
Return from Exception (rfi, rfci, rfdi, rfmci, se_rfi, se_rfci, se_rfdi, se_rfmci) instructions. It
can be read by the Move from Machine State Register (mfmsr) instruction. When an
interrupt occurs, the contents of the MSR are saved to one of the machine state save/restore
registers (SRR1, CSRR1, DSRR1, MCSRR1).

– Processor version register (PVR). This register is a read-only register that identifies the
version (model) and revision level of the Power Architecture processor.

– Processor Identification Register (PIR). This read/write register is provided to distinguish
the processor from other processors in the system.

• Storage Control register

– Process ID Register (PID, also referred to as PID0). This register is provided to indicate the
current process or task identifier. It is used by the MMU as an extension to the effective
address, and by external Nexus 2/3/4 modules for Ownership Trace message generation.
PowerPC Book E allows for multiple PIDs; e200z759n3 implements only one.

— Interrupt Registers

– Data Exception Address Register (DEAR). After most Data Storage Interrupts (DSI), or on
an Alignment Interrupt or Data TLB Miss Interrupt, the DEAR is set to the effective address
(EA) generated by the faulting instruction.

– SPRG0–SPRG7, USPRG0. The SPRG0–SPRG7 and USPRG0 registers are provided for
operating system use. Zen does not allow user mode access to the SPRG3 register (defined
as implementation dependent by Book E).

– Exception Syndrome Register (ESR). The ESR register provides a syndrome to differentiate
between the different kinds of exceptions that can generate the same interrupt.

– Interrupt Vector Prefix Register (IVPR) and the Interrupt Vector Offset Registers
(IVOR0-IVOR15, IVOR32-IVOR35). These registers together provide the address of the
interrupt handler for different classes of interrupts.

– Save/Restore Register 0 (SRR0). The SRR0 register is used to save machine state on a
non-critical interrupt, and contains the address of the instruction at which execution resumes
when an rfi or se_rfi instruction is executed at the end of a non-critical class interrupt
handler routine.

– Critical Save/Restore register 0 (CSRR0). The CSRR0 register is used to save machine state
on a critical interrupt, and contains the address of the instruction at which execution resumes
when an rfci or se_rfci instruction is executed at the end of a critical class interrupt handler
routine.

– Save/Restore register 1 (SRR1). The SRR1 register is used to save machine state from the
MSR on non-critical interrupts, and to restore machine state when an rfi or se_rfi executes.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 35

– Critical Save/Restore register 1 (CSRR1). The CSRR1 register is used to save machine state
from the MSR on critical interrupts, and to restore machine state when rfci or se_rfci
executes.

— Debug facility registers

– Debug Control Registers (DBCR0-DBCR2). These registers provide control for enabling
and configuring debug events.

– Debug Status Register (DBSR). This register contains debug event status.

– Instruction Address Compare registers (IAC1-IAC4). These registers contain addresses
and/or masks that specify Instruction Address Compare debug events.

– Data address compare registers (DAC1-2). These registers contain addresses and/or masks
that specify Data Address Compare debug events.

– Data value compare registers (DVC1-2). These registers contain data values that specify
Data Value Compare debug events.

— Timer Registers

– Time base (TB). The TB is a 64-bit structure provided for maintaining the time of day and
operating interval timers. The TB consists of two 32-bit registers, Time Base Upper (TBU)
and Time Base Lower (TBL). The Time Base registers can be written to only by
supervisor-level software, but can be read by both user and supervisor-level software.

– Decrementer register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.

– Decrementer Auto-Reload (DECAR). This register is provided to support the auto-reload
feature of the Decrementer.

– Timer Control Register (TCR). This register controls Decrementer, Fixed-Interval Timer,
and Watchdog Timer options.

– Timer Status Register (TSR). This register contains status on timer events and the most
recent Watchdog Timer-initiated processor reset.

2.2 Zen-specific special purpose registers
The Power Architecture Book E architecture allows implementation-specific special purpose registers.
Those incorporated in the Zen core are as follows:

• User-level registers —The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following:

— Signal Processing Extension / Embedded Floating-point APU status and control register
(SPEFSCR). The SPEFSCR contains all fixed-point and floating-point exception signal bits,
exception summary bits, exception enable bits, and rounding control bits needed for
compliance with the IEEE 754 standard. See Section 6.2.1, SPE Status and Control Register
(SPEFSCR), in Chapter 6, Signal Processing Extension APU (SPE APU)

— The L1 Cache Configuration registers (L1CFG0, L1CGF1). These read-only registers allows
software to query the configuration of the L1 Harvard caches.

• Supervisor-level registers — The following supervisor-level registers are defined in Zen in
addition to the Power Architecture Book E registers described above:

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor36

— Configuration Registers

– Hardware implementation-dependent register 0 (HID0). This register controls various
processor and system functions.

– Hardware implementation-dependent register 1 (HID1). This register controls various
processor and system functions.

— Exception Handling and Control Registers

– Machine Check Save/Restore register 0 (MCSRR0). The MCSRR0 register is used to save
machine state on a Machine Check interrupt, and contains the address of the instruction at
which execution resumes when an rfmci or se_rfmci instruction is executed.

– Machine Check Save/Restore register 1 (MCSRR1). The MCSRR1 register is used to save
machine state from the MSR on Machine Check interrupts, and to restore machine state
when an rfmci or se_rfmci instruction is executed.

– Machine Check Syndrome register (MCSR). This register provides a syndrome to
differentiate between the different kinds of conditions that can generate a Machine Check.

– Machine Check Address register (MCAR). This register provides an address associated with
certain Machine Checks.

– Debug Save/Restore register 0 (DSRR0). When enabled, the DSRR0 register is used to save
the address of the instruction at which execution continues when an rfdi or se_rfdi
instruction executes at the end of a debug interrupt handler routine.

– Debug Save/Restore register 1 (DSRR1). When enabled, the DSRR1 register is used to save
machine status on debug interrupts and to restore machine status when an rfdi or se_rfdi
instruction executes.

– SPRG8, SPRG9. The SPRG8 and SPRG9 registers are provided for operating system use
for the Machine check and Debug APUs.

— Debug Facility Registers

– Instruction Address Compare registers (IAC5–IAC8). These registers contain addresses
and/or masks that are used to specify Instruction Address Compare debug events.

– Debug Control Register 3–6 (DBCR3, DBCR4, DBCR5, DBCR6)—These registers
provides control for debug functions not described in Power Architecture Book E
architecture.

– Debug External Resource Control Register 0 (DBERC0)—This register provides control for
debug functions not described in Power Architecture Book E architecture.

– Debug Counter Register (DBCNT)—This register provides counter capability for debug
functions.

— Branch Unit Control and Status Register (BUCSR) controls operation of the BTB

— Cache Registers

– L1 Cache Configuration Registers (L1CFG0, L1CFG1) is a read-only register that allows
software to query the configuration of the L1 Caches.

– L1 Cache Control and Status Registers (L1CSR0, L1CSR1) control the operation of the L1
Caches such as cache enabling, cache invalidation, cache locking, etc.

– L1 Cache Flush and Invalidate Registers (L1FINV0, L1FINV1) controls software flushing

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 37

and invalidation of the L1 Caches.

— Memory Management Unit Registers

– MMU Configuration Register (MMUCFG) is a read-only register that allows software to
query the configuration of the MMU.

– MMU Assist (MAS0-MAS4, MAS6) registers. These registers provide the interface to the
Zen core from the Memory Management Unit.

– MMU Control and Status Register (MMUCSR0) controls invalidation of the MMU.

– TLB Configuration Registers (TLB0CFG, TLB1CFG) are read-only registers that allow
software to query the configuration of the TLBs.

— System version register (SVR). This register is a read-only register that identifies the version
(model) and revision level of the System that includes a Zen Power Architecture processor.

Note that it is not guaranteed that the implementation of Zen core-specific registers is consistent among
Power Architecture processors, although other processors may implement similar or identical registers.

All Zen SPR definitions are compliant with the Freescale EIS definitions.

2.3 Zen-specific device control registers
In addition to the SPRs described above, implementations may also choose to implement one or more
Device Control Registers (DCRs). e200z759n3 implements a set of device control registers to perform a
parallel signature capability in the Parallel Signature Unit (PSU). These registers are described in
Section 12.9, Parallel Signature unit.

2.4 Special-purpose register descriptions

2.4.1 Machine State Register (MSR)

A complete description of the Machine State Register (MSR) begins on pg. 37 of Book E: Enhanced
PowerPCtm Architecture v0.99. The Machine State Register defines the state of the processor. Chapter 7,
Interrupts and Exceptions, describes how the MSR is affected when Interrupts occur. The Zen MSR is
shown in Figure 5.

The MSR bits are defined in Table 2.

0

U
C

LE

S
P

E

0 W
E

C
E 0 E
E

P
R

F
P

M
E

F
E

0

0 D
E

F
E

1

0 IS D
S 0

P
M

M

R
I 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Read/ Write; Reset - 0x0

Figure 5. Machine State Register (MSR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor38

Table 2. MSR field descriptions

Bit(s) Name Description

0:4
(32:36)

— Reserved1

5
(37)

UCLE User Cache Lock Enable
0 Execution of the cache locking instructions in user mode (MSRPR=1) disabled; DSI exception

taken instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.

6
(38)

SPE SPE/EFPU Available
0 Execution of SPE and EFPU APU vector instructions is disabled; SPE/EFPU Unavailable

exception taken instead, and SPE bit is set in ESR.
1 Execution of SPE and EFPU APU vector instructions is enabled.

7:12
(39:44)

— Reserved1

13
(45)

WE Wait State (Power management) enable.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when

additional conditions are present. The mode chosen is determined by the DOZE, NAP, and
SLEEP bits in the HID0 register, described in Section 2.4.11, Hardware Implementation
Dependent Register 0 (HID0).

14
(46)

CE Critical Interrupt Enable
0 Critical Input and Watchdog Timer interrupts are disabled.
1 Critical Input and Watchdog Timer interrupts are enabled.

15
(47)

— Preserved1

16
(48)

EE External Interrupt Enable
0 External Input, Decrementer, and Fixed-Interval Timer interrupts are disabled.
1 External Input, Decrementer, and Fixed-Interval Timer interrupts are enabled.

17
(49)

PR Problem State
0 The processor is in supervisor mode, can execute any instruction, and can access any

resource (e.g. GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot access

any privileged resource.

18
(50)

FP Floating-Point Available
0 Floating point unit is unavailable. The processor cannot execute floating-point instructions,

including floating-point loads, stores, and moves.
1 Floating Point unit is available. The processor can execute floating-point instructions.

Note: For e200z759n3, the floating point unit is not supported in hardware, and an Illegal
Instruction exception will be generated for attempted execution of PowerPC Book E
floating point instructions regardless of the setting of FP. FP is ignored, but cleared on
exceptions.

19
(51)

ME Machine Check Enable
0 Asynchronous Machine Check interrupts are disabled.
1 Asynchronous Machine Check interrupts are enabled.

20
(52)

FE0 Floating-point exception mode 0 (not used by Zen)

21
(53)

— Reserved1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 39

2.4.2 Processor ID Register (PIR)

The processor ID for the CPU core is contained in the Processor ID Register (PIR). The contents of the
PIR register are a reflection of hardware input signals to the Zen core following reset. This register may
be written by software to modify the default reset value.

22
(54)

DE Debug Interrupt Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23
(55)

FE1 Floating-point exception mode 1 (not used by Zen)

24
(56)

— Reserved1

25
(57)

— Preserved1

26
(58)

IS Instruction Address Space
0 The processor directs all instruction fetches to address space 0 (TS=0 in the relevant TLB

entry).
1 - The processor directs all instruction fetches to address space 1 (TS=1 in the relevant TLB

entry).

27
(59)

DS Data Address Space
0 The processor directs all data storage accesses to address space 0 (TS=0 in the relevant

TLB entry).
1 The processor directs all data storage accesses to address space 1 (TS=1 in the relevant

TLB entry).

28
(60)

— Reserved1

29
(61)

PMM PMM Performance monitor mark bit.
System software can set PMM when a marked process is running to enable statistics to be
gathered only during the execution of the marked process. MSRPR and MSRPMM together
define a state that the processor (supervisor or user) and the process (marked or unmarked)
may be in at any time. If this state matches an individual state specified in the Performance
Monitor registers PMLCa n, the state for which monitoring is enabled, counting is enabled.

30
(62)

RI Recoverable Interrupt - This bit is provided for software use to detect nested exception
conditions. This bit is cleared by hardware when a Machine Check interrupt is taken.

31
(63)

— Preserved1

NOTES:
1 These bits are not implemented, will be read as zero, and writes are ignored.

Table 2. MSR field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor40

The PIR fields are defined in Table 3.

2.4.3 Processor Version Register (PVR)

The Processor Version Register (PVR) contains the processor version number for the CPU core.

This register contains fields to specify a particular implementation of a Zen family member as well as
allocating fields to be used by a particular business unit at their discretion. This register is read-only.
Interface signals p_pvrin[16:31] provide the contents of a portion of this register.

ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 286; Read/Write; Reset: - bits 24:31 updated to reflect the values on p_cpuid[0:7], bits 0:23 reset to 0

Figure 6. Processor ID Register (PIR)

Table 3. PIR field descriptions

Bits Name Description

0:23 ID These bits are reset to 0. These bits are writable by software.

24:31 These bit are reset to the values provided on the p_cpuid[0:7] input signals. These bits are
writable by software.

1 0 0 0 0 0 0 1 0 1 1 0 Version MBG Use Minor Rev Major Rev MBG ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 287; Read-only

Figure 7. Processor Version Register (PVR)

Table 4. PVR field descriptions

Bits Name Description

0:3 Manuf. ID These bits identify the Manufacturer ID. Freescale is 4`b1000.

4:5 — These bits are reserved (00)

6:11 Type These bits identify the processor type. Zen Z7 is 6`b010110.

12:15 Version These bits identify the version of the processor and inclusion of optional elements.For
e200z759n3, these are tied to 4`b1001.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 41

2.4.4 System Version Register (SVR)

The System Version Register (SVR) contains system version information for a Zen-based SoC.

This register is used to specify a particular implementation of a Zen-based system by a particular business
unit at their discretion. This register is read-only.

2.4.5 Integer Exception Register (XER)

A complete description of the Integer Exception Register (XER) begins on pg. 51 of Book E: Enhanced
PowerPCtm Architecture v0.99.The XER bit assignments are shown in Figure 9.

The XER fields are defined in Table 6.

16:19 MBG Use These bits are allocated for use by Freescale Business Groups to distinguish different system
variants, and are provided by the p_pvrin[16:19] input signals.

20:23 Minor Rev These bits distinguish between implementations of the version, and are provided by the
p_pvrin[20:23] input signals.

24:27 Major Rev These bits distinguish between implementations of the version, and are provided by the
p_pvrin[24:27] input signals.

28:31 MBG ID These bits identify the Freescale Business Group responsible for a particular mask set, and are
provided by the p_pvrin[28:31] input signals.
MBG value of 4`b0000 is reserved.

System Version

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1023; Read-only

Figure 8. System Version Register (SVR)

Table 5. SVR field descriptions

Bits Name Description

0:31 Version These bits are allocated for use by Freescale Business Groups to distinguish different system
variants, and are provided by the p_sysvers[0:31] input signals

S
O

O
V

C
A 0 Bytecnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1; Read/Write; Reset - 0x0

Figure 9. Integer Exception Register (XER)

Table 4. PVR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor42

.

2.4.6 Exception Syndrome Register

A complete description of the Exception Syndrome Register (ESR) begins on pg. 142 of Book E:
Enhanced PowerPCtm Architecture v0.99. The Exception Syndrome Register (ESR) provides a syndrome
to differentiate between exceptions that can generate the same interrupt type. Zen adds some
implementation specific bits to this register, as seen in Figure 10

.

The ESR fields are defined in Table 7.

Table 6. XER field descriptions

Bits Name Description

0
(32)

SO Summary Overflow (per Book E)

1
(33)

OV Overflow (per Book E)

2
(34)

CA Carry (per Book E)

3:24
(35:56)

— Reserved1

NOTES:
1 These bits are not implemented, will be read as zero, and writes are ignored.

25:31
(57:63)

Bytecnt2

2 These bits are implemented to support emulation of the string instructions.

Preserved for lswi, lswx, stswi, stswx string instructions

0 P
IL

P
P

R

P
T

R

F
P

S
T 0

D
LK

IL
K

A
P

P
U

O

B
O

P
IE 0

 S
P

E

0

V
LE

M
I

0

M
IF 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 62; Read/Write; Reset - 0x0

Figure 10. Exception Syndrome Register (ESR)

Table 7. ESR field descriptions

Bits Name Description Associated interrupt type

0:3
(32:35)

— Allocated1 —

4
(36)

PIL Illegal Instruction exception
(For e200z759n3, PIL used for all illegal/unimps)

Program

5
(37)

PPR Privileged Instruction exception Program

6
(38)

PTR Trap exception Program

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 43

7
(39)

FP

Floating-point operation

Alignment
Data Storage

Data TLB
Program

8
(40)

ST
Store operation

Alignment
Data Storage

Data TLB

9
(41)

—
Reserved2 —

10
(42)

DLK Data Cache Locking Data Storage

11
(43)

ILK Instruction Cache Locking Data Storage

12
(44)

AP
Auxiliary Processor operation
(Currently unused in Zen)

Alignment
Data Storage

Data TLB
Program

13
(45)

PUO Unimplemented Operation exception
(Not used by e200z759n3, PIL used for all illegal/unimps)

Program

14
(46)

BO Byte Ordering exception
Mismatched Instruction Storage exception

Data Storage
Instruction Storage

15
(47)

PIE Program Imprecise exception
(Reserved)

Currently unused in Zen

16:23
(48:55)

—
Reserved2 —

24
(56)

SPE

SPE/EFPU APU Operation

SPE/EFPU Unavailable
EFPU Floating-point Data

Exception
EFPU Floating-point

Round Exception
Alignment

Data Storage
Data TLB

25
(57)

—
Allocated1 —

Table 7. ESR field descriptions (continued)

Bits Name Description Associated interrupt type

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor44

2.4.6.1 PowerPC VLE mode instruction syndrome

The ESRVLEMI bit is provided to indicate that an interrupt was caused by a PowerPC VLE instruction. This
syndrome bit is set on an exception associated with execution or attempted execution of a PowerPC VLE
instruction. This bit is updated for the interrupt types indicated in Table 7.

2.4.6.2 Misaligned instruction fetch syndrome

The ESRMIF bit is provided to indicate that an Instruction Storage Interrupt was caused by an attempt to
fetch an instruction from a BookE page that was not aligned on a word boundary. The fetch may have been
caused by execution of a Branch class instruction from a VLE page to a non-VLE page, a Branch to LR
instruction with LR[62]=1, a Branch to CTR instruction with CTR[62]=1, execution of an rfi or se_rfi
instruction with SRR0[62]=1, execution of an rfci or se_rfci instruction with CSRR0[62]=1, execution of
an rfdi or se_rfdi instruction with DSRR0[62]=1, or execution of an rfmci or se_rfmci instruction with
MCSRR0[62]=1, where the destination address corresponds to an instruction page that is not marked as a
PowerPC VLE page.

The ESRMIF bit is also used to indicate that an Instruction TLB Interrupt was caused by a TLB miss on the
second half of a misaligned 32-bit PowerPC VLE Instruction. For this case, SRR0 will be pointing to the
first half of the instruction, which will reside on the previous page from the miss at page offset 0xFFE. The
ITLB handler may need to realize that the miss corresponds to the next page, although MMU MAS2
contents will correctly reflect the page corresponding to the miss.

26
(58)

VLEMI

VLE Mode Instruction

SPE/EFPU Unavailable
EFPU Floating-point Data

Exception
EFPU Floating-point

Round Exception
Data Storage

Data TLB
Instruction Storage

Alignment
Program

System Call

27:29
(59:61)

—
Allocated1 —

30
(62)

MIF
Misaligned Instruction Fetch

Instruction Storage
Instruction TLB

31
(63)

—
Allocated1 —

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.
2 These bits are not implemented, and should be written with zero for future compatibility.

Table 7. ESR field descriptions (continued)

Bits Name Description Associated interrupt type

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 45

2.4.7 Machine Check Syndrome Register (MCSR)

When the core complex takes a machine check interrupt, it updates the Machine Check Syndrome register
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 11.

Table 8 describes MCSR fields. The MCSR indicates the source of a machine check condition. When an
“Async Mchk” or “Error Report” syndrome bit in the MCSR is set, the core complex asserts p_mcp_out
for system information. Note that the bits in the MCSR are implemented as “write ‘1’ to clear”, so software
must write ones into those bit positions it wishes to clear, typically by writing back what was originally
read. See Section 7.7.2, Machine Check interrupt (IVOR1), for more details of the MCSR settings.

M
C

P

IC
_D

P
E

R
R

C
P

_P
E

R
R

D
C

_D
P

E
R

R

E
X

C
P

_E
R

R

IC
_T

P
E

R
R

D
C

_T
P

E
R

R

IC
_L

K
E

R
R

D
C

_L
K

E
R

R

0

N
M

I

M
A

V

M
E

A

0 IF LD S
T G 0

S
N

P
E

R
R

B
U

S
_I

R
E

R
R

B
U

S
_D

R
E

R
R

B
U

S
_W

R
E

R
R

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 572; Read/Clear; Reset - 0x0

Figure 11. Machine Check Syndrome Register (MCSR)

Table 8. MCSR field descriptions

Bit Name Description
Exception

type1 Recoverable

0
(32)

MCP Machine check input pin Async Mchk Maybe

1
(33)

IC_DPERR Instruction Cache data array parity error Async Mchk Precise

2
(34)

CP_PERR Data Cache push parity error Async Mchk Unlikely

3
(35)

DC_DPERR Data Cache data array parity error Async Mchk Maybe

4
(36)

EXCP_ERR ISI, ITLB, or Bus Error on first instruction fetch for an
exception handler

Async Mchk Precise

5
(37)

IC_TPERR Instruction Cache Tag parity error Async Mchk Precise

6
(38)

DC_TPERR Data Cache Tag parity error Async Mchk Maybe

7
(39)

IC_LKERR Instruction Cache Lock error
Indicates a cache control operation or invalidation
operation invalidated one or more locked lines in the
ICache.

Status —

8
(40)

DC_LKERR Data Cache Lock error
Indicates a cache control operation or instruction
invalidation operation invalidated one or more locked
lines in the DCache.

Status —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor46

9:10
(41:42)

— Reserved, should be cleared. —

11
(43)

NMI NMI input pin NMI —

12
(44)

MAV MCAR Address Valid
Indicates that the address contained in the MCAR was
updated by hardware to correspond to the first detected
Async Mchk error condition

Status —

13
(45)

MEA MCAR holds Effective Address
If MAV=1,MEA=1 indicates that the MCAR contains an
effective address and MEA=0 indicates that the MCAR
contains a physical address

Status —

14
(46)

— Reserved, should be cleared. —

15
(47)

IF Instruction Fetch Error Report
An error occurred during the attempt to fetch an
instruction. MCSRR0 contains the instruction address.

Error Report Precise

16
(48)

LD Load type instruction Error Report
An error occurred during the attempt to execute the
load type instruction located at the address stored in
MCSRR0.

Error Report Precise

17
(49)

ST Store type instruction Error Report
An error occurred during the attempt to execute the
store type instruction located at the address stored in
MCSRR0.

Error Report Precise

18
(50)

G Guarded instruction Error Report
An error occurred during the attempt to execute the
load or store type instruction located at the address
stored in MCSRR0 and the access was guarded and
encountered an error on the external bus.

Error Report Precise

19:25
(51:57)

— Reserved, should be cleared. —

26
(58)

SNPERR Snoop Lookup Error
An error occurred during certain snoop operations. This
is typically due to a data cache tag parity error, in which
case DC_TPERR will also be set.

Async Mchk Unlikely

27
(59)

BUS_IRERR Read bus error on Instruction fetch or linefill Async Mchk Precise if data
used

28
(60)

BUS_DRERR Read bus error on data load or linefill Async Mchk Precise if data
used

29
(61)

BUS_WRERR Write bus error on store or cache line push Async Mchk Unlikely

30:31
(62:63)

— Reserved, should be cleared. —

Table 8. MCSR field descriptions (continued)

Bit Name Description
Exception

type1 Recoverable

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 47

2.4.8 Timer Control Register (TCR)

The Timer Control Register (TCR) provides control information for the CPU timer facilities. A complete
description of the TCR begins on pg. 182 of Book E: Enhanced PowerPCtm Architecture v0.99. The
TCRWRC field functions are defined to be implementation-dependent and are described below. In addition,
the Zen core implements two fields not specified in Book E, TCRWPEXT and TCRFPEXT. The TCR is
shown in Figure 12.

The TCR fields are defined in Table 9.

NOTES:
1 The Exception Type indicates the exception type associated with a given syndrome bit

- “Error Report” indicates that this bit is only set for error report exceptions that cause machine check interrupts.
These bits are only updated when the machine check interrupt is actually taken. Error report exceptions are not
gated by MSRME. These are synchronous exceptions. These bits will remain set until cleared by software writing a
“1” to the bit position(s) to be cleared.

- “Status” indicates that this bit is provides additional status information regarding the logging of a machine check
exception. These bits will remain set until cleared by software writing a “1” to the bit position(s) to be cleared.
- “NMI” indicates that this bit is only set for the non-maskable interrupt type exception that causes a machine check
interrupt. This bit is only updated when the machine check interrupt is actually taken. NMI exceptions are not gated
by MSRME. This is an asynchronous exception. This bit will remain set until cleared by software writing a “1” to the
bit position.

- “Async Mchk” indicates that this bit is set for an asynchronous machine check exception. These bits are set
immediately upon detection of the error. Once any “Async Mchk” bit is set in the MCSR, a machine check interrupt
will occur if MSRME=1. If MSRME=0, the machine check exception will remain pending. These bits will remain set
until cleared by software writing a “1” to the bit position(s) to be cleared.

W
P

W
R

C

W
IE

D
IE F
P

F
IE

A
R

E

0

W
P

E
X

T

F
P

E
X

T

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 340; Read/Write; Reset - 0x0

Figure 12. Timer Control Register (TCR)

Table 9. TCR field descriptions

Bits Name Description

0:1
(32:33)

WP Watchdog Timer Period
When concatenated with WPEXT, specifies one of 64 bit locations of the time base used to
signal a watchdog timer exception on a transition from 0 to 1.
TCRwpext[0–3],TCRwp[0–1] == 6’b000000 selects TBU[0]
TCRwpext[0–3],TCRwp[0–1] == 6’b111111 selects TBL[31]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor48

2.4.9 Timer Status Register (TSR)

The Timer Status Register (TSR) provides status information for the CPU timer facilities. A complete
description of the TSR begins on pg. 184 of Book E: Enhanced PowerPCtm Architecture v0.99. The

2:3
(34:35)

WRC Watchdog Timer Reset Control
00 No Watchdog Timer reset will occur
01 Assert watchdog reset status output 1 (p_wrs[1]) on second time-out of Watchdog Timer
10 Assert watchdog reset status output 0 (p_wrs[0]) on second time-out of Watchdog Timer
11 Assert watchdog reset status outputs 0 and 1 (p_wrs[0], p_wrs[1]) on second time-out of

Watchdog Timer
TCRWRC resets to 0b00. This field may be set by software, but cannot be cleared by software
(except by a software-induced reset). Once written to a non-zero value, this field may no longer
be altered by software.

4
(36)

WIE Watchdog Timer Interrupt Enable

5
(37)

DIE Decrementer Interrupt Enable

6:7
(38:39)

FP Fixed-Interval Timer Period - When concatenated with FPEXT, specifies one of 64 bit locations
of the time base used to signal a fixed-interval timer exception on a transition from 0 to 1.
TCRfpext[0–3],TCRfp[0–1] == 6’b000000 selects TBU[0]
TCRfpext[0–3],TCRfp[0–1] == 6’b111111 selects TBL[31]

8
(40)

FIE Fixed-Interval Timer Interrupt Enable

9
(41)

ARE Auto-reload Enable

10
(42)

— Reserved1

11:14
(43:46)

WPEXT Watchdog Timer Period Extension (see above description for WP)
These bits get prepended to the TCRWP bits to allow selection of the one of the 64 Time Base
bits used to signal a Watchdog Timer exception.

tb0:63 TBU0:31 || TBL0:31
wp TCRWPEXT || TCRWP
tb_wp_bit tbwp

15:18
(47:50)

FPEXT Fixed-Interval Timer Period Extension (see above description for FP)
These bits get prepended to the TCRFP bits to allow selection of the one of the 64 Time Base
bits used to signal a Fixed-Interval Timer exception.

tb0:63 TBU0:31 || TBL0:31
fp TCRFPEXT || TCRFP
tb_fp_bit tbfp

19:31
(51:63)

— Reserved1

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.

Table 9. TCR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 49

TSRWRS field is defined to be implementation-dependent and is described below. The TSR is shown in
Figure 13.

The TSR fields are defined in Table 10.

NOTE
The Timer Status Register can be read using mfspr RT,TSR. The Timer
Status Register cannot be directly written to. Instead, bits in the Timer Status
Register corresponding to 1 bits in GPR(RS) can be cleared using mtspr
TSR,RS.

2.4.10 Debug registers

The Debug facility registers are described in Chapter 12, Debug Support.

E
N

W

W
IS

W
R

S

D
IS

F
IS 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 336; Read/Clear; Reset - 0x0

Figure 13. Timer Status Register (TSR)

Table 10. TSR field descriptions

Bits Name Description

0
(32)

ENW Enable Next Watchdog

1
(33)

WIS Watchdog timer interrupt status

2:3
(34:35)

WRS Watchdog timer reset status
00 No second time-out of Watchdog Timer has occurred.
01 Assertion of watchdog reset status output 1 (p_wrs[1]) on second time-out of Watchdog

Timer has occurred.
10 Assertion of watchdog reset status output 0 (p_wrs[0]) on second time-out of Watchdog

Timer has occurred.
11 Assertion of watchdog reset status outputs 0 and 1 (p_wrs[0], p_wrs[1]) on second

time-out of Watchdog Timer has occurred.

4
(36)

DIS Decrementer interrupt status

5
(37)

FIS Fixed-Interval Timer interrupt status

6:31
(38:63)

— Reserved1

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor50

2.4.11 Hardware Implementation Dependent Register 0 (HID0)

The HID0 register is a Zen implementation dependent register used for various configuration and control
functions.The HID0 register is shown in Figure 14.

The HID0 fields are defined in Table 11.

E
M

C
P

0

D
O

Z
E

N
A

P

S
LE

E
P

0

IC
R

N
H

R

0

T
B

E
N

S
E

L_
T

B
C

LK

D
C

LR
E

E

D
C

LR
C

E

C
IC

LR
D

E

M
C

C
LR

D
E

D
A

P
U

E
N

0

N
O

P
T

I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1008; Read/Write; Reset - 0x0

Figure 14. Hardware Implementation Dependent Register 0 (HID0)

Table 11. HID0 fiels descriptions

Bits Name Description

0
[32]

EMCP Enable machine check pin (p_mcp_b)
0 p_mcp_b pin is disabled.
1 p_mcp_b pin is enabled. Asserting p_mcp_b causes a machine check interrupt to be

reported.

1:7
[33:39]

— Reserved1

8
[40]

DOZE Configure for Doze power management mode
0 Doze mode is disabled.
1 Doze mode is enabled.
Doze mode is invoked by setting MSRWE while this bit is set.

9
[41]

NAP Configure for Nap power management mode
0 Nap mode is disabled.
1 Nap mode is enabled.
Nap mode is invoked by setting MSRWE while this bit is set.

10
[42]

SLEEP Configure for Sleep power management mode
0 Sleep mode is disabled.
1 Sleep mode is enabled.
Sleep mode is invoked by setting MSRWE while this bit is set.
Only one of DOZE, NAP, or SLEEP should be set for proper operation.

11:13
[43:45]

— Reserved1

14
[46]

ICR Interrupt Inputs Clear Reservation
0 External Input, Critical Input, and Non-Maskable Interrupts do not affect reservation

status.
1 External Input, Critical Input, and Non-Maskable Interrupts clear an outstanding

reservation.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 51

15
[47]

NHR Not hardware reset
0 Indicates to a reset exception handler that a reset occurred if software had previously set

this bit.
1 Indicates to a reset exception handler that no reset occurred if software had previously set

this bit.
Provided for software useset anytime by software, cleared by reset.

16
[48]

— Reserved1

17
[49]

TBEN TimeBase Enable
0 TimeBase is disabled.
1 TimeBase is enabled.

18
[50]

SEL_TBCLK Select TimeBase Clock
0 TimeBase is based on processor clock.
1 TimeBase is based on p_tbclk input.
This bit controls the clock source for the TimeBase. Altering this bit must be done while the
time base is disabled to preclude glitching of the counter. Timer interrupts should be disabled
prior to alteration, and the TBL and TBU registers re-initialized following a change of
TimeBase clock source.

19
[51]

DCLREE Debug Interrupt Clears MSREE
0 MSREEunaffected by Debug Interrupt.
1 MSREE cleared by Debug Interrupt.
This bit controls whether Debug interrupts force External Input interrupts to be disabled, or
whether they remain unaffected.

20
[52]

DCLRCE Debug Interrupt Clears MSRCE
0 MSRCE unaffected by Debug Interrupt.
1 MSRCE cleared by Debug Interrupt.
This bit controls whether Debug interrupts force Critical interrupts to be disabled, or whether
they remain unaffected.

21
[53]

CICLRDE Critical Interrupt Clears MSRDE
0 MSRDE unaffected by Critical class interrupt.
1 MSRDE cleared by Critical class interrupt.
This bit controls whether certain Critical interrupts (Critical Input, Watchdog Timer) force
Debug interrupts to be disabled, or whether they remain unaffected. Machine Check
interrupts have a separate control bit.
If Critical Interrupt Debug events are enabled (DBCR0CIRPT set, which should only be done
when the Debug APU is enabled), and MSRDE is set at the time of a (Critical Input, Watchdog
Timer) Critical interrupt, a debug event will be generated after the Critical Interrupt Handler
has been fetched, and the Debug handler will be executed first. In this case, DSRR0DE will
have been cleared, such that after returning from the debug handler, the Critical interrupt
handler will not be run with MSRDE enabled.

22
[54]

MCCLRDE Machine Check Interrupt Clears MSRDE
0 MSRDE unaffected by Machine Check interrupt.
1 MSRDE cleared by Machine Check interrupt.
This bit controls whether Machine Check interrupts force Debug interrupts to be disabled, or
whether they remain unaffected.

Table 11. HID0 fiels descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor52

2.4.12 Hardware Implementation Dependent Register 1 (HID1)

The HID1 register is used for bus configuration and system control. HID1 is shown in Figure 15.

The HID1 fields are defined in Table 12.

23
[55]

DAPUEN Debug APU enable
0 Debug APU disabled.
1 Debug APU enabled.
This bit controls whether the Debug APU is enabled. When enabled, Debug interrupts use
the DSRR0/DSRR1 registers for saving state, and the rfdi instruction is available for
returning from a debug interrupt.
When disabled, Debug Interrupts use the critical interrupt resources CSRR0/CSRR1 for
saving state, the rfci instruction is used for returning from a debug interrupt, and the rfdi
instruction is treated as an illegal instruction.
When disabled, the settings of the DCLREE, DCLRCE, CICLRDE, and MCCLRDE bits are
ignored and are assumed to be ‘1’s
Read and write access to DSRR0/DSRR1 via the mfspr and mtspr instructions is not affected
by this bit.

24
[56]

— Reserved1

25:30
[58:62]

— Reserved1

31
[63]

NOPTI No-op Touch Instructions
0 icbt, dcbt, dcbtst instructions operate normally.
1 icbt, dcbt, dcbtst instructions are no-oped.
This bit only affects the icbt, dcbt, and dcbtst instructions.

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.

0

S
Y

S
C

T
L

AT
S

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1009; Read/Write; Reset - 0x0

Figure 15. Hardware Implementation Dependent Register 1 (HID1)

Table 11. HID0 fiels descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 53

2.4.13 Branch Unit Control and Status Register (BUCSR)

The BUCSR register is used for general control and status of the branch target buffer (BTB). BUCSR is
shown in Figure 16.

The BUCSR fields are defined in Table 13.

Table 12. HID 1 field descriptions

Bits Name Description

0:15
[32:47]

—
Reserved1

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.

16:23
[48:56]

SYSCTL System Control
These bits are reflected on the outputs of the p_hid1_sysctl[0:7] output signals for use in
controlling the system. They may need external synchronization.

24
[56]

ATS Atomic status (read-only)
Indicates state of the reservation bit in the load/store unit. See Section 3.5, Memory

synchronization and reservation instructions for more detail.

25:31
[57:63]

—
Reserved1

0

B
B

F
I

0

B
A

LL
O

C

0

B
P

R
E

D

B
P

E
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1013; Read/Write; Reset - 0x0

Figure 16. Branch Unit Control and Status Register (BUCSR)

Table 13. BUCSR field descriptions

Bits Name Description

0:21
[32:53]

— Reserved1

22
[54]

BBFI Branch target buffer flash invalidate.
When written to a ‘1’, BBFI flash clears the valid bit of all entries in the branch buffer; clearing
occurs regardless of the value of the enable bit (BPEN).
BBFI is always read as 0.

23:25
[55:57]

— Reserved1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor54

2.4.14 L1 Cache Control and Status Registers (L1CSR0, L1CSR1)

The L1CSR0 and L1CSR1 registers are used for general control and status of the L1 caches. A description
of the L1CSR0 and L1CSR1 registers can be found in Chapter 11, L1 Cache.

2.4.15 L1 Cache Configuration registers (L1CFG0, L1CFG1)

The L1CFG0 and L1CGF1 registers provide configuration information for the L1 caches supplied with
this version of the Zen CPU core. A description of the L1CFG0 and L1CGF1 registers can be found in
Chapter 11, L1 Cache.

26:27
[58:59]

BALLOC Branch Target Buffer Allocation Control
00 - Branch Target Buffer allocation for all branches is enabled.
01 - Branch Target Buffer allocation is disabled for backward branches.
10 - Branch Target Buffer allocation is disabled for forward branches.
11 - Branch Target Buffer allocation is disabled for both branch directions.
This field controls BTB allocation for branch acceleration when BPEN = 1.
BTB hits are not affected by the settings of this field.
For branches with “AA’ = ‘1’, the MSB of the displacement field is still used to indicate
forward/backward, even though the branch is absolute.

28
[60]

— Reserved1

29:30
[61:62]

BPRED Branch Prediction Control (Static)
00 - Branch predicted taken on BTB miss for all branches.
01 - Branch predicted taken on BTB miss only for forward branches.
10 - Branch predicted taken on BTB miss only for backward branches.
11 - Branch predicted not taken on BTB miss for both branch directions.
This field controls operation of static prediction mechanism on a BTB miss. Unless disabled,
fetching of the predicted target location will be performed for branch acceleration. BPRED
operates independently of BPEN, and with a BPEN setting of 0, will be used to perform static
prediction of all unresolved branches.
BTB hits are not affected by the settings of this field.
For certain applications, setting BPRED to a non-default value may result in improved
performance.

31
[63]

BPEN Branch target buffer prediction enable.
0 Branch target buffer prediction disabled
1 Branch target buffer prediction enabled (enables BTB to predict branches)
When the BPEN bit is cleared, no hits will be generated from the BTB, and no new entries will be
allocated. Entries are not automatically invalidated when BPEN is cleared; the BBFI bit controls
entry invalidation. BPEN operates independently of BPRED, and will be used even with a BPRED
setting of 00.

NOTES:
1 These bits are not implemented and should be written with zero for future compatibility.

Table 13. BUCSR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 55

2.4.16 L1 Cache Flush and Invalidate registers (L1FINV0, L1FINV1)

The L1FINV0 and L1FINV1 registers provide software-based flush and invalidation control for the L1
caches supplied with this version of the Zen CPU core. A description of the L1FINV0 and L1FINV1
registers can be found in Chapter 11, L1 Cache.

2.4.17 MMU Control and Status Register (MMUCSR0)

The MMUCSR0 register is used for general control of the MMU. A description of the MMUCSR register
can be found in Chapter 10, Memory Management Unit.

2.4.18 MMU Configuration register (MMUCFG)

The MMUCFG register provides configuration information for the MMU supplied with this version of the
Zen CPU core. A description of the MMUCFG register can be found in Chapter 10, Memory Management
Unit.

2.4.19 TLB Configuration registers (TLB0CFG, TLB1CFG)

The TLB0CFG and TLB1CFG registers provide configuration information for the MMU TLBs supplied
with this version of the Zen CPU core. A description of these registers can be found in Chapter 10,
Memory Management Unit.

2.5 SPR register access
SPRs are accessed with the mfspr and mtspr instructions. The following sections outline additional access
requirements.

2.5.1 Invalid SPR references

System behavior when an invalid SPR is referenced depends on the apparent privilege level of the register.
The register privilege level is determined by bit 5 in the SPR address. If the invalid SPR is accessible in
user mode, then an illegal exception is generated. If the invalid SPR is accessible only in supervisor mode
and the CPU core is in supervisor mode (MSRPR = 0), then an illegal exception is generated. If the invalid
SPR address is accessible only in supervisor mode and the CPU is not in supervisor mode (MSRPR = 1),
then a privilege exception is generated.

NOTE
Writes to read-only SPRs and reads of write-only SPRs are treated as invalid
SPR references.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor56

2.5.2 Synchronization requirements for SPRs

With the exception of the following registers, there are no synchronization requirements for accessing
SPRs beyond those stated in PowerPC Book E. A complete description of Synchronization requirements
are contained in Chapter 11 of Book E: Enhanced PowerPCtm Architecture v0.99 beginning on page 219.
Software requirements for synchronization before/after accessing these registers are shown in Table 15.
The notation CSI in the table refers to a Context Synchronizing instruction, which includes sc, isync, rfi,
rfci, and rfdi.

Table 14. System response to invalid SPR reference

SPR address bit 5 Mode MSRPR Response

0 — — Illegal exception

1 Supervisor 0 Illegal exception

1 user 1 Privilege exception

Table 15. Additional synchronization requirements for SPRs

Context altering event or instruction
Required

before
Required

after
Notes

mtmsr[UCLE] none CSI —

mtmsr[SPE] none CSI —

mtmsr[PMM] none CSI —

mfspr

DBCNT Debug Counter register msync none 1

DBSR Debug Status register msync none —

HID0 Hardware implementation dependent reg 0 none none —

HID1 Hardware implementation dependent reg 1 msync none —

L1CSR0,
L1CSR1

L1 cache control and status registers 0,1 msync none —

L1FINV0,
L1FINV1

L1 cache flush and invalidate control registers
0,1

msync none —

MMUCSR MMU control and status register 0 CSI none —

mtspr

BUCSR Branch Unit Control and Status Register none CSI —

DBCNT Debug Counter register none CSI 1

DBCR0-6 Debug Control Register 0-6 none CSI —

DBSR Debug Status Register msync none —

HID0 Hardware implementation dependent reg 0 CSI isync —

HID1 Hardware implementation dependent reg 1 msync, isync CSI —

L1CSR0 L1 cache control and status register 0 msync, isync CSI —

 L1CSR1 L1 cache control and status registers 1 none CSI —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 57

2.5.3 Special purpose register summary

PowerPC Book E and implementation-specific SPRs for the Zen core are listed in the following table. All
registers are 32-bits in size. Register bits are numbered from bit 0 to bit 31 (most-significant to
least-significant). Shaded entries represent optional registers. An SPR register may be read or written with
the mfspr and mtspr instructions. In the instruction syntax, compilers should recognize the mnemonic
name given in the table below.

L1FINV0,
L1FINV1

L1 cache flush and invalidate control registers
0,1

msync CSI —

MASx MMU MAS registers none CSI —

MMUCSR MMU control and status register 0 CSI CSI —

PID PID0 register none CSI —

SPEFSCR SPEFSCR register none CSI2 —

Notes:
1. Not required if counter is not currently enabled
2. Not required for status bit clearing, required for altering exception enable or rounding mode bits

Table 16. Special purpose registers

Mnemonic Name
SPR

number
Access Privileged

Zen-
specific

BUCSR Branch Unit Control and Status Register 1013 R/W Yes Yes

CSRR0 Critical Save/Restore Register 0 58 R/W Yes No

CSRR1 Critical Save/Restore Register 1 59 R/W Yes No

CTR Count Register 9 R/W No No

DAC1 Data Address Compare 1 316 R/W Yes No

DAC2 Data Address Compare 2 317 R/W Yes No

DBCNT Debug Counter register 562 R/W Yes Yes

DBCR0 Debug Control Register 0 308 R/W Yes No

DBCR1 Debug Control Register 1 309 R/W Yes No

DBCR2 Debug Control Register 2 310 R/W Yes No

DBCR3 Debug control register 3 561 R/W Yes Yes

DBCR4 Debug control register 4 563 R/W Yes Yes

DBCR5 Debug control register 5 564 R/W Yes Yes

DBCR6 Debug control register 5 603 R/W Yes Yes

DBERC0 Debug external resource control register 0 569 Read-only Yes Yes

DBSR Debug Status Register 304 Read/Clear1 Yes No

Table 15. Additional synchronization requirements for SPRs (continued)

Context altering event or instruction
Required

before
Required

after
Notes

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor58

DDAM Debug Data Acquisition Messaging register 576 R/W No Yes

DEAR Data Exception Address Register 61 R/W Yes No

DEC Decrementer 22 R/W Yes No

DECAR Decrementer Auto-Reload 54 R/W Yes No

DEVENT Debug Event register 975 R/W No Yes

DSRR0 Debug save/restore register 0 574 R/W Yes Yes

DSRR1 Debug save/restore register 1 575 R/W Yes Yes

DVC1 Data Value Compare 1 318 R/W Yes No

DVC2 Data Value Compare 2 319 R/W Yes No

ESR Exception Syndrome Register 62 R/W Yes No

HID0 Hardware implementation dependent reg 0 1008 R/W Yes Yes

HID1 Hardware implementation dependent reg 1 1009 R/W Yes Yes

IAC1 Instruction Address Compare 1 312 R/W Yes No

IAC2 Instruction Address Compare 2 313 R/W Yes No

IAC3 Instruction Address Compare 3 314 R/W Yes No

IAC4 Instruction Address Compare 4 315 R/W Yes No

IAC5 Instruction Address Compare 5 565 R/W Yes Yes

IAC6 Instruction Address Compare 6 566 R/W Yes Yes

IAC7 Instruction Address Compare 7 567 R/W Yes Yes

IAC8 Instruction Address Compare 8 568 R/W Yes Yes

IVOR0 Interrupt Vector Offset Register 0 400 R/W Yes No

IVOR1 Interrupt Vector Offset Register 1 401 R/W Yes No

IVOR2 Interrupt Vector Offset Register 2 402 R/W Yes No

IVOR3 Interrupt Vector Offset Register 3 403 R/W Yes No

IVOR4 Interrupt Vector Offset Register 4 404 R/W Yes No

IVOR5 Interrupt Vector Offset Register 5 405 R/W Yes No

IVOR6 Interrupt Vector Offset Register 6 406 R/W Yes No

IVOR7 Interrupt Vector Offset Register 7 407 R/W Yes No

IVOR8 Interrupt Vector Offset Register 8 408 R/W Yes No

IVOR9 Interrupt Vector Offset Register 9 409 R/W Yes No

IVOR10 Interrupt Vector Offset Register 10 410 R/W Yes No

IVOR11 Interrupt Vector Offset Register 11 411 R/W Yes No

IVOR12 Interrupt Vector Offset Register 12 412 R/W Yes No

IVOR13 Interrupt Vector Offset Register 13 413 R/W Yes No

Table 16. Special purpose registers (continued)

Mnemonic Name
SPR

number
Access Privileged

Zen-
specific

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 59

IVOR14 Interrupt Vector Offset Register 14 414 R/W Yes No

IVOR15 Interrupt Vector Offset Register 15 415 R/W Yes No

IVOR32 Interrupt vector offset register 32 528 R/W Yes Yes

IVOR33 Interrupt vector offset register 33 529 R/W Yes Yes

IVOR34 Interrupt vector offset register 34 530 R/W Yes Yes

IVOR35 Interrupt vector offset register 35 531 R/W Yes Yes

IVPR Interrupt Vector Prefix Register 63 R/W Yes No

LR Link Register 8 R/W No No

L1CFG0 L1 cache config register 0 515 Read-only No Yes

L1CFG1 L1 cache config register 1 516 Read-only No Yes

L1CSR0 L1 cache control and status register 0 1010 R/W Yes Yes

L1CSR1 L1 cache control and status register 1 1011 R/W Yes Yes

L1FINV0 L1 cache flush and invalidate control register 0 1016 R/W Yes Yes

L1FINV1 L1 cache flush and invalidate control register 0 959 R/W Yes Yes

MAS0 MMU assist register 0 624 R/W Yes Yes

MAS1 MMU assist register 1 625 R/W Yes Yes

MAS2 MMU assist register 2 626 R/W Yes Yes

MAS3 MMU assist register 3 627 R/W Yes Yes

MAS4 MMU assist register 4 628 R/W Yes Yes

MAS6 MMU assist register 6 630 R/W Yes Yes

MCAR Machine Check Address Register 573 R/W Yes Yes

MCSR Machine Check Syndrome Register 572 R/Clear2 Yes Yes

MCSRR0 Machine Check Save/Restore Register 0 570 R/W Yes Yes

MCSRR1 Machine Check Save/Restore Register 1 571 R/W Yes Yes

MMUCFG MMU configuration register 1015 Read-only Yes Yes

MMUCSR MMU control and status register 0 1012 R/W Yes Yes

PID0 Process ID Register 48 R/W Yes No

PIR Processor ID Register 286 R/W Yes No

PVR Processor Version Register 287 Read-only Yes No

SPEFSCR SPE APU status and control register 512 R/W No No

SPRG0 SPR General 0 272 R/W Yes No

SPRG1 SPR General 1 273 R/W Yes No

SPRG2 SPR General 2 274 R/W Yes No

SPRG3 SPR General 3 275 R/W Yes No

Table 16. Special purpose registers (continued)

Mnemonic Name
SPR

number
Access Privileged

Zen-
specific

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor60

2.6 Reset settings
Table 17 shows the state of the PowerPC Book E architected registers and other optional resources
immediately following a system reset.

SPRG4 SPR General 4 260 Read-only No No

276 R/W Yes No

SPRG5 SPR General 5 261 Read-only No No

277 R/W Yes No

SPRG6 SPR General 6 262 Read-only No No

278 R/W Yes No

SPRG7 SPR General 7 263 Read-only No No

279 R/W Yes No

SPRG8 SPR General 8 604 R/W Yes Yes

SPRG9 SPR General 9 605 R/W Yes Yes

SRR0 Save/Restore Register 0 26 R/W Yes No

SRR1 Save/Restore Register 1 27 R/W Yes No

SVR System Version Register 1023 Read-only Yes Yes

TBL Time Base Lower 268 Read-only No No

284 Write-only Yes No

TBU Time Base Upper 269 Read-only No No

285 Write-only Yes No

TCR Timer Control Register 340 R/W Yes No

TLB0CFG TLB0 configuration register 688 Read-only Yes Yes

TLB1CFG TLB1 configuration register 689 Read-only Yes Yes

TSR Timer Status Register 336 Read/Clear3 Yes No

USPRG0 User SPR General 0 256 R/W No No

XER Integer Exception Register 1 R/W No No

NOTES:
1 The Debug Status Register can be read using mfspr RT,DBSR. The Debug Status Register cannot be directly

written to. Instead, bits in the Debug Status Register corresponding to ‘1’ bits in GPR(RS) can be cleared using
mtspr DBSR,RS.

2 The Machine Check Syndrome Register can be read using mfspr RT,MCSR. The Machine Check Syndrome
Register cannot be directly written to. Instead, bits in the Machine Check Syndrome Register corresponding to ‘1’
bits in GPR(RS) can be cleared using mtspr MCSR,RS.

3 The Timer Status Register can be read using mfspr RT,TSR. The Timer Status Register cannot be directly written
to. Instead, bits in the Timer Status Register corresponding to ‘1’ bits in GPR(RS) can be cleared using mtspr
TSR,RS.

Table 16. Special purpose registers (continued)

Mnemonic Name
SPR

number
Access Privileged

Zen-
specific

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 61

Table 17. Reset settings for Zen resources

Resource System reset setting

Program Counter p_rstbase[0:29] || 2’b00

GPRs Unaffected1

CR Unaffected1

BUCSR 0x0000_0000

CSRR0 Unaffected1

CSRR1 Unaffected1

CTR Unaffected1

DAC1 0x0000_00002

DAC2 0x0000_00002

DBCNT Unaffected1

DBCR0 0x0000_00002

DBCR1 0x0000_00002

DBCR2 0x0000_00002

DBCR3 0x0000_00002

DBCR4 0x0000_00002

DBCR5 0x0000_00002

DBCR6 0x0000_00002

DBSR 0x1000_00002

DDAM 0x0000_00002

DEAR Unaffected1

DEC Unaffected1

DECAR Unaffected1

DEVENT 0x0000_00002

DSRR0 Unaffected1

DSRR1 Unaffected1

DVC1 Unaffected1

DVC2 Unaffected1

ESR 0x0000_0000

HID0 0x0000_0000

HID1 0x0000_0000

IAC1 0x0000_00002

IAC2 0x0000_00002

IAC3 0x0000_00002

IAC4 0x0000_00002

IAC5 0x0000_00002

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor62

IAC6 0x0000_00002

IAC7 0x0000_00002

IAC8 0x0000_00002

IVORxx Unaffected1

IVPR Unaffected1

LR Unaffected1

L1CFG0, L1CFG13 —

L1CSR0, 1 0x0000_0000

L1FINV0, 1 0x0000_0000

MAS0 Unaffected1

MAS1 Unaffected1

MAS2 Unaffected1

MAS3 Unaffected1

MAS4 Unaffected1

MAS6 Unaffected1

MCAR Unaffected1

MCSR 0x0000_0000

MCSRR0 Unaffected1

MCSRR1 Unaffected1

MMUCFG3 —

MSR 0x0000_0000

PID0 0x0000_0000

PIR 0x0000_00 || p_cpuid[0:7]

PVR3 —

SPEFSCR 0x0000_0000

SPRG0 Unaffected1

SPRG1 Unaffected1

SPRG2 Unaffected1

SPRG3 Unaffected1

SPRG4 Unaffected1

SPRG5 Unaffected1

SPRG6 Unaffected1

SPRG7 Unaffected1

SPRG8 Unaffected1

SPRG9 Unaffected1

Table 17. Reset settings for Zen resources (continued)

Resource System reset setting

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 63

SRR0 Unaffected1

SRR1 Unaffected1

SVR3 —

TBL Unaffected1

TBU Unaffected1

TCR 0x0000_0000

TSR 0x0000_0000

TLB0CFG3 —

TLB1CFG3 —

USPRG0 Unaffected1

XER 0x0000_0000

NOTES:
1 Undefined on m_por assertion, unchanged on p_reset_b assertion
2 Reset by processor reset p_reset_b if DBCR0[EDM]=0, as well as unconditionally by m_por.
3 Read-only registers

Table 17. Reset settings for Zen resources (continued)

Resource System reset setting

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor64

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 65

Chapter 3
Instruction Model
This chapter provides additional information about the Book E Power Architecture architecture as it relates
specifically to e200z759n3.

The e200z759n3 is a 32-bit implementation of the Book E Power Architecture architecture as defined in
Book E: Enhanced PowerPCtm Architecture. This architecture specification includes a recognition that
different processor implementations may require clarifications, extensions or deviations from the
architectural descriptions. The PowerPC Book E instruction set is described in Chapter 12 “Instruction
Set” of Book E: Enhanced PowerPCtm Architecture v0.99 beginning on page 223.

3.1 Unsupported instructions and instruction forms
Because e200z759n3 is a 32-bit PowerPC Book E core, all of the instructions defined for 64-bit
implementations of the PowerPC Book E architecture are illegal on Zen. See Appendix A of Book E:
Enhanced PowerPCtm Architecture for more information on 64-bit instructions. Zen takes an illegal
instruction exception type program interrupt upon encountering a 64-bit PowerPC Book E instruction.

The e200z759n3 core does not support the instructions listed in Table 18. An illegal instruction exception
is generated if the processor attempts to execute one of these instructions.

3.2 Implementation-specific instructions
Several PowerPC Book E defined instructions are implementation-specific. Table 19 summarizes the Zen
implementation-specific instructions.

Table 18. List of unsupported instructions

Type / name Mnemonics

String Instructions lswi, lswx, stswi, stswx

Floating Point Instructions fxxxx, lfxxx, sfxxxx, mcrfs, mffs, mtfxxx

Device control register and Move
from APID

mfapidi, mfdcrx, mtdcrx

Table 19. Implementation-specific instruction summary

 Mnemonic Implementation Details

mfapidi
unimplemented instructions (treated as illegal on

e200z759n3) mfdcrx

 mtdcrx

stbcx., sthcx., stwcx. address match with prior lbarx, lharx, or lwarx not
req’d for store to be performed

mfdcr, mtdcr1

NOTES:
1 The Zen CPU will take an illegal instruction exception for unsupported DCR values

optionally supported instructions

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor66

3.3 Book E instruction extensions
This section describes the various extensions to Book E instructions to support the PowerPC VLE APU.

rfci, rfdi, rfi, rfmci - no longer mask bit 62 of CSRR0, DSRR0, or SRR0 respectively. The destination
address is [D,C, MC]SRR0[32:62] || 0b0.

bclr, bclrl, bcctr, bcctrl - no longer mask bit 62 of the LR or CTR respectively. The destination address is
[LR,CTR][32:62] || 0b0.

3.4 Memory access alignment support
The Zen core provides hardware support for unaligned memory accesses; however, there is a performance
degradation for accesses that cross a 64-bit (8 byte) boundary. For loads that hit in the cache, the
throughput of the load/store unit is degraded to 1 misaligned load every 2 cycles. Stores that are misaligned
across a 64-bit (8 byte) boundary can be translated at a rate of 2 cycles per store. Frequent use of unaligned
memory accesses is discouraged because of the impact on performance.

NOTE
Accesses that cross a translation boundary may be restarted. A misaligned
access that crosses a page boundary is restarted in its entirety in the event of
a TLB miss of the second portion of the access. This may result in the first
portion being accessed twice.

Accesses that cross a translation boundary where the endianness changes
cause a byte ordering DSI exception.

3.5 Memory synchronization and reservation instructions
The msync instruction provides a synchronization function and a memory barrier function. This instruction
waits for all preceding instructions and data memory accesses to complete before the msync instruction
completes. Subsequent instructions in the instruction stream are not initiated until after the msync
instruction completes to ensure these functions have been performed.

In addition, the msync instruction, and the mbar w/MO=0, or 1 instructions handshake with the system to
ensure that all accesses initiated by this CPU have been “performed” with respect to all other processors
and mechanisms prior to completion of the instruction. Refer to Section 14.2.10, Memory synchronization
control signals for further detail on the hardware handshake sequence.

On the Zen core, the mbar instruction with MO=0 or 1 behaves similarly to the msync instruction, but only
waits for previous data memory accesses rather than all previous instructions to complete before
completing. The mbar instruction with MO= 2 behaves similarly to the msync instruction, but only waits
for previous data memory accesses rather than all previous instructions to complete before completing, and
does not signal synchronizations to other processors through the synchronization port. The mbar
instruction may be preferred for most memory synchronization operations, since it does not stall
instruction execution if no load or store operations remain in the execution pipeline, unlike the msync
instruction. The mbar instruction with the MO field not equal to 0, 1, or 2 is treated as illegal by the Zen
core.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 67

The Zen core implements the lwarx and stwcx. instructions as described in Book E, as well as the lharx,
lbarx, sthcx., and stbcx. instructions defined by the EIS Enhanced Reservation APU. If the EA is not a
multiple of the access size for these instructions, an alignment interrupt is invoked. Zen allows reservation
instructions to access a page that is marked as write-through required or cache-inhibited, and no data
storage interrupt is invoked.

As allowed by PowerPC Book E, the Zen core does not require that for a reservation store-type instruction
to succeed, the EA of the store-type instruction must be to the same reservation granule as the EA of a
preceding reservation load-type instruction. Reservation granularity is implementation-dependent. The
Zen core does not define a reservation granule explicitly; reservation granularity is defined by external
logic. When no external logic is provided, the Zen core performs no address comparison checking, thus
the effective implementation granularity is “null”.

The Zen core implements an internal status flag (HID1ATS) representing reservation status. This flag is set
when a load-type reservation instruction is executed and completes without error, and remains set until it
is cleared by one of the following mechanisms:

1. Execution of a store-type reservation instruction is completed without error, or

2. The Zen core p_rsrv_clr input signal is asserted, or

3. The reservation is invalidated when an external input, critical input, or non-maskable interrupt is
signaled and the HID0ICR bit is set.

When the Zen core decodes a store-type reservation instruction, it checks the value of the local reservation
flag (HID1[ATS]). If the status indicates that no reservation is active, then the store-type reservation
instruction is treated as a nop. No exceptions will be taken, and no access is performed, thus no data
breakpoint will occur, regardless of matching the data breakpoint attributes.

The Zen core treats reservation accesses as though they were both cache inhibited and guarded, regardless
of storage attributes. A hit to a cache line corresponding to the address of a reservation access will be
flushed to memory if dirty, prior to the reservation access being issued to the bus. The access will be
performed externally, regardless of a cache hit. This is done to allow external reservation logic to be built
that properly signals a reservation failure.

The Zen core provides the input signal p_xfail_b, which is sampled at termination of a st[b,h,w]cx. store
transfer to allow an external agent or mechanism to indicate that the st[b,h,w]cx. instruction has failed to
update memory, even though a reservation existed for the store at the time it was issued. This is not
considered an error, and will cause the condition codes for the st[b,h,w]cx. instruction to be written as if a
reservation did not exist for the st[b,h,w]cx. instruction. In addition, any outstanding reservation will be
cleared.

The p_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for
specialized system applications. The normal bus protocol is used to manage reservations using external
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer
response signals. In single coherent master systems, no external logic is required, and the internal
reservation flag is sufficient to support multi-tasking applications.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor68

3.6 Branch prediction
The e200z759n3 instruction fetching mechanism uses a branch target buffer (BTB) that holds branch target
addresses combined with a 2-bit saturating up-down counter scheme for branch prediction. Branch paths
are predicted by either the branch target buffer (BTB hit) or a selectable static prediction algorithm (BTB
miss) and subsequently checked to see if the prediction was correct. This enables operation beyond a
conditional branch without waiting for the branch to be decoded and resolved. The instruction fetch unit
predicts the direction of the branch as follows:

• Predict taken for any backward branch whose fetch address hits in the BTB and is predicted taken
by the counter or misses in the BTB and static prediction control in BUCSR for backward branches
indicates “predict taken”. Otherwise predict not-taken.

• Predict taken for any forward branch whose fetch address hits in the BTB and is predicted taken
by the counter or misses in the BTB and static prediction control in BUCSR for forward branches
indicates “predict taken”. Otherwise predict not-taken.

3.7 Interruption of instructions by interrupt requests
In general, the e200z759n3 core samples pending non-maskable interrupts, external input, and critical
input interrupt requests at instruction boundaries. However, in order to reduce interrupt latency, long
running instructions may be interrupted prior to completion. Instructions in this class include divides
(divw[uo][.], efsdiv, evfsdiv, evdivw[su]), load multiple word (lmw, e_lmw), and store multiple word
(stmw, e_stmw). In addition, the e_lmvgprw, e_stmvgprw, e_lmvsprw, and e_stmvsprw Volatile
Context Save/Restore APU instructions may also be interrupted prior to completion. When interrupted
prior to completion, the value saved in SRR0/CSRR0/MCSRR0 will be the address of the interrupted
instruction. The instruction will be restarted from the beginning after returning to it from the interrupt
handler.

3.8 New Zen instructions and APUs
The e200z759n3 core implements the following Freescale EIS APUs that extend the PowerPC Book E
instruction set:

• The ISEL APU, which is described in Section 3.9, ISEL APU

• The Enhanced Debug APU and the Debug Notify Halt instructions, described in Section 3.10,
Debug APU

• The Machine Check APU, which is described in Section 3.11, Machine Check APU

• The WAIT APU, which is described in Section 3.12, WAIT APU

• The Volatile Context Save/Restore APU, which is described in Section 3.14, Volatile Context
Save/Restore APU

• The Embedded Floating-Point APU version 2, described along with supporting instructions in
Chapter 5, Embedded Floating-Point APU (EFPU2).

• The Signal Processing Extension (SPE) APU version 1, described along with supporting
instructions in Chapter 6, Signal Processing Extension APU (SPE APU).

• The Performance Monitor APU, which is described in Chapter 8, Performance Monitor

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 69

• The Cache Line-locking APU, which is described in Section 11.12, Cache line locking/unlocking
APU

• The Enhanced Reservations APU, which is described in Section 3.13, Enhanced reservations APU

3.9 ISEL APU
The ISEL APU defines the isel instruction, which provides a means to select one of two registers and place
the result in a destination register under the control of a predicate value supplied by a bit in the condition
register. This instruction can be used to eliminate branches in software and in many cases improve
performance. This instruction can also increase program execution time determinism by eliminating the
need to predict the target and direction of the branches replaced by the integer select function. The
instruction form and definition is as follows:

isel isel
Integer Select

isel RT, RA, RB, crb

if RA=0 then a 320else a GPR(RA)
c = CRcrb
if c then GPR(RT) a
else GPR(RT) GPR(RB)

For isel, if the bit of the CR specified by (crb) is set, the contents of RA|0 are copied into RT. If the bit of
the CR specified by (crb) is clear, the contents of RB are copied into RT.

Other registers altered:

• None

3.10 Debug APU
e200z759n3 implements the Freescale EIS Debug APU to support the capability to handle the Debug
interrupt as an additional interrupt level. To support this interrupt level, a new ‘return from debug interrupt’
(rfdi, se_rfdi) instruction is defined as part of the Debug APU, along with a new pair of save/restore
registers, DSRR0, and DSRR1.

When the Debug APU is enabled (HID0DAPUEN = 1), the rfdi or se_rfdi instruction provides a means to
return from a debug interrupt. See Section 2.4.11, Hardware Implementation Dependent Register 0 (HID0)
for more information about enabling the Debug APU.

The instruction form and definition is as follows:

31 RT RA RB crb 0 1 1 1 1 0

0 5 6 10 11 15 16 20 21 25 26 30 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor70

rfdi rfdi
Return From Debug Interrupt

rfdi

MSR DSRR1
PC DSRR00:30 ||

10

The rfdi instruction is used to return from a Debug interrupt, or as a means of simultaneously establishing
a new context and synchronizing on that new context.

The contents of Debug Save/Restore Register 1 are place into the Machine State Register. If the new
Machine State Register value does not enable any pending exceptions, then the next instruction is fetched,
under control of the new Machine State Register value from the address DSRR00:30|| 1’b0. If the new
Machine State Register value enables one or more pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this case the value placed into Save/Restore Register 0
or Critical Save/Restore Register 0 by the interrupt processing mechanism is the address of the instruction
that would have been executed next had the interrupt not occurred (i.e. the address in Debug Save/Restore
Register 0 at the time of the execution of the rfdi).

Execution of this instruction is privileged and context synchronizing.

Special Registers Altered:

• MSR

When the Debug APU is disabled (HID0DAPUEN=0), this instruction is treated as an illegal instruction.

se_rfdi se_rfdi
Return From Debug Interrupt

se_rfdi

MSR DSRR1
PC DSRR032:62 || 0b0

The rfdi or se_rfdi instruction is used to return from a Debug interrupt, or as a means of simultaneously
establishing a new context and synchronizing on that new context.

19 / / / 0 0 0 0 1 0 0 1 1 1 0

0 5 6 20 21 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 15

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 71

The contents of Debug Save/Restore Register 1 are place into the Machine State Register. If the new
Machine State Register value does not enable any pending exceptions, then the next instruction is fetched,
under control of the new Machine State Register value from the address DSRR032:62|| 0b0. If the new
Machine State Register value enables one or more pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this case the value placed into Save/Restore Register 0
or Critical Save/Restore Register 0 by the interrupt processing mechanism is the address of the instruction
that would have been executed next had the interrupt not occurred (i.e. the address in Debug Save/Restore
Register 0 at the time of the execution of the rfdi or se_rfdi).

Execution of this instruction is privileged and context synchronizing.

Special Registers Altered:

• MSR

When the Debug APU is disabled (HID0[DAPUEN]=0), this instruction is treated as an illegal instruction.

3.10.1 Debug notify halt instructions

The dnh, e_dnh, and se_dnh instructions provide a bridge between the execution of instructions on the
core in a non-halted mode, and an external debug facility. dnh, e_dnh, and se_dnh allows software to
transition the core from a running state to a debug halted state if enabled by an external debugger, and dnh
provides the external debugger with bits reserved in the instruction itself to pass additional information.
For e200z759n3, when the CPU enters a debug halted state due to a dnh, e_dnh, or se_dnh instruction,
the instruction will be stored in the CPUSCR[IR] portion, and the CPUSCR[PC] value will point to the
instruction. The external debugger should update the CPUSCR prior to exiting the debug halted state to
point past the dnh, e_dnh, or se_dnh instruction.

Note that the dnh instruction is only available in BookE instruction pages, and the e_dnh and se_dnh
instructions are only available in VLE instruction pages.

dnh dnh
Debugger Notify Halt

dnh dui, duis

if EDBCRDNH_EN = 1 then
implementation dependent register dui
halt processor

else
illegal instruction exception

Execution of the dnh instruction causes the processor to halt if the external debug facility has enabled such
action by previously setting the EDBCRDNH_EN bit. If the processor is halted, the contents of the dui field
are provided to the external debug facility to identify the reason for the halt.

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 dui duis 0 0 1 1 0 0 0 1 1 0 /

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor72

If EDBCRDNH_EN has not been previously set by the external debug facility, executing the dnh instruction
produces an illegal instruction exception.

The duis field is provided to pass additional information about the halt, but requires that actions be
performed by the external debug facility to access the dnh instruction to read the contents of the field.

The dnh instruction is not privileged, and executes the same regardless of the state of MSRPR.

The current state of the processor debug facility, whether the processor is in IDM or EDM mode has no
effect on the execution of the dnh instruction.

Other registers altered:

• None.

Software Note: After the dnh instruction has executed, the instruction itself can be read back by the Illegal
Instruction Interrupt handler or the external debug facility if the contents of the dui and duis field are of
interest. If the processor entered the Illegal Instruction Interrupt handler, software can use SRR0 to obtain
the address of the dnh instruction that caused the handler to be invoked. If the processor is halted in debug
mode, the external debug facility can access the CPUSCR register to obtain the dnh instruction that
caused the processor to halt.

e_dnh e_dnh
Debugger Notify Halt

e_dnh dui, duis

if EDBCRDNH_EN = 1 then
implementation dependent register dui
halt processor

else
illegal instruction exception

Execution of the e_dnh instruction causes the processor to halt if the external debug facility has enabled
such action by previously setting the EDBCRDNH_EN bit. If the processor is halted, the contents of the dui
field are provided to the external debug facility to identify the reason for the halt.

If EDBCRDNH_EN has not been previously set by the external debug facility, executing the e_dnh
instruction produces an illegal instruction exception.

The duis field is provided to pass additional information about the halt, but requires that actions be
performed by the external debug facility to access the e_dnh instruction to read the contents of the field.

The e_dnh instruction is not privileged, and executes the same regardless of the state of MSRPR.

The current state of the processor debug facility, whether the processor is in IDM or EDM mode has no
effect on the execution of the e_dnh instruction.

Other registers altered:

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 dui duis 0 0 0 1 1 0 0 0 0 1 /

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 73

• None.

se_dnh se_dnh
Debugger Notify Halt

se_dnh

if EDBCRDNH_EN = 1 then

halt processor
else

illegal instruction exception

Execution of the se_dnh instruction causes the processor to halt if the external debug facility has enabled
such action by previously setting the EDBCRDNH_EN bit.

If EDBCRDNH_EN has not been previously set by the external debug facility, executing the se_dnh
instruction produces an illegal instruction exception.

The se_dnh instruction is not privileged, and executes the same regardless of the state of MSRPR.

The current state of the processor debug facility, whether the processor is in IDM or EDM mode has no
effect on the execution of the se_dnh instruction.

Other registers altered:

• None.

3.11 Machine Check APU
e200z759n3 implements the Freescale EIS Machine Check APU to support the capability to handle the
Machine Check interrupt as an additional interrupt level. To support this interrupt level, a new ‘return from
Machine Check interrupt’ (rfmci, se_rfmci) instruction is defined as part of the Machine Check APU, along
with a new pair of save/restore registers, MCSRR0, and MCSRR1, a machine check syndrome register
MCSR, and a machine check address register MCAR.

The rfmci and se_rfmci instructions provide a means to return from a Machine Check interrupt. The
instruction form and definitions is as follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 15

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor74

rfmci rfmci
Return From Machine Check Interrupt

rfmci

MSR MCSRR1
PC MCSRR00:30 ||

10

The rfmci instruction is used to return from a Machine Check interrupt, or as a means of simultaneously
establishing a new context and synchronizing on that new context.

The contents of Machine Check Save/Restore Register 1 are place into the Machine State Register. If the
new Machine State Register value does not enable any pending exceptions, then the next instruction is
fetched, under control of the new Machine State Register value from the address MCSRR00:30|| 1’b0. If
the new Machine State Register value enables one or more pending exceptions, the interrupt associated
with the highest priority pending exception is generated; in this case the value placed into the appropriate
Save/Restore Register 0 by the interrupt processing mechanism is the address of the instruction that would
have been executed next had the interrupt not occurred (i.e. the address in Machine Check Save/Restore
Register 0 at the time of the execution of the rfmci).

Execution of this instruction is privileged and context synchronizing.

Special Registers Altered:

• MSR

NOTE
This instruction is only available in Book E instruction pages, it is not
available in VLE instruction pages.

se_rfmci se_rfmci
Return From Machine Check Interrupt

se_rfmci

MSR MCSRR1

19 / / / 0 0 0 0 1 0 0 1 1 0 0

0 5 6 20 21 30 31

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 15

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 75

PC MCSRR00:30 ||
10

The se_rfmci instruction is used to return from a Machine Check interrupt, or as a means of simultaneously
establishing a new context and synchronizing on that new context.

The contents of Machine Check Save/Restore Register 1 are place into the Machine State Register. If the
new Machine State Register value does not enable any pending exceptions, then the next instruction is
fetched, under control of the new Machine State Register value from the address MCSRR00:30|| 1’b0. If
the new Machine State Register value enables one or more pending exceptions, the interrupt associated
with the highest priority pending exception is generated; in this case the value placed into the appropriate
Save/Restore Register 0 by the interrupt processing mechanism is the address of the instruction that would
have been executed next had the interrupt not occurred (i.e. the address in Machine Check Save/Restore
Register 0 at the time of the execution of the se_rfmci).

Execution of this instruction is privileged and context synchronizing.

Special Registers Altered:

• MSR

NOTE
This instruction is only available in VLE instruction pages, it is not available
in BookE instruction pages.

3.12 WAIT APU
The wait instruction allows software to cease all synchronous activity, waiting for an asynchronous
interrupt or debug interrupt to occur. The instruction can be used to cease processor activity in both user
and supervisor modes. Asynchronous interrupts that cause the waiting state to be exited if enabled are
critical input, external input, and machine check pin (p_mcp_b). Non-maskable interrupts (p_nmi_b) also
cause the waiting state to be exited.

wait wait
Wait for Interrupt

wait

The wait instruction provides an ordering function for the effects of all instructions executed by the
processor executing the wait instruction and stops synchronous processor activity. Executing a wait
instruction ensures that all instructions have completed before the wait instruction completes, causes
processor instruction fetching to cease, and ensures that no subsequent instructions are initiated until an
asynchronous interrupt or a debug interrupt occurs.

0 5 6 10 11 15 16 20 21 31

0 1 1 1 1 1 /// 0 0 0 0 1 1 1 1 1 0 /

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor76

Once the wait instruction has completed, the program counter will point to the next sequential instruction.
The saved value in xSRR0 when the processor re-initiates activity will point to the instruction following
the wait instruction.

Execution of a wait instruction places the CPU in the “waiting” state and is indicated by assertion of the
p_waiting output signal. The signal will be negated after leaving the “waiting” state.

Software must ensure that interrupts responsible for exiting the waiting state are enabled before executing
a wait instruction.

NOTE
The wait instruction can be used in verification test cases to signal the end
of a test case. The encoding for the instruction is the same in both big-endian
and little-endian modes.

3.13 Enhanced reservations APU
Zen implements the EIS enhanced reservations APU, which extends the load and reserve and store
conditional instructions to support byte and halfword data types. These instructions operate in the same
manner as the lwarx and stwcx. instructions, except for the size of the access.

lbarx lbarx
Load Byte And Reserve Indexed

lbarx RT,RA,RB (X-mode)

if RA=0 then a 640 else a GPR(RA)
if X-mode then EA 320 || (a + GPR(RB))32:63
RESERVE 1
RESERVE_ADDR real_addr(EA)
GPR(RT) 560 || MEM(EA,1)

Let the effective address (EA) be calculated as follows:

• For lbarx, let EA be 32 0s concatenated with bits 32:63 of the sum of the contents of GPR(RA), or
64 0s if RA=0, and the contents of GPR(RB).

The byte in storage addressed by EA is loaded into GPR(RT)56:63. GPR(RT)0:55 are set to 0.

This instruction creates a reservation for use by a Store Byte Conditional instruction. An address computed
from the EA is associated with the reservation and replaces any address previously associated with the
reservation.

Special Registers Altered:

• None

0 1 1 1 1 1 RT RA RB 0 0 0 0 1 1 0 1 0 0 /

0 6 11 16 21 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 77

lharx lharx
Load Halfword And Reserve Indexed

lharx RT,RA,RB (X-mode)

if RA=0 then a 640 else a GPR(RA)
EA 320 || (a + GPR(RB))32:63
RESERVE 1
RESERVE_ADDR real_addr(EA)
GPR(RT) 480 || MEM(EA,2)

Let the effective address (EA) be calculated as follows:

• For lharx, let EA be 32 0s concatenated with bits 32:63 of the sum of the contents of GPR(RA), or
64 0s if RA=0, and the contents of GPR(RB).

The halfword in storage addressed by EA is loaded into GPR(RT)48:63. GPR(RT)0:47 are set to 0.

This instruction creates a reservation for use by a Store Halfword Conditional instruction. An address
computed from the EA is associated with the reservation and replaces any address previously associated
with the reservation.

EA must be a multiple of 2. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

stbcx. stbcx.
Store Byte Conditional Indexed

stbcx. RS,RA,RB (X-mode)

if RA=0 then a 640 else a GPR(RA)
EA 320 || (a + GPR(RB))32:63
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA,1) GPR(RS)56:63
CR0 0b00 || 0b1 || XERSO

else
u undefined 1-bit value
if u then MEM(EA,1) GPR(RS)56:63
CR0 0b00 || u || XERSO

RESERVE 0
else

CR0 0b00 || 0b0 || XERSO

0 1 1 1 1 1 RT RA RB 0 0 0 1 1 1 0 1 0 0 /

0 6 11 16 21 31

0 1 1 1 1 1 RS RA RB 1 0 1 0 1 1 0 1 1 0 1

0 6 11 16 21 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor78

Let the effective address (EA) be calculated as follows:

• For stbcx., let EA be 32 0s concatenated with bits 32:63 of the sum of the contents of GPR(RA),
or 64 0s if RA=0, and the contents of GPR(RB).

If a reservation exists and the storage address specified by the stbcx. is the same as that specified by the
lbarx instruction that established the reservation, the contents of bits 56:63 of GPR(RS) are stored into the
byte in storage addressed by EA and the reservation is cleared.

If a reservation exists but the storage address specified by the stbcx. is not the same as that specified by
the Load and Reserve instruction that established the reservation, the reservation is cleared, and it is
undefined whether the instruction completes without altering storage.

If a reservation does not exist, the instruction completes without altering storage.

CR Field 0 is set to reflect whether the store operation was performed, as follows.
CR0LT GT EQ SO = 0b00 || store_performed || XERSO

Special Registers Altered:

• CR0

sthcx. sthcx.
Store Halfword Conditional Indexed

sthcx. RS,RA,RB (X-mode)

if RA=0 then a 640 else a GPR(RA)
EA 320 || (a + GPR(RB))32:63
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA,2) GPR(RS)48:63
CR0 0b00 || 0b1 || XERSO

else
u undefined 1-bit value
if u then MEM(EA,2) GPR(RS)48:63
CR0 0b00 || u || XERSO

RESERVE 0
else

CR0 0b00 || 0b0 || XERSO

Let the effective address (EA) be calculated as follows:

• For sthcx., let EA be 32 0s concatenated with bits 32:63 of the sum of the contents of GPR(RA),
or 64 0s if RA=0, and the contents of GPR(RB).

If a reservation exists and the storage address specified by the sthcx. is the same as that specified by the
lharx instruction that established the reservation, the contents of bits 48:63 of GPR(RS) are stored into the
halfword in storage addressed by EA and the reservation is cleared.

0 1 1 1 1 1 RS RA RB 1 0 1 1 0 1 0 1 1 0 1

0 6 11 16 21 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 79

If a reservation exists but the storage address specified by the sthcx. is not the same as that specified by
the Load and Reserve instruction that established the reservation, the reservation is cleared, and it is
undefined whether the instruction completes without altering storage.

If a reservation does not exist, the instruction completes without altering storage.

CR Field 0 is set to reflect whether the store operation was performed, as follows.
CR0LT GT EQ SO = 0b00 || store_performed || XERSO

EA must be a multiple of 2. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• CR0

3.14 Volatile Context Save/Restore APU
Zen implements the EIS Volatile Context Save/Restore APU to support the capability to quickly save and
restore volatile register context on entry into an interrupt handler. To support this functionality, a new set
of instructions is defined as part of the APU.

• e_lmvgprw, e_stmvgprw — load/store multiple volatile gprs (r0, r3:r12)

• e_lmvsprw, e_stmvsprw — load/store multiple volatile sprs (CR, LR, CTR, and XER)

• e_lmvsrrw, e_stmvsrrw — load/store multiple volatile srrs (SRR0, SRR1)

• e_lmvcsrrw, e_stmvcsrrw — load/store multiple volatile csrrs (CSRR0, CSRR1)

• e_lmvdsrrw, e_stmvdsrrw — load/store multiple volatile dsrrs (DSRR0, DSRR1)

• e_lmvmcsrrw, e_stmvmcsrrw — load/store multiple volatile mcsrrs (MCSRR0, MCSRR1)

These instructions are available in VLE instruction pages to perform a multiple register load or store to a
word aligned memory address.

e_lmvgprw e_lmvgprw
Load Multiple Volatile GPR Word

e_lmvgprw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

GPR(r0)32:63 MEM(EA,4)
EA (EA+4)

r 3
do while r 12

0 0 0 1 1 0 0 0 0 0 0 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor80

 GPR(r)32:63 MEM(EA,4)
 EA (EA+4)
 r r + 1

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers GPR(R0), and GPR(R3) through GPR(12) are loaded from n consecutive words in
storage starting at address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

e_stmvgprw e_stmvgprw
Store Multiple Volatile GPR Word

e_stmvgprw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) GPR(r0)32:63
EA (EA+4)

r 3
do while r 12

MEM(EA,4) GPR(r)32:63
r r + 1
EA (EA+4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers GPR(R0), and GPR(R3) through GPR(12) are stored in n consecutive words in
storage starting at address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

0 0 0 1 1 0 0 0 0 0 0 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 81

e_lmvsprw e_lmvsprw
Load Multiple Volatile SPR Word

e_lmvsprw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))
CR32:63 MEM(EA,4)
EA (EA+4)

LR32:63 MEM(EA,4)
EA (EA+4)

CTR32:63 MEM(EA,4)
EA (EA+4)

XER32:63 MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CR, LR, CTR, and XER are loaded from n consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• CR

• LR

• CTR

• XER

e_stmvsprw e_stmvsprw
Store Multiple Volatile SPR Word

e_stmvsprw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) CR32:63

0 0 0 1 1 0 0 0 0 0 1 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

0 0 0 1 1 0 0 0 0 0 1 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor82

EA (EA+4)

MEM(EA,4) LR32:63
EA (EA+4)

MEM(EA,4) CTR32:63
EA (EA+4)

MEM(EA,4) XER32:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CR, LR, CTR, and XER are stored in n consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

e_lmvsrrw e_lmvsrrw
Load Multiple Volatile SRR Word

e_lmvsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

SRR032:63 MEM(EA,4)
EA (EA+4)
SRR132:63 MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers SRR0 and SRR1 are loaded from consecutive words in storage starting at address
EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• SRR0

• SRR1

0 0 0 1 1 0 0 0 1 0 0 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 83

e_stmvsrrw e_stmvsrrw
Store Multiple Volatile SRR Word

e_stmvsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) SRR032:63
EA (EA+4)
MEM(EA,4) SRR132:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers SRR0 and SRR1 are stored in consecutive words in storage starting at address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

e_lmvcsrrw e_lmvcsrrw
Load Multiple Volatile CSRR Word

e_lmvcsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

CSRR032:63 MEM(EA,4)
EA (EA+4)
CSRR132:63 MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CSRR0 and CSRR1 are loaded from consecutive words in storage starting at
address EA.

0 0 0 1 1 0 0 0 1 0 0 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

0 0 0 1 1 0 0 0 1 0 1 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor84

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• CSRR0

• CSRR1

e_stmvcsrrw e_stmvcsrrw
Store Multiple Volatile CSRR Word

e_stmvcsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) CSRR032:63
EA (EA+4)
MEM(EA,4) CSRR132:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers CSRR0 and CSRR1 are stored in consecutive words in storage starting at address
EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

e_lmvdsrrw e_lmvdsrrw
Load Multiple Volatile DSRR Word

e_lmvdsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

DSRR032:63 MEM(EA,4)

0 0 0 1 1 0 0 0 1 0 1 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

0 0 0 1 1 0 0 0 1 1 0 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 85

EA (EA+4)
DSRR132:63 MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers DSRR0 and DSRR1 are loaded from consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• DSRR0

• DSRR1

e_stmvdsrrw e_stmvdsrrw
Store Multiple Volatile DSRR Word

e_stmvdsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) DSRR032:63
EA (EA+4)
MEM(EA,4) DSRR132:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers DSRR0 and DSRR1 are stored in consecutive words in storage starting at address
EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

0 0 0 1 1 0 0 0 1 1 0 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor86

e_lmvmcsrrw e_lmvmcsrrw
Load Multiple Volatile MCSRR Word

e_lmvmcsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MCSRR032:63 MEM(EA,4)
EA (EA+4)
MCSRR132:63 MEM(EA,4)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers MCSRR0 and MCSRR1 are loaded from consecutive words in storage starting at
address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• MCSRR0

• MCSRR1

e_stmvmcsrrw e_stmvmcsrrw
Store Multiple Volatile MCSRR Word

e_stmvmcsrrw D8(RA) (D8-mode)

if RA=0 then EA EXTS(D8)
else EA (GPR(RA)+EXTS(D8))

MEM(EA,4) MCSRR032:63
EA (EA+4)
MEM(EA,4) MCSRR132:63

Let the effective address (EA) be the sum of the contents of GPR(RA), or 0 if RA=0, and the sign-extended
value of the D8 instruction field.

Bits 32:63 of registers MCSRR0 and MCSRR1 are stored in consecutive words in storage starting at
address EA.

0 0 0 1 1 0 0 0 1 1 1 RA 0 0 0 1 0 0 0 0 D8

0 6 11 16 24 31

0 0 0 1 1 0 0 0 1 1 1 RA 0 0 0 1 0 0 0 1 D8

0 6 11 16 24 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 87

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or the results are boundedly
undefined.

Special Registers Altered:

• None

3.15 Unimplemented SPRs and read-only SPRs
Zen fully decodes the SPR field of the mfspr and mtspr instructions. If the SPR specified is undefined
and not privileged, an illegal instruction exception is generated. If the SPR specified is undefined and
privileged and the CPU is in user mode (MSRPR=1), a privileged instruction exception is generated. If the
SPR specified is undefined and privileged and the CPU is in supervisor mode (MSRPR=0), an illegal
instruction exception is generated.

For the mtspr instruction, if the SPR specified is read-only and not privileged, an illegal instruction
exception is generated. If the SPR specified is read-only and privileged and the CPU is in user mode
(MSRPR=1), a privileged instruction exception is generated. If the SPR specified is read-only and
privileged and the CPU is in supervisor mode (MSRPR=0), an illegal instruction exception is generated.

3.16 Invalid forms of instructions

3.16.1 Load and store with update instructions

PowerPC Book E defines the case when a load with update instruction specifies the same register in the
RT and RA field of the instruction as an invalid format. For this invalid case, the Zen core will perform
the instruction and update the register with the load data. In addition, if RA=0 for any load or store with
update instruction, the Zen core will update RA (GPR0).

3.16.2 Load multiple word (lmw, e_lmw) instruction

PowerPC Book E defines as invalid any form of the lmw or e_lmw instruction in which RA is in the range
of registers to be loaded, including the case in which RA=0. On Zen, invalid forms of the lmw or e_lmw
instruction will be executed as follows:

• Case 1: RA is in the range of RT, RA!=0. In this case, address generation for individual loads to
register targets is done using the architectural value of RA that existed when beginning execution
of this lmw or e_lmw instruction. RA will be overwritten with a value fetched from memory as if it
had not been the base register. Note that if the instruction is interrupted and restarted, the base
address may be different if RA has been overwritten.

• Case 2: RA=0 and RT=0. In this case, address generation for all loads to register targets RT=0 to
RT=31 will be done substituting the value of 0 for the RA operand.

3.16.3 Branch conditional to count register instructions

PowerPC Book E defines as invalid any bcctr or bcctrl instruction that specifies the ‘decrement and test
CTR’ (BO2=0) option. For these invalid forms of instructions Zen will execute the instruction by

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor88

decrementing the CTR and branch to the location specified by the pre-decremented CTR value if all CR
and CTR conditions are met as specified by the other BO field settings.

3.16.4 Instructions with reserved fields non-zero

PowerPC Book E defines certain bit fields in various instructions as reserved and specifies that these fields
be set to zero. Per the Book E recommendation, Zen ignores the value of the reserved field (bit 31) in
X-form integer load and store instructions. Zen ignores the value of the reserved ‘z’ bits in the BO field of
branch instructions. For all other instructions, Zen will generate an illegal instruction exception if a
reserved field is non-zero.

3.17 Instruction summary
Table 20 and Table 21 list all 32-bit instructions in PowerPC Book E, as well as certain Zen specific
instructions, sorted by mnemonic. Format, Opcode, Mnemonic, Instruction name, and page number in
Book E: Enhanced PowerPCtm Architecture v0.99 are included in the table. For Zen specific instructions,
page number is not shown. Entries with a are unsupported by the Zen core, and will signal an illegal
instruction exception. Implementation dependent instructions are noted with a footnote. Instructions that
are optionally supported (when an optional function is added to the base core) are shown with shaded
entries.

Note that specific APUs are not included in the table below:

• Cache Maintenance APU

• SPE APU

• VLE APU

• WAIT APU

• Enhanced Reservation APU

• Volatile Context Save/Restore APU

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 89

3.17.1 Instruction index sorted by mnemonic

Table 20. Instructions sorted by mnemonic
F

o
rm

at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

X 011111 01000 01010 0 add Add 223

X 011111 01000 01010 1 add. Add & record CR 223

X 011111 00000 01010 0 addc Add Carrying 224

X 011111 00000 01010 1 addc. Add Carrying & record CR 224

X 011111 10000 01010 0 addco Add Carrying & record OV 224

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR 224

X 011111 00100 01010 0 adde Add Extended with CA 225

X 011111 00100 01010 1 adde. Add Extended with CA & record CR 225

X 011111 10100 01010 0 addeo Add Extended with CA & record OV 225

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR 225

D 001110 ----- ----- - addi Add Immediate 226

D 001100 ----- ----- - addic Add Immediate Carrying 227

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR 227

D 001111 ----- ----- - addis Add Immediate Shifted 226

X 011111 00111 01010 0 addme Add to Minus One Extended with CA 228

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR 228

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV 228

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR 228

X 011111 11000 01010 0 addo Add & record OV 223

X 011111 11000 01010 1 addo. Add & record OV & CR 223

X 011111 00110 01010 0 addze Add to Zero Extended with CA 229

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR 229

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor90

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV 229

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR 229

X 011111 00000 11100 0 and AND 230

X 011111 00000 11100 1 and. AND & record CR 230

X 011111 00001 11100 0 andc AND with Complement 230

X 011111 00001 11100 1 andc. AND with Complement & record CR 230

D 011100 ----- ----- - andi. AND Immediate & record CR 230

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR 230

I 010010 ----- ----0 0 b Branch 231

I 010010 ----- ----1 0 ba Branch Absolute 231

B 010000 ----- ----0 0 bc Branch Conditional 232

B 010000 ----- ----1 0 bca Branch Conditional Absolute 232

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register 233

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link 233

B 010000 ----- ----0 1 bcl Branch Conditional & Link 232

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute 232

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register 234

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link 234

I 010010 ----- ----0 1 bl Branch & Link 231

I 010010 ----- ----1 1 bla Branch & Link Absolute 231

X 011111 00000 00000 / cmp Compare 235

D 001011 ----- ----- - cmpi Compare Immediate 235

X 011111 00001 00000 / cmpl Compare Logical 236

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 91

D 001010 ----- ----- - cmpli Compare Logical Immediate 236

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word 237

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR 237

XL 010011 01000 00001 / crand Condition Register AND 238

XL 010011 00100 00001 / crandc Condition Register AND with Complement 238

XL 010011 01001 00001 / creqv Condition Register Equivalent 238

XL 010011 00111 00001 / crnand Condition Register NAND 239

XL 010011 00001 00001 / crnor Condition Register NOR 239

XL 010011 01110 00001 / cror Condition Register OR 239

XL 010011 01101 00001 / crorc Condition Register OR with Complement 240

XL 010011 00110 00001 / crxor Condition Register XOR 240

X 011111 10111 10110 / dcba Data Cache Block Allocate 241

X 011111 00010 10110 / dcbf Data Cache Block Flush 242

X 011111 01110 10110 / dcbi Data Cache Block Invalidate 243

X 011111 01100 00110 / dcblc1 Data Cache Block Lock Clear —

X 011111 00001 10110 / dcbst Data Cache Block Store 245

X 011111 01000 10110 / dcbt Data Cache Block Touch 246

X 011111 00101 00110 / dcbtls1 Data Cache Block Touch and Lock Set —

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store 247

X 011111 00100 00110 / dcbtstls1 Data Cache Block Touch for Store and Lock Set —

X 011111 11111 10110 / dcbz Data Cache Block set to Zero 248

X 011111 01111 01011 0 divw Divide Word 251

X 011111 01111 01011 1 divw. Divide Word & record CR 251

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor92

X 011111 11111 01011 0 divwo Divide Word & record OV 251

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR 251

X 011111 01110 01011 0 divwu Divide Word Unsigned 252

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR 252

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV 252

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR 252

X 011111 01000 11100 0 eqv Equivalent 253

X 011111 01000 11100 1 eqv. Equivalent & record CR 253

X 011111 11101 11010 0 extsb Extend Sign Byte 254

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR 254

X 011111 11100 11010 0 extsh Extend Sign Halfword 254

X 011111 11100 11010 1 extsh. Extend Sign Halfword & record CR 254

X 111111 01000 01000 0 2 255

X 111111 01000 01000 1 2 255

A 111111 ----- 10101 0 2 256

A 111111 ----- 10101 1 2 256

A 111011 ----- 10101 0 2 256

A 111011 ----- 10101 1 2 256

X 111111 11010 01110 / 2 257

X 111111 00001 00000 / 2 259

X 111111 00000 00000 / 2 259

X 111111 11001 01110 / 2 260

X 111111 11001 01111 / 2 260

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 93

X 111111 00000 01110 0 2 262

X 111111 00000 01110 1 2 262

X 111111 00000 01111 0 2 262

X 111111 00000 01111 1 2 262

A 111111 ----- 10010 0 2 264

A 111111 ----- 10010 1 2 264

A 111011 ----- 10010 0 2 264

A 111011 ----- 10010 1 2 264

A 111111 ----- 11101 0 2 265

A 111111 ----- 11101 1 2 265

A 111011 ----- 11101 0 2 265

A 111011 ----- 11101 1 2 265

X 111111 00010 01000 0 2 266

X 111111 00010 01000 1 2 266

A 111111 ----- 11100 0 2 267

A 111111 ----- 11100 1 2 267

A 111011 ----- 11100 0 2 267

A 111011 ----- 11100 1 2 267

A 111111 ----- 11001 0 2 268

A 111111 ----- 11001 1 2 268

A 111011 ----- 11001 0 2 268

A 111011 ----- 11001 1 2 268

X 111111 00100 01000 0 2 269

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor94

X 111111 00100 01000 1 2 269

X 111111 00001 01000 0 2 269

X 111111 00001 01000 1 2 269

A 111111 ----- 11111 0 2 270

A 111111 ----- 11111 1 2 270

A 111011 ----- 11111 0 2 270

A 111011 ----- 11111 1 2 270

A 111111 ----- 11110 0 2 271

A 111111 ----- 11110 1 2 271

A 111011 ----- 11110 0 2 271

A 111011 ----- 11110 1 2 271

A 111011 ----- 11000 0 2 272

A 111011 ----- 11000 1 2 272

X 111111 00000 01100 0 2 273

X 111111 00000 01100 1 2 273

A 111111 ----- 11010 0 2 276

A 111111 ----- 11010 1 2 276

A 111111 ----- 10111 0 2 277

A 111111 ----- 10111 1 2 277

A 111111 ----- 10110 0 2 278

A 111111 ----- 10110 1 2 278

A 111011 ----- 10110 0 2 278

A 111011 ----- 10110 1 2 278

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 95

A 111111 ----- 10100 0 2 279

A 111111 ----- 10100 1 2 279

A 111011 ----- 10100 0 2 279

A 111011 ----- 10100 1 2 279

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate 280

X 011111 00111 00110 / icblc1 Instruction Cache Block Lock Clear —

X 011111 00000 10110 / icbt Instruction Cache Block Touch 281

X 011111 01111 00110 / icbtls1 Instruction Cache Block Touch and Lock Set —

?? 011111 ----- 01111 / isel3 Integer Select —

XL 010011 00100 10110 / isync Instruction Synchronize 282

D 100010 ----- ----- - lbz Load Byte & Zero 283

D 100011 ----- ----- - lbzu Load Byte & Zero with Update 283

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed 283

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed 283

D 110010 ----- ----- - 2 286

D 110011 ----- ----- - 2 286

X 011111 10011 10111 / 2 286

X 011111 10010 10111 / 2 286

D 110000 ----- ----- - 2 287

D 110001 ----- ----- - 2 287

X 011111 10001 10111 / 2 287

X 011111 10000 10111 / 2 287

D 101010 ----- ----- - lha Load Halfword Algebraic 288

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor96

D 101011 ----- ----- - lhau Load Halfword Algebraic with Update 288

X 011111 01011 10111 / lhaux Load Halfword Algebraic with Update Indexed 288

X 011111 01010 10111 / lhax Load Halfword Algebraic Indexed 288

X 011111 11000 10110 / lhbrx Load Halfword Byte-Reverse Indexed 289

D 101000 ----- ----- - lhz Load Halfword & Zero 290

D 101001 ----- ----- - lhzu Load Halfword & Zero with Update 290

X 011111 01001 10111 / lhzux Load Halfword & Zero with Update Indexed 290

X 011111 01000 10111 / lhzx Load Halfword & Zero Indexed 290

D 101110 ----- ----- - lmw Load Multiple Word 291

X 011111 10010 10101 / 4 292

X 011111 10000 10101 / 4 292

X 011111 00000 10100 / lwarx5 Load Word & Reserve Indexed 294

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed 296

D 100000 ----- ----- - lwz Load Word & Zero 297

D 100001 ----- ----- - lwzu Load Word & Zero with Update 297

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed 297

X 011111 00000 10111 / lwzx Load Word & Zero Indexed 297

X 011111 11010 10110 / mbar5 Memory Barrier 298

XL 010011 00000 00000 / mcrf Move Condition Register Field 299

X 111111 00010 00000 / 2 300

X 011111 10000 00000 / mcrxr Move to Condition Register from XER 300

X 011111 01000 10011 / 4 301

X 011111 00000 10011 / mfcr Move From Condition Register 301

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 97

XFX 011111 01010 00011 / mfdcr Move From Device Control Register 302

X 011111 01000 00011 / 4 302

X 111111 10010 00111 0 2 303

X 111111 10010 00111 1 2 303

X 011111 00010 10011 / mfmsr Move From Machine State Register 303

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register 304

X 011111 10010 10110 / msync5 Memory Synchronize 305

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields 306

XFX 011111 01110 00011 / mtdcr Move To Device Control Register 307

X 011111 01100 00011 / 4 307

X 111111 00010 00110 0 2 308

X 111111 00010 00110 1 2 308

X 111111 00001 00110 0 2 308

X 111111 00001 00110 1 2 308

XFL 111111 10110 00111 0 2 309

XFL 111111 10110 00111 1 2 309

X 111111 00100 00110 0 2 310

X 111111 00100 00110 1 2 310

X 011111 00100 10010 / mtmsr Move To Machine State Register 311

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register 312

X 011111 /0010 01011 0 mulhw Multiply High Word 314

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR 314

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned 314

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor98

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR 314

D 000111 ----- ----- - mulli Multiply Low Immediate 315

X 011111 00111 01011 0 mullw Multiply Low Word 316

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR 316

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV 316

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR 316

X 011111 01110 11100 0 nand NAND 317

X 011111 01110 11100 1 nand. NAND & record CR 317

X 011111 00011 01000 0 neg Negate 318

X 011111 00011 01000 1 neg. Negate & record CR 318

X 011111 10011 01000 0 nego Negate & record OV 318

X 011111 10011 01000 1 nego. Negate & record OV & record CR 318

X 011111 00011 11100 0 nor NOR 319

X 011111 00011 11100 1 nor. NOR & record CR 319

X 011111 01101 11100 0 or OR 320

X 011111 01101 11100 1 or. OR & record CR 320

X 011111 01100 11100 0 orc OR with Complement 320

X 011111 01100 11100 1 orc. OR with Complement & record CR 320

D 011000 ----- ----- - ori OR Immediate 320

D 011001 ----- ----- - oris OR Immediate Shifted 320

XL 010011 00001 10011 / rfci Return From Critical Interrupt 321

XL 010011 00001 00111 / rfdi6 Return From Debug Interrupt —

XL 010011 00001 10010 / rfi Return From Interrupt 322

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 99

XL 010011 00001 00110 / rfmci7 Return From Machine Check Interrupt —

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immediate then Mask Insert 327

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immediate then Mask Insert & record CR 327

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immediate then AND with Mask 328

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immediate then AND with Mask & record CR 328

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask 328

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR 328

SC 010001 ///// ////1 / sc System Call 330

X 011111 00000 11000 0 slw Shift Left Word 332

X 011111 00000 11000 1 slw. Shift Left Word & record CR 332

X 011111 11000 11000 0 sraw Shift Right Algebraic Word 334

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR 334

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate 334

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR 334

X 011111 10000 11000 0 srw Shift Right Word 336

X 011111 10000 11000 1 srw. Shift Right Word & record CR 336

D 100110 ----- ----- - stb Store Byte 337

D 100111 ----- ----- - stbu Store Byte with Update 337

X 011111 00111 10111 / stbux Store Byte with Update Indexed 337

X 011111 00110 10111 / stbx Store Byte Indexed 337

D 110110 ----- ----- - 2 340

D 110111 ----- ----- - 2 340

X 011111 10111 10111 / 2 340

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor100

X 011111 10110 10111 / 2 340

X 011111 11110 10111 / 2 341

D 110100 ----- ----- - 2 342

D 110101 ----- ----- - 2 342

X 011111 10101 10111 / 2 342

X 011111 10100 10111 / 2 342

D 101100 ----- ----- - sth Store Halfword 343

X 011111 11100 10110 / sthbrx Store Halfword Byte-Reverse Indexed 344

D 101101 ----- ----- - sthu Store Halfword with Update 343

X 011111 01101 10111 / sthux Store Halfword with Update Indexed 343

X 011111 01100 10111 / sthx Store Halfword Indexed 343

D 101111 ----- ----- - stmw Store Multiple Word 345

X 011111 10110 10101 / 4 346

X 011111 10100 10101 / 4 346

D 100100 ----- ----- - stw Store Word 347

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed 348

X 011111 00100 10110 1 stwcx.5 Store Word Conditional Indexed & record CR 349

D 100101 ----- ----- - stwu Store Word with Update 347

X 011111 00101 10111 / stwux Store Word with Update Indexed 347

X 011111 00100 10111 / stwx Store Word Indexed 347

X 011111 00001 01000 0 subf Subtract From 351

X 011111 00001 01000 1 subf. Subtract From & record CR 351

X 011111 00000 01000 0 subfc Subtract From Carrying 352

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 101

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR 352

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV 352

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR 352

X 011111 00100 01000 0 subfe Subtract From Extended with CA 353

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR 353

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV 353

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR 353

D 001000 ----- ----- - subfic Subtract From Immediate Carrying 354

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA 355

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR 355

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV 355

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV & CR 355

X 011111 10001 01000 0 subfo Subtract From & record OV 351

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR 351

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA 356

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR 356

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV 356

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR 356

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed 358

X 011111 11101 10010 / tlbre TLB Read Entry 359

X 011111 11100 10010 ? tlbsx TLB Search Indexed 360

X 011111 10001 10110 / tlbsync TLB Synchronize 361

X 011111 11110 10010 / tlbwe TLB Write Entry 362

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor102

3.17.2 Instruction index sorted by opcode

X 011111 00000 00100 / tw Trap Word 363

D 000011 ----- ----- - twi Trap Word Immediate 363

X 011111 00100 00011 / wrtee Write External Enable 364

X 011111 00101 00011 / wrteei Write External Enable Immediate 364

X 011111 01001 11100 0 xor XOR 365

X 011111 01001 11100 1 xor. XOR & record CR 365

D 011010 ----- ----- - xori XOR Immediate 365

D 011011 ----- ----- - xoris XOR Immediate Shifted 365

NOTES:
1 Motorola Book E cache locking APU, refer to Section 11.12, Cache line locking/unlocking APU.
2 Attempted execution causes an illegal instruction exception.
3 Motorola Book E isel APU, refer to Section 3.9, ISEL APU.
4 Attempted execution causes an an illegal instruction exception
5 See Section 3.5, Memory synchronization and reservation instructions.
6 See Section 3.10, Debug APU.
7 See Section 3.11, Machine Check APU.

Table 21. Instructions sorted by opcode

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

D 000011 ----- ----- - twi Trap Word Immediate 363

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

Table 20. Instructions sorted by mnemonic (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’s Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 103

D 000111 ----- ----- - mulli Multiply Low Immediate 315

D 001000 ----- ----- - subfic Subtract From Immediate Carrying 354

D 001010 ----- ----- - cmpli Compare Logical Immediate 236

D 001011 ----- ----- - cmpi Compare Immediate 235

D 001100 ----- ----- - addic Add Immediate Carrying 227

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR 227

D 001110 ----- ----- - addi Add Immediate 226

D 001111 ----- ----- - addis Add Immediate Shifted 226

B 010000 ----- ----0 0 bc Branch Conditional 232

B 010000 ----- ----0 1 bcl Branch Conditional & Link 232

B 010000 ----- ----1 0 bca Branch Conditional Absolute 232

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute 232

SC 010001 ///// ////1 / sc System Call 330

I 010010 ----- ----0 0 b Branch 231

I 010010 ----- ----0 1 bl Branch & Link 231

I 010010 ----- ----1 0 ba Branch Absolute 231

I 010010 ----- ----1 1 bla Branch & Link Absolute 231

XL 010011 00000 00000 / mcrf Move Condition Register Field 299

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register 234

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link 234

XL 010011 00001 00001 / crnor Condition Register NOR 239

XL 010011 00001 00110 / rfmci Return From Machine Check Interrupt ----

XL 010011 00001 00111 / rfdi Return From Debug Interrupt ----

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor104

XL 010011 00001 10010 / rfi Return From Interrupt 322

XL 010011 00001 10011 / rfci Return From Critical Interrupt 321

XL 010011 00100 00001 / crandc Condition Register AND with Complement 238

XL 010011 00100 10110 / isync Instruction Synchronize 282

XL 010011 00110 00001 / crxor Condition Register XOR 240

XL 010011 00111 00001 / crnand Condition Register NAND 239

XL 010011 01000 00001 / crand Condition Register AND 238

XL 010011 01001 00001 / creqv Condition Register Equivalent 238

XL 010011 01101 00001 / crorc Condition Register OR with Complement 240

XL 010011 01110 00001 / cror Condition Register OR 239

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register 233

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link 233

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immediate then Mask Insert 327

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immediate then Mask Insert & record CR 327

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immediate then AND with Mask 328

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immediate then AND with Mask & record CR 328

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask 328

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR 328

D 011000 ----- ----- - ori OR Immediate 320

D 011001 ----- ----- - oris OR Immediate Shifted 320

D 011010 ----- ----- - xori XOR Immediate 365

D 011011 ----- ----- - xoris XOR Immediate Shifted 365

D 011100 ----- ----- - andi. AND Immediate & record CR 230

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 105

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR 230

?? 011111 ----- 01111 / isel Integer Select —

X 011111 00000 00000 / cmp Compare 235

X 011111 00000 00100 / tw Trap Word 363

X 011111 00000 01000 0 subfc Subtract From Carrying 352

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR 352

X 011111 00000 01010 0 addc Add Carrying 224

X 011111 00000 01010 1 addc. Add Carrying & record CR 224

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned 314

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR 314

X 011111 00000 10011 / mfcr Move From Condition Register 301

X 011111 00000 10100 / lwarx Load Word & Reserve Indexed 294

X 011111 00000 10110 / icbt Instruction Cache Block Touch 281

X 011111 00000 10111 / lwzx Load Word & Zero Indexed 297

X 011111 00000 11000 0 slw Shift Left Word 332

X 011111 00000 11000 1 slw. Shift Left Word & record CR 332

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word 237

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR 237

X 011111 00000 11100 0 and AND 230

X 011111 00000 11100 1 and. AND & record CR 230

X 011111 00001 00000 / cmpl Compare Logical 236

X 011111 00001 01000 0 subf Subtract From 351

X 011111 00001 01000 1 subf. Subtract From & record CR 351

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor106

X 011111 00001 10110 / dcbst Data Cache Block Store 245

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed 297

X 011111 00001 11100 0 andc AND with Complement 230

X 011111 00001 11100 1 andc. AND with Complement & record CR 230

X 011111 /0010 01011 0 mulhw Multiply High Word 314

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR 314

X 011111 00010 10011 / mfmsr Move From Machine State Register 303

X 011111 00010 10110 / dcbf Data Cache Block Flush 242

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed 283

X 011111 00011 01000 0 neg Negate 318

X 011111 00011 01000 1 neg. Negate & record CR 318

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed 283

X 011111 00011 11100 0 nor NOR 319

X 011111 00011 11100 1 nor. NOR & record CR 319

X 011111 00100 00011 / wrtee Write External Enable 364

X 011111 00100 00110 / dcbtstls1 Data Cache Block Touch for Store and Lock Set —

X 011111 00100 01000 0 subfe Subtract From Extended with CA 353

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR 353

X 011111 00100 01010 0 adde Add Extended with CA 225

X 011111 00100 01010 1 adde. Add Extended with CA & record CR 225

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields 306

X 011111 00100 10010 / mtmsr Move To Machine State Register 311

X 011111 00100 10110 1 stwcx. Store Word Conditional Indexed & record CR 349

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 107

X 011111 00100 10111 / stwx Store Word Indexed 347

X 011111 00101 00011 / wrteei Write External Enable Immediate 364

X 011111 00101 00110 / dcbtls1 Data Cache Block Touch and Lock Set —

X 011111 00101 10111 / stwux Store Word with Update Indexed 347

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA 356

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR 356

X 011111 00110 01010 0 addze Add to Zero Extended with CA 229

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR 229

X 011111 00110 10111 / stbx Store Byte Indexed 337

X 011111 00111 00110 / icblc1 Instruction Cache Block Lock Clear —

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA 355

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR 355

X 011111 00111 01010 0 addme Add to Minus One Extended with CA 228

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR 228

X 011111 00111 01011 0 mullw Multiply Low Word 316

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR 316

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store 247

X 011111 00111 10111 / stbux Store Byte with Update Indexed 337

X 011111 01000 00011 / 302

X 011111 01000 01010 0 add Add 223

X 011111 01000 01010 1 add. Add & record CR 223

X 011111 01000 10011 / 301

X 011111 01000 10110 / dcbt Data Cache Block Touch 246

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor108

X 011111 01000 10111 / lhzx Load Halfword & Zero Indexed 290

X 011111 01000 11100 0 eqv Equivalent 253

X 011111 01000 11100 1 eqv. Equivalent & record CR 253

X 011111 01001 10111 / lhzux Load Halfword & Zero with Update Indexed 290

X 011111 01001 11100 0 xor XOR 365

X 011111 01001 11100 1 xor. XOR & record CR 365

XFX 011111 01010 00011 / mfdcr Move From Device Control Register 302

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register 304

X 011111 01010 10111 / lhax Load Halfword Algebraic Indexed 288

X 011111 01011 10111 / lhaux Load Halfword Algebraic with Update Indexed 288

X 011111 01100 00011 / 307

X 011111 01100 00110 / dcblc1 Data Cache Block Lock Clear —

X 011111 01100 10111 / sthx Store Halfword Indexed 343

X 011111 01100 11100 0 orc OR with Complement 320

X 011111 01100 11100 1 orc. OR with Complement & record CR 320

X 011111 01101 10111 / sthux Store Halfword with Update Indexed 343

X 011111 01101 11100 0 or OR 320

X 011111 01101 11100 1 or. OR & record CR 320

XFX 011111 01110 00011 / mtdcr Move To Device Control Register 307

X 011111 01110 01011 0 divwu Divide Word Unsigned 252

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR 252

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register 312

X 011111 01110 10110 / dcbi Data Cache Block Invalidate 243

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 109

X 011111 01110 11100 0 nand NAND 317

X 011111 01110 11100 1 nand. NAND & record CR 317

X 011111 01111 00110 / icbtls1 Instruction Cache Block Touch and Lock Set —

X 011111 01111 01011 0 divw Divide Word 251

X 011111 01111 01011 1 divw. Divide Word & record CR 251

X 011111 10000 00000 / mcrxr Move to Condition Register from XER 300

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV 352

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR 352

X 011111 10000 01010 0 addco Add Carrying & record OV 224

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR 224

X 011111 10000 10101 / 292

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed 296

X 011111 10000 10111 / 287

X 011111 10000 11000 0 srw Shift Right Word 336

X 011111 10000 11000 1 srw. Shift Right Word & record CR 336

X 011111 10001 01000 0 subfo Subtract From & record OV 351

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR 351

X 011111 10001 10110 / tlbsync TLB Synchronize 361

X 011111 10001 10111 / 287

X 011111 10010 10101 / 292

X 011111 10010 10110 / msync Memory Synchronize 305

X 011111 10010 10111 / 286

X 011111 10011 01000 0 nego Negate & record OV 318

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor110

X 011111 10011 01000 1 nego. Negate & record OV & record CR 318

X 011111 10011 10111 / 286

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV 353

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR 353

X 011111 10100 01010 0 addeo Add Extended with CA & record OV 225

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR 225

X 011111 10100 10101 / 346

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed 348

X 011111 10100 10111 / 342

X 011111 10101 10111 / 342

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV 356

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR 356

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV 229

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR 229

X 011111 10110 10101 / 346

X 011111 10110 10111 / 340

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV 355

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV & CR 355

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV 228

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR 228

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV 316

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR 316

X 011111 10111 10110 / dcba Data Cache Block Allocate 241

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 111

X 011111 10111 10111 / 340

X 011111 11000 01010 0 addo Add & record OV 223

X 011111 11000 01010 1 addo. Add & record OV & CR 223

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed 358

X 011111 11000 10110 / lhbrx Load Halfword Byte-Reverse Indexed 289

X 011111 11000 11000 0 sraw Shift Right Algebraic Word 334

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR 334

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate 334

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR 334

X 011111 11010 10110 / mbar Memory Barrier 298

X 011111 11100 10010 ? tlbsx TLB Search Indexed 360

X 011111 11100 10110 / sthbrx Store Halfword Byte-Reverse Indexed 344

X 011111 11100 11010 0 extsh Extend Sign Halfword 254

X 011111 11100 11010 1 extsh. Extend Sign Halfword & record CR 254

X 011111 11101 10010 / tlbre TLB Read Entry 359

X 011111 11101 11010 0 extsb Extend Sign Byte 254

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR 254

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV 252

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR 252

X 011111 11110 10010 / tlbwe TLB Write Entry 362

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate 280

X 011111 11110 10111 / 341

X 011111 11111 01011 0 divwo Divide Word & record OV 251

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor112

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR 251

X 011111 11111 10110 / dcbz Data Cache Block set to Zero 248

D 100000 ----- ----- - lwz Load Word & Zero 297

D 100001 ----- ----- - lwzu Load Word & Zero with Update 297

D 100010 ----- ----- - lbz Load Byte & Zero 283

D 100011 ----- ----- - lbzu Load Byte & Zero with Update 283

D 100100 ----- ----- - stw Store Word 347

D 100101 ----- ----- - stwu Store Word with Update 347

D 100110 ----- ----- - stb Store Byte 337

D 100111 ----- ----- - stbu Store Byte with Update 337

D 101000 ----- ----- - lhz Load Halfword & Zero 290

D 101001 ----- ----- - lhzu Load Halfword & Zero with Update 290

D 101010 ----- ----- - lha Load Halfword Algebraic 288

D 101011 ----- ----- - lhau Load Halfword Algebraic with Update 288

D 101100 ----- ----- - sth Store Halfword 343

D 101101 ----- ----- - sthu Store Halfword with Update 343

D 101110 ----- ----- - lmw Load Multiple Word 291

D 101111 ----- ----- - stmw Store Multiple Word 345

D 110000 ----- ----- - 287

D 110001 ----- ----- - 287

D 110010 ----- ----- - 286

D 110011 ----- ----- - 286

D 110100 ----- ----- - 342

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 113

D 110101 ----- ----- - 342

D 110110 ----- ----- - 340

D 110111 ----- ----- - 340

A 111011 ----- 10010 0 264

A 111011 ----- 10010 1 264

A 111011 ----- 10100 0 279

A 111011 ----- 10100 1 279

A 111011 ----- 10101 0 256

A 111011 ----- 10101 1 256

A 111011 ----- 10110 0 278

A 111011 ----- 10110 1 278

A 111011 ----- 11000 0 272

A 111011 ----- 11000 1 272

A 111011 ----- 11001 0 268

A 111011 ----- 11001 1 268

A 111011 ----- 11100 0 267

A 111011 ----- 11100 1 267

A 111011 ----- 11101 0 265

A 111011 ----- 11101 1 265

A 111011 ----- 11110 0 271

A 111011 ----- 11110 1 271

A 111011 ----- 11111 0 270

A 111011 ----- 11111 1 270

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor114

A 111111 ----- 10010 0 264

A 111111 ----- 10010 1 264

A 111111 ----- 10100 0 279

A 111111 ----- 10100 1 279

A 111111 ----- 10101 0 256

A 111111 ----- 10101 1 256

A 111111 ----- 10110 0 278

A 111111 ----- 10110 1 278

A 111111 ----- 10111 0 277

A 111111 ----- 10111 1 277

A 111111 ----- 11001 0 268

A 111111 ----- 11001 1 268

A 111111 ----- 11010 0 276

A 111111 ----- 11010 1 276

A 111111 ----- 11100 0 267

A 111111 ----- 11100 1 267

A 111111 ----- 11101 0 265

A 111111 ----- 11101 1 265

A 111111 ----- 11110 0 271

A 111111 ----- 11110 1 271

A 111111 ----- 11111 0 270

A 111111 ----- 11111 1 270

X 111111 00000 00000 / 259

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 115

X 111111 00000 01100 0 273

X 111111 00000 01100 1 273

X 111111 00000 01110 0 262

X 111111 00000 01110 1 262

X 111111 00000 01111 0 262

X 111111 00000 01111 1 262

X 111111 00001 00000 / 259

X 111111 00001 00110 0 308

X 111111 00001 00110 1 308

X 111111 00001 01000 0 269

X 111111 00001 01000 1 269

X 111111 00010 00000 / 300

X 111111 00010 00110 0 308

X 111111 00010 00110 1 308

X 111111 00010 01000 0 266

X 111111 00010 01000 1 266

X 111111 00100 00110 0 310

X 111111 00100 00110 1 310

X 111111 00100 01000 0 269

X 111111 00100 01000 1 269

X 111111 01000 01000 0 255

X 111111 01000 01000 1 255

X 111111 10010 00111 0 303

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor116

X 111111 10010 00111 1 303

XFL 111111 10110 00111 0 309

XFL 111111 10110 00111 1 309

X 111111 11001 01110 / 260

X 111111 11001 01111 / 260

X 111111 11010 01110 / 257

NOTES:
1 Motorola Book E cache locking APU, refer to Section 11.12, Cache line locking/unlocking APU.

Table 21. Instructions sorted by opcode (continued)

F
o

rm
at

Opcode

Mnemonic Instruction

B
o

o
K

 E
 0

.9
9

p
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 117

Chapter 4
Instruction Pipeline and Execution Timing
This section describes the Zen instruction pipeline and instruction timing information. The core is
partitioned into the following subsystems:

• Instruction Unit

• Control unit

• Integer units

• Load/store unit

• Core interface

4.1 Overview of operation
A block diagram of the e200z759n3 core is shown in Figure 17. The instruction fetch unit prefetches
instructions from memory into the instruction buffers. The decode unit decodes each instruction and
generates information needed by the branch unit and the execution units. Prefetched instructions are
written into the instruction buffers.

The instruction issue unit attempts to issue a pair of instructions each cycle to the execution units. Source
operands for each of the instructions are provided from the GPRs or from the operand feed-forward muxes.
Data or resource hazards may create stall conditions that cause instruction issue to be stalled for one or
more cycles until the hazard is eliminated.

The execution units write the result of a finished instruction onto the proper result bus and into the
destination registers. The writeback logic retires an instruction when the instruction has finished
execution. Up to three results can be simultaneously written, depending on the size of the result

Two execution units are provided to allow dual issue of most instructions. Only a single load/store unit is
provided. Only a single integer divide unit is provided, thus a pair of divide instructions cannot issue
simultaneously. In addition, the divide unit is blocking.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor118

Figure 17. Zen block diagram

Table 22 shows the e200z759n3 concurrent instruction issue capabilities. Note that data dependencies
between instructions will generally preclude dual-issue. in particular, read after write dependencies are
handled by stalling the issue pipeline as required to ensure the proper execution ordering.

CPU

CONTROL LOGIC

LOAD/

DATA

MEMORY
MANAGEMENT

UNIT

ADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNITS

DATA BUS INTERFACE UNIT

CONTROL

32 64 N

SPE

OnCE/NEXUS

CONTROL LOGIC
UNITS

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNITS

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
64

N

DATA CACHE

IN
S

T
R

U
C

T
IO

N
 C

A
C

H
E

...

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 119

4.1.1 Control unit

The control unit coordinates the instruction fetch unit, branch unit, instruction decode unit, instruction
issue unit, completion unit and exception handling logic.

4.1.2 Instruction unit

The instruction unit controls the flow of instructions from the cache to the instruction buffers and decode
unit. Ten instruction prefetch buffers allow the instruction unit to fetch instructions ahead of actual
execution, and serve to decouple memory and the execution pipeline.

4.1.3 Branch unit

The branch unit executes branch instructions, predicts conditional branches, and provides branch target
addresses for instruction fetches. It contains a 32-entry Branch Target Buffer (BTB) to accelerate
execution of branch instructions as well as a 3-entry Return Stack used for subroutine return address
prediction.

4.1.4 Instruction decode unit

The decode unit includes the instruction buffers. A pair of instructions can be decoded each cycle. The
major functions of the decode logic are:

• Opcode decoding to determine the instruction class and resource requirements for each instruction
being decoded.

• Source and destination register dependency checking.

• Execution unit assignment.

Table 22. Concurrent instruction issue capabilities

Class of
instruction

Branch
Load/
store

Scalar
integer

Scalar
float

Vector
integer

Vector
float

Special

branch — 4 4 4 4 4 —

load/store 4 — 4 4 4 4 —

scalar integer 4 4 41

NOTES:
1 excludes divide class instructions occurring in both issue slots

4 42 4 —

scalar float 4 4 4 4 4 — —

vector integer 4 4 42

2 excludes vector MAC/multiply class instructions occurring with scalar multiply, or divide class
instructions occurring in both issue slots

4 43

3 excludes vector MAC/multiply class instructions occurring in both issue slots, or divide class
instructions occurring in both issue slots

4 —

vector float 4 4 4 — 4 — —

special — — — — — — —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor120

• Determine any decode serializations, and inhibit subsequent instruction decoding.

The decode unit operates in a single processor clock cycle.

4.1.5 Exception handling

The exception handling unit includes logic to handle exceptions, interrupts, and traps.

4.2 Execution units
The core data execution units consist of the integer units, SPE units, EFPU floating-point units, and the
load/store unit. Included in the execution units section are the 32 by 64-bit general purpose registers
(GPRs). Instructions with data dependencies begin execution when all such dependencies are resolved.

4.2.1 Integer execution units

Each integer execution unit is used to process arithmetic and logical instructions. Adds, subtracts,
compares, count leading zeros, shifts and rotates execute in a single cycle. Integer multiply and divides
execute in multiple clock cycles.

Multiply instructions have a latency of 3 cycles for result data and 4 cycles for condition codes for record
forms, with a throughput of 1 per cycle.

Divide instructions have a variable latency (4-15 cycles) depending upon the operand data. The worst case
integer divide will take 15 cycles. While the divide is running, the rest of the pipeline is unavailable for
additional instructions (blocking divide).

4.2.2 Load / store unit

The load/store unit executes instructions that move data between the GPRs and the memory subsystem.
Loads, when free of data dependencies, execute with a maximum throughput of one per cycle and three
cycle latency. Stores also execute with a maximum throughput of one per cycle and three cycle latency.
Store data can be fed-forward from an immediately preceding load with no stall.

4.2.3 Embedded floating-point execution units

The embedded floating-point execution units are used to process EFPU floating-point arithmetic
instructions. Adds, subtracts, compares, multiply, and multiply-accumulate pipelines have a latency of 4
cycles with a maximum throughput of 1 per cycle. EFPU floating-point divide and square root instructions
have a latency of 9 cycles. While the divide is running, the rest of the pipeline is unavailable for additional
instructions (blocking divide).

4.3 Instruction pipeline
The processor pipeline consists of stages for instruction fetch, instruction decode, register read,
execution, and result writeback. Certain stages involve multiple clock cycles of execution. The processor
also contains an instruction prefetch buffer to allow buffering of instructions prior to the decode stage.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 121

Instructions proceed from this buffer to the instruction decode stage by entering the instruction decode
register IR.

Table 23. Pipeline stages

Stage Description

IFETCH0 Instruction Fetch From Memory, stage 0

IFETCH1 Instruction Fetch From Memory, stage 1

IFETCH2 Instruction Fetch From Memory, stage 2

DECODE0 Instruction Decode, stage 0

DECODE1 / RF READ Instruction Decode, stage 1 / Register Read/ Operand Forwarding /
Memory Effective Address Generation

EXECUTE0 / MEM0 Instruction Execution stage 0 / Memory Access stage 0

EXECUTE1 / MEM1 Instruction Execution stage 1 / Memory Access stage 1

EXECUTE2 / MEM2 Instruction Execution stage 2 / Memory Access stage 2

EXECUTE3 Instruction Execution stage 3

WB Write Back to Registers

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor122

Figure 18. Pipeline diagram

4.3.1 Description of pipeline stages

The Fetch pipeline stages retrieve instructions from the memory system and determine where the next
instruction fetch is performed. Up to two 32-bit instructions or four 16-bit instructions are sent from
memory to the instruction buffers each cycle.

The Decode pipeline stages decodes instructions, read operands from the register file, and performs
dependency checking.

Execution occurs in one or more of the four execute pipeline stages in each execution unit (perhaps over
multiple cycles). Execution of most load/store instructions is pipelined. The load/store unit has four

IFetch0

IFetch1

IFetch2

Decode0 I0,I1 I2,I3

Simple Instructions

I0,I1 I2,I3Decode1/ Reg read/ FFwd

I0,I1 I2,I3

I0,I1 I2,I3

I0,I1 I2,I3

I0,I1 I2,I3

Execute0

I0,I1 I2,I3

I0,I1 I2,I3

I0,I1 I2,I3

I0,I1 I2,I3

Feedforward

Feedforward

Feedforward

Writeback

IFetch0

IFetch1

IFetch2

Decode0 L0,L1

Load Instructions

L0,L1Decode1/ Reg read / EA calc

L0 L1

L0,L1

L0,L1

L0,L1

Memory0

L0 L1

L0 L1

L0 L1

L0 L1

Memory1

Memory2

Feedforward

Writeback

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 123

pipeline stages. The pipeline stages are: effective address calculation (EA Calc), memory access (MEM0,
MEM1), and data format and forward (MEM2).

Simple integer instructions complete execution in the Execute 0 stage of the pipeline. Multiply instructions
require all four execute stages but may be pipelined as well. Most condition-setting instructions complete
in the Execute 0 stage of the pipeline, thus conditional branches dependent on a condition-setting
instruction may be resolved by an instruction in this stage.

Result feed-forward hardware forwards the result of one instruction into the source operand(s) of a
following instruction so that the execution of data-dependent instructions do not wait until the completion
of the result writeback. Feed forward hardware is supplied to allow bypassing of completed instructions
from all four execute stages into the first execution stage for a subsequent data-dependent instruction.

4.3.2 Instruction prefetch buffers and branch target buffer

Zen contains a 10-entry instruction prefetch buffer that supplies instructions into the Instruction Register
(IR) for decoding. Each slot in the prefetch buffer is 32 bits wide, capable of holding a single 32-bit
instruction, or a pair of 16-bit instructions.

Instruction prefetches request a 64-bit doubleword and the prefetch buffer is filled with a pair of
instructions at a time, except for the case of a change of flow fetch where the target is to the second (odd)
word. In that case only a 32-bit prefetch is performed to load the instruction prefetch buffer. This 32-bit
fetch may be immediately followed by a 64-bit prefetch to fill Slots 0 and 1 in the event that the branch is
resolved to be taken.

In normal sequential execution, instructions are loaded into the IR from prefetch buffer Slot 0 and 1, and
as a pair of slots are emptied, they are refilled. Whenever a pair of slots is empty, a 64-bit prefetch is
initiated, which fills the earliest empty slot pairs beginning with Slot 0.

If the instruction prefetch buffer empties, instruction issue stalls, and the buffer is refilled. The first
returned instruction is forwarded directly to the IR. Open cycles on the memory bus are utilized to keep
the buffer full when possible.

Figure 19. Zen instruction prefetch buffers

To resolve branch instructions and improve the accuracy of branch predictions, Zen implements a dynamic
branch prediction mechanism using a 32-entry branch target buffer (BTB).

S
L

O
T

0
S

L
O

T
1

S
L

O
T

2 D
E

C
O

D
ES

L
O

T
3

.

.

M
U

X

IR

DATA 0:63 S
L

O
T

4
S

L
O

T
5

S
L

O
T

6
S

L
O

T
7

S
L

O
T

8
S

L
O

T
9

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor124

An entry is allocated in the BTB whenever a normal branch resolves as taken and the BTB is enabled.
Certain other branches do not allocate BTB entries: blr, bclr, bctr, bcctr. Entries in the BTB are allocated
on taken branches using a FIFO replacement algorithm.

Each BTB entry holds the branch target address, and a 2-bit branch history counter whose value is
incremented or decremented on a BTB hit, depending on whether the branch was taken. The counter can
assume four different values: strongly taken, weakly taken, weakly not taken, and strongly not taken. On
initial allocation of an entry to the BTB for a taken branch, the counter is initialized to the weakly-taken
state.

A branch will be predicted as taken on a hit in the BTB with a counter value of strongly or weakly taken.
In this case the target address contained in the BTB is used to redirect the instruction fetch stream to the
target of the branch prior to the branch reaching the instruction decode stage. In the case of a BTB miss,
static prediction is used to predict the outcome of the branch. In the case of a mispredicted branch, the
instruction fetch stream will return to the proper instruction stream after the branch has been resolved.

When a branch is predicted taken and the branch is later resolved (in the branch execute stage), the value
of the appropriate BTB counter is updated. If a branch whose counter indicates weakly taken is resolved
as taken, the counter increments so that the prediction becomes strongly taken. If the branch resolves as
not taken, the prediction changes to weakly not-taken. The counter saturates in the strongly taken states
when the prediction is correct.

Zen does not implement the static branch prediction that is defined by the Power Architecture architecture.
The BO prediction bit in branch encodings is ignored.

Dynamic branch prediction is enabled by setting BUCSRBPEN. Allocation of branch target buffer entries
may be controlled using the BUCSRBALLOC field to control whether forward or backward branches (or
both) are candidates for entry into the BTB, and thus for branch prediction. Once a branch is in the BTB,
BUCSRALLOC has no further effect on that branch entry. Clearing BUCSRBPEN disables dynamic branch
prediction, in which case Zen reverts to a static prediction mechanism using the BUCSRBPRED field to
control whether forward or backward branches (or both) are predicted taken or not taken.

The BTB uses virtual addresses for performing tag comparisons. On allocation of a BTB entry, the
effective address of a taken branch, along with the current Instruction Space (as indicated by MSRIS) is
loaded into the entry and the counter value is set to weakly taken. The current PID value is not maintained
as part of the tag information.

Zen does support automatic flushing of the BTB when the current PID value is updated by a mtcr PID0
instruction. Software is otherwise responsible for maintaining coherency in the BTB when a change in
effective to real (virtual to physical) address mapping is changed. This is supported by the BUCSRBBFI
control bit.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 125

Figure 20. Zen branch target buffer

4.3.3 Single-cycle instruction pipeline operation

Sequences of single-cycle execution instructions follow the flow in Figure 21. Instructions are issued and
completed in program order. Most arithmetic and logical instructions fall into this category.

Figure 21. Basic pipeline flow, single cycle instructions

4.3.4 Basic load and store instruction pipeline operation

For load and store instructions, the effective address is calculated in the EA Calc stage, and memory is
accessed in the MEM0–MEM1 stages. Data selection and alignment is performed in MEM2, and the result
is available at the end of MEM2 for the following instruction.

TAG DATA

branch addr[0:30] target address[0:30]IS counter entry 31

IS = Instruction Space

...

branch addr[0:30] target address[0:30]IS counter entry 1

branch addr[0:30] target address[0:30]IS counter entry 0

1st Inst(s).

Time Slot

2nd Inst(s).

3rd Inst(s).

IF0 IF1

IF0

IF2

IF1

IF0

D0

IF2

IF1

IF0

D1/

D0

IF2

IF1

E0

D1/

D0

IF2

FF

E0

D1/

D0

FF

FF

E0

D1/

FF

FF

FF

E0

WB

FF

FF

FF

WB

FF

FF

WB

FF WB4th Inst(s).

RR

RR

RR

RR

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor126

Figure 22. Basic pipeline flow, load/store instructions

4.3.5 Change-of-flow instruction pipeline operation

Simple change of flow instructions require 4 cycles to refill the pipeline with the target instruction for
taken branches and branch and link instructions with no BTB hit and no prediction required (condition
resolved prior to branch decode).

Figure 23. Basic pipeline flow, branch instructions, no prediction

For branch type instructions, in some situations this 4 cycle timing may be reduced by performing the
target fetch speculatively while the branch instruction is still being fetched into the instruction buffer if the
branch target address can be obtained from the BTB. The resulting branch timing reduces to a single clock
when the target fetch is initiated early enough and the branch is correctly predicted.

1st LD Inst.

Time Slot

2nd LD/ST Inst.

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

M0

D1/

M1

M0

M2

M1

FF

M2

WB

FF WB

RR/
EA

RR/
EA

3rd Inst. IF0 IF1 IF2 D0 D1/ — E0 FF FF FF
RR(single cycle)

WB

BR Inst.

Time Slot

Target Inst.

IF0 IF1 IF2 D0/ (D1/

TF0

(E0)

TF1

(E1)

TF2

(E2)

D0

(E3)

D1/

WB

E0 E1 E2 E3 WB

EA

RR

RR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 127

Figure 24. Basic pipeline flow, branch instructions, BTB hit, correct prediction, branch taken

For certain cases where the branch is incorrectly predicted, 6 cycles are required to correct the
misprediction outcome. Figure 25 shows one example.

Figure 25. Basic pipeline flow, branch instructions, predict not taken, incorrect prediction

For bcctr and e_bctr cases where the branch is correctly predicted as taken, 5 cycles are required to
execute the branch as shown in Figure 26.

Figure 26. Basic pipeline flow, bcctr Instruction, predict taken, correct prediction

For bcctr and e_bctr cases where the branch is incorrectly predicted as taken, but the fall-through
instruction is already in the instruction buffer, 3 cycles are required to execute the branch as shown in
Figure 25.

BR Inst.

Time Slot

Target Inst.

(BTB HIT)

TF0 TF1 TF2 D0 D1/ E0 E1 E2 E3 WB
RR

IF0 IF1 IF2 D0 (D1) (E0) (E1) (E2) (E3) WB

BR Inst.

Time Slot

Target Inst.

(predict not taken)

TF0 TF1 TF2 D0 D1/ E0
RR

resolve
condition

IF0 IF1 IF2 D0 (D1/ (E0) (E1) (E2) (E3) WB

E1 E2 E3

RR)

BR Inst.

Time Slot

Target Inst.

(predict taken)

TF0 TF1 TF2 D0 D1/ E0
RR

resolve
condition

IF0 IF1 IF2 D0 (D1/ (E0) (E1) (E2) (E3) WB

E1 E2 E3

RR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor128

Figure 27. Basic pipeline flow, bcctr Instruction, predict taken, incorrect prediction, instruction buffer not
empty

For bcctr and e_bctr cases where the branch is incorrectly predicted as taken, and the fall-through
instruction is not already in the instruction buffer (a rare case), 6 cycles are required to execute the branch
as shown in Figure 25.

Figure 28. Basic pipeline flow, bcctr Instruction, predict taken, incorrect prediction, instruction buffer empty

4.3.6 Basic multi-cycle instruction pipeline operation

Most multi-cycle instructions may be pipelined so that the effective execution time is smaller than the
overall number of clocks spent in execution. The restrictions to this execution overlap are that no data
dependencies between the instructions are present, and that instructions must complete and write back
results in order. A single-cycle instruction that follows a multi-cycle instruction must wait for completion
of the multi-cycle instruction prior to its writeback in order to meet the in-order requirement. Result
feed-forward paths are provided so that execution may continue prior to result writeback.

BR Inst.

Time Slot

Target Inst.

(predict taken)

TF0 TF1 TF2 (discard)

resolve
condition

IF0 IF1 IF2 D0 (D1/ (E0) (E1) (E2) (E3) WB
RR)

Fall-through Inst. D0 D1/ E0 E1 E2 E3 WB
RR

BR Inst.

Time Slot

Target Inst.

(predict taken)

TF0 TF1 TF2 (discard)

resolve
condition

IF0 IF1 IF2 D0 (D1/ (E0) (E1) (E2) (E3) WB
RR)

Fall-through Inst. IF0 IF1 IF2 D0 D1/ E0 E1
RR

E2 E3

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 129

Figure 29. Basic pipeline flow, integer multiply class instructions

The divide and load and store multiple instructions require multiple cycles in the execute stage.

Figure 30. Basic pipeline flow, long instruction

4.3.7 Additional examples of instruction pipeline operation for load and
store

Figure 31 shows an example of pipelining two non-data-dependent load or store instructions with a
following load target data-dependent single cycle instruction. While the first load or store begins accessing
memory in the M0 stage, the next load can be calculating a new effective address in the D1/EA stage. The
add in this example will stall for two cycles since a data dependency exists on the target register of the
second load.

1st Inst.

Time Slot

2nd Inst(s).

3rd Inst(s).

IF0 IF1

IF0

IF2

IF1

IF0

D0

IF2

IF1

IF0

D1/

D0

IF2

IF1

E0

D1/

D0

IF2

E1

E0

D1/

D0

E2

FF

E0

D1/

E3

FF

FF

E0

WB

FF

FF

FF

WB

FF

FF

WB

FF WB4th Inst(s).

RR

RR

RR

RR

(multiply)

(single cycle)

(single cycle)

(single cycle,
dep on mul)

long inst.

Time Slot

next inst.

IF0 IF1

IF0

IF2

TIF1

D0

IF2

D1/

D0

E0

D1/

E1

—

E2

—

E3

—

....

—

Elast

—

WB

E0 FF FF FF
RR

RR

(single cycle)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor130

Figure 31. Pipelined load instructions with load target data dependency

Figure 32 shows an example of pipelining a data-dependent add instruction following a load with update
instruction. While the first load begins accessing memory in the M0 stage, the next load with update can
be calculating a new effective address in the EA Calc stage. Following the EA Calc, the updated base
register value can be fed-forward to subsequent instructions. The add in this example will not stall, even
though a data dependency exists on the updated base register of the load with update.

Figure 32. Pipelined instructions with base register update data dependency

Figure 33 shows an example of pipelining a data-dependent store instruction following a load instruction.
While the first load begins accessing memory in the M0 stage, the store can be calculating a new effective
address in the D1/EA stage. The store in this example will not stall due to the data dependency existing
on the load data of the load instruction.

1st LD Inst.

Time Slot

2nd LD/ST Inst.

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

M0

D1/

M1

M0

M2

M1

FF

M2

WB

FF WB

RR/
EA

RR/
EA

3rd Inst. IF0 IF1 IF2 D0 D1/ — — E0 FF FF FF
RR(add, depends

on 2nd load)

WB

1st Inst.

Time Slot

2nd Inst.

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

M0

D1/

M1

M0

M2

M1

FF

M2

WB

FF WB

RR/
EA

RR/
EA

3rd Inst. IF0 IF1 IF2 D0 D1/ E0 FF FF FF WB
RR(add, depends

on 2nd load)

(load w/update)

(load)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 131

Figure 33. Pipelined store instruction with store data dependency

4.3.8 Move to/from SPR instruction pipeline operation

Many mtspr and mfspr instructions are treated like single cycle instructions in the pipeline, and do not
cause stalls. Exceptions are for the MSR, the Debug SPRs, the SPE Unit, and Cache/MMU SPRs, which
do cause stalls. Figure 34 through Figure 36 show examples of mtspr and mfspr instruction timing.

Figure 34 applies to the Debug SPRs and the SPE APU’s SPEFSCR. These instructions do not begin
execution until all previous instructions have finished their execute stage(s). In addition, execution of
subsequent instructions is stalled until the mfspr and mtspr instructions complete.

Figure 34. mtspr, mfspr instruction execution, debug and SPE SPRs

Figure 35 applies to the mtmsr instruction and the wrtee and wrteei instructions. Execution of subsequent
instructions is stalled until the cycle after these instructions writeback.

1st Inst.

Time Slot

2nd Inst.

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

M0

D1/

M1

M0

M2

M1

FF

M2

WB

FF WB

RR/
EA

RR/
EA

(store, data depends

(load)

on load)

Prev Inst.

Time Slot

mtspr, mfspr

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

E0

D1/

E1

—

E2

—

E3

—

WB

E0 E1 E2 E3 WB

RR/
EA

RR

Next Inst. IF0 IF1 IF2 D0 D1/ — — — — — — E0
RR

debug, SPE Inst.

E1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor132

Figure 35. mtmsr, wrtee[i] instruction execution

Access to cache and MMU SPRs are stalled until all outstanding bus accesses have completed on both
interfaces and the caches and MMU are idle (p_[d,i]_cmbusy negated) to allow an access window where
no translations or cache cycles are required. Figure 36 shows an example where an outstanding bus access
causes mtspr/mfspr execution to be delayed until the bus becomes idle. Other situations such as a cache
linefill may cause the cache to be busy even when the processor interface is idle (p_[d,i]_tbusy[0]_b is
negated). In these cases execution stalls until the cache and MMU are idle as signaled by negation of
p_[d,i]_cmbusy. Processor access requests will be held off during execution of a Cache/MMU SPR
instruction. A subsequent access request may be generated the cycle following the last execute stage (i.e.
during the WB cycle). This same protocol applies to cache and MMU management instructions (e.g. dcbz,
dcbf, etc., tlbre, tlbwe, etc.).

Prev Inst.

Time Slot

mtmsr, wrtee

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

E0

D1/

E1

E0

E2

E1

E3

E2

WB

E3 WB

RR/
EA

RR

Next Inst. IF0 IF1 IF2 D0 D1/ — — — — — E0 E1
RR

wrteei Inst.

E2

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 133

Figure 36. Cache / MMU mtspr, mfspr and management instruction execution

4.4 Control hazards
Several internal control hazards exist in Zen that can cause certain instruction sequences to incur one or
more stall cycles. These include:

• mfspr instruction preceded by a mtspr instruction — issue stalls until the mtspr completes

4.5 Instruction serialization
There are three types of serialization required by the core:

• Completion serialization

• Dispatch (Decode/Issue) serialization

• Refetch serialization

4.5.1 Completion serialization

A completion serialized instruction is held for execution until all prior instructions have completed. The
instruction will then execute once it is next to complete in program order. Results from these instructions
will not be available for or forwarded to subsequent instructions until the instruction completes.
Instructions that are completion serialized are:

Prev Inst.

Time Slot

mtspr, mfspr

IF0 IF1

IF0

IF2

IF1

D0

IF2

D1/

D0

E0

D1/

E1

—

E2

—

E3

—

WB

E0 E1 E2 E3 WB

RR/
EA

RR

Next Inst. IF0 IF1 IF2 D0 D1/ — — — — — — E0
RR

debug, SPE Inst.

E1

p_[d,i]_treq_b

p_[d,i]_tbusy[0]_b

p_[d,i]_ta_b

p_rd_spr,
p_wr_spr

p_[d,i]_cmbusy

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor134

• Instructions that access or modify system control or status registers. e.g. mcrxr, mtmsr, wrtee,
wrteei, mtspr, mfspr (except to CTR/LR),

• Instructions that manage caches and TLBs

• Instructions defined by the architecture as context or execution synchronizing: isync, se_isync,
msync, rfi, rfci, rfdi, rfmci, se_rfi, se_rfci, se_rfdi, se_rfmci, sc, se_sc.

• wait

4.5.2 Dispatch serialization

Some instructions are dispatch-serialized by the core. An instruction that is dispatch-serialized prevents
the next instruction from decoding until all instructions up to and including the dispatch-serialized
instruction completes. Instructions that are dispatch serialized are isync, se_isync, msync, rfi, rfci, rfdi,
rfmci, se_rfi, se_rfci, se_rfdi, se_rfmci, sc, se_sc.

The mbar instruction is “pseudo-dispatch” serialized; it prevents the next instruction from decoding until
all previous load and store class instructions have completed.

4.5.3 Refetch serialization

Refetch serialized instructions inhibit dispatching of subsequent instructions and force a pipeline refill to
refetch subsequent instructions after completion. These include:

• The context synchronizing instructions isync, se_isync.

• The rfi, rfci, rfdi, rfmci, se_rfi, se_rfci, se_rfdi, se_rfmci, sc, se_sc instructions.

Figure 39 shows

Figure 37. Interrupt recognition and handler instruction execution

Time Slot

EX1 EX3 WBEX2Single cycle

WB

Instructions

EX0 Abort —EX1 —

p_extint_b
final sample point

p_iack

IF0 IF2 D0IF1 D1/RR EX0 WB1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

EX0 Stall StallStall Stall

11

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 135

Figure 38. Interrupt recognition and handler instruction execution —load/store in progress

Figure 39. Interrupt recognition and handler instruction execution — multi-cycle instruction abort

4.6 Concurrent instruction execution
The core effectively has several execution units:

• Branch unit

• Dual scalar integer units

• Dual vector integer units

• Dual scalar Embedded Floating-point units/ Single vector Embedded Floating-point unit

Time Slot

Mem0 wait MEM2waitLoad/Store

WB

Instructions

D1/RR Abort —EX0 —

p_extint_b

final sample point

p_iack

IF0 IF2 D0IF1 D1/RR EX2 WB
1st Instruction of handler

1 2 3 4 5 6 7 8 9 10

D1/RR Stall StallStall Stall

11

WB

Time Slot

Next Instruction

D1 E1 AbortE0 — —Multi-cycle

WB

Interruptible

D1 Abort —(E0) —

1 2 3 4 5 6 7 8 9 10

p_extint_b

final sample point

p_iack

IF0 IF1 D0IF1 D1/RR EX2 WB1st Instruction of handler

Instruction

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor136

• Load/store unit

These executions units are pipelined and support overlapped execution of instructions. In certain cases, the
branch unit predicts branches and supplies a speculative instruction stream to the instruction buffer unit.

The following instruction timing section accurately indicates the number of cycles an instruction executes
in the appropriate unit, however, determining the elapsed time or cycles to execute a sequence of
instructions is beyond the scope of this document.

4.7 Instruction Timings
Instruction timing in number of processor clock cycles for various instruction classes is shown in Table 24.
Pipelined instructions are shown with cycles of total latency and throughput cycles. Divide instructions are
not pipelined and block other instructions from executing during divide execution. Timing for SPE
instructions is detailed in Section 6.6, SPE instruction timing.

Load/store multiple instruction cycles are represented as a fixed number of cycles plus a variable number
of cycles where ‘n’ is the number of words accessed by the instruction. In addition, cycle times marked
with a ‘&’ require variable number of additional cycles due to serialization.

Table 24. Instruction class cycle counts

Class of Instructions Latency Throughput Special notes

integer:
add, sub, shift, rotate, logical, cntlzw

1 1 —

integer: compare 1 1 —

Branch 6/4/1 6/4/1 Correct branch lookahead allows single
cycle execution
Worst-case mispredicted branch is 6 cycles

 multiply 3/4 1 result data is available after 3 cycles, record
form conditions are available after 4th cycle

 divide 4-15 4-15 data-dependent timing

CR logical 1 1 —

loads (non-multiple) 3 1 —

load multiple 3 + n/2 (max) 1 + n/2 (max) Actual timing depends on n and address
alignment.

stores (non-multiple) 3 1 —

store multiple 3 + n/2 (max) 1 + n/2 (max) Actual timing depends on n and address
alignment.

 mtmsr, wrtee, wrteei 6& 6

mcrf 1 1

mfspr, mtspr 4& 4& Applies to Debug SPRs, optional unit SPRS

mfspr, mfmsr 1 1 Applies to internal, non Debug SPRs

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 137

Detailed timing for each instruction mnemonic along with serialization requirements is shown in Table 25.

mfcr, mtcr 1 1 —

rfi, rfci, rfdi, rfmci 6 — —

sc 4 — —

tw, twi 4 — Trap taken timing

Table 25. Instruction Timing by Mnemonic

Mnemonic Latency Serialization

add[o][.] 1 none

addc[o][.] 1 none

adde[o][.] 1 none

addi 1 none

addic[.] 1 none

addis 1 none

addme[o][.] 1 none

addze[o][.] 1 none

and[.] 1 none

andc[.] 1 none

andi. 1 none

andis. 1 none

b[l][a] 6/4/1 none

bc[l][a] 6/4/1 none

bcctr[l] 6/5/3/1 none

bclr[l] 6/5/3/1 none

cmp 1 none

cmpi 1 none

cmpl 1 none

cmpli 1 none

cntlzw[.] 1 none

crand 1 none

crandc 1 none

creqv 1 none

crnand 1 none

crnor 1 none

cror 1 none

Table 24. Instruction class cycle counts (continued)

Class of Instructions Latency Throughput Special notes

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor138

crorc 1 none

crxor 1 none

divw[o][.] 4-151 none

divwu[o][.] 4-151 none

eqv[.] 1 none

extsb[.] 1 none

extsh[.] 1 none

isel 1 none

isync 62 refetch

lbarx 3 none

lbz 33 none

lbzu 33 none

lbzux 33 none

lbzx 33 none

lha 33 none

lharx 3 none

lhau 33 none

lhaux 33 none

lhax 33 none

lhbrx 33 none

lhz 33 none

lhzu 33 none

lhzux 33 none

lhzx 33 none

lmw 3 +(n/2) none

lwarx 3 none

lwbrx 33 none

lwz 33 none

lwzu 33 none

lwzux 33 none

lwzx 33 none

mbar 12 pseudo- dispatch

mcrf 1 none

mcrxr 1 completion

mfcr 1 none

Table 25. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 139

mfmsr 1 none

mfspr (except DEBUG) 1 none

mfspr (DEBUG) 32 completion

msync 12 completion

mtcrf 2 none

mtmsr 62 completion

mtspr (DEBUG) 42 completion

mtspr
(except DEBUG, msr, hid0/1)

1 none

mulhw[.] 3/4 none

mulhwu[.] 3/4 none

mulli 3/4 none

mullw[o][.] 3/4 none

nand[.] 1 none

neg[o][.] 1 none

nop (ori r0,r0,0) 1 none

nor[.] 1 none

or[.] 1 none

orc[.] 1 none

ori 1 none

oris 1 none

rfci 6 refetch

rfdi 6 refetch

rfi 6 refetch

rfmci 6 refetch

rlwimi[.] 1 none

rlwinm[.] 1 none

rlwnm[.] 1 none

sc 4 refetch

slw[.] 1 none

sraw[.] 1 none

srawi[.] 1 none

srw[.] 1 none

stb 33 none

stbcx. 3 none

Table 25. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor140

stbu 33 none

stbux 33 none

stbx 33 none

sth 33 none

sthbrx 33 none

sthcx. 3 none

sthu 33 none

sthux 33 none

sthx 33 none

stmw 3 + (n/2) none

stw 33 none

stwbrx 33 none

stwcx. 3 none

stwu 33 none

stwux 33 none

stwx 33 none

subf[o][.] 1 none

subfc[o][.] 1 none

subfe[o][.] 1 none

subfic 1 none

subfme[o][.] 1 none

subfze[o][.] 1 none

tw 4 none

twi 4 none

wrtee 6 completion

wrteei 6 completion

xor[.] 1 none

xori 1 none

xoris 1 none

NOTES:
1 with early-out capability, timing is data dependent
2 plus additional synchronization time
3 Aligned

Table 25. Instruction Timing by Mnemonic (continued)

Mnemonic Latency Serialization

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 141

4.8 Operand placement on performance
The placement (location and alignment) of operands in memory affects relative performance of memory
accesses, and in some cases, affects it significantly. Table 26 indicates the effects for the Zen core.

In Table 26, optimal means that one effective address (EA) calculation occurs during the memory
operation. Good means that multiple EA calculations occur during the memory operation, which may
cause additional bus activities with multiple bus transfers. Poor means that an alignment interrupt is
generated by the storage operation.

Table 26. Performance effects of storage operand placement

Operand Boundary crossing*

Size Byte alignment None Cache line Protection boundary

4 Byte 4
< 4

optimal1

good2

NOTES:
1 optimal: One EA calculation occurs.
2 good: Multiple EA calculations occur, which may cause additional bus activities with multiple bus transfers.

—
good

—
good

2 Byte 2
< 2

optimal
good

—
good

—
good

1 Byte 1 optimal — —

lmw, stmw 4
< 4

good
poor3

3 poor: Alignment Interrupt occurs.

good
poor

good
poor

string N/A — — —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor142

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 143

Chapter 5
Embedded Floating-Point APU (EFPU2)
This chapter describes the instruction set architecture of the Embedded Floating-point APU version 2
(EFPU2) implemented on e200z759n3. This unit implements scalar and vector single-precision
floating-point instructions to accelerate signal processing and other algorithms. In comparison to version
1.1 of the EFPU architecture, version 2 of the architecture implements additional operations such as
minimum, maximum, and square root, as well as an extensive set of vector operations with permuted
operands and mixed add/sub, sum, and differences. For the remainder of this chapter, the term EFPU
implies version 2 of the architecture unless otherwise noted.

5.1 Nomenclature and conventions
Several conventions regarding nomenclature are used in this chapter:

• Bits 0 to 31 of a 64-bit register are referenced as field 0, upper half, or high-order element of the
register. Bits 32–63 are referred to as field 1, lower half, or lower-order element of the register.
Each half is an element of a GPR.

• Mnemonics for EFPU instructions begin with the letters ‘evfs’ (embedded vector floating single)
or ‘efs’ (embedded (scalar) floating single).

5.2 EFPU programming model
The e200z759n3 core provides a register file with thirty-two 64-bit registers. The Power Architecture
32-bit Book E instructions operate on the lower (least significant) 32 bits of the 64-bit register. EFPU
instructions are defined that view the 64-bit register as being composed of a vector of two 32-bit elements,
or a single scalar 32-bit element. Vector floating-point instructions operate on a vector of two 32-bit
single-precision floating-point numbers resident in the 64-bit GPRs. Scalar single-precision floating-point
instructions operate on the lower half of GPRs. The floating-point instructions do not have a separate
register file; there is a single shared register file for all instructions.

There are no record forms of EFPU instructions. EFPU compare instructions store the result of the
comparison into the condition register (CR). The meaning of the CR bits are now overloaded for the vector
operations. Floating-point compare instructions treat NaNs, Infinity and Denorm as normalized numbers
for the comparison calculation when default results are provided.

5.2.1 Signal Processing Extension / Embedded Floating-point Status and
Control Register (SPEFSCR)

Status and control for embedded floating-point uses the SPEFSCR register. This register is also
used by the SPE APU. Status and control bits are shared for vector floating-point operations, scalar
floating-point operations and SPE vector operations. The SPEFSCR register is implemented as special

e200z759n3 Core Reference Manual, Rev. 2

144 Freescale Semiconductor

purpose register (SPR) number 512 and is read and written by the mfspr and mtspr instructions. The
SPEFSCR is shown in Figure 5-1.

The SPEFSCR bits are defined in Table 5-1.

S
O

V
H

O
V

H

F
G

H

F
X

H

F
IN

V
H

F
D

B
Z

H

F
U

N
F

H

F
O

V
F

H

0

F
IN

X
S

F
IN

V
S

F
D

B
Z

S

F
U

N
F

S

F
O

V
F

S

M
O

D
E

S
O

V

O
V

F
G F
X

F
IN

V

F
D

B
Z

F
U

N
F

F
O

V
F

0

F
IN

X
E

F
IN

V
E

F
D

B
Z

E

F
U

N
F

E

F
O

V
F

E

F
R

M
C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 512; Read/Write; Reset - 0x0

Figure 5-1. SPE/EFPU Status and Control Register (SPEFSCR)

Table 5-1. SPEFSCR field descriptions

Bits Name Description

0
(32)

SOVH Summary Integer Overflow High
Defined by SPE.

1
(33)

OVH Integer Overflow High
Defined by SPE.

2
(34)

FGH Embedded Floating-point Guard bit High
FGH is supplied for use by the Floating-point Round exception handler. FGH is zeroed if a
Floating-point Data Exception occurs for the high element(s). FGH corresponds to the high
element result. FGH is cleared by a scalar floating point instruction.

3
(35)

FXH Embedded Floating-point Sticky bit High
FXH is supplied for use by the Floating-point Round exception handler. FXH is zeroed if a
Floating-point Data Exception occurs for the high element(s). FXH corresponds to the high
element result. FXH is cleared by a scalar floating point instruction.

4
(36)

FINVH Embedded Floating-point Invalid Operation / Input error High
In mode 0, the FINVH bit is set to 1 if the A or B high element operand of a floating-point
instruction is Infinity, NaN, or Denorm, or if the operation is a divide and the high element
dividend and divisor are both 0.
In mode 1, the FINVH bit is set on an IEEE754 invalid operation (IEEE754-1985 sec7.1) in
the high element.
FINVHH is cleared by a scalar floating point instruction.

5
(37)

FDBZH Embedded Floating-point Divide by Zero High
The FDBZH bit is set to 1 when a floating-point divide instruction executed with a high
element divisor of 0, and the high element dividend is a finite non-zero number. FDBZH is
cleared by a scalar floating point instruction.

6
(38)

FUNFH Embedded Floating-point Underflow High
The FUNFH bit is set to 1 when the execution of a floating-point instruction results in an
underflow in the high element. FUNFH is cleared by a scalar floating point instruction.

7
(39)

FOVFH Embedded Floating-point Overflow High
The FOVFH bit is set to 1 when the execution of a floating-point instruction results in an
overflow in the high element. FOVFH is cleared by a scalar floating point instruction.

8:9
(40:41)

— Reserved

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 145

10
(42)

FINXS Embedded Floating-point Inexact Sticky Flag
The FINXS bit is set to 1 whenever the execution of a floating-point instruction delivers an
inexact result for either the low or high element and no Floating-point Data exception is
taken for either element, or if the result of a Floating-point instruction results in overflow
(FOVF=1 or FOVFH=1), but Floating-point Overflow exceptions are disabled (FOVFE=0), or
if the result of a Floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but
Floating-point Underflow exceptions are disabled (FUNFE=0), and no Floating-point Data
exception occurs. The FINXS bit remains set until it is cleared by a mtspr instruction
specifying the SPEFSCR register.

11
(43)

FINVS Embedded Floating-point Invalid Operation Sticky Flag
The FINVS bit is set to a 1 when a floating-point instruction sets the FINVH or FINV bit to 1.
The FINVS bit remains set until it is cleared by a mtspr instruction specifying the SPEFSCR
register.

12
(44)

FDBZS Embedded Floating-point Divide by Zero Sticky Flag
The FDBZS bit is set to 1 when a floating-point divide instruction sets the FDBZH or FDBZ
bit to 1. The FDBZS bit remains set until it is cleared by a mtspr instruction specifying the
SPEFSCR register.

13
(45)

FUNFS Embedded Floating-point Underflow Sticky Flag
The FUNFS bit is set to 1 when a floating-point instruction sets the FUNFH or FUNF bit to
1. The FUNFS bit remains set until it is cleared by a mtspr instruction specifying the
SPEFSCR register.

14
(46)

FOVFS Embedded Floating-point Overflow Sticky Flag
The FOVFS bit is set to 1 when a floating-point instruction sets the FOVFH or FOVF bit to
1. The FOVFS bit remains set until it is cleared by a mtspr instruction specifying the
SPEFSCR register.

15
(47)

MODE Embedded Floating-point Operating Mode
0 Default hardware results operating mode
1 IEEE754 hardware results operating mode (not supported by Zen)
This bit controls the operating mode of the EFPU.
Zen supports only mode 0.

Software should read the value of this bit after writing it to determine if the implementation
supports the selected mode. Implementations will return the value written if the selected
mode is a supported mode, otherwise the value read will indicate the hardware supported
mode.

16
(48)

SOV Summary integer overflow
Defined by SPE.

17
(49)

OV Integer overflow
Defined by SPE.

18
(50)

FG Embedded Floating-point Guard bit
FG is supplied for use by the Floating-point Round exception handler. FG is zeroed if a
Floating-point Data Exception occurs for the low element(s). FG corresponds to the low
element result.

19
(51)

FX Embedded Floating-point Sticky bit
FX is supplied for use by the Floating-point Round exception handler.FX is zeroed if a
Floating-point Data Exception occurs for the low element(s). FX corresponds to the low
element result.

Table 5-1. SPEFSCR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

146 Freescale Semiconductor

20
(52)

FINV Embedded Floating-point Invalid Operation / Input error
In mode 0, the FINV bit is set to 1 if the A or B low element operand of a floating-point
instruction is Infinity, NaN, or Denorm, or if the operation is a divide and the low element
dividend and divisor are both 0.
In mode 1, the FINV bit is set on an IEEE754 invalid operation (IEEE754-1985 sec7.1) in
the low element.

21
(53)

FDBZ Embedded Floating-point Divide by Zero
The FDBZ bit is set to 1 when a floating-point divide instruction executed with a low element
divisor of 0, and the low element dividend is a finite non-zero number.

22
(54)

FUNF Embedded Floating-point Underflow
The FUNF bit is set to 1 when the execution of a floating-point instruction results in an
underflow in the low element.

23
(55)

FOVF Embedded Floating-point Overflow
The FOVF bit is set to 1 when the execution of a floating-point instruction results in an
overflow in the low element.

24
(56)

— Reserved

25
(57)

FINXE Embedded Floating-point Inexact Exception Enable
0 Exception disabled
1 Exception enabled
If the exception is enabled, a Floating-point Round exception is taken if for both elements,
the result of a Floating-point instruction does not result in overflow or underflow, and the
result for either element is inexact (FG | FX = 1, or FGH | FXH =1), or if the result of a
Floating-point instruction does result in overflow (FOVF=1 or FOVFH=1) for either element,
but Floating-point Overflow exceptions are disabled (FOVFE=0), or if the result of a
Floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but Floating-point
Underflow exceptions are disabled (FUNFE=0), and no Floating-point Data exception
occurs.

26
(58)

FINVE Embedded Floating-point Invalid Operation / Input Error Exception Enable
0 Exception disabled
1 Exception enabled
If the exception is enabled, a Floating-point Data exception is taken if the FINV or FINVH bit
is set by a floating-point instruction.

27
(59)

FDBZE Embedded Floating-point Divide by Zero Exception Enable
0 Exception disabled
1 Exception enabled
If the exception is enabled, a Floating-point Data exception is taken if the FDBZ or FDBZH
bit is set by a floating-point instruction.

28
(60)

FUNFE Embedded Floating-point Underflow Exception Enable
0 Exception disabled
1 Exception enabled
If the exception is enabled, a Floating-point Data exception is taken if the FUNF or FUNFH
bit is set by a floating-point instruction.

Table 5-1. SPEFSCR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 147

5.2.2 GPRs and PowerISA 2.06 instructions

The e200z759n3 core implements the 32-bit forms of the Book E instructions. All 32-bit PowerISA 2.06
instructions operate upon the lower half of the 64-bit GPR. These instructions do not affect the upper half
of a GPR.

5.2.3 SPE/EFPU available bit in MSR

MSRSPE is defined as the SPE/EFPU available bit. If this bit is clear and software attempts to execute any
of the EFPU vector instructions (evfsxxx) that affect the upper 32 bits of a GPR, the EFPU APU
Unavailable exception is taken. If this bit is set, software can execute any of the EFPU instructions.

5.2.4 Embedded floating-point exception bit in ESR

ESRSPE is defined as the SPE/EFPU exception bit. This bit is set whenever the processor takes an
exception related to the execution of a SPE APU instruction. This bit is also set whenever the processor
takes an interrupt related to the execution of the embedded floating-point instructions. (Note that the same
bit is used for SPE APU exceptions. Thus, SPE and embedded floating-point interrupts are
indistinguishable in the ESR).

5.2.5 EFPU exceptions

The architecture defines the following Embedded Floating-point APU exceptions:

• SPE/EFPU Unavailable exception

• EFPU Floating-point Data exception

• EFPU Floating-point Round exception

Three new interrupt vector offset registers (IVORs), IVOR32, IVOR33, and IVOR34, are used by the
exception model. The SPR number for IVOR32 is 528, for IVOR33 it is 529, and for IVOR34 it is 530.
These registers are privileged.

29
(61)

FOVFE Embedded Floating-point Overflow Exception Enable
0 Exception disabled
1 Exception enabled
If the exception is enabled, a Floating-point Data exception is taken if the FOVF or FOVFH
bit is set by a floating-point instruction.

30:31
(62:63)

FRMC Embedded Floating-point Rounding Mode Control
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Table 5-1. SPEFSCR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

148 Freescale Semiconductor

5.2.5.1 EFPU unavailable exception

The EFPU Unavailable exception is taken if MSRSPE is cleared and execution of an EFPU vector
instruction (evfsxxx) is attempted. When the EFPU Unavailable exception occurs, the processor suppresses
execution of the instruction causing the exception. The SRR0, SRR1, MSR, and ESR registers are
modified as follows:

• SRR0 is set to the effective address of the instruction causing the exception.

• SRR1 is set to the contents of the MSR at the time of the exception.

• MSRCE,ME,DE are unchanged. All other bits are cleared.

• The ESRSPE bit is set. All other ESR bits are cleared.

Instruction execution resumes at address IVPR0:15||ivor3216:27||0b0000.

5.2.5.2 Embedded floating-point data exception

The embedded floating-point data exception vector is used for enabled floating-point invalid
operation/input error, underflow, overflow, and divide by zero exceptions (collectively called
floating-point data exceptions). When one of these enabled floating-point exceptions occurs, the processor
suppresses execution of the instruction causing the exception. The SRR0, SRR1, MSR, ESR and
SPEFSCR registers are modified as follows:

• SRR0 is set to the effective address of the instruction causing the exception.

• SRR1 is set to the contents of the MSR at the time of the exception.

• MSR bits CE, ME and DE are unchanged. All other bits are cleared.

• The ESRSPE bit is set. All other ESR bits are cleared.

• One or more SPEFSCR status bits are set to indicate the type of exception. The affected bits are
FINVH, FINV, FDBZH, FDBZ, FOVFH, FOVF, FUNFH, and FUNF. SPEFSCRFG, FGH, FX, FXH
are cleared

Instruction execution resumes at address IVPR0:15||IVOR3316:27||0b0000.

5.2.5.3 Embedded floating-point round exception

The embedded floating-point round exception occurs if the SPEFSCRFINXE bit is set and either the
unrounded result of an operation is not exact, or an overflow occurs and overflow exceptions are disabled
(FOVF or FOVFH set with FOVFE cleared), or if an underflow occurs and underflow exceptions are
disabled (FUNF set with FUNFE cleared), and no floating-point data exception is taken. The embedded
floating-point round exception will not occur if an enabled embedded floating-point data exception occurs.

When the embedded floating-point round exception occurs, the unrounded (truncated) result of an inexact
high or low element is placed in the target register. If only a single element is inexact, the other exact
element will be updated with the correctly rounded result. The FG and FX bits corresponding to the other
exact element will both be ‘0’.

The bits FG and FX are provided so that an exception handler can round the result as it desires. FG (called
the ‘guard’ bit) is the value of the bit immediately to the right of the lsb of the destination format mantissa
from the infinitely precise intermediate calculation before rounding. FX (called the ‘sticky’ bit) is the value

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 149

of the ‘or’ of all the bits to the right of the guard bit (FG) of the destination format mantissa from the
infinitely precise intermediate calculation before rounding.

The SRR0, SRR1, MSR, ESR and SPEFSCR registers are modified as follows:

• SRR0 is set to the effective address of the instruction following the instruction causing the
exception.

• SRR1 is set to the contents of the MSR at the time of the exception.

• MSR bits CE, ME and DE are unchanged. All other bits are cleared.

• The ESRSPE bit is set. All other ESR bits are cleared.

• SPEFSCRFGH, FG, FXH, FX are set appropriately. SPEFSCRFINXS will be set.

Instruction execution resumes at address IVPR0:15||IVOR3416:27||0b0000.

5.2.6 Exception Priorities

The following list shows the priority order in which exceptions are taken:

1. EFPU Unavailable exception

2. EFPU Floating-point Data exception

3. EFPU Floating-point Round exception

An embedded Floating-point Data exception will be taken if either element generates a embedded
Floating-point Data exception. An embedded Floating-point Round exception will be taken if either
element generates an embedded Floating-point Round exception and neither element generates a EFPU
Floating-point Data exception.

5.3 Embedded floating-point APU operations
e200z759n3 implements floating-point instructions that operate upon the contents of a 64-bit register that
is a vector of two single-precision floating-point elements. The floating-point unit shares the same register
file as the integer unit. There is no separate floating-point register file. Floating-point instructions are also
provided to perform scalar single precision floating-point operations on the low elements of registers,
without affecting the high-order portion. The Power Architecture UISA and Book E floating-point
instructions are not implemented in e200z759n3.

The Freescale EIS architecture definition for embedded floating-point defines two operating modes; a
real-time, ‘default results’ oriented mode (mode 0) and a ‘true IEEE754 results’ operating mode (mode 1).
Implementations of the embedded floating-point APU may choose to implement one or both of these
modes. The e200z759n3 hardware implements mode 0. IEEE754 compliant operation is still available in
mode 0 with assistance of a software envelope.

5.3.1 Floating-point data formats

The EFPU supports single-precision scalar and single-precision vector floating-point data operations and
conversions. In addition, conversions between single-precision floating-point and the half-precision
floating-point storage format are supported. These formats are described in the following subsections.

e200z759n3 Core Reference Manual, Rev. 2

150 Freescale Semiconductor

5.3.1.1 Single-precision floating-point format

Each single-precision floating-point data element is 32 bits wide with one sign bit (s), 8 bits of biased
exponent (e) and 23 bits of fraction (f).

In the IEEE-754 specification, floating point values are represented in a format consisting of three explicit
fields (sign field, biased exponent field, and fraction field) and an implicit hidden bit.

Figure 5-2. Single-precision data format

For Normalized numbers, the biased exponent value ‘e’ lies in the range of 1 to 254 corresponding to an
actual exponent value E in the range –126 to +127, the hidden bit is a ‘1’ (for normalized numbers), and
the value of the number is interpreted as

where E is the unbiased exponent and 1.fraction is the significand consisting of a leading ‘1’ (the hidden
bit) and a fractional part (fraction field). With this format, the maximum positive normalized number
(pmax) is represented by the encoding 0x7F7FFFFF, which is approximately 3.4E+38 (), and the
minimum positive normalized value (pmin) is represented by the encoding 0x00800000, which is
approximately 1.2E–38 ()

Two specific values of the biased exponent are reserved; 0, and 255, for encoding special values of
.

Zeros of both positive and negative sign are represented by a biased exponent value e of zero and a
fraction f that is zero.

Infinities of both positive and negative sign are represented by a biased exponent value of 255 and a
fraction that is zero.

Denormalized numbers of both positive and negative sign are represented by a biased exponent value e of
0 and a fraction f that is non-zero. For these numbers, the hidden bit is defined by the IEEE-754 standard
to be ‘0’. This number type is not directly supported in hardware. Instead, either a software exception
handler is invoked, or a default value is defined, depending on the operating mode.

Not a Numbers (NaNs) are represented by a biased exponent value e of 255 and a fraction f that is non-zero.

Defining pmax to be the most positive normalized value (farthest from zero), pmin the smallest positive
normalized value (closest to zero), nmax the most negative normalized value (farthest from zero) and nmin
the smallest normalized negative value (closest to zero), an overflow is said to have occurred if the

fraction

0

exp

318

Hidden Bit

S

S - sign bit 0 - positive; 1 - negative

exp - biased exponent field (excess 127 notation)

fraction- fractional portion of number

1 9

1– S 2E 1.fraction

2128

2 126–

0 NaN and Denorm,,

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 151

numerically correct result of an instruction is such that r>pmax or r<nmax. An underflow is said to have
occurred if the numerically correct result of an instruction is such that 0<r<pmin or nmin<r<0. In this case,
r may be denormalized, or may be smaller than the smallest denormalized number. If e=255 and f!= 0, then
the value is a NaN. If e=0 and f=0, then the value is a signed 0.

The EFPU hardware will not produce +Inf, -Inf, NaN, or a Denormalized number. If the result of an
instruction overflows and Floating-point Overflow exceptions are disabled (SPEFSCRFOVFE bit is
cleared), then pmax or nmax is generated as the result of that instruction depending upon the sign of the
result. If the result of an instruction underflows and Floating-point Underflow exceptions are disabled
(SPEFSCRFUNFE bit is cleared), then +0 or -0 is generated as the result of that instruction based upon the
sign of the result.

5.3.1.2 Half-precision floating-point format

Half-precision floating-point storage format is supported by the EFPU with conversion operations to and
from single-precision floating-point format. No computational operations are defined for half-precision
format numbers.

Each half-precision floating-point data element is 16 bits wide with one sign bit (s), 5 bits of biased
exponent (e) and 10 bits of fraction (f).

In the IEEE-754r proposal, half-precision floating point values are represented in a format consisting of
three explicit fields (sign field, biased exponent field, and fraction field) and an implicit hidden bit.

Figure 5-3. Half-precision data format

For Normalized numbers, the biased exponent value ‘e’ lies in the range of 1 to 30 corresponding to an
actual exponent value E in the range –14 to +15, the hidden bit is a ‘1’ (for normalized numbers), and the
value of the number is interpreted as

where E is the unbiased exponent and 1.fraction is the significand consisting of a leading ‘1’ (the hidden
bit) and a fractional part (fraction field). With this format, the maximum positive normalized number
(pmaxhp) is represented by the encoding 0x7BFF, which is 65504, and the minimum positive normalized
value (pminhp) is represented by the encoding 0x0400, which is approximately 6.1E-5 ().

Two specific values of the biased exponent are reserved; 0, and 31, for encoding special values of
.

fraction

0

exp

155

Hidden Bit

S

S - sign bit 0 - positive; 1 - negative

exp - biased exponent field (excess 15 notation)

fraction- fractional portion of number

1 6

1– S 2E 1.fraction

2 14–

0 NaN and Denorm,,

e200z759n3 Core Reference Manual, Rev. 2

152 Freescale Semiconductor

Zeros of both positive and negative sign are represented by a biased exponent value e of zero and a fraction
f that is zero.

Infinities of both positive and negative sign are represented by a biased exponent value of 31 and a fraction
that is zero.

Denormalized numbers of both positive and negative sign are represented by a biased exponent value e of
0 and a fraction f that is non-zero. For these numbers, the hidden bit is defined to be ‘0’.

Not a Numbers (NaNs) are represented by a biased exponent value e of 31 and a fraction f that is non-zero.

Defining pmaxhp to be the most positive normalized value (farthest from zero), pminhp the smallest
positive normalized value (closest to zero), nmaxhp the most negative normalized value (farthest from
zero) and nminhp the smallest normalized negative value (closest to zero), an overflow is said to have
occurred if the numerically correct result of a conversion is such that r>pmaxhp or r<nmaxhp. An underflow
is said to have occurred if the numerically correct result of a conversion is such that 0<r<pminhp or
nminhp<r<0. In this case, r may be denormalized, or may be smaller than the smallest denormalized
number. If e=31 and f!= 0, then the value is a NaN. If e=0 and f=0, then the value is a signed 0.

The EFPU hardware will not produce +Inf, –Inf, NaN, or a Denormalized number. If the result of a
conversion to half-precision format overflows and Floating-point Overflow exceptions are disabled
(SPEFSCRFOVFE bit is cleared), then pmaxhp or nmaxhp is generated as the result of that instruction
depending upon the sign of the result. If the result of conversion to half-precision format underflows and
Floating-point Underflow exceptions are disabled (SPEFSCRFUNFE bit is cleared), then +0 or -0 is
generated as the result of that instruction based upon the sign of the result. Conversions from half-precision
format to single-precision format are always exact, unless the source operand is a NaN, Inf, or Denorm. In
such cases, if Floating-point Invalid Input exceptions are disabled (SPEFSCRFINVE bit is cleared), the
conversion results in a properly signed max norm or zero default result.

5.3.2 IEEE 754 compliance

The Freescale EIS architecture specifies that the EFPU implements a single-precision floating-point
system as defined in ANSI/IEEE Standard 754-1985 but may rely on software support in order to conform
fully with the standard. Thus, whenever an input operand of the floating-point instruction has data values
that are +Infinity, –Infinity, Denormalized, NaN, or when the result of an operation produces an overflow
or an underflow, an exception may be taken and the exception handler is responsible for delivering IEEE
754 compliant behavior if desired.

When floating-point invalid input exceptions are disabled (SPEFSCRFINVE is cleared), default results are
provided by the hardware when an Infinity, Denormalized, or NaN input is received, or for the operation
0/0. When Floating-point Underflow exceptions are disabled (SPEFSCRFUNFE is cleared) and the result
of a floating-point operation underflows, a signed zero result is produced. The inexact exception is also
signaled for this condition. When floating-point overflow exceptions are disabled (SPEFSCRFOVFE is
cleared) and the result of a floating-point operation overflows, a pmax or nmax result is produced. The
inexact exception is also signaled for this condition. An exception enable flag (SPEFSCRFINXE) is also
provided for generating an exception when an inexact result is produced, to allow a software handler to
conform to the IEEE 754 standard. A divide by zero exception enable flag (SPEFSCRFDBZE) is also
provided for generating an exception when a divide by zero operation is attempted to allow a software

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 153

handler to conform to the IEEE 754 standard. All of these exceptions may be disabled, and the hardware
will then deliver an appropriate default result.

Overflow and underflow conditions are determined after rounding on Zen implementations.

5.3.3 Floating-point exceptions

See Section 5.2.5, EFPU exceptions.

5.3.4 Embedded scalar single-precision floating-point instructions

In the following instruction descriptions, “sa” is the sign of operand A, “ea” is the biased exponent value
of operand A, “sb” is the sign of operand B, “eb” is the biased exponent value of operand B, “ei” is an
intermediate exponent value, “r” is a result value.

e200z759n3 Core Reference Manual, Rev. 2

154 Freescale Semiconductor

efsabs efsabs
Floating-Point Single-Precision Absolute Value

efsabs rD,rA

RD32:63 = 0b0 || RA33:63

Description:

The sign bit of the low element of RA is set to 0 and the result is placed into the low element of RD.

Exceptions:

If the low element of RA is Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and FG and FX are
cleared. FGH and FXH are cleared as well. If Floating-point Invalid Input exceptions are enabled then an
exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 155

efsadd efsadd
Floating-Point Single-Precision Add

efsadd rD,rA,rB

RD32:63 = RA32:63 +sp RB32:63

Description:

The low element of RA is added to the low element of RB and the result is stored in the low element of
RD. If RA is NaN or infinity, the result is either pmax (sa==0), or nmax (sa==1). Otherwise, If RB is NaN
or infinity, the result is either pmax (sb==0), or nmax (sb==1). Otherwise, if an overflow occurs, then pmax
or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for rounding modes RN, RZ,
RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

156 Freescale Semiconductor

efscfh efscfh
Convert Floating-Point Single-Precision from Half-Precision

efscfh rD,rB

FP16format f;
FP32format result;

f rB48:63

if (fexp = 0) & (ffrac = 0)) then
result fsign ||

310 // signed zero value
else if Isa16NaNorInfinity(f) then

SPEFSCRFINV 1
result fsign || 0b11111110 ||

231 // max value
else if Isa16Denorm(f) then

SPEFSCRFINV 1
result fsign ||

310
else

resultsign fsign
resultexp fexp - 15 + 127
resultfrac ffrac ||

130

rD32:63 = result

The half-precision FP number in the low half of the low element in RB is converted to a single-precision
floating-point value and the result is placed into the low element of RD. The rounding mode is not used
since this conversion is always exact.

Exceptions:

If the source element of rB is Infinity, Denorm, or NaN, SPEFSCRFINV is set. If SPEFSCRFINVE is set, an
interrupt is taken, the destination register is not updated, and the FGH, FXH, FG, and FX bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 1 0 0 RB 0 1 0 1 1 0 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 157

efscfsf efscfsf
Convert Floating-Point Single-Precision from Signed Fraction

efscfsf rD,rB

Description:
bl = RB32:63
RD32:63 = CnvtSF32ToFP32(bl)

The signed fractional low element in RB is converted to a single-precision floating-point value using the
current rounding mode and the result is placed into the low element of RD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

158 Freescale Semiconductor

efscfsi efscfsi
Convert Floating-Point Single-Precision from Signed Integer

efscfsi rD,rB

Description:
bl = RB32:63
RD32:63 = CnvtSI32ToFP32(bl)

The signed integer low element in RB is converted to a single-precision floating-point value using the
current rounding mode and the result is placed into the low element of RD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 159

efscfuf efscfuf
Convert Floating-Point Single-Precision from Unsigned Fraction

efscfuf rD,rB

Description:
bl = RB32:63
RD32:63 = CnvtUF32ToFP32(bl)

The unsigned fractional low element in RB is converted to a single-precision floating-point value using
the current rounding mode and the result is placed into the low element of RD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

160 Freescale Semiconductor

efscfui efscfui
Convert Floating-Point Single-Precision from Unsigned Integer

efscfui rD,rB

Description:
bl = RB32:63
RD32:63 = CnvtUI32ToFP32(bl)

The unsigned integer low element in RB is converted to a single-precision floating-point value using the
current rounding mode and the result is placed into the low element of RD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 161

efscmpgt efscmpgt
Floating-Point Single-Precision Compare Greater Than

efscmpgt crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al > bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is greater than RB, then the bit
in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and the FGH FXH,
FG and FX bits are cleared. If Floating-point Invalid Input exceptions are enabled then an exception is
taken, and the Condition Register is not updated. Otherwise, the comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 0 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

162 Freescale Semiconductor

efscmpeq efscmpeq
Floating-Point Single-Precision Compare Equal

efscmpeq crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al == bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is equal to RB, then the bit in
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and the FGH FXH,
FG and FX bits are cleared. If Floating-point Invalid Input exceptions are enabled then an exception is
taken, and the Condition Register is not updated. Otherwise, the comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 0 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 163

efscmplt efscmplt
Floating-Point Single-Precision Compare Less Than

efscmplt crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al < bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is less than RB, then the bit in
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and the FGH FXH,
FG and FX bits are cleared. If Floating-point Invalid Input exceptions are enabled then an exception is
taken, and the Condition Register is not updated. Otherwise, the comparison proceeds after treating NaNs,
Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 0 1 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

164 Freescale Semiconductor

efscth efscth
Convert Floating-Point Single-Precision to Half-Precision

efscth rD,rB

FP32format f;
FP16format result;

f rB32:63

if (fexp = 0) & (ffrac = 0)) then
result fsign ||

150 // signed zero value
else if Isa32NaNorInfinity(f) then

SPEFSCRFINV 1
result fsign || 0b11110 ||

101 // max value
else if Isa32Denorm(f) then

SPEFSCRFINV 1
result fsign ||

150
else

unbias fexp - 127
if unbias > 15 then

result fsign || 0b11110 ||
101 // max value

SPEFSCRFOVF 1
else if unbias < -14 && (result would not round up to bmin) then

result fsign ||
150 // like-signed zero value

SPEFSCRFUNF 1
else

resultsign fsign
resultexp unbias + 15
resultfrac ffrac[0:9]
guard ffrac[10]
sticky (ffrac[11:22] 0)
result Round16(result, LOWER, guard, sticky)
SPEFSCRFG guard
SPEFSCRFX sticky
if guard | sticky then

SPEFSCRFINXS 1

rD32:63 =
160 || result

The single-precision FP number in the low element in RB is converted to a half-precision floating-point
value using the current rounding mode. The result is then prepended with 16 zeros, and placed into the low
element of RD.

Exceptions:

If the source element of rB is Infinity, Denorm, or NaN, SPEFSCRFINV is set. If SPEFSCRFINVE is set, an
interrupt is taken, the destination register is not updated, and the FGH, FXH, FG, and FX bits are cleared.
Otherwise, if an overflow occurs, SPEFSCRFOVF is set, or if an underflow occurs, SPEFSCRFUNF is set.
If either underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt is
taken. If any of these interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other interrupt is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an
interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 1 0 0 RB 0 1 0 1 1 0 1 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 165

updated with the truncated result, the FG and FX bits are properly updated to allow rounding to be
performed in the interrupt handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG, and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled,
regardless of enabled exceptions.

e200z759n3 Core Reference Manual, Rev. 2

166 Freescale Semiconductor

efsctsf efsctsf
Convert Floating-Point Single-Precision to Signed Fraction

efsctsf rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then

RD32:63 = 0
else if ((bl == +0) || (bl == -0)) // zero cases

RD32:63 = 0
else if (ebl < 127) then

RD32:63 = CnvtFP32ToSF32Sat(bl)
else if ((ebl == 127) && (sbl == 1) && (fbl==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (bl == NAN) then RD32:63 = 0
else // Overflow

if (sbl == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

The single-precision floating-point low element in RB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, and
the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 167

efsctsi efsctsi
Convert Floating-Point Single-Precision to Signed Integer

efsctsi rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then

RD32:63 = 0
else if (ebl < 158) then

RD32:63 = CnvtFP32ToSI32Sat(al)
else if ((ebl == 158) && (sbl == 1) && (fbl==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (bl == NAN) then RD32:63 = 0
else // Overflow

if (sbl == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

The single-precision floating-point low element in RB is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, the
destination register is not updated, and no other status bits are set.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

168 Freescale Semiconductor

efsctsiz efsctsiz
Convert Floating-Point Single-Precision to Signed Integer with Round toward Zero

efsctsiz rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then

RD32:63 = 0
else if (ebl < 158) then

RD32:63 = CnvtFP32ToSI32Sat(bl)
else if ((ebl == 158) && (sbl == 1) && (fbl==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (bl == NAN) then RD32:63 = 0
else // Overflow

if (sbl == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

The single-precision floating-point low element in RB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, the
destination register is not updated, and no other status bits are set.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 169

efsctuf efsctuf
Convert Floating-Point Single-Precision to Unsigned Fraction

efsctuf rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then // force denorm to zero

RD32:63 = 0
else if ((bl == +0) || (bl == -0)) // zero cases

RD32:63 = 0
else if (sbl == 1) // Negative

RD32:63 = 0
else if (ebl < 127)

RD32:63 = CnvtFP32ToUF32Sat(bl)
else if (bl == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

The single-precision floating-point low element in RB is converted to an unsigned fraction using the
current rounding mode and the result is saturated if it cannot be represented in a 32-bit unsigned fraction.
NaNs are converted as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, and
the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

170 Freescale Semiconductor

efsctui efsctui
Convert Floating-Point Single-Precision to Unsigned Integer

efsctui rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then // force denorm to zero

RD32:63 = 0
else if ((bl == +0) || (bl == -0)) // zero cases

RD32:63 = 0
else if (sbl == 1) // Negative

RD32:63 = 0
else if (ebl <= 158)

RD32:63 = CnvtFP32ToUI32Sat(bl)
else if (bl == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

The single-precision floating-point low element in RB is converted to an unsigned integer using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, and
the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 171

efsctuiz efsctuiz
Convert Floating-Point Single-Precision to Unsigned Integer with Round toward Zero

efsctui rD,rB

Description:
bl = RB32:63
if (bl == Denorm) then // force denorm to zero

RD32:63 = 0
else if ((bl == +0) || (bl == -0)) // zero cases

RD32:63 = 0
else if (sbl == 1) // Negative

RD32:63 = 0
else if (ebl <= 158)

RD32:63 = CnvtFP32ToUI32Sat(bl)
else if (bl == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

The single-precision floating-point low element in RB is converted to an unsigned integer using the
rounding mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer.
NaNs are converted as though they were zero.

Exceptions:

If the contents of RB are Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV bit
is set, and the FGH, FXH, FG, and FX bits are cleared. If SPEFSCRFINVE is set, an exception is taken, and
the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversion is not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result, the FG and FX
bits are properly updated to allow rounding to be performed in the exception handler, and the FGH and
FXH bits are cleared.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 0 0 0 RB 0 1 0 1 1 0 1 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

172 Freescale Semiconductor

efsdiv efsdiv
Floating-Point Single-Precision Divide

efsdiv rD,rA,rB

RD32:63 = RA32:63 sp RB32:63

Description:

The low element of RA is divided by the low element of RB and the result is stored in the low element of
RD. If RB is a NaN or infinity, the result is a properly signed zero. Otherwise, if RB is a denormalized
number or a zero, or if RA is either NaN or infinity, the result is either pmax (sa==sb), or nmax (sa!=sb).
Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow
occurs, then +0 or -0 (as appropriate) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, or if both RA and RB are +/-0, the
SPEFSCRFINV bit is set. If SPEFSCRFINVE is set, an exception is taken, and the destination register is not
updated. Otherwise, if the content of RB is +/-0 and the content of RA is a finite normalized non-zero
number, the SPEFSCRFDBZ bit is set. If Floating-point Divide by Zero exceptions are enabled, an
exception is then taken. Otherwise, if an overflow occurs, then the SPEFSCRFOVF bit is set, or if an
underflow occurs, then the SPEFSCRFUNF bit is set. If either underflow or overflow exceptions are
enabled and the corresponding bit is set, an exception is taken. If any of these exceptions are taken, the
destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, divide by zero, or invalid operation/input
error is signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 1 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 173

efsmadd efsmadd
Floating-Point Single-Precision Multiply-Add

efsmadd rD,rA,rB

RD32:63 = ((RA32:63 Xfp RB32:63) +sp RD32:63)

The low element of rA is multiplied by the low element of rB, the intermediate product is added to the
low element of rD, and the result is stored in the low element of rD. If RA or RB are either zero or
denormalized, the intermediate product is a properly signed zero. Otherwise, if RA or RB are either NaN
or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb), and this value is used for
the result and stored into RD. Otherwise, the intermediate product is added to the corresponding element
of RD. If RD is NaN or infinity, the result is either pmax (sd==0), or nmax (sd==1). Otherwise, if an
overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for
rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact, or if an overflow occurs on the add, but overflow exceptions are
disabled, and no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact
exception is enabled, an exception is taken using the Floating-point Round exception vector. In this case,
the destination register is updated with the truncated result, the FG and FX bits are properly updated to
allow rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

174 Freescale Semiconductor

efsmax efsmax
Floating-Point Single-Precision Maximum

efsmax rD,rA,rB

alrA32:63
blrB32:63
if (al < bl) then tempbl
else tempal
if (isnan(al) & ~(isnan(bl))) then tempbl
if (isnan(bl) & ~(isnan(al))) then tempal
rD32:63temp

The low element of rA is compared against the low element of rB. The larger element is selected and
placed into the low element of rD. The maximum of +0 and -0 is +0.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV is set, and the FGH, FXH, FG and
FX bits are cleared. If SPEFSCRFINVE is set, an interrupt is taken, and the destination register is not
updated. Otherwise, the comparison proceeds after treating NaNs, Infinities, and Denorms as normalized
numbers, using their values of ‘e’ and ‘f’ directly. If one of the elements is a NaN and the other is not, the
non-NaN element is selected rather than the comparison result. If the selected element is denorm, the result
is a same signed zero. If the selected element is +NaN or +infinity, the corresponding result is pmax.
Otherwise, if the selected element is -NaN or -infinity, the corresponding result is nmax.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 175

efsmin efsmin
Floating-Point Single-Precision Minimum

efsmin rD,rA,rB

alrA32:63
blrB32:63
if (al < bl) then tempal
else tempbl
if (isnan(al) & ~(isnan(bl))) then tempbl
if (isnan(bl) & ~(isnan(al))) then tempal
rD32:63temp

The low element of rA is compared against the low element of rB. The smaller element is selected and
placed into the low element of rD. The minimum of +0 and -0 is -0.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV is set, and the FGH, FXH, FG and
FX bits are cleared. If SPEFSCRFINVE is set, an interrupt is taken, and the destination register is not
updated. Otherwise, the comparison proceeds after treating NaNs, Infinities, and Denorms as normalized
numbers, using their values of ‘e’ and ‘f’ directly. If one of the elements is a NaN and the other is not, the
non-NaN element is selected rather than the comparison result. If the selected element is denorm, the result
is a same signed zero. If the selected element is +NaN or +infinity, the corresponding result is pmax.
Otherwise, if the selected element is -NaN or -infinity, the corresponding result is nmax.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

176 Freescale Semiconductor

efsmsub efsmsub
Floating-Point Single-Precision Multiply-Subtract

efsmsub rD,rA,rB

RD32:63 = ((RA32:63 Xfp RB32:63) -sp RD32:63)

The low element of rA is multiplied by the low element of rB, the low element of rD is subtracted from
the intermediate product, and the result is stored in the low element of rD. If RA or RB are either zero or
denormalized, the intermediate product is a properly signed zero. Otherwise, if RA or RB are either NaN
or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb), and this value is used for
the result and stored into RD. Otherwise, the low element of rD is subtracted from the intermediate
product. If RD is NaN or infinity, the result is either nmax (sd==0), or pmax (sd==1). Otherwise, if an
overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for
rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 177

efsmul efsmul
Floating-Point Single-Precision Multiply

efsmul rD,rA,rB

RD32:63 = RA32:63 Xsp RB32:63

Description:

The low element of RA is multiplied by the low element of RB and the result is stored in the low element
of RD. If RA or RB are either zero or denormalized, the result is a properly signed zero. Otherwise, if RA
or RB are either NaN or infinity, the result is either pmax (sa==sb), or nmax (sa!=sb). Otherwise, if an
overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 or
-0 (as appropriate) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

178 Freescale Semiconductor

efsnabs efsnabs
Floating-Point Single-Precision Negative Absolute Value

efsnabs rD,rA

RD32:63 = 0b1 || RA33:63

Description:

The sign bit of the low element of RA is set to 1 and the result is placed into the low element of RD.

Exceptions:

If the low element of RA is Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and FG and FX are
cleared. FGH and FXH are cleared as well. If Floating-point Invalid Input exceptions are enabled then an
exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 179

efsneg efsneg
Floating-Point Single-Precision Negate

efsneg rD,rA

RD32:63 = ¬RA32 || RA33:63

Description:

The sign bit of the low element of RA is complemented and the result is placed into the low element of RD.

Exceptions:

If the low element of RA is Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set, and FG and FX are
cleared. FGH and FXH are cleared as well. If Floating-point Invalid Input exceptions are enabled then an
exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

180 Freescale Semiconductor

efsnmadd efsnmadd
Floating-Point Single-Precision Negative Multiply-Add

efsnmadd rD,rA,rB

RD32:63 = -((RA32:63 Xfp RB32:63) +sp RD32:63)

The low element of rA is multiplied by the low element of rB, the intermediate product is added to the
low element of rD, and the negated result is stored in the low element of rD. If RA or RB are either zero
or denormalized, the intermediate product is a properly signed zero. Otherwise, if RA or RB are either NaN
or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb), and this value is used for
the result and stored into RD. Otherwise, the intermediate product is added to the corresponding element
of RD, and the final result is negated. If RD is NaN or infinity, the result is either nmax (sd==0), or pmax
(sd==1). Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an
underflow occurs, then -0 (for rounding modes RN, RZ, RP) or +0 (for rounding mode RM) is stored in
RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 181

efsnmsub efsnmsub
Floating-Point Single-Precision Negative Multiply-Subtract

efsnmsub rD,rA,rB

RD32:63 = -((RA32:63 Xfp RB32:63) -sp RD32:63)

The low element of element of rA is multiplied by the low element of rB, the low element of rD is
subtracted from the intermediate product, and the negated result is stored in the low element of rD. If RA
or RB are either zero or denormalized, the intermediate product is a properly signed zero. Otherwise, if
RA or RB are either NaN or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb),
and this value is negated to obtain the result and is stored into RD. Otherwise, the low element of rD is
subtracted from the intermediate product, and the final result is negated. If RD is NaN or infinity, the final
result is either pmax (sd==0), or nmax (sd==1). Otherwise, if an overflow occurs, then pmax or nmax (as
appropriate) is stored in RD. If an underflow occurs, then -0 (for rounding modes RN, RZ, RP) or +0 (for
rounding mode RM) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 1 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

182 Freescale Semiconductor

efssqrt efssqrt
Floating-Point Single-Precision Square Root

efssqrt rD,rA

rD32:63 SQRT(rA32:63)

The square root of the low element of rA is calculated, and the results is stored in the low element of rD.
If the low element of rA is zero or denorm, the result is a same signed zero. If the low element of rA is
+NaN or +infinity, the corresponding result is pmax. Otherwise, if the low element of rA is non-zero and
has a negative sign, including -NaN or -infinity, the corresponding result is -0. Otherwise, if an underflow
occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the low element
of rD.

Exceptions:

If the low element of rA is non-zero and has a negative sign, or is Infinity, Denorm, or NaN, SPEFSCRFINV
is set, and SPEFSCRFGH,FXH,FG,FX are cleared. If SPEFSCRFINVE is set, an interrupt is taken and the
destination register is not updated. Otherwise, if an underflow occurs, SPEFSCRFUNF is set. If underflow
exceptions are enabled and a corresponding status bit is set, an interrupt is taken. If any of these interrupts
are taken, the destination register is not updated.

If the result element of this instruction is inexact, or underflows but underflow exceptions are disabled,
and no other interrupt is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled,
an interrupt is taken using the floating-point round interrupt vector. In this case, the destination register is
updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the interrupt handler, and the FGH and FXH bits are cleared.

FG, FX, FGH, and FXH are cleared if an underflow or an invalid operation/input error is signaled for the
low element, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 183

efssub efssub
Floating-Point Single-Precision Subtract

efssub rD,rA,rB

RD32:63 = RA32:63 -sp RB32:63

Description:

The low element of RB is subtracted from the low element of RA and the result is stored in the low element
of RD. If RA is NaN or infinity, the result is either pmax (sa==0), or nmax (sa==1). Otherwise, If RB is
NaN or infinity, the result is either nmax (sb==0), or pmax (sb==1). Otherwise, if an overflow occurs, then
pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for rounding modes RN,
RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV bit is set. If SPEFSCRFINVE
is set, an exception is taken, and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF bit is set, or if an underflow occurs, then the SPEFSCRFUNF bit is set. If either
underflow or overflow exceptions are enabled and the corresponding bit is set, an exception is taken. If
any of these exceptions are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are disabled, and
no other exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is
enabled, an exception is taken using the Floating-point Round exception vector. In this case, the
destination register is updated with the truncated result, the FG and FX bits are properly updated to allow
rounding to be performed in the exception handler, and the FGH and FXH bits are cleared.

FGH, FXH, FG and FX will be cleared if an overflow, underflow, or invalid operation/input error is
signaled, regardless of enabled exceptions.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 1 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

184 Freescale Semiconductor

efststeq efststeq
Floating-Point Single-Precision Test Equal

efststeq crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al == bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is equal to RB, then the bit in
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and
‘f’ directly.

No exceptions are generated during the execution of efststeq instruction. If strict IEEE 754 compliance is
required, then the program should use the efscmpeq instruction.

Implementation note: In an implementation, the execution of efststeq is likely to be faster than the
execution of efscmpeq instruction.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 1 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 185

efststgt efststgt
Floating-Point Single-Precision Test Greater Than

efststgt crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al > bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is greater than RB, then the bit
in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and
‘f’ directly.

No exceptions are generated during the execution of efststgt instruction. If strict IEEE 754 compliance is
required, then the program should use the efscmpgt instruction.

Implementation note: In an implementation, the execution of efststgt is likely to be faster than the
execution of efscmpgt instruction.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 1 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

186 Freescale Semiconductor

efststlt efststlt
Floating-Point Single-Precision Test Less Than

efststlt crfD,rA,rB

Description:
al = RA32:63
bl = RB32:63
if (al < bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = undefined || cl || undefined || undefined

The low element of RA is compared against the low element of RB. If RA is less than RB, then the bit in
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and
‘f’ directly.

No exceptions are generated during the execution of efststlt instruction. If strict IEEE 754 compliance is
required, then the program should use the efscmplt instruction.

Implementation note: In an implementation, the execution of efststlt is likely to be faster than the
execution of efscmplt instruction.

5.3.5 EFPU Vector Single-precision Embedded Floating-Point
Instructions

In the following instruction descriptions, “sa” is the sign of operand A, “ea” is the biased exponent value
of operand A, “sb” is the sign of operand B, “eb” is the biased exponent value of operand B, “ei” is an
intermediate exponent value, “r” is a result value.

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 RA RB 0 1 0 1 1 0 1 1 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 187

evfsabs evfsabs
Vector Floating-Point Single-Precision Absolute Value

evfsabs rD,rA

RD0:31 = 0b0 || RA1:31
RD32:63 = 0b0 || RA33:63

Description:

The sign bit of each element in RA is set to 0 and the results are placed into RD.

Exceptions:

If the contents of either element of RA are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits are set
appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point Invalid
Input exceptions are enabled then an exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

188 Freescale Semiconductor

evfsadd evfsadd
Vector Floating-Point Single-Precision Add

evfsadd rD,rA,rB

RD0:31 = RA0:31 +sp RB0:31
RD32:63 = RA32:63 +sp RB32:63

Description:

Each single-precision floating-point element of RA is added to the corresponding element of RB and the
results are stored in RD. If RA is NaN or infinity, the result is either pmax (sa==0), or nmax (sa==1).
Otherwise, If RB is NaN or infinity, the result is either pmax (sb==0), or nmax (sb==1). Otherwise, if an
overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for
rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If SPEFSCRFINVE
is set, an exception is taken and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then the
SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are enabled
and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken, the
destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 189

evfsaddsub evfsaddsub
Vector Floating-Point Single-Precision Add / Subtract

evfsaddsub rD,rA,rB

rD0:31 rA0:31 +sp rB0:31
rD32:63 rA32:63 -sp rB32:63

The high order single-precision floating-point element of rA is added to the corresponding element of rB,
the low order single-precision floating-point element of rB is subtracted from the corresponding element
of rA, and the results are stored in rD. If an element of rA is NaN or infinity, the corresponding result is
either pmax (sa==0)or nmax (sa==1). Otherwise, if an element of rB is NaN or infinity, the corresponding
result is either pmax (sb==0) or nmax (sb==1). Otherwise, if an overflow occurs, pmax or nmax (as
appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes
RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

190 Freescale Semiconductor

evfsaddsubx evfsaddsubx
Vector Floating-Point Single-Precision Add / Subtract Exchanged

evfsaddsubx rD,rA,rB

rD0:31 rA32:63 +sp rB0:31
rD32:63 rA0:31 -sp rB32:63

The high-order single-precision floating-point element of rB is added to the low-order element of rA, the
low-order single-precision floating-point element of rB is subtracted from the high-order element of rA,
and the results are stored in rD. If an element of rA is NaN or infinity, the corresponding result is either
pmax (sa==0)or nmax (sa==1). Otherwise, if an element of rB is NaN or infinity, the corresponding result
is either pmax (sb==0) or nmax (sb==1). Otherwise, if an overflow occurs, pmax or nmax (as appropriate)
is stored in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP)
or -0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 191

evfsaddx evfsaddx
Vector Floating-Point Single-Precision Add Exchanged

evfsaddx rD,rA,rB

rD0:31 rA32:63 +sp rB0:31
rD32:63 rA0:31 +sp rB32:63

The high-order single-precision floating-point element of rB is added to the low-order element of rA, the
low-order single-precision floating-point element of rB is added to the high-order element of rA, and the
results are stored in rD. If an element of rA is NaN or infinity, the corresponding result is either pmax or
nmax (as appropriate). Otherwise, if an element of rB is NaN or infinity, the corresponding result is either
pmax or nmax (as appropriate). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored
in the corresponding element of rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0
(for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

192 Freescale Semiconductor

evfscfh evfscfh
Vector Convert Floating-Point Single-Precision from Half-Precision

evfscfh rD,rB

FP16format f;
FP32format result;

fh rB24:31
fl rB48:63

if (fhexp = 0) & (fhfrac = 0)) then
resulth fhsign ||

310 // signed zero value
else if Isa16NaNorInfinity(fh) then

SPEFSCRFINVH 1
resulth fhsign || 0b11111110 ||

231 // max value
else if Isa16Denorm(fh) then

SPEFSCRFINVH 1
resulth fhsign ||

310
else

resulthsign fhsign
resulthexp fhexp - 15 + 127
resulthfrac fhfrac ||

130

if (flexp = 0) & (flfrac = 0)) then
resultl flsign ||

310 // signed zero value
else if Isa16NaNorInfinity(fl) then

SPEFSCRFINV 1
resultl flsign || 0b11111110 ||

231 // max value
else if Isa16Denorm(fl) then

SPEFSCRFINV 1
resultl flsign ||

310
else

resultlsign flsign
resultlexp flexp - 15 + 127
resultlfrac flfrac ||

130

rD0:31 = resulth; rD32:63 = resultl

The half-precision FP number in each element in RB is converted to a single-precision floating-point value
and the result is placed into the corresponding element of RD. The rounding mode is not used since this
conversion is always exact.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, then the SPEFSCRFINV, FINVH bits are set
appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared. If SPEFSCRFINVE is set, an exception is
taken, the destination register is not updated, and no other status bits are set.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 1 0 0 RB 0 1 0 1 0 0 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 193

evfscfsf evfscfsf
Vector Convert Floating-Point Single-Precision from Signed Fraction

evfscfsf rD,rB

Description:

RD0:31 = CnvtSF32ToFP32(RB0:31)
RD32:63 = CnvtSF32ToFP32(RB32:63)

Each signed fractional element of rB is converted to a single-precision floating-point value using the
current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversions are not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to allow rounding to be performed in the exception handler.

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

194 Freescale Semiconductor

evfscfsi evfscfsi
Vector Convert Floating-Point Single-Precision from Signed Integer

evfscfsi rD,rB

Description:

RD0:31 = CnvtSI32ToFP32(RB0:31)
RD32:63 = CnvtSI32ToFP32(RB32:63)

Each signed integer element of rB is converted to the nearest single-precision floating-point value using
the current rounding mode and the results are placed into the corresponding element of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversions are not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to allow rounding to be performed in the exception handler.

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 195

evfscfuf evfscfuf
Vector Convert Floating-Point Single-Precision from Unsigned Fraction

evfscfuf rD,rB

RD0:31 = CnvtUF32ToFP32(RB0:31)
RD32:63 = CnvtUF32ToFP32(RB32:63)

Each unsigned fractional element of rB is converted to a single-precision floating-point value using the
current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversions are not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to allow rounding to be performed in the exception handler.

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

196 Freescale Semiconductor

evfscfui evfscfui
Vector Convert Floating-Point Single-Precision from Unsigned Integer

evfscfui rD,rB

Description:

RD0:31 = CnvtUI32ToFP32(RB0:31)
RD32:63 = CnvtUI32ToFP32(RB32:63)

Each unsigned integer element of rB is converted to the nearest single-precision floating-point value using
the current rounding mode and the results are placed into the corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCRFINXS if the conversions are not exact. If the
Floating-point Inexact exception is enabled, an exception is taken using the Floating-point Round
exception vector. In this case, the destination register is updated with the truncated result(s). The FGH,
FXH, FG and FX bits are properly updated to allow rounding to be performed in the exception handler.

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 197

evfscmpeq evfscmpeq
Vector Floating-Point Single-Precision Compare Equal

evfscmpeq crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah == bh) then ch = 1
else ch = 0
if (al == bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals RB, the crfD bit
is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point
Invalid Input exceptions are enabled then an exception is taken, and the Condition Register is not updated.
Otherwise, the comparison proceeds after treating NaNs, Infinities, and Denorms as normalized numbers,
using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 0 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

198 Freescale Semiconductor

evfscmpgt evfscmpgt
Vector Floating-Point Single-Precision Compare Greater Than

evfscmpgt crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah > bh) then ch = 1
else ch = 0
if (al > bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater than rB, the bit
in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point
Invalid Input exceptions are enabled then an exception is taken, and the Condition Register is not updated.
Otherwise, the comparison proceeds after treating NaNs, Infinities, and Denorms as normalized numbers,
using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 0 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 199

evfscmplt evfscmplt
Vector Floating-Point Single-Precision Compare Less Than

evfscmplt crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah < bh) then ch = 1
else ch = 0
if (al < bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is less than rB, the bit in
the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point
Invalid Input exceptions are enabled then an exception is taken, and the Condition Register is not updated.
Otherwise, the comparison proceeds after treating NaNs, Infinities, and Denorms as normalized numbers,
using their values of ‘e’ and ‘f’ directly.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 0 1 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

200 Freescale Semiconductor

evfscth evfscth
Vector Convert Floating-Point Single-Precision to Half-Precision

evfscth rD,rB

FP32format fh, fl;
FP16format resulth, resultl;

fh rB0:31; fl rB32:63

if (fhexp = 0) & (fhfrac = 0)) then
resulth fhsign ||

150 // signed zero value
else if Isa32NaNorInfinity(fh) then

SPEFSCRFINVH 1
result fhsign || 0b11110 ||

101 // max value
else if Isa32Denorm(fh) then

SPEFSCRFINVH 1
resulth fsign ||

150
else

unbias fhexp - 127
if unbias > 15 then

resulth fhsign || 0b11110 ||
101 // max value

SPEFSCRFOVFH 1
else if unbias < -14 && (result would not round up to bmin) then

resulth fhsign ||
150 // like-signed zero value

SPEFSCRFUNFH 1
else

resulthsign fhsign; resulthexp unbias + 15; resulthfrac fhfrac[0:9]
guard fhfrac[10]; sticky (fhfrac[11:22] 0)
resulth Round16(resulth, LOWER, guard, sticky)
SPEFSCRFGH guard; SPEFSCRFXH sticky
if guard | sticky then SPEFSCRFINXS 1

if (flexp = 0) & (flfrac = 0)) then
resultl flsign ||

150 // signed zero value
else if Isa32NaNorInfinity(fl) then

SPEFSCRFINV 1
resultl flsign || 0b11110 ||

101 // max value
else if Isa32Denorm(fl) then

SPEFSCRFINV 1
resultl flsign ||

150
else

unbias flexp - 127
if unbias > 15 then

resultl flsign || 0b11110 ||
101 // max value

SPEFSCRFOVF 1
else if unbias < -14 && (result would not round up to bmin) then

resultl flsign ||
150 // like-signed zero value

SPEFSCRFUNF 1
else

resultlsign flsign; resultlexp unbias + 15; resultlfrac flfrac[0:9]
guard flfrac[10]; sticky (flfrac[11:22] 0)
resultl Round16(resultl, LOWER, guard, sticky)
SPEFSCRFG guard; SPEFSCRFX sticky
if guard | sticky then SPEFSCRFINXS 1

rD0:31 =
160 || resulth; rD32:63 =

160 || resultl

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD 0 0 1 0 0 RB 0 1 0 1 0 0 1 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 201

The single-precision FP number in each element in RB is converted to a half-precision floating-point value
using the current rounding mode. The result is then prepended with 16 zeros, and placed into the
corresponding element of RD.

Exceptions:

If the contents of either element of rB is Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FGH, FXH, FG, and FX bits are properly updated to allow rounding to be
performed in the interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

e200z759n3 Core Reference Manual, Rev. 2

202 Freescale Semiconductor

evfsctsf evfsctsf
Vector Convert Floating-Point Single-Precision to Signed Fraction

evfsctsf rD,rB

Description:

ah = RB0:31
if (ah == Denorm) then

RD0:31 = 0
else if ((al == +0) || (al == -0)) // zero cases

RD0:31 = 0
else if (eah < 127) then

RD0:31 = CnvtFP32ToSF32Sat(ah)
else if ((eah == 127) && (sah == 1) && (fah==0)) then

RD0:31 = 0x80000000 // max negative, no overflow
else if (ah == NAN) then RD0:31 = 0
else // Overflow

if (sah == 0) then // Positive
RD0:31 = 0x7FFFFFFF

else
RD0:31 = 0x80000000

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if ((al == +0) || (al == -0)) // zero cases

RD32:63 = 0
else if (eal < 127) then

RD32:63 = CnvtFP32ToSF32Sat(al)
else if ((eal == 127) && (sal == 1) && (fal==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (al == NAN) then RD32:63 = 0
else // Overflow

if (sal == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

Each single-precision floating-point element in RB is converted to a signed fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit signed fraction. NaNs are
converted as though they were zero.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV,

FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken, the destination register is not updated, and no other status
bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the
Floating-point Round exception vector. In this case, the destination register is updated with the truncated

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 203

result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

204 Freescale Semiconductor

evfsctsi evfsctsi
Vector Convert Floating-Point Single-Precision to Signed Integer

evfsctsi rD,rB

Description:
ah = RB0:31
if (ah == Denorm) then

RD0:31 = 0
else if (eah < 158) then

RD0:31 = CnvtFP32ToSI32Sat(ah)
else if ((eah == 158) && (sah == 1) && (fah==0)) then

RD0:31 = 0x80000000 // max negative, no overflow
else if (ah == NAN) then RD0:31 = 0
else // Overflow

if (sah == 0) then // Positive
RD0:31 = 0x7FFFFFFF

else
RD0:31 = 0x80000000

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if (eal < 158) then

RD32:63 = CnvtFP32ToSI32Sat(al)
else if ((eal == 158) && (sal == 1) && (fal==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (al == NAN) then RD32:63 = 0
else // Overflow

if (sal == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

Each single-precision floating-point element in RB is converted to a signed integer using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If the contents of either element of RB are Infinity, Denorm, or NaN, or if an overflow occurs on
conversion, then the SPEFSCRFINV, FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX
bits are cleared appropriately. If SPEFSCRFINVE is set, an exception is taken, the destination register is not
updated, and no other status bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 205

Floating-point Round exception vector. In this case, the destination register is updated with the truncated
result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

206 Freescale Semiconductor

evfsctsiz evfsctsiz
Vector Convert Floating-Point Single-Precision to Signed Integer with Round toward Zero

evfsctsiz rD,rB

Description:
ah = RB0:31
if (ah == Denorm) then

RD0:31 = 0
else if (eah < 158) then

RD0:31 = CnvtFP32ToSI32Sat(ah)
else if ((eah == 158) && (sah == 1) && (fah==0)) then

RD0:31 = 0x80000000 // max negative, no overflow
else if (ah == NAN) then RD0:31 = 0
else // Overflow

if (sah == 0) then // Positive
RD0:31 = 0x7FFFFFFF

else
RD0:31 = 0x80000000

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if (eal < 158) then

RD32:63 = CnvtFP32ToSI32Sat(al)
else if ((eal == 158) && (sal == 1) && (fal==0)) then

RD32:63 = 0x80000000 // max negative, no overflow
else if (al == NAN) then RD32:63 = 0
else // Overflow

if (sal == 0) then // Positive
RD32:63 = 0x7FFFFFFF

else
RD32:63 = 0x80000000

Each single-precision floating-point element in RB is converted to a signed integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV,

FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken, the destination register is not updated, and no other status
bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 207

Floating-point Round exception vector. In this case, the destination register is updated with the truncated
result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

208 Freescale Semiconductor

evfsctuf evfsctuf
Vector Convert Floating-Point Single-Precision to Unsigned Fraction

evfsctuf rD,rB

Description:
ah = RB0:31
if (ah == Denorm) then // force denorm to zero

RD0:31 = 0
else if ((ah == +0) || (ah == -0)) // zero cases

RD0:31 = 0
else if (sah == 1) // Negative

RD0:31 = 0
else if (eah < 127)

RD0:31 = CnvtFP32ToUF32Sat(ah)
else if (ah == NAN) then RD0:31 = 0
else // Overflow

RD0:31 = 0xFFFFFFFF

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if ((al == +0) || (al == -0)) // zero cases

RD32:63 = 0
else if (sal == 1) // Negative

RD32:63 = 0
else if (eal < 127)

RD32:63 = CnvtFP32ToUF32Sat(al)
else if (al == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

Each single-precision floating-point element in RB is converted to an unsigned fraction using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit fraction. NaNs are
converted as though they were zero.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV,

FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken, the destination register is not updated, and no other status
bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the
Floating-point Round exception vector. In this case, the destination register is updated with the truncated

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 209

result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

210 Freescale Semiconductor

evfsctui evfsctui
Vector Convert Floating-Point Single-Precision to Unsigned Integer

evfsctui rD,rB

Description:
ah = RB0:31
if (ah == Denorm) then // force denorm to zero

RD0:31 = 0
else if ((ah == +0) || (ah == -0)) // zero cases

RD0:31 = 0
else if (sah == 1) // Negative

RD0:31 = 0
else if (eah <= 158)

RD0:31 = CnvtFP32ToUI32Sat(ah)
else if (ah == NAN) then RD0:31 = 0
else // Overflow

RD0:31 = 0xFFFFFFFF

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if ((al == +0) || (al == -0)) // zero cases

RD32:63 = 0
else if (sal == 1) // Negative

RD32:63 = 0
else if (eal <= 158)

RD32:63 = CnvtFP32ToUI32Sat(al)
else if (al == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

Each single-precision floating-point element in RB is converted to an unsigned integer using the current
rounding mode and the result is saturated if it cannot be represented in a 32-bit integer. NaNs are converted
as though they were zero.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV,

FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken, the destination register is not updated, and no other status
bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the
Floating-point Round exception vector. In this case, the destination register is updated with the truncated

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 211

result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

212 Freescale Semiconductor

evfsctuiz evfsctuiz
Vector Convert Floating-Point Single-Precision to Unsigned Integer with Round toward Zero

evfsctui rD,rB

Description:
ah = RB0:31
if (ah == Denorm) then // force denorm to zero

RD0:31 = 0
else if ((ah == +0) || (ah == -0)) // zero cases

RD0:31 = 0
else if (sah == 1) // Negative

RD0:31 = 0
else if (eah <= 158)

RD0:31 = CnvtFP32ToUI32Sat(ah)
else if (ah == NAN) then RD0:31 = 0
else // Overflow

RD0:31 = 0xFFFFFFFF

al = RB32:63
if (al == Denorm) then

RD32:63 = 0
else if ((al == +0) || (al == -0)) // zero cases

RD32:63 = 0
else if (sal == 1) // Negative

RD32:63 = 0
else if (eal <= 158)

RD32:63 = CnvtFP32ToUI32Sat(al)
else if (al == NAN) then RD32:63 = 0
else // Overflow

RD32:63 = 0xFFFFFFFF

Each single-precision floating-point element in RB is converted to an unsigned integer using the rounding
mode Round toward Zero and the result is saturated if it cannot be represented in a 32-bit integer. NaNs
are converted as though they were zero.

Exceptions:

If either element of RB is Infinity, Denorm, or NaN, or if an overflow occurs, then the SPEFSCRFINV,

FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken, the destination register is not updated, and no other status
bits are set.

If either result element of this instruction is inexact and no other exception is taken, the SPEFSCRFINXS
bit will be set. If the Floating-point Inexact exception is enabled, an exception is taken using the
Floating-point Round exception vector. In this case, the destination register is updated with the truncated

0 5 6 10 11 15 16 20 21 31

4 RD 0 0 0 0 0 RB 0 1 0 1 0 0 1 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 213

result. The FGH, FXH, FG and FX bits are properly updated to allow rounding to be performed in the
exception handler.

e200z759n3 Core Reference Manual, Rev. 2

214 Freescale Semiconductor

evfsdiff evfsdiff
Vector Floating-Point Single-Precision Differences

evfsdiff rD,rA,rB

rD0:31 rA0:31 -sp rA32:63
rD32:63 rB0:31 -sp rB32:63

The low-order single-precision floating-point element of rA is subtracted from the high-order element of
rA, the low-order single-precision floating-point element of rB is subtracted from the high-order element
of rB, and the results are stored in rD. If the high-order element of rA or rB is NaN or infinity, the
corresponding result is either pmax or nmax (as appropriate). Otherwise, if the low order element of rA or
rB is NaN or infinity, the corresponding result is either pmax or nmax (as appropriate). Otherwise, if an
overflow occurs, pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an
underflow occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the
corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 215

evfsdiffsum evfsdiffsum
Vector Floating-Point Single-Precision Difference / Sum

evfsdiffsum rD,rA,rB

rD0:31 rA0:31 -sp rA32:63
rD32:63 rB0:31 +sp rB32:63

The low-order single-precision floating-point element of rA is subtracted from the high-order element of
rA, the low-order single-precision floating-point element of rB is added to the high-order element of rB,
and the results are stored in rD. If the high-order element of rA or rB is NaN or infinity, the corresponding
result is either pmax or nmax (as appropriate). Otherwise, if the low order element of rA or rB is NaN or
infinity, the corresponding result is either pmax or nmax (as appropriate). Otherwise, if an overflow occurs,
pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0
(for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element
of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

216 Freescale Semiconductor

evfsdiv evfsdiv
Vector Floating-Point Single-Precision Divide

evfsdiv rD,rA,rB

RD0:31 = RA0:31 sp RB0:31
RD32:63 = RA32:63 sp RB32:63

Each single-precision floating-point element of rA is divided by the corresponding element of rB and the
result is stored in rD. If RB is a NaN or infinity, the result is a properly signed zero. Otherwise, if RB is a
denormalized number or a zero, or if RA is either NaN or infinity, the result is either pmax (sa==sb), or
nmax (sa!=sb). Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If
an underflow occurs, then +0 or -0 (as appropriate) is stored in RD.

Exceptions:

If the contents of RA or RB are Infinity, Denorm, or NaN, or if both RA and RB are +/-0, the
SPEFSCRFINV, FINVH bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared
appropriately. If SPEFSCRFINVE is set, an exception is taken and the destination register is not updated.
Otherwise, if the content of RB is +/-0 and the content of RA is a finite normalized non-zero number, the
SPEFSCRFDBZ, FDBZH bits are set appropriately. If Floating-point Divide by Zero exceptions are enabled,
an exception is then taken. Otherwise, if an overflow occurs, then the SPEFSCRFOVF, FOVFH bits are set
appropriately, or if an underflow occurs, then the SPEFSCRFUNF, FUNFH bits are set appropriately. If either
underflow or overflow exceptions are enabled and a corresponding bit is set, an exception is taken. If any
of these exceptions are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 1 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 217

evfsmadd evfsmadd
Vector Floating-Point Single-Precision Multiply-Add

evfsmadd rD,rA,rB

RD0:31 = ((RA0:31 Xfp RB0:31) +sp RD0:31)
RD32:63 = ((RA32:63 Xfp RB32:63) +sp RD32:63)

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB, the
intermediate product is added to the corresponding element of rD, and the result is stored in rD. If RA or
RB are either zero or denormalized, the intermediate product is a properly signed zero. Otherwise, if RA
or RB are either NaN or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb), and
this value is used for the result and stored into RD. Otherwise, the intermediate product is added to the
corresponding element of RD. If RD is NaN or infinity, the result is either pmax (sd==0), or nmax (sd==1).
Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow
occurs, then +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of either element of RA, RB, or RD are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH
bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken and the destination register is not updated. Otherwise, if an
overflow occurs, then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then
the SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are
enabled and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken,
the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

218 Freescale Semiconductor

evfsmax evfsmax
Vector Floating-Point Single-Precision Maximum

evfsmax rD,rA,rB

ahrA0:31
bhrB0:31
if (ah < bh) then temphbh
else temphah
if (isnan(ah) & ~(isnan(bh))) then temphbh
if (isnan(bh) & ~(isnan(ah))) then temphah
rD0:31temph

alrA32:63
blrB32:63
if (al < bl) then templbl
else templal
if (isnan(al) & ~(isnan(bl))) then templbl
if (isnan(bl) & ~(isnan(al))) then templal
rD32:63templ

Each single-precision floating-point element of rA is compared against the corresponding elements of rB.
The larger element is selected and placed into the corresponding element of rD. The maximum of +0 and
-0 is +0.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken, and the destination register is not updated. Otherwise, the comparison proceeds after
treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly. If
one of the elements is a NaN and the other is not, the non-NaN element is selected rather than the
comparison result. If the selected element is denorm, the result is a same signed zero. If the selected
element is +NaN or +infinity, the corresponding result is pmax. Otherwise, if the selected element is -NaN
or -infinity, the corresponding result is nmax.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 219

evfsmin evfsmin
Vector Floating-Point Single-Precision Minimum

evfsmin rD,rA,rB

ahrA0:31
bhrB0:31
if (ah < bh) then temphah
else temphbh
if (isnan(ah) & ~(isnan(bh))) then temphbh
if (isnan(bh) & ~(isnan(ah))) then temphah
rD0:31temph

alrA32:63
blrB32:63
if (al < bl) then templal
else templbl
if (isnan(al) & ~(isnan(bl))) then templbl
if (isnan(bl) & ~(isnan(al))) then templal
rD32:63templ

Each single-precision floating-point element of rA is compared against the corresponding elements of rB.
The smaller element is selected and placed into the corresponding element of rD. The minimum of +0 and
-0 is -0.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken, and the destination register is not updated. Otherwise, the comparison proceeds after
treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly. If
one of the elements is a NaN and the other is not, the non-NaN element is selected rather than the
comparison result. If the selected element is denorm, the result is a same signed zero. If the selected
element is +NaN or +infinity, the corresponding result is pmax. Otherwise, if the selected element is -NaN
or -infinity, the corresponding result is nmax.

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

220 Freescale Semiconductor

evfsmsub evfsmsub
Vector Floating-Point Single-Precision Multiply-Subtract

evfsmsub rD,rA,rB

RD0:31 = ((RA0:31 Xfp RB0:31) -sp RD0:31)
RD32:63 = ((RA32:63 Xfp RB32:63) -sp RD32:63)

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB, the
corresponding element of rD is subtracted from the intermediate product, and the result is stored in rD. If
RA or RB are either zero or denormalized, the intermediate product is a properly signed zero. Otherwise,
if RA or RB are either NaN or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb),
and this value is used for the result and stored into RD. Otherwise, the corresponding element of rD is
subtracted from the intermediate product. If RD is NaN or infinity, the result is either nmax (sd==0), or
pmax (sd==1). Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an
underflow occurs, then +0 (for rounding modes RN, RZ, RP) or –0 (for rounding mode RM) is stored in
RD.

Exceptions:

If the contents of either element of RA, RB, or RD are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH
bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken and the destination register is not updated. Otherwise, if an
overflow occurs, then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then
the SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are
enabled and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken,
the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 221

evfsmul evfsmul
Vector Floating-Point Single-Precision Multiply

evfsmul rD,rA,rB

RD0:31 = RA0:31 Xsp RB0:31
RD32:63 = RA32:63 Xsp RB32:63

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB and
the result is stored in rD. If RA or RB are either zero or denormalized, the result is a properly signed zero.
Otherwise, if RA or RB are either NaN or infinity, the result is either pmax (sa==sb), or nmax (sa!=sb).
Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow
occurs, then +0 or -0 (as appropriate) is stored in RD.

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If SPEFSCRFINVE
is set, an exception is taken and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then the
SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are enabled
and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken, the
destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

222 Freescale Semiconductor

evfsmule evfsmule
Vector Floating-Point Single-Precision Multiply By Even Element

evfsmule rD,rA,rB

rD0:31 rA0:31 sp rB0:31
rD32:63 rA0:31 sp rB32:63

The single-precision floating-point elements of rB are multiplied by the even (high-order) element of rA,
and the results are stored in rD. If an element of rB or the even element of rA is either zero denormalized,
the corresponding result is a properly signed zero. Otherwise, if an element of rB or the even element of
rA is either NaN or infinity, the corresponding result is either pmax (asign==bsign), or nmax (asign!=bsign).
Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the corresponding element of
rD. If an underflow occurs, +0 or -0 (as appropriate) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rB or the even element of rA is Infinity, Denorm, or NaN,
SPEFSCRFINV,FINVH are set appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If
SPEFSCRFINVE is set, an interrupt is taken and the destination register is not updated. Otherwise, if an
overflow occurs, SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs,
SPEFSCRFUNF,FUNFH are set appropriately. If either underflow or overflow exceptions are enabled and a
corresponding status bit is set, an interrupt is taken. If any of these interrupts are taken, the destination
register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 223

evfsmulo evfsmulo
Vector Floating-Point Single-Precision Multiply By Odd Element

evfsmulo rD,rA,rB

rD0:31 rA32:63 sp rB0:31
rD32:63 rA32:63 sp rB32:63

The single-precision floating-point elements of rB are multiplied by the odd (low-order) element of rA,
and the results are stored in rD. If an element of rB or the odd element of rA is either zero or denormalized,
the corresponding result is a properly signed zero. Otherwise, if an element of rB or the odd element of rA
is either NaN or infinity, the corresponding result is either pmax (asign==bsign), or nmax (asign!=bsign).
Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the corresponding element of
rD. If an underflow occurs, +0 or -0 (as appropriate) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rB or the odd element of rA is Infinity, Denorm, or NaN,
SPEFSCRFINV,FINVH are set appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If
SPEFSCRFINVE is set, an interrupt is taken and the destination register is not updated. Otherwise, if an
overflow occurs, SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs,
SPEFSCRFUNF,FUNFH are set appropriately. If either underflow or overflow exceptions are enabled and a
corresponding status bit is set, an interrupt is taken. If any of these interrupts are taken, the destination
register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

224 Freescale Semiconductor

evfsmulx evfsmulx
Vector Floating-Point Single-Precision Multiply Exchanged

evfsmulx rD,rA,rB

rD0:31 rA32:63 sp rB0:31
rD32:63 rA0:31 sp rB32:63

The high-order single-precision floating-point element of rB is multiplied by the low-order element of rA,
the low-order single-precision floating-point element of rB is multiplied by the high-order element of rA,
and the results are stored in rD. If an element of rA or rB is either zero or denormalized, the corresponding
result is a properly signed zero. Otherwise, if an element of rA or rB are either NaN or infinity, the
corresponding result is either pmax (asign==bsign), or nmax (asign!=bsign). Otherwise, if an overflow
occurs, pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs,
+0 or -0 (as appropriate) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 225

evfsnabs evfsnabs
Vector Floating-Point Single-Precision Negative Absolute Value

evfsnabs rD,rA

RD0:31 = 0b1 || RA1:31
RD32:63 = 0b1 || RA33:63

Description:

The sign bit of each element in RA is set to 1 and the results are placed into RD.

Exceptions:

If the contents of either element of RA are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits are set
appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point Invalid
Input exceptions are enabled then an exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

226 Freescale Semiconductor

evfsneg evfsneg
Vector Floating-Point Single-Precision Negate

evfsneg rD,rA

RD0:31 = ¬RA0 || RA1:31
RD32:63 = ¬RA32 || RA33:63

Description:

The sign bit of each element in RA is complemented and the results are placed into RD.

Exceptions:

If the contents of either element of RA are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits are set
appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If Floating-point Invalid
Input exceptions are enabled then an exception is taken, and the destination register is not updated.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 227

evfsnmadd evfsnmadd
Vector Floating-Point Single-Precision Negative Multiply-Add

evfsnmadd rD,rA,rB

RD0:31 = -((RA0:31 Xfp RB0:31) +sp RD0:31)
RD32:63 = -((RA32:63 Xfp RB32:63) +sp RD32:63)

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB, the
intermediate product is added to the corresponding element of rD, and the negated result is stored in rD.
If RA or RB are either zero or denormalized, the intermediate product is a properly signed zero. Otherwise,
if RA or RB are either NaN or infinity, the intermediate product is either pmax (sa==sb), or nmax (sa!=sb),
and this value is used for the result and stored into RD. Otherwise, the intermediate product is added to the
corresponding element of RD, and the final result is negated. If RD is NaN or infinity, the result is either
nmax (sd==0), or pmax (sd==1). Otherwise, if an overflow occurs, then pmax or nmax (as appropriate) is
stored in RD. If an underflow occurs, then -0 (for rounding modes RN, RZ, RP) or +0 (for rounding mode
RM) is stored in RD.

Exceptions:

If the contents of either element of RA, RB, or RD are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH
bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken and the destination register is not updated. Otherwise, if an
overflow occurs, then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then
the SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are
enabled and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken,
the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

228 Freescale Semiconductor

evfsnmsub evfsnmsub
Vector Floating-Point Single-Precision Negative Multiply-Subtract

evfsnmsub rD,rA,rB

RD0:31 = -((RA0:31 Xfp RB0:31) -sp RD0:31)
RD32:63 = -((RA32:63 Xfp RB32:63)-sp RD32:63)

Each single-precision floating-point element of rA is multiplied with the corresponding element of rB, the
corresponding element of rD is subtracted from the intermediate product, and the negated result is stored
in rD. If RA or RB are either zero or denormalized, the intermediate product is a properly signed zero.
Otherwise, if RA or RB are either NaN or infinity, the intermediate product is either pmax (sa==sb), or
nmax (sa!=sb), and this value is negated to obtain the result and is stored into RD. Otherwise, the
corresponding element of rD is subtracted from the intermediate product, and the final result is negated.
If RD is NaN or infinity, the final result is either pmax (sd==0), or nmax (sd==1). Otherwise, if an overflow
occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then -0 (for rounding
modes RN, RZ, RP) or +0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of either element of RA, RB, or RD are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH
bits are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If
SPEFSCRFINVE is set, an exception is taken and the destination register is not updated. Otherwise, if an
overflow occurs, then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then
the SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are
enabled and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken,
the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 1 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 229

evfssqrt evfssqrt
Vector Floating-Point Single-Precision Square Root

evfssqrt rD,rA

rD0:31 SQRT(rA0:31)
rD32:63 SQRT(rA32:63)

The square root of each single-precision floating-point element of rA is calculated, and the results are
stored in rD. If an element of rA is zero or denorm, the result is a same signed zero. If an element of rA is
+NaN or +infinity, the corresponding result is pmax. Otherwise, if an element of rA is non-zero and has a
negative sign, including -NaN or -infinity, the corresponding result is -0. Otherwise, if an underflow
occurs, +0 (for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding
element of rD.

Exceptions:

If the contents of either element of rA are non-zero and have a negative sign, or are Infinity, Denorm, or
NaN, SPEFSCRFINV,FINVH are set appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately.
If SPEFSCRFINVE is set, an interrupt is taken and the destination register is not updated. Otherwise, if an
underflow occurs, SPEFSCRFUNF,FUNFH are set appropriately. If underflow exceptions are enabled and a
corresponding status bit is set, an interrupt is taken. If any of these interrupts are taken, the destination
register is not updated.

If either result element of this instruction is inexact, or underflows but underflow exceptions are disabled,
and no other interrupt is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is
enabled, an interrupt is taken using the floating-point round interrupt vector. In this case, the destination
register is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding
to be performed in the interrupt handler.

FG and FX (FGH and FXH) are cleared if an underflow interrupt is taken, or if an invalid operation/input
error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

230 Freescale Semiconductor

evfssub evfssub
Vector Floating-Point Single-Precision Subtract

evfssub rD,rA,rB

RD0:31 = RA0:31 -sp RB0:31
RD32:63 = RA32:63 -sp RB32:63

Description:

Each single-precision floating-point element of RB is subtracted from the corresponding element of RA
and the results are stored in RD. If RA is NaN or infinity, the result is either pmax (sa==0), or nmax (sa==1).
Otherwise, If RB is NaN or infinity, the result is either nmax (sb==0), or pmax (sb==1). Otherwise, if an
overflow occurs, then pmax or nmax (as appropriate) is stored in RD. If an underflow occurs, then +0 (for
rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in RD.

Exceptions:

If the contents of either element of RA or RB are Infinity, Denorm, or NaN, the SPEFSCRFINV, FINVH bits
are set appropriately, and the SPEFSCRFGH, FXH, FG, FX bits are cleared appropriately. If SPEFSCRFINVE
is set, an exception is taken and the destination register is not updated. Otherwise, if an overflow occurs,
then the SPEFSCRFOVF, FOVFH bits are set appropriately, or if an underflow occurs, then the
SPEFSCRFUNF, FUNFH bits are set appropriately. If either underflow or overflow exceptions are enabled
and a corresponding status bit is set, an exception is taken. If any of these exceptions are taken, the
destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other exception is taken, or underflows but underflow exceptions are disabled, and no other
exception is taken, the SPEFSCRFINXS bit will be set. If the Floating-point Inexact exception is enabled,
an exception is taken using the Floating-point Round exception vector. In this case, the destination register
is updated with the truncated result(s). The FG and FX bits are properly updated to allow rounding to be
performed in the exception handler.

FG and FX (FGH and FXH) will be cleared if an overflow or underflow exception is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 1 0 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 231

evfssubadd evfssubadd
Vector Floating-Point Single-Precision Subtract / Add

evfssubadd rD,rA,rB

rD0:31 rA0:31 -sp rB0:31
rD32:63 rA32:63 +sp rB32:63

The high-order single-precision floating-point element of rB is subtracted from the corresponding element
of rA, the low-order single-precision floating-point element of rB is subtracted from the corresponding
element of rA, and the results are stored in rD. If an element of rA is NaN or infinity, the corresponding
result is either pmax or nmax (as appropriate). Otherwise, if an element of rB is NaN or infinity, the
corresponding result is either nmax or pmax (as appropriate). Otherwise, if an overflow occurs, pmax or
nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for
rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

232 Freescale Semiconductor

evfssubaddx evfssubaddx
Vector Floating-Point Single-Precision Subtract / Add Exchanged

evfssubaddx rD,rA,rB

rD0:31 rA32:63-sp rB0:31
rD32:63 rA0:31 +sp rB32:63

The high-order single-precision floating-point element of rB is subtracted from the low-order element of
rA, the low-order single-precision floating-point element of rB is added to the high-order from the
corresponding element of rA, and the results are stored in rD. If an element of rA is NaN or infinity, the
corresponding result is either pmax or nmax (as appropriate). Otherwise, if an element of rB is NaN or
infinity, the corresponding result is either nmax or pmax (as appropriate). Otherwise, if an overflow occurs,
pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0
(for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element
of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 233

evfssubx evfssubx
Vector Floating-Point Single-Precision Subtract Exchanged

evfssubx rD,rA,rB

rD0:31 rA32:63-sp rB0:31
rD32:63 rA0:31 -sp rB32:63

The high-order single-precision floating-point element of rB is subtracted from the low-order element of
rA, the low-order single-precision floating-point element of rB is subtracted from the high-order from the
corresponding element of rA, and the results are stored in rD. If an element of rA is NaN or infinity, the
corresponding result is either pmax or nmax (as appropriate). Otherwise, if an element of rB is NaN or
infinity, the corresponding result is either nmax or pmax (as appropriate). Otherwise, if an overflow occurs,
pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0
(for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element
of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS is set. If the floating-point inexact exception is enabled, an interrupt is taken
using the floating-point round interrupt vector. In this case, the destination register is updated with the
truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 1 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

234 Freescale Semiconductor

evfssum evfssum
Vector Floating-Point Single-Precision Sums

evfssum rD,rA,rB

rD0:31 rA0:31 +sp rA32:63
rD32:63 rB0:31 +sp rB32:63

The high-order single-precision floating-point element of rA is added to the low-order element of rA, the
high-order single-precision floating-point element of rB is added to the low-order element of rB, and the
results are stored in rD. If the high-order element of rA or rB is NaN or infinity, the corresponding result
is either pmax or nmax (as appropriate). Otherwise, if the low order element of rA or rB is NaN or infinity,
the corresponding result is either pmax or nmax (as appropriate). Otherwise, if an overflow occurs, pmax
or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0 (for
rounding modes RN, RZ, RP) or –0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 235

evfssumdiff evfssumdiff
Vector Floating-Point Single-Precision Sum / Difference

evfssumdiff rD,rA,rB

rD0:31 rA0:31 +sp rA32:63
rD32:63 rB0:31 -sp rB32:63

The high-order single-precision floating-point element of rA is added to the low-order element of rA, the
low-order single-precision floating-point element of rB is subtracted from the high-order element of rB,
and the results are stored in rD. If the high-order element of rA or rB is NaN or infinity, the corresponding
result is either pmax or nmax (as appropriate). Otherwise, if the low order element of rA or rB is NaN or
infinity, the corresponding result is either pmax or nmax (as appropriate). Otherwise, if an overflow occurs,
pmax or nmax (as appropriate) is stored in the corresponding element of rD. If an underflow occurs, +0
(for rounding modes RN, RZ, RP) or -0 (for rounding mode RM) is stored in the corresponding element
of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, SPEFSCRFINV,FINVH are set
appropriately, and SPEFSCRFGH,FXH,FG,FX are cleared appropriately. If SPEFSCRFINVE is set, an
interrupt is taken and the destination register is not updated. Otherwise, if an overflow occurs,
SPEFSCRFOVF,FOVFH are set appropriately, or if an underflow occurs, SPEFSCRFUNF,FUNFH are set
appropriately. If either underflow or overflow exceptions are enabled and a corresponding status bit is set,
an interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are disabled,
and no other interrupt is taken, or underflows but underflow exceptions are disabled, and no other interrupt
is taken, SPEFSCRFINXS,FINXSH is set. If the floating-point inexact exception is enabled, an interrupt is
taken using the floating-point round interrupt vector. In this case, the destination register is updated with
the truncated result(s). The FG and FX bits are properly updated to allow rounding to be performed in the
interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an invalid
operation/input error is signaled for the low (high) element (regardless of FINVE).

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 RD RA RB 0 1 0 1 0 1 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

236 Freescale Semiconductor

evfststeq evfststeq
Vector Floating-Point Single-Precision Test Equal

evfststeq crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah == bh) then ch = 1
else ch = 0
if (al == bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals RB, the bit in crfD
is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after
treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfststeq. If strict IEEE 754 compliance is required, the
program should use evfscmpeq.

Implementation note: In an implementation, the execution of evfststeq is likely to be faster than the
execution of evfscmpeq.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 1 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 237

evfststgt evfststgt
Vector Floating-Point Single-Precision Test Greater Than

evfststgt crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah > bh) then ch = 1
else ch = 0
if (al > bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater than rB, the bit
in crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are taken during the execution of evfststgt. If strict IEEE 754 compliance is required, the
program should use evfscmpgt.

Implementation note: In an implementation, the execution of evfststgt is likely to be faster than the
execution of evfscmpgt.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 1 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

238 Freescale Semiconductor

evfststlt evfststlt
Vector Floating-Point Single-Precision Test Less Than

evfststlt crfD,rA,rB

Description:

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah < bh) then ch = 1
else ch = 0
if (al < bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared with the corresponding element of rB. If rA is less than rB, the bit in the
crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’
directly.

No exceptions are taken during the execution of evfststlt. If strict IEEE 754 compliance is required, the
program should use evfscmplt.

Implementation note: In an implementation, the execution of evfststlt is likely to be faster than the
execution of evfscmplt.

5.4 Embedded floating-point results summary
The following table summarizes the results of floating-point operations on various combinations of input
operands. Flag settings are performed on appropriate element flags.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 1 0 0 1 1 1 0 1

Table 5-2. Floating-point results summary — add, sub, mul, div

Operation Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

Add

Add amax 1 0 0 0 0

Add NaN amax 1 0 0 0 0

Add denorm amax 1 0 0 0 0

Add zero amax 1 0 0 0 0

Add Norm amax 1 0 0 0 0

Add NaN amax 1 0 0 0 0

Add NaN NaN amax 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 239

Add NaN denorm amax 1 0 0 0 0

Add NaN zero amax 1 0 0 0 0

Add NaN norm amax 1 0 0 0 0

Add denorm bmax 1 0 0 0 0

Add denorm NaN bmax 1 0 0 0 0

Add denorm denorm zero1 1 0 0 0 0

Add denorm zero zero1 1 0 0 0 0

Add denorm norm operand_b 1 0 0 0 0

Add zero bmax 1 0 0 0 0

Add zero NaN bmax 1 0 0 0 0

Add zero denorm zero1 1 0 0 0 0

Add zero zero zero1 0 0 0 0 0

Add zero norm operand_b 0 0 0 0 0

Add norm bmax 1 0 0 0 0

Add norm NaN bmax 1 0 0 0 0

Add norm denorm operand_a 1 0 0 0 0

Add norm zero operand_a 0 0 0 0 0

Add norm norm _Calc_ 0 * * 0 *

Subtract

Sub amax 1 0 0 0 0

Sub NaN amax 1 0 0 0 0

Sub denorm amax 1 0 0 0 0

Sub zero amax 1 0 0 0 0

Sub Norm amax 1 0 0 0 0

Sub NaN amax 1 0 0 0 0

Sub NaN NaN amax 1 0 0 0 0

Sub NaN denorm amax 1 0 0 0 0

Sub NaN zero amax 1 0 0 0 0

Sub NaN norm amax 1 0 0 0 0

Sub denorm -bmax 1 0 0 0 0

Sub denorm NaN -bmax 1 0 0 0 0

Sub denorm denorm zero2 1 0 0 0 0

Table 5-2. Floating-point results summary — add, sub, mul, div (continued)

Operation Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

240 Freescale Semiconductor

Sub denorm zero zero2 1 0 0 0 0

Sub denorm norm -operand_b 1 0 0 0 0

Sub zero -bmax 1 0 0 0 0

Sub zero NaN -bmax 1 0 0 0 0

Sub zero denorm zero2 1 0 0 0 0

Sub zero zero zero2 0 0 0 0 0

Sub zero norm -operand_b 0 0 0 0 0

Sub norm -bmax 1 0 0 0 0

Sub norm NaN -bmax 1 0 0 0 0

Sub norm denorm operand_a 1 0 0 0 0

Sub norm zero operand_a 0 0 0 0 0

Sub norm norm _Calc_ 0 * * 0 *

Multiply3

Mul max 1 0 0 0 0

Mul NaN max 1 0 0 0 0

Mul denorm zero 1 0 0 0 0

Mul zero zero 1 0 0 0 0

Mul Norm max 1 0 0 0 0

Mul NaN max 1 0 0 0 0

Mul NaN NaN max 1 0 0 0 0

Mul NaN denorm zero 1 0 0 0 0

Mul NaN zero zero 1 0 0 0 0

Mul NaN norm max 1 0 0 0 0

Mul denorm zero 1 0 0 0 0

Mul denorm NaN zero 1 0 0 0 0

Mul denorm denorm zero 1 0 0 0 0

Mul denorm zero zero 1 0 0 0 0

Mul denorm norm zero 1 0 0 0 0

Mul zero zero 1 0 0 0 0

Mul zero NaN zero 1 0 0 0 0

Mul zero denorm zero 1 0 0 0 0

Mul zero zero zero 0 0 0 0 0

Table 5-2. Floating-point results summary — add, sub, mul, div (continued)

Operation Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 241

Mul zero norm zero 0 0 0 0 0

Mul norm max 1 0 0 0 0

Mul norm NaN max 1 0 0 0 0

Mul norm denorm zero 1 0 0 0 0

Mul norm zero zero 0 0 0 0 0

Mul norm norm _Calc_ 0 * * 0 *

Divide3

Div zero 1 0 0 0 0

Div NaN zero 1 0 0 0 0

Div denorm max 1 0 0 0 0

Div zero max 1 0 0 0 0

Div Norm max 1 0 0 0 0

Div NaN zero 1 0 0 0 0

Div NaN NaN zero 1 0 0 0 0

Div NaN denorm max 1 0 0 0 0

Div NaN zero max 1 0 0 0 0

Div NaN norm max 1 0 0 0 0

Div denorm zero 1 0 0 0 0

Div denorm NaN zero 1 0 0 0 0

Div denorm denorm max 1 0 0 0 0

Div denorm zero max 1 0 0 0 0

Div denorm norm zero 1 0 0 0 0

Div zero zero 1 0 0 0 0

Div zero NaN zero 1 0 0 0 0

Div zero denorm max 1 0 0 0 0

Div zero zero max 1 0 0 0 0

Div zero norm zero 0 0 0 0 0

Div norm zero 1 0 0 0 0

Div norm NaN zero 1 0 0 0 0

Div norm denorm max 1 0 0 0 0

Div norm zero max 0 0 0 1 0

Div norm norm _Calc_ 0 * * 0 *

Table 5-2. Floating-point results summary — add, sub, mul, div (continued)

Operation Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

242 Freescale Semiconductor

Notes: the following definitions apply
1 - sign of result is positive when sign_a and sign_b are different for all rounding modes except
round to minus infinity, where it is negative.
2 - sign of result is positive when sign_a and sign_b are the same for all rounding modes except
round to minus infinity, where it is negative.
3 - sign of result is always (sign_a XOR sign_b)
* - updated according to results of calculation
Calc - result is updated with the results of calculation
max - max normalized number with sign of (sign_a XOR sign_b)
amax - max normalized number with sign of sign_a

bmax - max normalized number with sign of sign_b
nmax - max negative normalized number

pmax - max positive normalized number

Table 5-3. Floating-point results summary — madd, msub, nmadd, nmsub

Operation Operand A Operand B Operand D Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

madd

madd , NaN , NaN, Norm , NaN, denorm,
zero, Norm

abmax 1 0 0 0 0

madd , NaN denorm, zero , NaN dmax 1 0 0 0 0

madd , NaN denorm, zero denorm, zero zero1 1 0 0 0 0

madd , NaN denorm, zero Norm operand_d 1 0 0 0 0

madd denorm , NaN, denorm,
zero, Norm

, NaN dmax 1 0 0 0 0

madd denorm , NaN, denorm,
zero, Norm

denorm, zero zero1 1 0 0 0 0

madd denorm , NaN, denorm,
zero, Norm

Norm operand_d 1 0 0 0 0

madd zero , NaN, denorm, , NaN dmax 1 0 0 0 0

madd zero , NaN, denorm denorm, zero zero1 1 0 0 0 0

madd zero , NaN, denorm Norm operand_d 1 0 0 0 0

madd zero zero, Norm , NaN dmax 1 0 0 0 0

madd zero zero, Norm denorm zero1 1 0 0 0 0

madd zero zero, Norm zero zero1 0 0 0 0 0

madd zero zero, Norm Norm operand_d 0 0 0 0 0

madd norm , NaN , NaN, denorm,
zero, Norm

abmax 1 0 0 0 0

madd norm denorm , NaN dmax 1 0 0 0 0

Table 5-2. Floating-point results summary — add, sub, mul, div (continued)

Operation Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 243

madd norm denorm denorm, zero zero1 1 0 0 0 0

madd norm denorm norm operand_d 1 0 0 0 0

madd norm zero , NaN dmax 1 0 0 0 0

madd norm zero denorm zero1 1 0 0 0 0

madd norm zero zero zero1 0 0 0 0 0

madd norm zero norm operand_d 0 0 0 0 0

madd norm norm , NaN dmax 1 0 0 0 0

madd norm norm denorm ab_Calc 1 * * 0 *

madd norm norm zero ab_Calc 0 * * 0 *

madd norm norm norm _Calc_ 0 * * 0 *

nmadd

nmadd , NaN , NaN, Norm , NaN, denorm,
zero, Norm

-abmax 1 0 0 0 0

nmadd , NaN denorm, zero , NaN -dmax 1 0 0 0 0

nmadd , NaN denorm, zero denorm, zero zero3 1 0 0 0 0

nmadd , NaN denorm, zero Norm -operand_d 1 0 0 0 0

nmadd denorm , NaN, denorm,
zero, Norm

, NaN -dmax 1 0 0 0 0

nmadd denorm , NaN, denorm,
zero, Norm

denorm, zero zero3 1 0 0 0 0

nmadd denorm , NaN, denorm,
zero, Norm

Norm -operand_d 1 0 0 0 0

nmadd zero , NaN, denorm, , NaN -dmax 1 0 0 0 0

nmadd zero , NaN, denorm denorm, zero zero3 1 0 0 0 0

nmadd zero , NaN, denorm Norm -operand_d 1 0 0 0 0

nmadd zero zero, Norm , NaN -dmax 1 0 0 0 0

nmadd zero zero, Norm denorm zero3 1 0 0 0 0

nmadd zero zero, Norm zero zero3 0 0 0 0 0

nmadd zero zero, Norm Norm -operand_d 0 0 0 0 0

nmadd norm , NaN , NaN, denorm,
zero, Norm

-abmax 1 0 0 0 0

nmadd norm denorm , NaN -dmax 1 0 0 0 0

nmadd norm denorm denorm, zero zero3 1 0 0 0 0

nmadd norm denorm norm -operand_d 1 0 0 0 0

Table 5-3. Floating-point results summary — madd, msub, nmadd, nmsub (continued)

Operation Operand A Operand B Operand D Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

244 Freescale Semiconductor

nmadd norm zero , NaN -dmax 1 0 0 0 0

nmadd norm zero denorm zero3 1 0 0 0 0

nmadd norm zero zero zero3 0 0 0 0 0

nmadd norm zero norm -operand_d 0 0 0 0 0

nmadd norm norm , NaN -dmax 1 0 0 0 0

nmadd norm norm denorm -ab_Calc 1 * * 0 *

nmadd norm norm zero -ab_Calc 0 * * 0 *

nmadd norm norm norm -(_Calc_) 0 * * 0 *

msub

msub , NaN , NaN, Norm , NaN, denorm,
zero, Norm

abmax 1 0 0 0 0

msub , NaN denorm, zero , NaN -dmax 1 0 0 0 0

msub , NaN denorm, zero denorm, zero zero2 1 0 0 0 0

msub , NaN denorm, zero Norm -operand_d 1 0 0 0 0

msub denorm , NaN, denorm,
zero, Norm

, NaN -dmax 1 0 0 0 0

msub denorm , NaN, denorm,
zero, Norm

denorm, zero zero2 1 0 0 0 0

msub denorm , NaN, denorm,
zero, Norm

Norm -operand_d 1 0 0 0 0

msub zero , NaN, denorm, , NaN -dmax 1 0 0 0 0

msub zero , NaN, denorm denorm, zero zero2 1 0 0 0 0

msub zero , NaN, denorm Norm -operand_d 1 0 0 0 0

msub zero zero, Norm , NaN -dmax 1 0 0 0 0

msub zero zero, Norm denorm zero2 1 0 0 0 0

msub zero zero, Norm zero zero2 0 0 0 0 0

msub zero zero, Norm Norm -operand_d 0 0 0 0 0

msub norm , NaN , NaN, denorm,
zero, Norm

abmax 1 0 0 0 0

msub norm denorm , NaN -dmax 1 0 0 0 0

msub norm denorm denorm, zero zero2 1 0 0 0 0

msub norm denorm norm -operand_d 1 0 0 0 0

msub norm zero , NaN -dmax 1 0 0 0 0

msub norm zero denorm zero2 1 0 0 0 0

Table 5-3. Floating-point results summary — madd, msub, nmadd, nmsub (continued)

Operation Operand A Operand B Operand D Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 245

msub norm zero zero zero2 0 0 0 0 0

msub norm zero norm -operand_d 0 0 0 0 0

msub norm norm , NaN -dmax 1 0 0 0 0

msub norm norm denorm ab_Calc 1 * * 0 *

msub norm norm zero ab_Calc 0 * * 0 *

msub norm norm norm _Calc_ 0 * * 0 *

nmsub

nmsub , NaN , NaN, Norm , NaN, denorm,
zero, Norm

-abmax 1 0 0 0 0

nmsub , NaN denorm, zero , NaN dmax 1 0 0 0 0

nmsub , NaN denorm, zero denorm, zero zero4 1 0 0 0 0

nmsub , NaN denorm, zero Norm operand_d 1 0 0 0 0

nmsub denorm , NaN, denorm,
zero, Norm

, NaN dmax 1 0 0 0 0

nmsub denorm , NaN, denorm,
zero, Norm

denorm, zero zero4 1 0 0 0 0

nmsub denorm , NaN, denorm,
zero, Norm

Norm operand_d 1 0 0 0 0

nmsub zero , NaN, denorm, , NaN dmax 1 0 0 0 0

nmsub zero , NaN, denorm denorm, zero zero4 1 0 0 0 0

nmsub zero , NaN, denorm Norm operand_d 1 0 0 0 0

nmsub zero zero, Norm , NaN dmax 1 0 0 0 0

nmsub zero zero, Norm denorm zero4 1 0 0 0 0

nmsub zero zero, Norm zero zero4 0 0 0 0 0

nmsub zero zero, Norm Norm -operand_d 0 0 0 0 0

nmsub norm , NaN , NaN, denorm,
zero, Norm

-abmax 1 0 0 0 0

nmsub norm denorm , NaN dmax 1 0 0 0 0

nmsub norm denorm denorm, zero zero4 1 0 0 0 0

nmsub norm denorm norm operand_d 1 0 0 0 0

nmsub norm zero , NaN dmax 1 0 0 0 0

nmsub norm zero denorm zero4 1 0 0 0 0

nmsub norm zero zero zero4 0 0 0 0 0

nmsub norm zero norm operand_d 0 0 0 0 0

Table 5-3. Floating-point results summary — madd, msub, nmadd, nmsub (continued)

Operation Operand A Operand B Operand D Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

246 Freescale Semiconductor

nmsub norm norm , NaN dmax 1 0 0 0 0

nmsub norm norm denorm -ab_Calc 1 * * 0 *

nmsub norm norm zero -ab_Calc 0 * * 0 *

nmsub norm norm norm -(_Calc_) 0 * * 0 *

Notes: the following definitions apply
1 - sign of result is positive when (sign_a XOR sign_b) and sign_d are different for all rounding
modes except round to minus infinity, where it is negative.
2 - sign of result is positive when (sign_a XOR sign_b) and sign_d are the same for all rounding
modes except round to minus infinity, where it is negative.
3- sign of result is negative when (sign_a XOR sign_b) and sign_d are different for all rounding
modes except round to minus infinity, where it is positive.
4 - sign of result is negative when (sign_a XOR sign_b) and sign_d are the same for all rounding
modes except round to minus infinity, where it is positive.
* - updated according to results of calculation
ab_Calc - result is updated with the results of intermediate product calculation, rounded
Calc - result is updated with the results of calculation, rounded
abmax - max normalized number with sign of (sign_a XOR sign_b)
dmax - max normalized number with sign of sign_d

nmax - max negative normalized number
pmax - max positive normalized number

Table 5-4. Floating-point results summary—sqrt

Operand A Result
F

IN
V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

+ pmax 1 0 0 0 0

- -0 1 0 0 0 0

+NaN pmax 1 0 0 0 0

-NaN -0 1 0 0 0 0

+denorm +zero 1 0 0 0 0

-denorm -zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

-zero -zero 0 0 0 0 0

+norm _Calc_ 0 * * 0 *

-norm -0 1 0 0 0 0

Table 5-3. Floating-point results summary — madd, msub, nmadd, nmsub (continued)

Operation Operand A Operand B Operand D Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 247

Table 5-5. Floating-point results summary—min, max

Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

Max

 pmax 1 0 0 0 0

 pmax 1 0 0 0 0

 +NaN pmax 1 0 0 0 0

 -NaN pmax 1 0 0 0 0

 denorm pmax 1 0 0 0 0

 zero pmax 1 0 0 0 0

 Norm pmax 1 0 0 0 0

 pmax 1 0 0 0 0

 nmax 1 0 0 0 0

 +NaN nmax 1 0 0 0 0

 -NaN nmax 1 0 0 0 0

 denorm bzero 1 0 0 0 0

 zero bzero 1 0 0 0 0

 Norm operand_b 1 0 0 0 0

+NaN pmax 1 0 0 0 0

+NaN nmax 1 0 0 0 0

+NaN +NaN pmax 1 0 0 0 0

+NaN -NaN pmax 1 0 0 0 0

+NaN denorm bzero 1 0 0 0 0

+NaN zero bzero 1 0 0 0 0

+NaN Norm operand_b 1 0 0 0 0

-NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

-NaN +NaN pmax 1 0 0 0 0

-NaN -NaN nmax 1 0 0 0 0

-NaN denorm bzero 1 0 0 0 0

-NaN zero bzero 1 0 0 0 0

-NaN Norm operand_b 1 0 0 0 0

+denorm pmax 1 0 0 0 0

+denorm azero 1 0 0 0 0

+denorm +NaN azero 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

248 Freescale Semiconductor

+denorm -NaN azero 1 0 0 0 0

+denorm denorm azero 1 0 0 0 0

+denorm zero azero 1 0 0 0 0

+denorm +Norm operand_b 1 0 0 0 0

+denorm -Norm azero 1 0 0 0 0

-denorm pmax 1 0 0 0 0

-denorm azero 1 0 0 0 0

-denorm +NaN azero 1 0 0 0 0

-denorm -NaN azero 1 0 0 0 0

-denorm denorm bzero 1 0 0 0 0

-denorm zero bzero 1 0 0 0 0

-denorm +Norm operand_b 1 0 0 0 0

-denorm -Norm azero 1 0 0 0 0

+zero pmax 1 0 0 0 0

+zero azero 1 0 0 0 0

+zero +NaN azero 1 0 0 0 0

+zero -NaN azero 1 0 0 0 0

+zero denorm azero 1 0 0 0 0

+zero zero azero 0 0 0 0 0

+zero +Norm operand_b 0 0 0 0 0

+zero -Norm azero 0 0 0 0 0

-zero pmax 1 0 0 0 0

-zero azero 1 0 0 0 0

-zero +NaN azero 1 0 0 0 0

-zero -NaN azero 1 0 0 0 0

-zero denorm bzero 1 0 0 0 0

-zero zero bzero 0 0 0 0 0

-zero +Norm operand_b 0 0 0 0 0

-zero -Norm azero 0 0 0 0 0

+Norm pmax 1 0 0 0 0

+Norm operand_a 1 0 0 0 0

+Norm +NaN operand_a 1 0 0 0 0

Table 5-5. Floating-point results summary—min, max (continued)

Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 249

+Norm -NaN operand_a 1 0 0 0 0

+Norm denorm operand_a 1 0 0 0 0

+Norm zero operand_a 0 0 0 0 0

+Norm Norm _Calc_ 0 0 0 0 0

-Norm pmax 1 0 0 0 0

-Norm operand_a 1 0 0 0 0

-Norm +NaN operand_a 1 0 0 0 0

-Norm -NaN operand_a 1 0 0 0 0

-Norm denorm bzero 1 0 0 0 0

-Norm zero bzero 0 0 0 0 0

-Norm Norm _Calc_ 0 0 0 0 0

Min

 pmax 1 0 0 0 0

 nmax 1 0 0 0 0

 +NaN pmax 1 0 0 0 0

 -NaN pmax 1 0 0 0 0

 denorm bzero 1 0 0 0 0

 zero bzero 1 0 0 0 0

 Norm operand_b 1 0 0 0 0

 nmax 1 0 0 0 0

 nmax 1 0 0 0 0

 +NaN nmax 1 0 0 0 0

 -NaN nmax 1 0 0 0 0

 denorm nmax 1 0 0 0 0

 zero nmax 1 0 0 0 0

 Norm nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

+NaN nmax 1 0 0 0 0

+NaN +NaN pmax 1 0 0 0 0

+NaN -NaN nmax 1 0 0 0 0

+NaN denorm bzero 1 0 0 0 0

+NaN zero bzero 1 0 0 0 0

Table 5-5. Floating-point results summary—min, max (continued)

Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

250 Freescale Semiconductor

+NaN Norm operand_b 1 0 0 0 0

-NaN pmax 1 0 0 0 0

-NaN nmax 1 0 0 0 0

-NaN +NaN nmax 1 0 0 0 0

-NaN -NaN nmax 1 0 0 0 0

-NaN denorm bzero 1 0 0 0 0

-NaN zero bzero 1 0 0 0 0

-NaN Norm operand_b 1 0 0 0 0

+denorm azero 1 0 0 0 0

+denorm nmax 1 0 0 0 0

+denorm +NaN azero 1 0 0 0 0

+denorm -NaN azero 1 0 0 0 0

+denorm denorm bzero 1 0 0 0 0

+denorm zero bzero 1 0 0 0 0

+denorm +Norm azero 1 0 0 0 0

+denorm -Norm operand_b 1 0 0 0 0

-denorm azero 1 0 0 0 0

-denorm nmax 1 0 0 0 0

-denorm +NaN azero 1 0 0 0 0

-denorm -NaN azero 1 0 0 0 0

-denorm denorm azero 1 0 0 0 0

-denorm zero azero 1 0 0 0 0

-denorm +Norm azero 1 0 0 0 0

-denorm -Norm operand_b 1 0 0 0 0

+zero azero 1 0 0 0 0

+zero nmax 1 0 0 0 0

+zero +NaN azero 1 0 0 0 0

+zero -NaN azero 1 0 0 0 0

+zero denorm bzero 1 0 0 0 0

+zero zero bzero 0 0 0 0 0

+zero +Norm azero 0 0 0 0 0

+zero -Norm operand_b 0 0 0 0 0

Table 5-5. Floating-point results summary—min, max (continued)

Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 251

-zero azero 1 0 0 0 0

-zero nmax 1 0 0 0 0

-zero +NaN azero 1 0 0 0 0

-zero -NaN azero 1 0 0 0 0

-zero denorm azero 1 0 0 0 0

-zero zero azero 0 0 0 0 0

-zero +Norm azero 0 0 0 0 0

-zero -Norm operand_b 0 0 0 0 0

+Norm operand_a 1 0 0 0 0

+Norm nmax 1 0 0 0 0

+Norm +NaN operand_a 1 0 0 0 0

+Norm -NaN operand_a 1 0 0 0 0

+Norm denorm bzero 1 0 0 0 0

+Norm zero bzero 0 0 0 0 0

+Norm Norm _Calc_ 0 0 0 0 0

-Norm operand_a 1 0 0 0 0

-Norm nmax 1 0 0 0 0

-Norm +NaN operand_a 1 0 0 0 0

-Norm -NaN operand_a 1 0 0 0 0

-Norm denorm operand_a 1 0 0 0 0

-Norm zero operand_a 0 0 0 0 0

-Norm Norm _Calc_ 0 0 0 0 0

Table 5-6. Floating-point results summary — convert to unsigned

Operand B
integer result

efsctui[z]
Fractional result

efsctuf F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

+ 0xFFFF_FFFF 0xFFFF_FFFF 1 0 0 0 0

- zero zero 1 0 0 0 0

+NaN zero zero 1 0 0 0 0

-NaN zero zero 1 0 0 0 0

denorm zero zero 1 0 0 0 0

zero zero zero 0 0 0 0 0

Table 5-5. Floating-point results summary—min, max (continued)

Operand A Operand B Result

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

252 Freescale Semiconductor

+norm _Calc_ _Calc_ * 0 0 0 *

-norm zero zero 0 0 0 0 0

Table 5-7. Floating-point results summary —convert to signed

Operand B
integer result

efsctsi[z]
Fractional result

efsctsf F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

+ 0x7FFF_FFFF 0x7FFF_FFFF 1 0 0 0 0

- 0x8000_0000 0x8000_0000 1 0 0 0 0

+NaN zero zero 1 0 0 0 0

-NaN zero zero 1 0 0 0 0

denorm zero zero 1 0 0 0 0

zero zero zero 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

-norm _Calc_ _Calc_ * 0 0 0 *

Table 5-8. Floating-point results summary — convert from unsigned

Operand B
integer source

efscfui
Fractional source

efscfuf F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 5-9. Floating-point results summary — convert from signed

Operand B
integer source

efscfsi
Fractional source

efscfsf F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 5-10. Floating-point results summary — fabs, fnabs, fneg

Operand
A

fabs fnabs fneg

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

+ - -A 1 0 0 0 0

NaN Sign bit cleared Sign bit set -A 1 0 0 0 0

denorm Sign bit cleared Sign bit set -A 1 0 0 0 0

Table 5-6. Floating-point results summary — convert to unsigned (continued)

Operand B
integer result

efsctui[z]
Fractional result

efsctuf F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 253

5.5 EFPU instruction timing
Instruction timing in number of processor clock cycles for EFPU instructions are shown in Table 5-13, and
Table 5-14. Pipelined instructions are shown with cycles of total latency and throughput cycles. Divide
instructions are not pipelined and block other instructions from executing during divide execution.

Instruction pipelining in the CPU is affected by the possibility of a floating-point instruction generating an
exception. A load or store class instruction that follows an EFPU instruction will stall until it can be
ensured that no previous instruction can generate a floating-point exception. This determination is based
on which floating-point exception enable bits are set (FINVE, FOVFE, FUNFE, FDBZE, and FINXE) and
at what point in the FPU pipeline an exception can be guaranteed to not occur. Invalid input operands are
detected in the first stage of the pipeline, while underflow, overflow, and inexactness are determined later
in the pipeline. Best overall performance occurs when either floating-point exceptions are disabled, or
when load and store class instructions are scheduled such that previous floating-point instructions have
already resolved the possibility of exceptional results.

zero zero zero zero 0 0 0 0 0

norm norm norm norm 0 0 0 0 0

Table 5-11. Floating-point results summary — convert from half-precision

Operand B e[v]fscfh

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

bmax 1 0 0 0 0

NaN bmax 1 0 0 0 0

denorm bzero 1 0 0 0 0

zero bzero 0 0 0 0 0

+norm _Calc_ 0 0 0 0 *

-norm _Calc_ 0 0 0 0 *

Table 5-12. Floating-point results summary — convert to half-precision

Operand B e[v]fscth

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

bmaxhp 1 0 0 0 0

NaN bmaxhp 1 0 0 0 0

denorm bzero 1 0 0 0 0

zero bzero 0 0 0 0 0

+norm _Calc_ 0 * * 0 *

-norm _Calc_ 0 * * 0 *

Table 5-10. Floating-point results summary — fabs, fnabs, fneg

Operand
A

fabs fnabs fneg

F
IN

V

F
O

V
F

F
U

N
F

F
D

B
Z

F
IN

X

e200z759n3 Core Reference Manual, Rev. 2

254 Freescale Semiconductor

5.5.1 EFPU single-precision vector floating-point instruction timing

Instruction timing for EFPU vector floating-point instructions is shown in Table 5-13. The table is sorted
by opcode. The number of stall cycles for evfsdiv and evfssqrt is (latency) cycles.

Table 5-13. EFPU vector floating-point instruction timing

Instruction Latency Throughput Comments

evfsabs 4 1 —

evfsadd 4 1 —

evfsaddx 4 1 —

evfsaddsub 4 1 —

evfsaddsubx 4 1 —

evfscfh 4 1 —

evfscfsf 4 1 —

evfscfsi 4 1 —

evfscfuf 4 1 —

evfscfui 4 1 —

evfscmpeq 4 1 —

evfscmpgt 4 1 —

evfscmplt 4 1 —

evfscth 4 1 —

evfsctsf 4 1 —

evfsctsi 4 1 —

evfsctsiz 4 1 —

evfsctuf 4 1 —

evfsctui 4 1 —

evfsctuiz 4 1 —

evfsdiff 4 1 —

evfsdiffsum 4 1 —

evfsdiv 13 13 blocking, no overlap with next
inst.

evfsmax 4 1 —

evfsmin 4 1 —

evfsmadd 4 11 dest also used as source

evfsmsub 4 11 dest also used as source

evfsmul 4 1 —

evfsmule 4 1 —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 255

5.5.2 EFPU single-precision scalar floating-point instruction timing

Instruction timing for EFPU single-precision scalar floating-point instructions is shown in Table 5-14. The
table is sorted by opcode.

evfsmulo 4 1 —

evfsmulx 4 1 —

evfsnabs 4 1 —

evfsneg 4 1 —

evfsnmadd 4 11 dest also used as source

evfsnmsub 4 11 dest also used as source

evfssqrt 15 15 blocking, no overlap with next
inst.

evfssub 4 1 —

evfssubx 4 1 —

evfssubadd 4 1 —

evfssubaddx 4 1 —

evfssum 4 1 —

evfssumdiff 4 1 —

evfststeq 4 1 —

evfststgt 4 1 —

evfststlt 4 1 —

1 Destination register is also a source register, so for full throughput, back-to-back operations must use
a different dest reg.

Table 5-14. EFPU single-precision scalar floating-point instruction timing

Instruction Latency Throughput Comments

efsabs 4 1 —

efsadd 4 1 —

efscfh 4 1 —

efscfsf 4 1 —

efscfsi 4 1 —

efscfuf 4 1 —

efscfui 4 1 —

efscmpeq 4 1 —

Table 5-13. EFPU vector floating-point instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

256 Freescale Semiconductor

5.6 Instruction forms and opcodes
Table 5-15 gives the division of the opcode space for the EFPU instructions. This is the architectural
assignment; not all instructions are implemented in all versions of the CPU.

efscmpgt 4 1 —

efscmplt 4 1 —

efscth 4 1 —

efsctsf 4 1 —

efsctsi 4 1 —

efsctsiz 4 1 —

efsctuf 4 1 —

efsctui 4 1 —

efsctuiz 4 1 —

efsdiv 13 13 blocking, no execution overlap
with next instruction

efsmadd 4 11 dest also used as source

efsmsub 4 11 dest also used as source

efsmax 4 1 —

efsmin 4 1 —

efsmul 4 1 —

efsnabs 4 1 —

efsneg 4 1 —

efsnmadd 4 11 dest also used as source

efsnmsub 4 11 dest also used as source

efssqrt 15 15 blocking, no overlap with next
inst.

efssub 4 1 —

efststeq 4 1 —

efststgt 4 1 —

efststlt 4 1 —

1 Destination register is also a source register, so for full throughput, back-to-back operations must use
a different dest reg.

Table 5-14. EFPU single-precision scalar floating-point instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 257

5.6.1 Opcodes for EFPU vector floating-point instructions

Table 5-15. Opcode space division

Opcode bits
Instruction class

0–5 21–28

4 0101 00xx Embedded vector floating-point instructions

4 0101 010x Embedded vector floating-point instructions

4 0101 0110 Embedded scalar floating-point single-precision instructions

4 0101 0111 Reserved (Embedded scalar floating-point double-precision instructions)1

1 Attempted execution of a defined EFP double-precision instruction will result in an Illegal instruction
exception if MSRSPE =1, or an EFPU Unavailable exception if MSRSPE=0

4 0101 10xx Embedded scalar floating-point single-precision instructions

4 0101 11xx Reserved (Embedded scalar floating-point double-precision instructions)1

Table 5-16. Embedded vector floating-point instruction opcodes

Instruction
Opcode Bits

Comments
0–5 6–10 11–15 16–20 21–24 25–31

evfsadd 4 rD rA rB 0101 0000000 —

evfssub 4 rD rA rB 0101 0000001 rA - rB

evfsmadd 4 rD rA rB 0101 0000010 —

evfsmsub 4 rD rA rB 0101 0000011 —

evfsabs 4 rD rA 00000 0101 0000100 —

evfsnabs 4 rD rA 00000 0101 0000101 —

evfsneg 4 rD rA 00000 0101 0000110 —

evfssqrt 4 rD rA 00000 0101 0000111 —

evfsmul 4 rD rA rB 0101 0001000 —

evfsdiv 4 rD rA rB 0101 0001001 —

evfsnmadd 4 rD rA rB 0101 0001010 —

evfsnmsub 4 rD rA rB 0101 0001011 —

evfscmpgt 4 crfD 00 rA rB 0101 0001100 —

evfscmplt 4 crfD 00 rA rB 0101 0001101 —

evfscmpeq 4 crfD 00 rA rB 0101 0001110 —

4 0101 0001111 —

evfscfui 4 rD 00000 rB 0101 0010000 —

evfscfsi 4 rD 00000 rB 0101 0010001 —

e200z759n3 Core Reference Manual, Rev. 2

258 Freescale Semiconductor

evfscfh 4 rD 00100 rB 0101 0010001 —

evfscfuf 4 rD 00000 rB 0101 0010010 —

evfscfsf 4 rD 00000 rB 0101 0010011 —

evfsctui 4 rD 00000 rB 0101 0010100 —

evfsctsi 4 rD 00000 rB 0101 0010101 —

evfscth 4 rD 00100 rB 0101 0010101 —

evfsctuf 4 rD 00000 rB 0101 0010110 —

evfsctsf 4 rD 00000 rB 0101 0010111 —

evfsctuiz 4 rD 00000 rB 0101 0011000 —

4 0101 0011001 —

evfsctsiz 4 rD 00000 rB 0101 0011010 —

4 0101 0011011 —

evfststgt 4 crfD 00 rA rB 0101 0011100 —

evfststlt 4 crfD 00 rA rB 0101 0011101 —

evfststeq 4 crfD 00 rA rB 0101 0011110 —

4 0101 0011111 —

evfsmax 4 rD rA rB 0101 0100000 —

evfsmin 4 rD rA rB 0101 0100001 —

evfsaddsub 4 rD rA rB 0101 0100010 —

evfssubadd 4 rD rA rB 0101 0100011 rA - rB; rA + rB

evfssum 4 rD rA rB 0101 0100100 —

evfsdiff 4 rD rA rB 0101 0100101 —

evfssumdiff 4 rD rA rB 0101 0100110 —

evfsdiffsum 4 rD rA rB 0101 0100111 —

evfsaddx 4 rD rA rB 0101 0101000 —

evfssubx 4 rD rA rB 0101 0101001 —

evfsaddsubx 4 rD rA rB 0101 0101010 —

evfssubaddx 4 rD rA rB 0101 0101011 rA - rB; rA + rB

evfsmulx 4 rD rA rB 0101 0101100 —

4 rD rA rB 0101 0101101 —

Table 5-16. Embedded vector floating-point instruction opcodes (continued)

Instruction
Opcode Bits

Comments
0–5 6–10 11–15 16–20 21–24 25–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 259

5.6.2 Opcodes for EFPU scalar single-precision floating-point
instructions

evfsmule 4 rD rA rB 0101 0101110 —

evfsmulo 4 rD rA rB 0101 0101111 —

Table 5-17. Embedded scalar single-precision floating-point instruction opcodes

Instruction
Opcode Bits

Comments
0–5 6–10 11–15 16–20 21–24 25–31

efsmax 4 rD rA rB 0101 0110000 —

efsmin 4 rD rA rB 0101 0110001 —

efsadd 4 rD rA rB 0101 1000000 —

efssub 4 rD rA rB 0101 1000001 rA - rB

efsmadd 4 rD rA rB 0101 1000010 —

efsmsub 4 rD rA rB 0101 1000011 —

efsabs 4 rD rA 00000 0101 1000100 —

efsnabs 4 rD rA 00000 0101 1000101 —

efsneg 4 rD rA 00000 0101 1000110 —

efssqrt 4 rD rA 00000 0101 1000111 —

efsmul 4 rD rA rB 0101 1001000 —

efsdiv 4 rD rA rB 0101 1001001 —

efsnmadd 4 rD rA rB 0101 1001010 —

efsnmsub 4 rD rA rB 0101 1001011 —

efscmpgt 4 crfD 00 rA rB 0101 1001100 —

efscmplt 4 crfD 00 rA rB 0101 1001101 —

efscmpeq 4 crfD 00 rA rB 0101 1001110 —

efscfd 4 rD 00000 rB 0101 1001111 optional, not
implemented

efscfui 4 rD 00000 rB 0101 1010000 —

efscfsi 4 rD 00000 rB 0101 1010001 —

efscfh 4 rD 00100 rB 0101 1010001 —

Table 5-16. Embedded vector floating-point instruction opcodes (continued)

Instruction
Opcode Bits

Comments
0–5 6–10 11–15 16–20 21–24 25–31

e200z759n3 Core Reference Manual, Rev. 2

260 Freescale Semiconductor

efscfuf 4 rD 00000 rB 0101 1010010 —

efscfsf 4 rD 00000 rB 0101 1010011 —

efsctui 4 rD 00000 rB 0101 1010100 —

efsctsi 4 rD 00000 rB 0101 1010101 —

efscth 4 rD 00100 rB 0101 1010101 —

efsctuf 4 rD 00000 rB 0101 1010110 —

efsctsf 4 rD 00000 rB 0101 1010111 —

efsctuiz 4 rD 00000 rB 0101 1011000 —

4 0101 1011001 —

efsctsiz 4 rD 00000 rB 0101 1011010 —

4 0101 1011011 —

efststgt 4 crfD 00 rA rB 0101 1011100 —

efststlt 4 crfD 00 rA rB 0101 1011101 —

efststeq 4 crfD 00 rA rB 0101 1011110 —

4 0101 1011111 —

Table 5-17. Embedded scalar single-precision floating-point instruction opcodes (continued)

Instruction
Opcode Bits

Comments
0–5 6–10 11–15 16–20 21–24 25–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 261

Chapter 6
Signal Processing Extension APU (SPE APU)
This chapter describes the instruction set architecture of the SPE version 1.1 APU. This unit implements
instructions to accelerate signal processing and other algorithms.

6.1 Nomenclature and conventions
Several conventions regarding nomenclature are used in this chapter:

• Due to historical precedent, the terms SPE and SIMD are sometimes used interchangeably

• Bits 0 to 31 of a 64-bit register are referenced as field 0, upper half, or high-order element of the
register. Bits 32–63 are referred to as field 1, lower half, or lower-order element of the register.
Each half is an element of a GPR.

• Mnemonics for SPE APU instructions generally begin with the letters ‘ev’ (vector).

6.2 SPE programming model
The e200z759n3 core provides a register file with thirty-two 64-bit registers. The Power Architecture
32-bit Book E instructions operate on the lower (least significant) 32 bits of the 64-bit register. New SPE
instructions are defined that view the 64-bit register as being composed of a vector of two 32-bit elements,
and some of the instructions also read or write 16-bit elements. These new instructions can also be used to
perform scalar operations by ignoring the results of the upper 32-bit half of the register file. Some
instructions are defined that produce a 64-bit scalar result. Vector fixed-point instructions operate on a
vector of two 32-bit or four 16-bit fixed-point numbers resident in the 64-bit GPRs. The SPE and Book E
instructions issue from a single instruction stream.

There are no record forms of SPE instructions. Vector compare instructions store the result of the
comparison into the condition register (CR). The meaning of the CR bits are now overloaded for the vector
operations. Vector compare instructions specify a CR field, two source registers and the type of compare:
greater than, less than, or equal. Two bits in the CR field are written with the result of the vector compare,
one for each element. The remaining two bits reflect the ‘and’ing and ‘or’ing of the vector compare results.

A partially visible accumulator register is architected for the SPE integer and fractional multiply
accumulate forms of instructions. Its usage is described in Section 6.2.2, Accumulator.

6.2.1 SPE Status and Control Register (SPEFSCR)

The e200z759n3 core implements the SPEFSCR register for status reporting and control of SPE
instructions. This register is also used by the Embedded Floating-Point APUs. Status and control
bits are shared for floating-point operations and SPE operations. The SPEFSCR register is
implemented as special purpose register (SPR) number 512 and is read and written by the mfspr and
mtspr instructions. The SPEFSCR is shown in Figure 6-1.

e200z759n3 Core Reference Manual, Rev. 2

262 Freescale Semiconductor

The SPEFSCR bits are defined in Table 6-1.

S
O

V
H

O
V

H

F
G

H

F
X

H

F
IN

V
H

F
D

B
Z

H

F
U

N
F

H

F
O

V
F

H

0

F
IN

X
S

F
IN

V
S

F
D

B
Z

S

F
U

N
F

S

F
O

V
F

S

M
O

D
E

S
O

V

O
V

F
G F
X

F
IN

V

F
D

B
Z

F
U

N
F

F
O

V
F

0

F
IN

X
E

F
IN

V
E

F
D

B
Z

E

F
U

N
F

E

F
O

V
F

E

F
R

M
C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR — 512; Read/Write; Reset — 0x0

Figure 6-1. SPE Status and Control Register (SPEFSCR)

Table 6-1. SPEFCR field descriptions

Bits Name Description

0
(32)

SOVH Summary Integer Overflow High
The SOVH bit is set to 1 whenever an instruction sets OVH. The SOVH bit remains set until
it is cleared by a mtspr instruction specifying the SPEFSCR register.

1
(33)

OVH Integer Overflow High
The OVH bit is set to 1 whenever an integer or fractional SPE instruction signals an overflow
in the upper half of the result.

2
(34)

FGH Embedded Floating-Point Guard bit High
Defined by Embedded Floating-Point APUs.

3
(35)

FXH Embedded Floating-Point Inexact bit High
Defined by Embedded Floating-Point APUs.

4
(36)

FINVH Embedded Floating-Point Invalid Operation / Input error High
Defined by Embedded Floating-Point APUs.

5
(37)

FDBZH Embedded Floating-Point Divide by Zero High
Defined by Embedded Floating-Point APUs.

6
(38)

FUNFH Embedded Floating-Point Underflow High
Defined by Embedded Floating-Point APUs.

7
(39)

FOVFH Embedded Floating-Point Overflow High
Defined by Embedded Floating-Point APUs.

8:9
(40:41)

— Reserved

10
(42)

FINXS Embedded Floating-Point Inexact Sticky Flag
Defined by Embedded Floating-Point APUs.

11
(43)

FINVS Embedded Floating-Point Invalid Operation Sticky Flag
Defined by Embedded Floating-Point APUs.

12
(44)

FDBZS Embedded Floating-Point Divide by Zero Sticky Flag
Defined by Embedded Floating-Point APUs.

13
(45)

FUNFS Embedded Floating-Point Underflow Sticky Flag
Defined by Embedded Floating-Point APUs.

14
(46)

FOVFS Embedded Floating-Point Overflow Sticky Flag
Defined by Embedded Floating-Point APUs.

15
(47)

MODE Embedded Floating-Point Operating Mode
Defined by Embedded Floating-Point APUs.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 263

6.2.2 Accumulator

The e200z759n3 core has a 64-bit architectural accumulator register that holds the results of the SPE
multiply accumulate (MAC) fixed-point instructions. The accumulator allows back-to-back execution of
dependent fixed-point MAC instructions, something that is found in the inner loops of DSP code such as
filters. The accumulator is partially visible to the programmer in that its results do not have to be explicitly
read to use them. Instead, they are always copied into a 64-bit destination GPR specified as part of the
instruction. The accumulator however, has to be explicitly cleared when starting a new MAC loop. Based

16
(48)

SOV Summary Integer Overflow
The SOV bit is set to 1 whenever an instruction sets OV. The SOV bit remains set until it is
cleared by a mtspr instruction specifying the SPEFSCR register.

17
(49)

OV Integer Overflow
The OV bit is set to 1 whenever an integer or fractional SPE instruction signals an overflow
in the low element result.

18
(50)

FG Embedded Floating-Point Guard bit (low/scalar)
Defined by Embedded Floating-Point APUs.

19
(51)

FX Embedded Floating-Point Inexact bit (low/scalar)
Defined by Embedded Floating-Point APUs.

20
(52)

FINV Embedded Floating-Point Invalid Operation / Input error (low/scalar)
Defined by Embedded Floating-Point APUs.

21
(53)

FDBZ Embedded Floating-Point Divide by Zero (low/scalar)
Defined by Embedded Floating-Point APUs.

22
(54)

FUNF Embedded Floating-Point Underflow (low/scalar)
Defined by Embedded Floating-Point APUs.

23
(55)

FOVF Embedded Floating-Point Overflow (low/scalar)
Defined by Embedded Floating-Point APUs.

24
(56)

— Reserved

25
(57)

FINXE Embedded Floating-Point Round (Inexact) Exception Enable
Defined by Embedded Floating-Point APUs.

26
(58)

FINVE Embedded Floating-Point Invalid Operation / Input Error Exception Enable
Defined by Embedded Floating-Point APUs.

27
(59)

FDBZE Embedded Floating-Point Divide by Zero Exception Enable
Defined by Embedded Floating-Point APUs.

28
(60)

FUNFE Embedded Floating-Point Underflow Exception Enable
Defined by Embedded Floating-Point APUs.

29
(61)

FOVFE Embedded Floating-Point Overflow Exception Enable
Defined by Embedded Floating-Point APUs.

30:31
(62:63)

FRMC Embedded Floating-Point Rounding Mode Control
Defined by Embedded Floating-Point APUs.

Table 6-1. SPEFCR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

264 Freescale Semiconductor

upon the type of instruction, an accumulator can hold either a single 64-bit value or a vector of two 32-bit
elements.

An example of a MAC instruction is evmhossfaaw rD,rA,rB. In this instruction, the least significant 16
bits of rA and rB are multiplied for both elements of the vector (see Figure "evmhossfaaw" on page 358),
the result is shifted left one bit and added to the accumulator, and the result is possibly saturated to 32 bits
in case of overflow. The final result is placed both in the accumulator and also in rD. Thus the result of
this instruction can be used by accessing rD.

To read the accumulator contents into a register, a multiply-accumulate instruction where one of its
operands is a zero should be used, as the following sequence shows:

evxor RD, RD, RD // Zero the contents of RD, not necessary if
// a zero is available in some register.

evmwumiaa RD, RD, RD // Multiply 0 with 0, add the 0 result to
// accumulator and store back the value in acc and RD

To initialize the accumulator, the evmra instruction is used.

6.2.2.1 Context switch

When a context switch occurs, the OS process must explicitly save the accumulator as part of the context
of the swapped-out task and then explicitly load the accumulator from the context of the new task that is
being swapped in. When the old task is restarted, its accumulator must be restored before restarting the
task.

6.2.3 GPRs and PowerPC Book E instructions

The e200z759n3 core implements the 32-bit forms of the Book E instructions. All 32-bit PowerPC Book
E instructions operate upon the lower half of the 64-bit GPR. These instructions do not affect the upper
half of a GPR.

6.2.4 SPE available bit in MSR

MSRSPE is defined as the SPE available bit. If this bit is clear and software attempts to execute any of the
SPE instructions other than the s brinc instruction (which does not affect the upper 32 bits of a GPR), the
SPE APU Unavailable exception is taken. If this bit is set, software can execute any of the SPE
instructions.

6.2.5 SPE exception bit in ESR

ESRSPE is defined as the SPE exception bit. This bit is set whenever the processor takes an exception
related to the execution of the SPE APU instructions.

6.2.6 SPE exceptions

The architecture defines the following SPE APU exceptions:

• SPE APU Unavailable exception

• SPE Vector Alignment exception — not used by e200z759n3

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 265

Interrupt vector offset registers (IVOR) IVOR32 (SPE / Embedded Floating Point Unavailable Interrupt)
and IVOR5 (Alignment Interrupt), are used by the interrupt model. The SPR number for IVOR32 is 528,
IVOR5 is defined by Book E. These registers are privileged.

6.2.6.1 SPE APU Unavailable exception

The SPE APU Unavailable exception is taken if MSRSPE is cleared and execution of a SPE APU
instruction other than the brinc instruction is attempted. When the SPE APU Unavailable exception
occurs, the processor suppresses execution of the instruction causing the exception. The SRR0, SRR1,
MSR, and ESR registers are modified as follows:

• SRR0 is set to the effective address of the instruction causing the exception.

• SRR1 is set to the contents of the MSR at the time of the exception.

• MSRCE,ME,DE are unchanged. All other bits are cleared.

• The ESRSPE bit is set. All other ESR bits are cleared.

Instruction execution resumes at address IVPR0:15||IVOR3216:27||0b0000.

6.2.7 Exception priorities

The following list shows the priority order in which exceptions are taken:

1. SPE APU Unavailable exception

6.3 Integer SPE simple instructions

e200z759n3 Core Reference Manual, Rev. 2

266 Freescale Semiconductor

brinc brinc
Bit Reversed Increment

brinc rD,rA,rB

n = 16 // Implementation dependent value
mask = rB64-n:63 // Least sig. n bits of 32-bit reg
a = rA64-n:63
d = bitreverse(1 + bitreverse(a | (mask)))
rD32:63 = rA32:63-n || (d & mask) // || is concatenation

The brinc instruction provides a way for software to access FFT data in a bit-reversed manner. rA contains
the index into a buffer that contains data on which FFT is to be performed. rB contains a mask that allows
the index to be updated with bit-reversed addressing. Typically this instruction precedes a load with index
instruction, for example,

brinc r2, r3, r4
lhax r8, r5, r2

rB contains a bitmask that is based upon the number of points in an FFT. To access a buffer containing n
byte sized data that is to be accessed with bit-reversed addressing, the mask has log2n ‘1’s in the lsb
positions and ‘0’s in the remaining most significant position. If however, the data size is a multiple of a
half word or a word, the mask is constructed so that the ‘1’s are shifted left by log2 (size of the data) and
‘0’s are placed in the lsb positions. Table 6-2 shows example values of masks for different data sizes and
number of data.

NOTE
An implementation can restrict the number of bits specified in a mask. In the
e200z759n3 implementation, the number of bits is 16, which allows the user
to perform bit-reversed address computations for 65536 byte sized samples.

0 5 6 10 11 15 16 20 21 31

4 rD RA RB 0 1 0 0 0 0 0 1 1 1 1

Table 6-2. Data samples and sizes

Number of data samples
Data size

Byte Half word Word Double word

8 000...00000111 000...00001110 000...000011100 000...0000111000

16 000...00001111 000...00011110 000...000111100 000...0001111000

32 000...00011111 000...00111110 000...001111100 000...0011111000

64 000...00111111 000...01111110 000...011111100 000...0111111000

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 267

evabs evabs
Vector Absolute Value

evabs rD,rA

RD0:31 = ABS(RA0:31)
RD32:63 = ABS(RA32:63)

The absolute value of each element of rA is placed into the corresponding element of rD. Absolute value
of 0x8000_0000 (most negative number) returns 0x8000_0000. No overflow is detected.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

268 Freescale Semiconductor

evaddiw evaddiw
Vector Add Immediate Word

evaddiw rD,rB,UIMM

RD0:31 = RB0:31 + EXTZ(UIMM) // Modulo sum
RD32:63 = RB32:63 + EXTZ(UIMM) // Modulo sum

The 5-bit UIMM value is zero-extended and added to each element of rB and the results are placed into
the corresponding elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD UIMM RB 0 1 0 0 0 0 0 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 269

evaddw evaddw
Vector Add Word

evaddw rD,rA,rB

RD0:31 = RA0:31 + RB0:31 // Modulo sum
RD32:63 = RA32:63 + RB32:63 // Modulo sum

Adds each element of rA to the corresponding element of rB and places the results into the corresponding
elements of rD. The sum is a modulo sum.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

270 Freescale Semiconductor

evand evand
Vector AND

evand rD,rA,rB

RD0:31 = RA0:31 & RB0:31 // Bitwise AND
RD32:63 = RA32:63 & RB32:63 // Bitwise AND

Performs a bitwise AND of each element of rA and rB and places the results into the corresponding
elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 271

evandc evandc
Vector AND with Complement

evandc rD,rA,rB

RD0:31 = RA0:31 & (¬RB0:31) // Bitwise ANDC
RD32:63 = RA32:63 & (¬RB32:63) // Bitwise ANDC

Performs a bitwise AND of each element of rA and complement of rB and places the results into the
corresponding elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

272 Freescale Semiconductor

evcmpeq evcmpeq
Vector Compare Equal

evcmpeq crfD,rA,rB

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah == bh) then ch = 1
else ch = 0
if (al == bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

The msb in crfD is set if the high-order element of rA is equal to the high-order element of rB, cleared
otherwise and the next most significant bit in crfD is set if the lower order element of rA is equal to the
lower order element of rB, cleared otherwise. The last two bits of crfD are set to the OR and AND of the
result of the compare of the high and low elements.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 0 0 1 1 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 273

evcmpgts evcmpgts
Vector Compare Greater Than Signed

evcmpgts crfD,rA,rB

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah > bh) then ch = 1
else ch = 0
if (al > bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

The msb in crfD is set if the high-order element of rA is greater than the high-order element of rB, cleared
otherwise and the next most significant bit in crfD is set if the lower order element of rA is greater than
the lower order element of rB, cleared otherwise. The last two bits of crfD are set to the OR and AND of
the result of the compare of the high and low elements.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 0 0 1 1 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

274 Freescale Semiconductor

evcmpgtu evcmpgtu
Vector Compare Greater Than Unsigned

evcmpgtu crfD,rA,rB

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah >U bh) then ch = 1
else ch = 0
if (al >U bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

The msb in crfD is set if the high-order element of rA is greater than the high-order element of rB, cleared
otherwise and the next most significant bit in crfD is set if the lower order element of rA is greater than
the lower order element of rB, cleared otherwise. The last two bits of crfD are set to the OR and AND of
the result of the compare of the high and low elements.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 0 0 1 1 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 275

evcmplts evcmplts
Vector Compare Less Than Signed

evcmplts crfD,rA,rB

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah < bh) then ch = 1
else ch = 0
if (al < bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

The msb in crfD is set if the high-order element of rA is less than the high-order element of rB, cleared
otherwise and the next most significant bit in crfD is set if the lower order element of rA is less than the
lower order element of rB, cleared otherwise. The last two bits of crfD are set to the OR and AND of the
result of the compare of the high and low elements.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 0 0 1 1 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

276 Freescale Semiconductor

evcmpltu evcmpltu
Vector Compare Less Than Unsigned

evcmpltu crfD,rA,rB

ah = RA0:31
al = RA32:63
bh = RB0:31
bl = RB32:63
if (ah <U bh) then ch = 1
else ch = 0
if (al <U bl) then cl = 1
else cl = 0
CR4*crfD:4*crfD+3 = ch || cl || (ch | cl) || (ch & cl)

The msb in crfD is set if the high-order element of rA is less than the high-order element of rB, cleared
otherwise and the next most significant bit in crfD is set if the lower order element of rA is less than the
lower order element of rB, cleared otherwise. The last two bits of crfD are set to the OR and AND of the
result of the compare of the high and low elements.

0 5 6 8 9 10 11 15 16 20 21 31

4 crfD 0 0 RA RB 0 1 0 0 0 1 1 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 277

evcntlsw evcntlsw
Vector Count Leading Sign Bits Word

evcntlsw rD,rA

Counts the leading number of sign bits in each element of rA and places the counts into corresponding
elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

278 Freescale Semiconductor

evcntlzw evcntlzw
Vector Count Leading Zeros Word

evcntlzw rD,rA

Counts the leading number of zeros in each element of rA and places the counts into corresponding
elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 279

evdivws evdivws
Vector Divide Word Signed

evdivws rD,rA,rB

dividendh = RA0:31
dividendl = RA32:63
divisorh = RB0:31
divisorl = RB32:63
RD0:31 = dividendh divisorh
RD32:63 = dividendl divisorl
Implementation Details:
ovh = 0
ovl = 0

if ((dividendh<0) && (divisorh==0)) then
RD0:31 = 0x80000000

ovh = 1
else if ((dividendh>=0) && (divisorh==0)) then

RD0:31 = 0x7FFFFFFF
ovh = 1

else if ((dividendh==0x80000000) && (divisorh==-1)) then
RD0:31 = 0x7FFFFFFF

ovh = 1
if ((dividendl<0) && (divisorl==0)) then

RD32:63 = 0x80000000
ovl = 1

else if ((dividendl>=0) && (divisorl==0)) then
RD32:63 = 0x7FFFFFFF

ovl = 1
else if ((dividendl==0x80000000) && (divisorl==-1)) then

RD32:63 = 0x7FFFFFFF
ovl = 1

SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

The two dividends are the two elements of the contents of rA. The two divisors are the two elements of
the contents of rB. Two 32-bit quotients are formed as a result of the division on each of the upper and
lower elements and the quotients are placed into rD. The remainders are not supplied as a result of this
operation. Both the operands and quotients are interpreted as signed integers. If an overflow occurs (see
the Power Architecture UISA divw instruction for the cases), the corresponding SPEFSCR bits are set,
otherwise they are cleared. In case of overflow, a saturated value is delivered into the destination register.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 1 1 0 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

280 Freescale Semiconductor

evdivwu evdivwu
Vector Divide Word Unsigned

evdivwu rD,rA,rB

dividendh = RA0:31
dividendl = RA32:63
divisorh = RB0:31
divisorl = RB32:63
RD0:31 = dividendh divisorh
RD32:63 = dividendl divisorl
Implementation Details:
ovh = 0
ovl = 0

if (divisorh == 0) then
RD0:31 = 0xFFFFFFFF

ovh = 1
if (divisorl == 0) then

RD32:63 = 0xFFFFFFFF
ovl = 1

SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

The two dividends are the two elements of the contents of rA. The two divisors are the two elements of
the contents of rB. Two 32-bit quotients are formed as a result of the division on each of the upper and
lower elements and the quotients are placed into rD. The remainders are not supplied as a result of this
operation. Both the operands and quotients are interpreted as unsigned integers. If an overflow occurs (see
the Power Architecture UISA divuw instruction for the cases), the corresponding SPEFSCR bits are set,
otherwise they are cleared. In case of overflow, a saturated value is delivered into the destination register.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 1 1 0 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 281

eveqv eveqv
Vector Equivalent

eveqv rD,rA,rB

RD0:31 = RA0:31 RB0:31 // Bitwise XNOR
RD32:63 = RA32:63 RB32:63 // Bitwise XNOR

Performs a bitwise XNOR of each element of rA and rB and places the results into the corresponding
elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 1 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

282 Freescale Semiconductor

evextsb evextsb
Vector Extend Sign Byte

evextsb rD,rA

RD0:31 = EXTS(RA24:31)
RD32:63 = EXTS(RA56:63)

Extends the sign of the low-order byte in each of the elements in rA and places the results into rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 283

evextsh evextsh
Vector Extend Sign Half Word

evextsh rD,rA

RD0:31 = EXTS(RA16:31)
RD32:63 = EXTS(RA48:63)

Extends the sign of the half words in each of the elements in rA and places the results into rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

284 Freescale Semiconductor

evmergehi evmergehi
Vector Merge High

evmergehi rD,rA,rB

RD0:31 = RA0:31
RD32:63 = RB0:31

The high-order elements of rA and rB are merged and placed into rD as shown in Figure 6-2.

Figure 6-2. High order element merging with evmergehi

NOTE
A vector splat high can be performed by specifying the same register in rA
and rB.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 1 1 0 0

0 31 32 63

RA

RB

RD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 285

evmergehilo evmergehilo
Vector Merge High/Low

evmergehilo rD,rA,rB

RD0:31 = RA0:31
RD32:63 = RB32:63

The high-order element of rA and the low-order element of rB are merged and placed into rD as shown
in Figure 6-3.

Figure 6-3. High order element merging with evmergehilo

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 1 1 1 0

0 31 32 63

RA

RB

RD

e200z759n3 Core Reference Manual, Rev. 2

286 Freescale Semiconductor

evmergelo evmergelo
Vector Merge Low

evmergelo rD,rA,rB

RD0:31 = RA32:63
RD32:63 = RB32:63

The low-order elements of rA and rB are merged and placed in rD as shown in Figure 6-4.

Figure 6-4. Low order element merging evmergelo

NOTE
A vector splat low can be performed by specifying the same register in rA
and rB.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 1 1 0 1

0 31 32 63

RA

RB

RD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 287

evmergelohi evmergelohi
Vector Merge Low/High

evmergelohi rD,rA,rB

RD0:31 = RA32:63
RD32:63 = RB0:31

The low-order element of rA and the high-order element of rB are merged and placed into rD as shown
in Figure 6-5.

Figure 6-5. Low order element merging evmergelohi

NOTE
A vector swap can be performed by specifying the same register in rA and
rB.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 1 1 1 1

0 31 32 63

RA

RB

RD

e200z759n3 Core Reference Manual, Rev. 2

288 Freescale Semiconductor

evnand evnand
Vector NAND

evnand rD,rA,rB

RD0:31 = (RA0:31 & RB0:31) // Bitwise NAND
RD32:63 = (RA32:63 & RB32:63) // Bitwise NAND

Performs a bitwise NAND of each element of rA and rB and places the results into the corresponding
elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 1 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 289

evneg evneg
Vector Negate

evneg rD,rA

RD0:31 = NEG(RA0:31)
RD32:63 = NEG(RA32:63)

The negative value of each element of rA is placed in rD. The negative value of 0x8000_0000 (most
negative number) returns 0x8000_0000. No overflow is detected.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

290 Freescale Semiconductor

evnor evnor
Vector NOR

evnor rD,rA,rB

RD0:31 = (RA0:31 | RB0:31) // Bitwise NOR
RD32:63 = (RA32:63 | RB32:63) // Bitwise NOR

Performs a bitwise NOR of each element of rA and rB and places the result into the corresponding element
of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 291

evor evor
Vector OR

evor rD,rA,rB

RD0:31 = RA0:31 | RB0:31 //Bitwise OR
RD32:63 = RA32:63 | RB32:63 // Bitwise OR

Performs a bitwise OR of each element of rA and rB and places the results into the corresponding elements
of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

292 Freescale Semiconductor

evorc evorc
Vector OR with Complement

evorc rD,rA,rB

RD0:31 = RA0:31 | (¬RB0:31) // Bitwise ORC
RD32:63 = RA32:63 | (¬RB32:63) // Bitwise ORC

Performs a bitwise OR of each element of rA and complement of rB and places the results in the
corresponding elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 1 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 293

evrlw evrlw
Vector Rotate Left Word

evrlw rD,rA,rB

nh = RB27:31
nl = RB59:63
RD0:31 = ROTL(RA0:31, nh)
RD32:63 = ROTL(RA32:63, nl)

Rotates left each of the elements of rA by amounts specified in rB and places the results into rD. The rotate
amounts are specified by 5 bit fields in rB. Separate rotate values for each element of rA are specified in
bit positions rB27:31 and rB59:63.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 1 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

294 Freescale Semiconductor

evrlwi evrlwi
Vector Rotate Left Word Immediate

evrlwi rD,rA,UIMM

n = UIMM
RD0:31 = ROTL(RA0:31, n)
RD32:63 = ROTL(RA32:63, n)

Rotates left both elements of rA by an amount specified by the 5-bit UIMM immediate value and places
the results into rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM 0 1 0 0 0 1 0 1 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 295

evrndw evrndw
Vector Round Word

evrndw rD,rA

RD0:31 = (RA0:31+0x00008000) & 0xFFFF0000 // Modulo sum
RD32:63 = (RA32:63+0x00008000) & 0xFFFF0000 // Modulo sum

Rounds the 32-bit elements of rA into 16 bits and places the results into rD. The resulting 16 bits of each
element are placed in the most significant 16 bits of each element of rD, zeroing out the low order 16 bits
of each element.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

296 Freescale Semiconductor

evsel evsel
Vector Select

evsel rD,rA,rB,crfS

ch = CRcrfS*4
cl = CRcrfS*4+1
if (ch == 1) then RD0:31 = RA0:31
else RD0:31 = RB0:31
if (cl == 1) then RD32:63 = RA32:63
else RD32:63 = RB32:63

If the msb if the crfS field of CR is set, the high-order element of rA is placed in the high-order element
of rD; otherwise, the high-order element of rB is placed into the higher order element of rD. If the next
most significant bit in the crfS field of CR is set, the low-order element of rA is placed in the low-order
element of rD, otherwise, the low-order element of rB is placed into the lower order element of rD. This
is shown in Figure 6-6.

Figure 6-6. evsel

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 1 1 1 1 crfS

0 31 32 63

RA

RB

RD

clch 1 0 01

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 297

evslw evslw
Vector Shift Left Word

evslw rD,rA,rB

nh = RB26:31
nl = RB58:63
RD0:31 = SL(RA0:31, nh)
RD32:63 = SL(RA32:63, nl)

Shifts left each element of rA by amounts specified in rB and places the results into rD. The separate shift
amounts for each element are specified by 6-bit fields in rB in bit positions 26:31 and 58:63. Shift amounts
from 32 to 63 give a zero result.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

298 Freescale Semiconductor

evslwi evslwi
Vector Shift Left Word Immediate

evslwi rD,rA,UIMM

n = UIMM
RD0:31 = SL(RA0:31, n)
RD32:63 = SL(RA32:63, n)

Shifts left each element of rA by the 5-bit UIMM value and places the results into rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM 0 1 0 0 0 1 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 299

evsplatfi evsplatfi
Vector Splat Fractional Immediate

evsplatfi rD,SIMM

RD0:31 = SIMM ||
270

RD32:63 = SIMM ||
270

The 5-bit SIMM value is padded with trailing zeros and placed into both elements of rD as shown in
Figure 6-7. The SIMM value is placed in bit positions rD0:4 and rD32:36.

Figure 6-7. Splat for evsplatfi

0 5 6 10 11 15 16 20 21 31

4 RD SIMM 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1

SIMM

RD

0 31 32 63

SABCD

SABCD000...........000000 SABCD000...........000000

e200z759n3 Core Reference Manual, Rev. 2

300 Freescale Semiconductor

evsplati evsplati
Vector Splat Immediate

evsplati rD,SIMM

RD0:31 = EXTS(SIMM)
RD32:63 = EXTS(SIMM)

The 5-bit SIMM immediate value is sign-extended and placed into both elements of rD as shown in
Figure 6-8.

Figure 6-8. Sign-extend in evsplati

0 5 6 10 11 15 16 20 21 31

4 RD SIMM 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1

SIMM

RD

0 31 32 63

SABCD

SSS......................SABCDSSS......................SABCD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 301

evsrwis evsrwis
Vector Shift Right Word Immediate Signed

evsrwis rD,rA,UIMM

n = UIMM
RD0:31 = EXTS(RA0:31-n)
RD32:63 = EXTS(RA32:63-n)

Shifts right arithmetically each element of rA by the 5-bit UIMM value and places the results into rD. The
sign bit of each source element in rA is extended right into the most significant bit positions of each result
element.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM 0 1 0 0 0 1 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

302 Freescale Semiconductor

evsrwiu evsrwiu
Vector Shift Right Word Immediate Unsigned

evsrwiu rD,rA,UIMM

n = UIMM
RD0:31 = EXTZ(RA0:31-n)
RD32:63 = EXTZ(RA32:63-n)

Shifts right logically each element of rA by the 5-bit UIMM value and places the results into rD. ‘0’ bits
are shifted in to the most significant bit positions of each result element.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM 0 1 0 0 0 1 0 0 0 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 303

evsrws evsrws
Vector Shift Right Word Signed

evsrws rD,rA,rB

nh = RB26:31
nl = RB58:63
RD0:31 = EXTS(RA0:31-nh)
RD32:63 = EXTS(RA32:63-nl)

Shifts right arithmetically each element of rA by an amount specified in rB and places the results into rD.
Separate shift amounts for each element are specified by 6-bit fields in rB that occupy bit positions 26:31
and 58:63. The sign bit of each source element in rA is extended right into the most significant bit positions
of each result element.

Shift amounts from 32 to 63 give a result of 32 sign bits.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

304 Freescale Semiconductor

evsrwu evsrwu
Vector Shift Right Word Unsigned

evsrwu rD,rA,rB

nh = RB26:31
nl = RB58:63
RD0:31 = EXTZ(RA0:31-nh)
RD32:63 = EXTZ(RA32:63-nl)

Shifts right logically each element of rA by amounts specified in rB and places the results into rD.
Separate shift amounts for each element are specified by 6-bit fields in rB that occupy bit positions 26:31
and 58:63. Zero bits are shifted in to the most significant bit positions.

Shift amounts from 32 to 63 give a zero result.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 1 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 305

evsubfw evsubfw
Vector Subtract from Word

evsubfw rD,rA,rB

RD0:31 = RB0:31 - RA0:31 // Modulo sum
RD32:63 = RB32:63 - RA32:63 // Modulo sum

Each element of rA is subtracted from the corresponding element of rB and the results are placed into the
corresponding elements of rD.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

306 Freescale Semiconductor

evsubifw evsubifw
Vector Subtract Immediate from Word

evsubifw rD,UIMM,rB

RD0:31 = RB0:31 - EXTZ(UIMM) // Modulo sum
RD32:63 = RB32:63 - EXTZ(UIMM) // Modulo sum

The 5-bit UIMM value is zero-extended and subtracted from each element of rB and the results are placed
into the corresponding elements of rD. Note that the same value is subtracted from each element.

0 5 6 10 11 15 16 20 21 31

4 RD UIMM RB 0 1 0 0 0 0 0 0 1 1 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 307

evxor evxor
Vector XOR

evxor rD,rA,rB

RD0:31 = RA0:31 RB0:31 // Bitwise XOR
RD32:63 = RA32:63 RB32:63 // Bitwise XOR

Performs a bitwise exclusive-OR of each element of rA and rB and places the results into the
corresponding elements of rD.

6.4 Integer SPE multiply, multiply-accumulate, and operation to
accumulator instructions (complex integer instructions)

A number of forms of multiply and multiply-accumulate operations are supported in the SPE APU, as are
add and subtract to accumulator operations. The SPE supports signed and unsigned forms, and optional
fractional forms. For all of these instructions, the fractional form does not apply to unsigned forms because
integer and fractional forms are identical for unsigned operands. Table 6-3 defines mnemonic extensions
for these instructions.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 0 0 0 0 1 0 1 1 0

Table 6-3. Mnemonic extensions for multiply-accumulate instructions

Extension Meaning Comments

Multiply form

he halfword even 16 × 16 32

heg halfword even guarded 16 × 16 32, 64-bit final accum result

ho halfword odd 16 × 16 32

hog halfword odd guarded 16 × 16 32, 64-bit final accum result

w word 32 × 32 64

wh word high 32 × 32 32 high order 32 bits of product

wl word low 32 × 32 32 low order 32 bits of product

Data type

smf signed modulo fractional Wrap, no saturate

smi signed modulo integer Wrap, no saturate

e200z759n3 Core Reference Manual, Rev. 2

308 Freescale Semiconductor

6.4.1 Multiply halfword instructions

The following instructions perform 16x16 multiplies from the odd or even half of elements, with and
without accumulates, using signed or unsigned integer or fractional operands, and with optional saturation.

ssf signed saturate fractional —

ssi signed saturate integer —

umi unsigned modulo integer Wrap, no saturate

usi unsigned saturate integer —

Accumulate options

a update accumulator Update accumulator (no add)

aa add to accumulator Add result to accumulator (64-bit sum)

aaw
add to accumulator (words) Add word results to accumulator words

(pair of 32-bit sums)

an add negated Add negated result to accumulator (64-bit sum)

anw
add negated to accumulator

(words)
Add negated word results to accumulator words

(pair of 32-bit sums)

Table 6-3. Mnemonic extensions for multiply-accumulate instructions (continued)

Extension Meaning Comments

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 309

evmhegsmfaa evmhegsmfaa
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate

evmhegsmfaa rD,rA,rB (O=0, F=1, S=1)

prod0:31 = rA32:47 * rB32:47
temp10:63 = EXTS(prod0:31 || 0)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered signed fractional halfword element in rA is multiplied by the corresponding
signed fractional halfword element in rB. The 32-bit intermediate product is sign-extended to 64 bits and
then shifted left by one bit and added to the contents of the 64-bit accumulator to form a 65-bit intermediate
sum. The lower 64 bits of the intermediate sum are placed back into the accumulator and also written into
rD.

NOTE
This is a modulo sum. There is no check for overflow and no saturation is
performed. An overflow from the 64-bit sum, if one occurs, is not recorded
into SPEFSCR.

Figure 6-9. evmhegsmfaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 0 1 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

310 Freescale Semiconductor

evmhegsmfan evmhegsmfan
Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhegsmfan rD,rA,rB (O=0, F=1, S=1)

prod0:31 = rA32:47 * rB32:47
temp10:63 = EXTS(prod0:31 || 0)
temp20:64 = ACC0:63 - temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered signed fractional halfword element in rA is multiplied by the corresponding
signed fractional halfword element in rB. The 32-bit intermediate product is sign-extended to 64 bits and
then shifted left by one bit and subtracted from the contents of the 64-bit accumulator to form a 65-bit
intermediate difference. The lower 64 bits of the intermediate difference is placed back into the
accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-10. evmhegsmfan

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 0 1 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 311

evmhegsmiaa evmhegsmiaa
Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate

evmhegsmiaa rD,rA,rB (O=0, F=0, S=1)

prod0:31 = rA32:47 *si rB32:47
temp10:63 = EXTS(prod0:31)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The intermediate product is sign-extended to 64 bits and added to the
contents of the 64-bit accumulator to form a 65-bit intermediate sum. The lower 64 bits of the intermediate
sum is placed back into the accumulator and also written into rD.

NOTE
This is a modulo sum. There is no check for overflow and no saturation is
performed. An overflow from the 64-bit sum, if one occurs, is not recorded
into SPEFSCR.

Figure 6-11. evmhegsmiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 0 0 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

312 Freescale Semiconductor

evmhegsmian evmhegsmian
Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhegsmian rD,rA,rB (O=0, F=0, S=1)

prod0:31 = rA32:47 *si rB32:47
temp10:63 = EXTS(prod0:31)
temp20:64 = ACC0:63 - temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The intermediate product is sign-extended to 64 bits and subtracted from
the contents of the 64-bit accumulator to form a 65-bit intermediate difference. The lower 64 bits of the
intermediate difference is placed back into the accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-12. evmhegsmian

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 0 0 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 313

evmhegumiaa evmhegumiaa
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhegumiaa rD,rA,rB (O=0, F=0, S=0)

prod0:31 = rA32:47 *ui rB32:47
temp10:63 = EXTZ(prod0:31)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The intermediate product is sign-extended to 64 bits and added
to the contents of the 64-bit accumulator to form a 65-bit intermediate sum. The lower 64 bits of the
intermediate sum is placed back into the accumulator and also written into rD.

Figure 6-13. evmhegumiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 0 0 0

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

314 Freescale Semiconductor

evmhegumian evmhegumian
Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and Accumulate Negative

evmhegumian rD,rA,rB (O=0, F=0, S=0)

prod0:31 = rA32:47 *ui rB32:47
temp10:63 = EXTZ(prod0:31)
temp20:64 = ACC0:63 - temp10:63
rD0:63 = ACC0:63 = temp21:64

The low even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The intermediate product is sign-extended to 64 bits and
subtracted from the contents of the 64-bit accumulator to form a 65-bit intermediate difference. The lower
64 bits of the intermediate difference is placed back into the accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-14. evmhegumian

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 0 0 0

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 315

evmhesmf evmhesmf
Vector Multiply Half Words, Even, Signed, Modulo, Fractional

evmhesmf rD,rA,rB (M=1, O=0, F=1, S=1, A=0)

prod0:31 = rA0:15 * rB0:15
prod32:63 = rA32:47 * rB32:47
temp10:32 = prod0:31 || 0
temp20:32 = prod32:63 || 0
rD0:31 = temp11:32
rD32:63 = temp21:32

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left by one bit to
remove the redundant sign bit, and are then placed into the two word elements of rD.

Figure 6-15. evmhesmf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 0 1 1

15 16 47 480 31 32 63

rA

rB

rD

XX

e200z759n3 Core Reference Manual, Rev. 2

316 Freescale Semiconductor

evmhesmfa evmhesmfa
Vector Multiply Half Words, Even, Signed, Modulo, Fractional, to Accumulator

evmhesmfa rD,rA,rB (M=1, O=0, F=1, S=1, A=1)

prod0:31 = rA0:15 * rB0:15
prod32:63 = rA32:47 * rB32:47
temp10:32 = prod0:31 || 0
temp20:32 = prod32:63 || 0
rD0:31 = temp11:32
rD32:63 = temp21:32
ACC0:63 = rD0:63

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left by one bit to
remove the redundant sign bit, and are then placed into the two word elements of rD. The result in rD is
also placed in the accumulator.

Other registers altered: ACC

Figure 6-16. evmhesmfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 0 1 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

XX

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 317

evmhesmfaaw evmhesmfaaw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate into Words

evmhesmfaaw rD,rA,rB (M=1, O=0, F=1, S=1)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
temp30:32 = ACC0:31 + temp11:32
temp40:32 = ACC32:63 + temp21:32
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB.

The intermediate 32-bit product is shifted left by one bit to remove the redundant sign bit, and is then added
to the contents of the accumulator word to form a 33-bit intermediate sum. The low 32 bits of the
intermediate sum are placed into the accumulator word and the corresponding rD word.

Other registers altered: ACC

Figure 6-17. evmhesmfaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 0 1 1

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

318 Freescale Semiconductor

evmhesmfanw evmhesmfanw
Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate Negative into
Words

evmhesmfanw rD,rA,rB (M=1, O=0, F=1, S=1)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
temp30:32 = ACC0:31 - temp11:32
temp40:32 = ACC32:63 - temp21:32
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB.

The intermediate 32-bit product is shifted left by one bit to remove the redundant sign bit, and is then
subtracted from the contents of the accumulator word to form a 33-bit intermediate difference. The low 32
bits of the intermediate difference are placed into the accumulator word and the corresponding rD word.

Other registers altered: ACC

Figure 6-18. evmhesmfanw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 0 1 1

Intermediate product

Accumulator

– –

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 319

evmhesmi evmhesmi
Vector Multiply Half Words, Even, Signed, Modulo, Integer

evmhesmi rD,rA,rB (M=1, O=0, F=0, S=1, A=0)

rD0:31 = rA0:15 *si rB0:15
rD32:63 = rA32:47 *si rB32:47

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The two 32-bit signed integer products are placed into the two word
elements of rD.

Figure 6-19. evmhesmi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 0 0 1

15 16 47 480 31 32 63

rA

rB

rD

XX

e200z759n3 Core Reference Manual, Rev. 2

320 Freescale Semiconductor

evmhesmia evmhesmia
Vector Multiply Half Words, Even, Signed, Modulo, Integer, to Accumulator

evmhesmia rD,rA,rB (M=1, O=0, F=0, S=1, A=1)

rD0:31 = rA0:15 *si rB0:15
rD32:63 = rA32:47 *si rB32:47
ACC0:63 = rD0:63

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The two 32-bit signed integer products are placed into the two word
elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-20. evmhesmia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 0 0 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

XX

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 321

evmhesmiaaw evmhesmiaaw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into Words

evmhesmiaaw rD,rA,rB (M=1, O=0, F=0, S=1)

temp10:31 = rA0:15 *si rB0:15
temp20:31 = rA32:47 *si rB32:47
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form a 33-bit
intermediate sum. The low 32 bits of the intermediate sum are placed into the accumulator word and the
corresponding rD word.

Other registers altered: ACC

Figure 6-21. evmhesmiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 0 0 1

Intermediate product

Accumulator

+ +

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

322 Freescale Semiconductor

evmhesmianw evmhesmianw
Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate Negative into Words

evmhesmianw rD,rA,rB (M=1, O=0, F=0, S=1)

temp10:31 = rA0:15 *si rB0:15
temp20:31 = rA32:47 *si rB32:47
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. The low 32 bits of the intermediate difference are placed into the accumulator
word and the corresponding rD word.

Other registers altered: ACC

Figure 6-22. evmhesmianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 0 0 1

Intermediate product

Accumulator

– –

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 323

evmhessf evmhessf
Vector Multiply Half Words, Even, Signed, Saturate, Fractional

evmhessf rD,rA,rB (M=0, O=0, F=1, S=1, A=0)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit, and are then placed into the two word elements of rD. If the inputs are
–1.0 and –1.0 the result is saturated to the most positive signed fraction (0x7FFFFFFF). If saturation
occurs, the appropriate overflow and summary overflow bits are recorded in SPEFSCR.

Other registers altered: SPEFSCR

Figure 6-23. evmhessf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 0 0 1 1

15 16 47 480 31 32 63

rA

rB

rD

XX

e200z759n3 Core Reference Manual, Rev. 2

324 Freescale Semiconductor

evmhessfa evmhessfa
Vector Multiply Half Words, Even, Signed, Saturate, Fractional, to Accumulator

evmhessfa rD,rA,rB (M=0, O=0, F=1, S=1, A=1)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
ACC0:63 = rD0:63
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit, and are then placed into the two word elements of rD. If the inputs are
–1.0 and –1.0 the result is saturated to the most positive signed fraction (0x7FFFFFFF). The result in rD
is also placed in the accumulator. If saturation occurs, the appropriate overflow and summary overflow bits
are recorded in SPEFSCR.

Other registers altered: SPEFSCR, ACC

Figure 6-24. evmhessfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 0 0 1 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

XX

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 325

evmhessfaaw evmhessfaaw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate into Words

evmhessfaaw rD,rA,rB (M=0, O=0, F=1, S=1)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
movh = temp10 temp11
movl = temp20 temp21
temp30:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
temp40:31 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
temp50:32 = {ACC0,ACC0:31} + {temp30,temp30:31}
temp60:32 = {ACC32,ACC32:63} + {temp40,temp40:31}
ovh = temp50 temp51
ovl = temp60 temp61
rD0:31 = SATURATE_ACC(ovh, temp50, 0x80000000, 0x7FFFFFFF, temp51:32)
rD32:63 = SATURATE_ACC(ovl, temp60, 0x80000000, 0x7FFFFFFF, temp61:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = movh | ovh
SPEFSCROV = movl | ovl
SPEFSCRSOVH = SPEFSCRSOVH | movh | ovh
SPEFSCRSOV = SPEFSCRSOV | movl | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit. If the inputs are –1.0 and –1.0 the intermediate result is saturated to the
most positive signed fraction (0x7FFFFFFF).

The intermediate 32-bit product is added to the contents of the accumulator word to form an intermediate
sum. If the intermediate sum has overflowed, the appropriate saturation value (0x7FFFFFFF if positive
overflow or 0x80000000 if negative overflow) is placed into the accumulator word and the
corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into the accumulator
word and the corresponding rD word.

If there is an overflow from either the multiply or the addition, the overflow information is recorded in the
SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

326 Freescale Semiconductor

Figure 6-25. evmhessfaaw

Intermediate product

Accumulator

+ +

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 327

evmhessfanw evmhessfanw
Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate Negative into
Words

evmhessfanw rD,rA,rB (M=0, O=0, F=1, S=1)

temp10:32 = (rA0:15 * rB0:15) || 0
temp20:32 = (rA32:47 * rB32:47) || 0
movh = temp10 temp11
movl = temp20 temp21
temp30:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
temp40:31 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
temp50:32 = {ACC0,ACC0:31} - {temp30,temp30:31}
temp60:32 = {ACC32,ACC32:63} - {temp40,temp40:31}
ovh = temp50 temp51
ovl = temp60 temp61
rD0:31 = SATURATE_ACC(ovh, temp50, 0x80000000, 0x7FFFFFFF, temp51:32)
rD32:63 = SATURATE_ACC(ovl, temp60, 0x80000000, 0x7FFFFFFF, temp61:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = movh | ovh
SPEFSCROV = movl | ovl
SPEFSCRSOVH = SPEFSCRSOVH | movh | ovh
SPEFSCRSOV = SPEFSCRSOV | movl | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit. If the inputs are –1.0 and –1.0 the intermediate result is saturated to the
most positive signed fraction (0x7FFFFFFF).

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form an
intermediate sum. If the intermediate difference has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate difference are placed
into the accumulator word and the corresponding rD word.

If there is an overflow from either the multiply or the addition, the overflow information is recorded in the
SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

328 Freescale Semiconductor

Figure 6-26. evmhessfanw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

XX

––

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 329

evmhessiaaw evmhessiaaw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate into Words

evmhessiaaw rD,rA,rB (M=0, O=0, F=0, S=1)

temp10:31 = rA0:15 *si rB0:15
temp20:31 = rA32:47 *si rB32:47
temp30:32 = {ACC0,ACC0:31} + {temp10,temp10:31}
temp40:32 = {ACC32,ACC32:63} + {temp20,temp20:31}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form an intermediate
sum. If the intermediate sum has overflowed, the appropriate saturation value (0x7FFFFFFF if positive
overflow or 0x80000000 if negative overflow) is placed into the accumulator word and the
corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into the accumulator
word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

330 Freescale Semiconductor

Figure 6-27. Even form of vector halfword multiply (evmhessiaaw)

Intermediate product

Accumulator

+ +

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 331

evmhessianw evmhessianw
Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate Negative into Words

evmhessianw rD,rA,rB (M=0, O=0, F=0, S=1)

temp10:31 = rA0:15 *si rB0:15
temp20:31 = rA32:47 *si rB32:47

temp30:32 = {ACC0,ACC0:31} - {temp10,temp10:31}
temp40:32 = {ACC32,ACC32:63} - {temp20,temp20:31}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator, the following operations are performed in the order shown:

Each even-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. If the intermediate difference has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate difference are placed
into the accumulator word and the corresponding rD word.

If there is an overflow from the subtraction, the overflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

332 Freescale Semiconductor

Figure 6-28. evmhessianw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

XX

––

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 333

evmheumi evmheumi
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer

evmheumi rD,rA,rB (M=1, O=0, F=0, S=0, A=0)

rD0:31 = rA0:15 *ui rB0:15
rD32:63 = rA32:47 *ui rB32:47

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The two 32-bit unsigned integer products are placed into the two
word elements of rD.

Figure 6-29. evmheumi — even multiply of two unsigned modulo integer elements

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 0 0 0

15 16 47 480 31 32 63

rA

rB

rD

XX

e200z759n3 Core Reference Manual, Rev. 2

334 Freescale Semiconductor

evmheumia evmheumia
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, to Accumulator

evmheumia rD,rA,rB (M=1, O=0, F=0, S=0, A=1)

rD0:31 = rA0:15 *ui rB0:15
rD32:63 = rA32:47 *ui rB32:47
ACC0:63 = rD0:63

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The two 32-bit unsigned integer products are placed into the two
word elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-30. evmheumia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 0 0 0

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

XX

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 335

evmheumiaaw evmheumiaaw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate into Words

evmheumiaaw rD,rA,rB (M=1, O=0, F=0, S=0)

temp10:31 = rA0:15 *ui rB0:15
temp20:31 = rA32:47 *ui rB32:47
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The intermediate 32-bit product is added to the contents of the
accumulator word to form a 33-bit intermediate sum. The low 32 bits of the intermediate sum are placed
into the accumulator word and the corresponding rD word.

Other registers altered: ACC

Figure 6-31. evmheumiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 0 0 0

Intermediate product

Accumulator

+ +

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

336 Freescale Semiconductor

evmheumianw evmheumianw
Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate Negative into
Words

evmheumianw rD,rA,rB (M=1, O=0, F=0, S=0)

temp10:31 = rA0:15 *ui rB0:15
temp20:31 = rA32:47 *ui rB32:47
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. The low 32 bits of the intermediate difference are placed into the accumulator
word and the corresponding rD word.

Other registers altered: ACC

Figure 6-32. evmheumianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 0 0 0

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

XX

––

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 337

evmheusiaaw evmheusiaaw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate into Words

evmheusiaaw rD,rA,rB (M=0, O=0, F=0, S=0)

temp10:31 = rA0:15 *ui rB0:15
temp20:31 = rA32:47 *ui rB32:47
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0xFFFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0xFFFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form a 33-bit
intermediate sum. If the intermediate sum has overflowed, the saturation value 0xFFFFFFFF is placed
into the accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate
sum are placed into the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

338 Freescale Semiconductor

Figure 6-33. evmheusiaaw

Intermediate product

Accumulator

+ +

Accumulator & rD

15 16 47 480 31 32 63

rB

X X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 339

evmheusianw evmheusianw
Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate Negative into
Words

evmheusianw rD,rA,rB (M=0, O=0, F=0, S=0)

temp10:31 = rA0:15 *ui rB0:15
temp20:31 = rA32:47 *ui rB32:47
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0x00000000, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0x00000000, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each even-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. If the intermediate difference has underflowed (is negative), the saturation value
0x00000000 is placed into the accumulator word and the corresponding rD word. Otherwise, the low
32 bits of the intermediate difference are placed into the accumulator word and the corresponding rD word.

If there is an underflow from the subtraction, the underflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

340 Freescale Semiconductor

Figure 6-34. evmheusianw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

XX

––

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 341

evmhogsmfaa evmhogsmfaa
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate

evmhogsmfaa rD,rA,rB (O=1, F=1, S=1)

prod0:31 = rA48:63 * rB48:63
temp10:63 = EXTS(prod0:31 || 0)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The 32-bit intermediate product is sign-extended to 64 bits and then
shifted left by one bit and added to the contents of the 64-bit accumulator to form a 65-bit intermediate
sum. The lower 64 bits of the intermediate sum is placed back into the accumulator and also written into
rD.

NOTE
This is a modulo sum. There is no check for overflow and no saturation is
performed. An overflow from the 64-bit sum, if one occurs, is not recorded
into SPEFSCR.

Figure 6-35. evmhogsmfaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 1 1 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

342 Freescale Semiconductor

evmhogsmfan evmhogsmfan
Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and Accumulate Negative

evmhogsmfan rD,rA,rB (O=1, F=1, S=1)

prod0:31 = rA48:63 * rB48:63
temp10:63 = EXTS(prod0:31 || 0)
temp20:64 = ACC0:63 - temp10:63
rD0:63 = ACC0:63 = temp21:64

The low odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The 32-bit intermediate product is sign-extended to 64 bits and then
shifted left by one bit and subtracted from the contents of the 64-bit accumulator to form a 65-bit
intermediate difference. The lower 64 bits of the intermediate difference is placed back into the
accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-36. evmhogsmfan

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 1 1 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 343

evmhogsmiaa evmhogsmiaa
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate

evmhogsmiaa rD,rA,rB (O=1, F=0, S=1)

prod0:31 = rA48:63 *si rB48:63
temp10:63 = EXTS(prod0:31)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The intermediate product is sign-extended to 64 bits and added to the
contents of the 64-bit accumulator to form a 65-bit intermediate sum. The lower 64 bits of the intermediate
sum is placed back into the accumulator and also written into rD.

NOTE
This is a modulo sum. There is no check for overflow and no saturation is
performed. An overflow from the 64-bit sum, if one occurs, is not recorded
into SPEFSCR.

Figure 6-37. evmhogsmiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 1 0 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & RD

rA

e200z759n3 Core Reference Manual, Rev. 2

344 Freescale Semiconductor

evmhogsmian evmhogsmian
Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate Negative

evmhogsmian rD,rA,rB (O=1, F=0, S=1)

prod0:31 = rA48:63 *si rB48:63
temp10:63 = EXTS(prod0:31)
temp20:64 = ACC0:63 - temp10:63
rD0:63 = ACC0:63 = temp21:64

The low odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The intermediate product is sign-extended to 64 bits and subtracted from
the contents of the 64-bit accumulator to form a 65-bit intermediate difference. The lower 64 bits of the
intermediate difference is placed back into the accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-38. evmhogsmian

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 1 0 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 345

evmhogumiaa evmhogumiaa
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate

evmhogumiaa rD,rA,rB (O=1, F=0, S=0)

prod0:31 = rA48:63 *ui rB48:63
temp10:63 = EXTZ(prod0:31)
temp20:64 = ACC0:63 + temp10:63
rD0:63 = ACC0:63 = temp21:64

The low odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The intermediate product is sign-extended to 64 bits and added
to the contents of the 64-bit accumulator to form a 65-bit intermediate sum. The lower 64 bits of the
intermediate sum is placed back into the accumulator and also written into rD.

NOTE
This is a modulo sum. There is no check for overflow and no saturation is
performed. An overflow from the 64-bit sum, if one occurs, is not recorded
into SPEFSCR.

Figure 6-39. evmhogumiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 1 0 1 1 0 0

47 480 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

346 Freescale Semiconductor

evmhogumian evmhogumian
Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and Accumulate Negative

evmhogumian rD,rA,rB (O=1, F=0, S=0)

prod0:31 = rA48:63 *ui rB48:63
temp10:63 = EXTZ(prod0:31)
temp20:64 = ACC0:63 - temp10:63

The low odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding
unsigned integer halfword element in rB. The intermediate product is sign-extended to 64 bits and
subtracted from the contents of the 64-bit accumulator to form a 65-bit intermediate difference. The lower
64 bits of the intermediate difference is placed back into the accumulator and also written into rD.

NOTE
This is a modulo difference. There is no check for overflow and no
saturation is performed. An overflow from the 64-bit difference, if one
occurs, is not recorded into SPEFSCR.

Figure 6-40. evmhogumian

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 1 0 1 1 0 0

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 347

evmhosmf evmhosmf
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional

evmhosmf rD,rA,rB (M=1, O=1, F=1, S=1, A=0)

temp10:32 = rA16:31 * rB16:31
temp20:32 = rA48:63 * rB48:63
rD0:31 = temp11:32
rD32:63 = temp21:32

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are placed into the two word
elements of rD.

Figure 6-41. evmhosmf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 1 1 1

15 16 47 480 31 32 63

rA

rB

rD

X X

e200z759n3 Core Reference Manual, Rev. 2

348 Freescale Semiconductor

evmhosmfa evmhosmfa
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, to Accumulator

evmhosmfa rD,rA,rB (M=1, O=1, F=1, S=1, A=1)

prod0:31 = rA16:31 * rB16:31
prod32:63 = rA48:63 * rB48:63
temp10:32 = prod0:31 || 0
temp20:32 = prod32:63 || 0
rD0:31 = temp11:32
rD32:63 = temp21:32
ACC0:63 = rD0:63

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left by one bit to
remove the redundant sign bit, and are then placed into the two word elements of rD. The result in rD is
also placed in the accumulator.

Other registers altered: ACC

Figure 6-42. evmhosmfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 1 1 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

X X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 349

evmhosmfaaw evmhosmfaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate into Words

evmhosmfaaw rD,rA,rB (M=1, O=1, F=1, S=1)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
temp30:32 = ACC0:31 + temp11:32
temp40:32 = ACC32:63 + temp21:32
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB.

The intermediate 32-bit product is shifted left by one bit to remove the redundant sign bit, and is then added
to the contents of the accumulator word to form a 33-bit intermediate sum. The low 32 bits of the
intermediate sum are placed into the accumulator word and the corresponding rD word.

Other registers altered: ACC

Figure 6-43. evmhosmfaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 1 1 1

15 16 47 480 31 32 63

Intermediate product

Accumulator

RB

X X

+ +

Accumulator & RD

RA

e200z759n3 Core Reference Manual, Rev. 2

350 Freescale Semiconductor

evmhosmfanw evmhosmfanw
Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate Negative into
Words

evmhosmfanw rD,rA,rB (M=1, O=1, F=1, S=1)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
temp30:32 = ACC0:31 - temp11:32
temp40:32 = ACC32:63 - temp21:32
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB.

The intermediate 32-bit product is shifted left by one bit to remove the redundant sign bit, and is then
subtracted from the contents of the accumulator word to form a 33-bit intermediate difference. The low 32
bits of the intermediate difference are placed into the accumulator word and the corresponding rD word.

Other registers altered: ACC

Figure 6-44. evmhosmfanw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 1 1 1

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 351

evmhosmi evmhosmi
Vector Multiply Half Words, Odd, Signed, Modulo, Integer

evmhosmi rD,rA,rB (M=1, O=1, F=0, S=1, A=0)

rD0:31 = rA16:31 *si rB16:31
rD32:63 = rA48:63 *si rB48:63

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The two 32-bit signed integer products are placed into the two word
elements of rD.

Figure 6-45. evmhosmi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 1 0 1

15 16 47 480 31 32 63

rA

rB

rD

X X

e200z759n3 Core Reference Manual, Rev. 2

352 Freescale Semiconductor

evmhosmia evmhosmia
Vector Multiply Half Words, Odd, Signed, Modulo, Integer, to Accumulator

evmhosmia rD,rA,rB (M=1, O=1, F=0, S=1, A=1)

rD0:31 = rA16:31 *si rB16:31
rD32:63 = rA48:63 *si rB48:63
ACC0:63 = rD0:63

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB. The two 32-bit signed integer products are placed into the two word
elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-46. evmhosmia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 1 0 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

X X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 353

evmhosmiaaw evmhosmiaaw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into Words

evmhosmiaaw rD,rA,rB (M=1, O=1, F=0, S=1)

temp10:31 = rA16:31 *si rB16:31
temp20:31 = rA48:63 *si rB48:63
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form a 33-bit
intermediate sum. The low 32 bits of the intermediate sum are placed into the accumulator word and the
corresponding rD word.

Other registers altered: ACC

Figure 6-47. evmhosmiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 1 0 1

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

354 Freescale Semiconductor

evmhosmianw evmhosmianw
Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate Negative into Words

evmhosmianw rD,rA,rB (M=1, O=1, F=0, S=1)

temp10:31 = rA16:31 *si rB16:31
temp20:31 = rA48:63 *si rB48:63
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. The low 32 bits of the intermediate difference are placed into the accumulator
word and the corresponding rD word.

Other registers altered: ACC

Figure 6-48. evmhosmianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 1 0 1

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 355

evmhossf evmhossf
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional

evmhossf rD,rA,rB (M=0, O=1, F=1, S=1, A=0)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit, and are then placed into the two word elements of rD. If the inputs are
–1.0 and –1.0 the result is saturated to the most positive signed fraction (0x7FFFFFFF). If saturation
occurs, the overflow and summary overflow bits are recorded.

Other registers altered: SPEFSCR

Figure 6-49. evmhossf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 0 1 1 1

15 16 47 480 31 32 63

rA

rB

rD

X X

e200z759n3 Core Reference Manual, Rev. 2

356 Freescale Semiconductor

evmhossfa evmhossfa
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, to Accumulator

evmhossfa rD,rA,rB (M=0, O=1, F=1, S=1, A=1)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
ACC0:63 = rD0:63
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit, and are then placed into the two word elements of rD. If the inputs are
–1.0 and –1.0 the result is saturated to the most positive signed fraction (0x7FFFFFFF). If saturation
occurs, the overflow and summary overflow bits are recorded. The result in rD is also placed in the
accumulator.

Other registers altered: SPEFSCR, ACC

Figure 6-50. evmhossfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 0 1 1 1

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

X X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 357

evmhossfaaw evmhossfaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate into Words

evmhossfaaw rD,rA,rB (M=0, O=1, F=1, S=1)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
movh = temp10 temp11
movl = temp20 temp21
temp30:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
temp40:31 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
temp50:32 = {ACC0,ACC0:31} + {temp30,temp30:31}
temp60:32 = {ACC32,ACC32:63} + {temp40,temp40:31}
ovh = temp50 temp51
ovl = temp60 temp61
rD0:31 = SATURATE_ACC(ovh, temp50, 0x80000000, 0x7FFFFFFF, temp51:32)
rD32:63 = SATURATE_ACC(ovl, temp60, 0x80000000, 0x7FFFFFFF, temp61:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = movh | ovh
SPEFSCROV = movl | ovl
SPEFSCRSOVH = SPEFSCRSOVH | movh | ovh
SPEFSCRSOV = SPEFSCRSOV | movl | ovl

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit. If the inputs are –1.0 and –1.0 the intermediate result is saturated to the
most positive signed fraction (0x7FFFFFFF). The intermediate 32-bit products are added to the
respective accumulator word to form an intermediate sum. If the intermediate sum has overflowed, the
appropriate saturation value (0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow)
is placed into the accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the
intermediate sum are placed into the accumulator word and the corresponding rD word.

If there is an overflow from either the multiply or the addition, the overflow information is recorded in the
SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

358 Freescale Semiconductor

Figure 6-51. evmhossfaaw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 359

evmhossfanw evmhossfanw
Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate Negative into
Words

evmhossfanw rD,rA,rB (M=0, O=1, F=1, S=1)

temp10:32 = (rA16:31 * rB16:31) || 0
temp20:32 = (rA48:63 * rB48:63) || 0
movh = temp10 temp11
movl = temp20 temp21
temp30:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
temp40:31 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
temp50:32 = {ACC0,ACC0:31} - {temp30,temp30:31}
temp60:32 = {ACC32,ACC32:63} - {temp40,temp40:31}
ovh = temp50 temp51
ovl = temp60 temp61
rD0:31 = SATURATE_ACC(ovh, temp50, 0x80000000, 0x7FFFFFFF, temp51:32)
rD32:63 = SATURATE_ACC(ovl, temp60, 0x80000000, 0x7FFFFFFF, temp61:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = movh | ovh
SPEFSCROV = movl | ovl
SPEFSCRSOVH = SPEFSCRSOVH | movh | ovh
SPEFSCRSOV = SPEFSCRSOV | movl | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed fractional halfword element in rA is multiplied by the corresponding signed
fractional halfword element in rB. The two 32-bit signed fractional products are shifted left one bit to
eliminate the redundant sign bit. If the inputs are –1.0 and –1.0 the intermediate result is saturated to the
most positive signed fraction (0x7FFFFFFF).

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form an
intermediate difference. If the intermediate difference has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate difference are placed
into the accumulator word and the corresponding rD word.

If there is an overflow from either the multiply or the subtraction, the overflow information is recorded in
the SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 1 1 1

e200z759n3 Core Reference Manual, Rev. 2

360 Freescale Semiconductor

Figure 6-52. evmhossfanw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 361

evmhossiaaw evmhossiaaw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate into Words

evmhossiaaw rD,rA,rB (M=0, O=1, F=0, S=1)

temp10:31 = rA16:31 *si rB16:31
temp20:31 = rA48:63 *si rB48:63
temp30:32 = {ACC0,ACC0:31} + {temp10,temp10:31}
temp40:32 = {ACC32,ACC32:63} + {temp20,temp20:31}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form an intermediate
sum. If the intermediate sum has overflowed, the appropriate saturation value (0x7FFFFFFF if positive
overflow or 0x80000000 if negative overflow) is placed into the accumulator word and the
corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into the accumulator
word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

362 Freescale Semiconductor

Figure 6-53. evmhossiaaw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 363

evmhossianw evmhossianw
Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate Negative into Words

evmhossianw rD,rA,rB (M=0, O=1, F=0, S=1)

temp10:31 = rA16:31 *si rB16:31
temp20:31 = rA48:63 *si rB48:63
temp30:32 = {ACC0,ACC0:31} - {temp10,temp10:31}
temp40:32 = {ACC32,ACC32:63} - {temp20,temp20:31}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered signed integer halfword element in rA is multiplied by the corresponding signed
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form an
intermediate difference. If the intermediate difference has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate difference are placed
into the accumulator word and the corresponding rD word.

If there is an overflow from the subtraction, the overflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

364 Freescale Semiconductor

Figure 6-54. evmhossianw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 365

evmhoumi evmhoumi
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer

evmhoumi rD,rA,rB (M=1, O=1, F=0, S=0, A=0)

rD0:31 = rA16:31 *ui rB16:31
rD32:63 = rA48:63 *ui rB48:63

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB. The two 32-bit unsigned integer products are placed into the two word
elements of rD.

Figure 6-55. evmhoumi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 0 0 1 1 0 0

15 16 47 480 31 32 63

rA

rB

rD

X X

e200z759n3 Core Reference Manual, Rev. 2

366 Freescale Semiconductor

evmhoumia evmhoumia
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, to Accumulator

evmhoumia rD,rA,rB (M=1, O=1, F=0, S=0, A=1)

rD0:31 = rA16:31 *ui rB16:31
rD32:63 = rA48:63 *ui rB48:63
ACC0:63 = rD0:63

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB. The two 32-bit unsigned integer products are placed into the two word
elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-56. evmhoumia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 0 1 0 1 1 0 0

15 16 47 480 31 32 63

rA

rB

Accumulator & rD

X X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 367

evmhoumiaaw evmhoumiaaw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate into Words

evmhoumiaaw rD,rA,rB (M=1, O=1, F=0, S=0)

temp10:31 = rA16:31 *ui rB16:31
temp20:31 = rA48:63 *ui rB48:63
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form a 33-bit
intermediate sum. The low 32 bits of the intermediate sum are placed into the accumulator word and the
corresponding rD word.

Other registers altered: ACC

Figure 6-57. evmhoumiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 1 1 0 0

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

368 Freescale Semiconductor

evmhoumianw evmhoumianw
Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate Negative into
Words

evmhoumianw rD,rA,rB (M=1, O=1, F=0, S=0)

temp10:31 = rA16:31 *ui rB16:31
temp20:31 = rA48:63 *ui rB48:63
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ACC0:31 = rD0:31 = temp31:32
ACC32:63 = rD32:63 = temp41:32

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. The low 32 bits of the intermediate difference are placed into the accumulator
word and the corresponding rD word.

Other registers altered: ACC

Figure 6-58. evmhoumianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 1 1 0 0

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 369

evmhousiaaw evmhousiaaw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate into Words

evmhousiaaw rD,rA,rB (M=0, O=1, F=0, S=0)

temp10:31 = rA16:31 *ui rB16:31
temp20:31 = rA48:63 *ui rB48:63
temp30:32 = ACC0:31 + temp10:31
temp40:32 = ACC32:63 + temp20:31
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0xFFFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0xFFFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB.

The intermediate 32-bit product is added to the contents of the accumulator word to form a 33-bit
intermediate sum. If the intermediate sum has overflowed, 0xFFFFFFFF is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into
the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 0 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

370 Freescale Semiconductor

Figure 6-59. evmhousiaaw

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

+ +

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 371

evmhousianw evmhousianw
Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate Negative into
Words

evmhousianw rD,rA,rB (M=0, O=1, F=0, S=0)

temp10:31 = rA16:31 *ui rB16:31
temp20:31 = rA48:63 *ui rB48:63
temp30:32 = ACC0:31 - temp10:31
temp40:32 = ACC32:63 - temp20:31
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0x00000000, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0x00000000, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each odd-numbered unsigned integer halfword element in rA is multiplied by the corresponding unsigned
integer halfword element in rB.

The intermediate 32-bit product is subtracted from the contents of the accumulator word to form a 33-bit
intermediate difference. If the intermediate difference has underflowed (is negative), 0x00000000 is
placed into the accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the
intermediate difference are placed into the accumulator word and the corresponding rD word.

If there is an underflow from either subtraction, the underflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 0 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

372 Freescale Semiconductor

Figure 6-60. evmhousianw

6.4.2 Multiply words instructions

The following instructions perform 32x32 multiplies, returning either the higher or lower portion of the
product, with and without accumulates, using signed or unsigned integer or fractional operands, with
optional saturation.

15 16 47 480 31 32 63

Intermediate product

Accumulator

rB

X X

– –

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 373

evmwhsmf evmwhsmf
Vector Multiply Word High Signed, Modulo, Fractional

evmwhsmf rD,rA,rB (M=1, F=1, S=1,A=0)

temp10:63 = rA0:31 * rB0:31
temp20:63 = rA32:63 * rB32:63
rD0:31 = temp11:32
rD32:63 = temp21:32

Each signed fractional word element in rA is multiplied by the corresponding signed fractional word
element in rB. Bits1:32 of the two 64-bit signed fractional products (eliminating the redundant sign bit) are
placed into the two word elements of rD.

Figure 6-61. evmwhsmf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 0 1 1 1 1

0 31 32 63

Intermediate product

rB

X

rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

374 Freescale Semiconductor

evmwhsmfa evmwhsmfa
Vector Multiply Word High Signed, Modulo, Fractional, to Accumulator

evmwhsmfa rD,rA,rB (M=1, F=1, S=1,A=1)

temp10:64 = rA0:31 * rB0:31
temp20:64 = rA32:63 * rB32:63
rD0:31 = temp11:32
rD32:63 = temp21:32
ACC0:63 = rD0:63

Each signed fractional word element in rA is multiplied by the corresponding signed fractional word
element in rB. Bits1:32 of the two 64-bit signed fractional products (eliminating the redundant sign bit) are
placed into the two word elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-62. evmwhsmfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 0 1 1 1 1

0 31 32 63

Intermediate product

rB

X

Accumulator & rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 375

evmwhsmi evmwhsmi
Vector Multiply Word High Signed, Modulo, Integer

evmwhsmi rD,rA,rB (M=1, F=0, S=1,A=0)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
rD0:31 = temp10:31
rD32:63 = temp20:31

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB. The upper 32 bits of the two 64-bit signed integer products are placed into the two word elements
of rD.

Figure 6-63. evmwhsmi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 0 1 1 0 1

0 31 32 63

Intermediate product

rB

X

rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

376 Freescale Semiconductor

evmwhsmia evmwhsmia
Vector Multiply Word High Signed, Modulo, Integer, to Accumulator

evmwhsmia rD,rA,rB (M=1, F=0, S=1,A=1)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
rD0:31 = temp10:31
rD32:63 = temp20:31
ACC0:63 = rD0:63

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB. The upper 32 bits of the two 64-bit signed integer products are placed into the two word elements
of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-64. evmwhsmia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 0 1 1 0 1

0 31 32 63

Intermediate product

rB

X

Accumulator & rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 377

evmwhssf evmwhssf
Vector Multiply Word High Signed, Saturate, Fractional

evmwhssf rD,rA,rB (M=0, F=1, S=1,A=0)

temp10:63 = rA0:31 * rB0:31
temp20:63 = rA32:63 * rB32:63
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each signed fractional word element in rA is multiplied by the corresponding signed fractional word
element in rB. Bits1:32 of the two 64-bit signed fractional products (eliminating the redundant sign bit) are
placed into the two word elements of rD. If the inputs are –1.0 and –1.0 the result is saturated to the most
positive signed fraction (0x7FFFFFFF). If saturation occurs the overflow and summary overflow bits are
recorded.

Other registers altered: SPEFSCR

Figure 6-65. evmwhssf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 0 0 1 1 1

0 31 32 63

Intermediate product

rB

X

rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

378 Freescale Semiconductor

evmwhssfa evmwhssfa
Vector Multiply Word High Signed, Saturate, Fractional, to Accumulator

evmwhssfa rD,rA,rB (M=0, F=1, S=1,A=1)

temp10:63 = rA0:31 * rB0:31
temp20:63 = rA32:63 * rB32:63
movh = temp10 temp11
movl = temp20 temp21
rD0:31 = SATURATE(movh, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE(movl, 0x7FFFFFFF, temp21:32)
ACC0:63 = rD0:63
SPEFSCROVH = movh
SPEFSCROV = movl
SPEFSCRSOVH = SPEFSCRSOVH | movh
SPEFSCRSOV = SPEFSCRSOV | movl

Each signed fractional word element in rA is multiplied by the corresponding signed fractional word
element in rB. Bits1:32 of the two 64-bit signed fractional products (eliminating the redundant sign bit) are
placed into the two word elements of rD. If the inputs are –1.0 and –1.0 the result is saturated to the most
positive signed fraction (0x7FFFFFFF). If saturation occurs the overflow and summary overflow bits are
recorded. The result in rD is also placed in the accumulator.

Other registers altered: SPEFSCR, ACC

Figure 6-66. evmwhssfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 0 0 1 1 1

0 31 32 63

Intermediate product

rB

X

Accumulator & rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 379

evmwhumi evmwhumi
Vector Multiply Word High Unsigned, Modulo, Integer

evmwhumi rD,rA,rB (M=1, F=0, S=0,A=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = temp10:31
rD32:63 = temp20:31

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB. The upper 32 bits of the two 64-bit unsigned integer products are placed into the two word
elements of rD.

Figure 6-67. evmwhumi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 0 1 1 0 0

0 31 32 63

Intermediate product

rB

X

rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

380 Freescale Semiconductor

evmwhumia evmwhumia
Vector Multiply Word High Unsigned, Modulo, Integer, to Accumulator

evmwhumia rD,rA,rB (M=1, F=0, S=0,A=1)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = temp10:31
rD32:63 = temp20:31
ACC0:63 = rD0:63

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB. The upper 32 bits of the two 64-bit unsigned integer products are placed into the two word
elements of rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-68. evmwhumia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 0 1 1 0 0

0 31 32 63

Intermediate product

rB

X

Accumulator & rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 381

evmwlsmiaaw evmwlsmiaaw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words

evmwlsmiaaw rD,rA,rB (M=1, F=0, S=1)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
rD0:31 = ACC0:31 + temp132:63
rD32:63 = ACC32:63 + temp232:63
ACC0:63 = rD0:63

For each word element in the accumulator the following operations are performed in the order shown:

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB.

The low 32 bits of the 64-bit intermediate product are added to the contents of the accumulator word and
placed into the corresponding rD word. The result in rD is also placed in the accumulator.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: ACC

Figure 6-69. evmwlsmiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 0 1 0 0 1

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

382 Freescale Semiconductor

evmwlsmianw evmwlsmianw
Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in Words

evmwlsmianw rD,rA,rB (M=1, F=0, S=1)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
rD0:31 = ACC0:31 - temp132:63
rD32:63 = ACC32:63 - temp232:63
ACC0:63 = rD0:63

For each word element in the accumulator the following operations are performed in the order shown:

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB. The low 32 bits of the 64-bit intermediate product are subtracted from the contents of the
accumulator word and placed into the corresponding rD word. The result in rD is also placed in the
accumulator.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: ACC

Figure 6-70. evmwlsmianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 0 1 0 0 1

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 383

evmwlssiaaw evmwlssiaaw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words

evmwlssiaaw rD,rA,rB (M=0, F=0, S=1)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
temp30:32 = {ACC0,ACC0:31} + {temp132,temp132:63}
temp40:32 = {ACC32,ACC32:63} + {temp232,temp232:63}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB.

The low 32 bits of the 64-bit intermediate product are added to the contents of the accumulator word to
form an intermediate sum. If the intermediate sum has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into
the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

384 Freescale Semiconductor

Figure 6-71. evmwlssiaaw

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 385

evmwlssianw evmwlssianw
Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative in Words

evmwlssianw rD,rA,rB (M=0, F=0, S=1)

temp10:63 = rA0:31 *si rB0:31
temp20:63 = rA32:63 *si rB32:63
temp30:32 = {ACC0,ACC0:31} - {temp132,temp132:63}
temp40:32 = {ACC32,ACC32:63} - {temp232,temp232:63}
ovh = temp30 temp31
ovl = temp40 temp41
rD0:31 = SATURATE_ACC(ovh, temp30, 0x80000000, 0x7FFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, temp40, 0x80000000, 0x7FFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each signed integer word element in rA is multiplied by the corresponding signed integer word element
in rB.

The low 32 bits of the 64-bit intermediate product are subtracted from the contents of the accumulator
word to form an intermediate difference. If the intermediate difference has overflowed, the appropriate
saturation value (0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into
the accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate
difference are placed into the accumulator word and the corresponding rD word.

If there is an overflow from the difference, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 0 0 0 0 1

e200z759n3 Core Reference Manual, Rev. 2

386 Freescale Semiconductor

Figure 6-72. evmwlssianw

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 387

evmwlumi evmwlumi
Vector Multiply Word Low Unsigned, Modulo, Integer

evmwlumi rD,rA,rB (M=1, F=0, S=0,A=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = temp132:63
rD32:63 = temp232:63

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB. The lower 32 bits of the two 64-bit unsigned integer products are placed into the two word
elements of rD.

NOTE
The low-order 32 bits of the product are independent of whether the word
elements in rA and rB are treated as signed or unsigned 32-bit integers.

Figure 6-73. evmwlumi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 0 1 0 0 0

0 31 32 63

Intermediate product

rB

X

rD

rA

X

e200z759n3 Core Reference Manual, Rev. 2

388 Freescale Semiconductor

evmwlumia evmwlumia
Vector Multiply Word Low Unsigned, Modulo, Integer, to Accumulator

evmwlumia rD,rA,rB (M=1, F=0, S=0,A=1)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = temp132:63
rD32:63 = temp232:63
ACC0:63 = rD0:63

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB. The lower 32 bits of the two 64-bit unsigned integer products are placed into the two word
elements of rD. The result in rD is also placed in the accumulator.

NOTE
The low-order 32 bits of the product are independent of whether the word
elements in rA and rB are treated as signed or unsigned 32-bit integers.

Other registers altered: ACC

Figure 6-74. evmwlumia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 0 1 0 0 0

0 31 32 63

Intermediate product

RB

X

Accumulator & rD

RA

X

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 389

evmwlumiaaw evmwlumiaaw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words

evmwlumiaaw rD,rA,rB (M=1, F=0, S=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = ACC0:31 + temp132:63
rD32:63 = ACC32:63 + temp232:63
ACC0:63 = rD0:63

For each word element in the accumulator the following operations are performed in the order shown:

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB.

The low 32 bits of the 64-bit intermediate product are added to the contents of the accumulator word and
placed into the corresponding rD word. The result in rD is also placed in the accumulator.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: ACC

Figure 6-75. evmwlumiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 0 1 0 0 0

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

390 Freescale Semiconductor

evmwlumianw evmwlumianw
Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative in Words

evmwlumianw rD,rA,rB (M=1, F=0, S=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
rD0:31 = ACC0:31 - temp132:63
rD32:63 = ACC32:63 - temp232:63
ACC0:63 = rD0:63

For each word element in the accumulator the following operations are performed in the order shown:

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB.

The low 32 bits of the 64-bit intermediate product are subtracted from the contents of the accumulator
word and placed into the corresponding rD word. The result in rD is also placed in the accumulator.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: ACC

Figure 6-76. evmwlumianw

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 0 1 0 0 0

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––

Accumulator &rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 391

evmwlusiaaw evmwlusiaaw
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in Words

evmwlusiaaw rD,rA,rB (M=0, F=0, S=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
temp30:32 = ACC0:31 + temp132:63
temp40:32 = ACC32:63 + temp232:63
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0xFFFFFFFF, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0xFFFFFFFF, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB.

The low 32 bits of the 64-bit intermediate product are added to the contents of the accumulator word to
form a 33-bit intermediate sum. If the intermediate sum has overflowed, 0xFFFFFFFF is placed into the
accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are
placed into the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

392 Freescale Semiconductor

Figure 6-77. evmwlusiaaw

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 393

evmwlusianw evmwlusianw
Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate Negative in Words

evmwlusianw rD,rA,rB (M=0, F=0, S=0)

temp10:63 = rA0:31 *ui rB0:31
temp20:63 = rA32:63 *ui rB32:63
temp30:32 = ACC0:31 - temp132:63
temp40:32 = ACC32:63 - temp232:63
ovh = temp30
ovl = temp40
rD0:31 = SATURATE_ACC(ovh, 0x00000000, temp31:32)
rD32:63 = SATURATE_ACC(ovl, 0x00000000, temp41:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

For each word element in the accumulator the following operations are performed in the order shown:

Each unsigned integer word element in rA is multiplied by the corresponding unsigned integer word
element in rB.

The low 32 bits of the 64-bit intermediate product are subtracted from the contents of the accumulator
word to form a 33-bit intermediate difference. If the intermediate difference has underflowed,
0x00000000 is placed into the accumulator word and the corresponding rD word. Otherwise, the low
32 bits of the intermediate difference are placed into the accumulator word and the corresponding rD word.

If there is an underflow from the difference, the underflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

NOTE
This instruction produces a valid result only if the intermediate product can
be represented in the lower 32 bits.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 0 0 0 0 0

e200z759n3 Core Reference Manual, Rev. 2

394 Freescale Semiconductor

Figure 6-78. evmwlusianw

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

––

Accumulator &rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 395

evmwsmf evmwsmf
Vector Multiply Word Signed, Modulo, Fractional

evmwsmf rD,rA,rB (M=1, F=1, S=1, A=0)

temp10:64 = (rA32:63 * rB32:63) || 0
rD0:63 = temp11:64

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. Bits 1:63 of the 64-bit signed fractional product are padded on the right with a ‘0’,
and this result is placed in rD.

Figure 6-79. evmwsmf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 1 1 0 1 1

0 31 32 63

rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

396 Freescale Semiconductor

evmwsmfa evmwsmfa
Vector Multiply Word Signed, Modulo, Fractional, to Accumulator

evmwsmfa rD,rA,rB (M=1, F=1, S=1, A=1)

temp10:64 = (rA32:63 * rB32:63) || 0
ACC0:63 = rD0:63 = temp11:64

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. Bits 1:63 of the 64-bit signed fractional product are padded on the right with a ‘0’,
and this result is placed in rD. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-80. evmwsmfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 1 1 0 1 1

0 31 32 63

Accumulator & rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 397

evmwsmfaa evmwsmfaa
Vector Multiply Word Signed, Modulo, Fractional and Accumulate

evmwsmfaa rD,rA,rB (M=1, F=1, S=1)

temp10:64 = (rA32:63 * rB32:63) || 0
temp20:64 = ACC0:63 + temp11:64
ACC0:63 = rD0:63 = temp21:64

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. Bits 1:63 of the 64-bit signed fractional product are padded on the right with a ‘0’,
and this result is added to the contents of the 64-bit accumulator to form a 65-bit intermediate sum. The
lower 64 bits of the intermediate sum is placed back into the accumulator and also written into rD.

Other registers altered: ACC

Figure 6-81. evmwsmfaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 1 1 0 1 1

0 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

398 Freescale Semiconductor

evmwsmfan evmwsmfan
Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative

evmwsmfan rD,rA,rB (M=1, F=1, S=1)

temp10:64 = (rA32:63 * rB32:63) || 0
temp20:64 = ACC0:63 - temp11:64
ACC0:63 = rD0:63 = temp21:64

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. Bits 1:63 of the 64-bit signed fractional product are padded on the right with a ‘0’,
and this result is subtracted from the contents of the 64-bit accumulator to form a 65-bit intermediate
difference. The lower 64 bits of the intermediate difference is placed back into the accumulator and also
written into rD.

Other registers altered: ACC

Figure 6-82. evmwsmfan

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 1 1 0 1 1

0 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 399

evmwsmi evmwsmi
Vector Multiply Word Signed, Modulo, Integer

evmwsmi rD,rA,rB (M=1, F=0, S=1, A=0)

temp0:63 = rA32:63 *si rB32:63
ACC0:63 = rD0:63 = temp0:63

The low signed integer word element in rA is multiplied by the corresponding low signed integer word
element in rB. The 64-bit signed integer product is placed in rD.

Figure 6-83. evmwsmi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 1 1 0 0 1

0 31 32 63

RD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

400 Freescale Semiconductor

evmwsmia evmwsmia
Vector Multiply Word Signed, Modulo, Integer, to Accumulator

evmwsmia rD,rA,rB (M=1, F=0, S=1, A=1)

temp0:63 = rA32:63 *si rB32:63
ACC0:63 = rD0:63 = temp0:63

The low signed integer word element in rA is multiplied by the corresponding low signed integer word
element in rB. The 64-bit signed integer product is placed in rD. The result in rD is also placed in the
accumulator.

Other registers altered: ACC

Figure 6-84. evmwsmia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 1 1 0 0 1

0 31 32 63

Accumulator & rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 401

evmwsmiaa evmwsmiaa
Vector Multiply Word Signed, Modulo, Integer and Accumulate

evmwsmiaa rD,rA,rB (M=1, F=0, S=1)

temp10:63 = rA32:63 *si rB32:63
temp20:64 = ACC0:63 + temp10:63
ACC0:63 = rD0:63 = temp21:64

The low signed integer word element in rA is multiplied by the corresponding low signed integer word
element in rB. The intermediate product is added to the contents of the 64-bit accumulator to form a 65-bit
intermediate sum. The lower 64 bits of the intermediate sum is placed back into the accumulator and also
written into rD.

Other registers altered: ACC

Figure 6-85. evmwsmiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 1 1 0 0 1

0 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

402 Freescale Semiconductor

evmwsmian evmwsmian
Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative

evmwsmian rD,rA,rB (M=1, F=0, S=1)

temp10:63 = rA32:63 *si rB32:63
temp20:64 = ACC0:63 - temp10:63
ACC0:63 = rD0:63 = temp21:64

The low signed integer word element in rA is multiplied by the corresponding low signed integer word
element in rB. The intermediate product is subtracted from the contents of the 64-bit accumulator to form
a 65-bit intermediate difference. The lower 64 bits of the intermediate difference is placed back into the
accumulator and also written into rD.

Other registers altered: ACC

Figure 6-86. evmwsmian

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 1 1 0 0 1

0 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 403

evmwssf evmwssf
Vector Multiply Word Signed, Saturate, Fractional

evmwssf rD,rA,rB (M=0, F=1, S=1, A=0)

temp0:64 = (rA32:63 * rB32:63) || 0
movl = temp0 temp1
rD0:63 = SATURATE(movh, 0x7FFFFFFFFFFFFFFF, temp1:64)
SPEFSCROVH = 0
SPEFSCROV = movl
SPEFSCRSOV = SPEFSCRSOV | movl

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. The 64-bit signed fractional product is placed in rD. If the inputs are –1.0 and –1.0
the result is saturated to the most positive signed fraction (0x7FFFFFFFFFFFFFFF). If saturation occurs
the overflow and summary overflow bits are recorded.

Other registers altered: SPEFSCR

Figure 6-87. evmwssf

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 1 0 0 1 1

0 31 32 63

rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

404 Freescale Semiconductor

evmwssfa evmwssfa
Vector Multiply Word Signed, Saturate, Fractional, to Accumulator

evmwssfa rD,rA,rB (M=0, F=1, S=1, A=1)

temp0:64 = (rA32:63 * rB32:63) || 0
movl = temp0 temp1
ACC0:63 = rD0:63 = SATURATE(movh, 0x7FFFFFFFFFFFFFFF, temp1:64)
SPEFSCROVH = 0
SPEFSCROV = movl
SPEFSCRSOV = SPEFSCRSOV | movl

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. The 64-bit signed fractional product is placed in rD. If the inputs are –1.0 and –1.0
the result is saturated to the most positive signed fraction (0x7FFFFFFFFFFFFFFF). If saturation occurs
the overflow and summary overflow bits are recorded. The result in rD is also placed in the accumulator.

Other registers altered: SPEFSCR, ACC

Figure 6-88. evmwssfa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 1 0 0 1 1

0 31 32 63

Accumulator & rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 405

evmwssfaa evmwssfaa
Vector Multiply Word Signed, Saturate, Fractional and Accumulate

evmwssfaa rD,rA,rB (M=0, F=1, S=1)

temp10:64 = (rA32:63 * rB32:63) || 0
mov = temp10 temp11
temp20:63 = SATURATE(mov, 0x7FFFFFFFFFFFFFFF, temp11:64)
temp30:64 = {ACC0,ACC0:63} + {temp20,temp20:63}
ov = temp30 temp31
rD0:63 = SATURATE_ACC(ov, temp30, 0x8000000000000000, 0x7FFFFFFFFFFFFFFF, temp31:64)
ACC0:63 = rD0:63

SPEFSCROV = mov | ov
SPEFSCROVH = 0
SPEFSCRSOV = SPEFSCRSOV | mov | ov

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. If the inputs are –1.0 and –1.0 the product is saturated to the most positive signed
fraction (0x7FFFFFFFFFFFFFFF). The 64-bit intermediate product is shifted left by one bit (to
eliminate the redundant sign bit) and padded on the right with a ‘0’, and this value is then added to the
contents of the 64-bit accumulator to form an intermediate sum. If the intermediate sum has overflowed,
the appropriate saturation value (0x7FFFFFFFFFFFFFFF if positive overflow or
0x8000000000000000 if negative overflow) is placed into the accumulator word and the
corresponding rD word. Otherwise, the low 64 bits of the intermediate sum are placed into the accumulator
word and the corresponding rD word. The overflow and summary overflow bits are recorded to indicate
occurrence of saturation on either the multiply or the addition.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 1 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

406 Freescale Semiconductor

Figure 6-89. evmwssfaa

0 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 407

evmwssfan evmwssfan
Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative

evmwssfan rD,rA,rB (M=0, F=1, S=1)

temp10:64 = (rA32:63 * rB32:63) || 0
mov = temp10 temp11
temp20:63 = SATURATE(mov, 0x7FFFFFFFFFFFFFFF, temp11:64)
temp30:64 = {ACC0,ACC0:63} - {temp20,temp20:63}
ov = temp30 temp31
rD0:63 = SATURATE_ACC(ov, temp30, 0x8000000000000000, 0x7FFFFFFFFFFFFFFF, temp31:64)
ACC0:63 = rD0:63

SPEFSCROV = mov | ov
SPEFSCROVH = 0
SPEFSCRSOV = SPEFSCRSOV | mov | ov

The low signed fractional word element in rA is multiplied by the corresponding low signed fractional
word element in rB. If the inputs are –1.0 and –1.0 the product is saturated to the most positive signed
fraction (0x7FFFFFFFFFFFFFFF). The 64-bit intermediate product is shifted left by one bit (to
eliminate the redundant sign bit) and padded on the right with a ‘0’, and this value is then subtracted from
the contents of the 64-bit accumulator to form an intermediate sum. If the intermediate difference has
overflowed, the appropriate saturation value (0x7FFFFFFFFFFFFFFF if positive overflow or
0x8000000000000000 if negative overflow) is placed into the accumulator word and the
corresponding rD word. Otherwise, the low 64 bits of the intermediate difference are placed into the
accumulator word and the corresponding rD word. The overflow and summary overflow bits are recorded
to indicate occurrence of saturation either the multiply or the subtraction.

Other registers altered: SPEFSCR, ACC

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 1 0 0 1 1

e200z759n3 Core Reference Manual, Rev. 2

408 Freescale Semiconductor

Figure 6-90. evmwssfan

0 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 409

evmwumi evmwumi
Vector Multiply Word Unsigned, Modulo, Integer

evmwumi rD,rA,rB (M=1, F=0, S=0, A=0)

temp0:63 = rA32:63 *ui rB32:63
ACC0:63 = rD0:63 = temp0:63

The low unsigned integer word element in rA is multiplied by the corresponding low unsigned integer
word element in rB. The 64-bit unsigned integer product is placed in rD.

Figure 6-91. evmwumi

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 0 1 1 0 0 0

0 31 32 63

RD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

410 Freescale Semiconductor

evmwumia evmwumia
Vector Multiply Word Unsigned, Modulo, Integer, to Accumulator

evmwumia rD,rA,rB (M=1, F=0, S=0, A=1)

temp0:63 = rA32:63 *ui rB32:63
ACC0:63 = rD0:63 = temp0:63

The low unsigned integer word element in rA is multiplied by the corresponding low unsigned integer
word element in rB. The 64-bit unsigned integer product is placed in rD. The result in rD is also placed
in the accumulator.

Other registers altered: ACC

Figure 6-92. evmwumia

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 0 0 1 1 1 1 0 0 0

0 31 32 63

Accumulator & rD

rB

X

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 411

evmwumiaa evmwumiaa
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate

evmwumiaa rD,rA,rB (M=1, F=0, S=0)

temp10:63 = rA32:63 *ui rB32:63
temp20:64 = ACC0:63 + temp10:63
ACC0:63 = rD0:63 = temp21:64

The low unsigned integer word element in rA is multiplied by the corresponding low unsigned integer
word element in rB. The intermediate product is added to the contents of the 64-bit accumulator to form
a 65-bit intermediate sum. The lower 64 bits of the intermediate sum is placed back into the accumulator
and also written into rD.

Other registers altered: ACC

Figure 6-93. evmwumiaa

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 0 1 0 1 1 0 0 0

0 31 32 63

Intermediate product

Accumulator

rB

X

+

Accumulator & rD

rA

e200z759n3 Core Reference Manual, Rev. 2

412 Freescale Semiconductor

evmwumian evmwumian
Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative

evmwumian rD,rA,rB (M=1, F=0, S=0)

temp10:63 = rA32:63 *ui rB32:63
temp20:64 = ACC0:63 - temp10:63
ACC0:63 = rD0:63 = temp21:64

The low unsigned integer word element in rA is multiplied by the corresponding low unsigned integer
word element in rB. The intermediate product is subtracted from the contents of the 64-bit accumulator to
form a 65-bit intermediate difference. The lower 64 bits of the intermediate difference is placed back into
the accumulator and also written into rD.

Other registers altered: ACC

Figure 6-94. evmwumian

6.4.3 Add/subtract word to accumulator instructions

The following instructions perform addition and subtraction, with and without accumulates, using signed
or unsigned integer or fractional operands, with optional saturation.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 1 0 1 1 1 0 1 1 0 0 0

0 31 32 63

Intermediate product

Accumulator

rB

X

–

Accumulator & RD

rA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 413

evaddsmiaaw evaddsmiaaw
Vector Add Signed, Modulo, Integer to Accumulator Word

evaddsmiaaw rD,rA (M=1, S=1)

rD0:31 = ACC0:31 + rA0:31
rD32:63 = ACC32:63 + rA32:63
ACC0:63 = rD0:63

Each word element in rA is added to the corresponding word element in the accumulator and placed into
the corresponding rD word. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-95. evaddsmiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1

0 31 32 63

rA

Accumulator

+ +

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

414 Freescale Semiconductor

evaddssiaaw evaddssiaaw
Vector Add Signed, Saturate, Integer to Accumulator Word

evaddssiaaw rD,rA (M=0, S=1)

temp10:32 = EXTS(ACC0:31) + EXTS(rA0:31)
temp20:32 = EXTS(ACC32:63) + EXTS(rA32:63)
ovh = temp10 temp11
ovl = temp20 temp21
rD0:31 = SATURATE_ACC(ovh, temp10, 0x80000000, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE_ACC(ovl, temp20, 0x80000000, 0x7FFFFFFF, temp21:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

Each word element in rA is added to the corresponding word element in the accumulator to form 33-bit
intermediate sum. If the intermediate sum has overflowed, the appropriate saturation value
(0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into
the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

Figure 6-96. evaddssiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1

0 31 32 63

rA

Accumulator

+ +

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 415

evaddumiaaw evaddumiaaw
Vector Add Unsigned, Modulo, Integer to Accumulator Word

evaddumiaaw rD,rA (M=1, S=0)

rD0:31 = ACC0:31 + rA0:31
rD32:63 = ACC32:63 + rA32:63
ACC0:63 = rD0:63

Each word element in rA is added to the corresponding word element in the accumulator and placed into
the corresponding rD word. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-97. evaddumiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

0 31 32 63

rA

Accumulator

+ +

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

416 Freescale Semiconductor

evaddusiaaw evaddusiaaw
Vector Add Unsigned, Saturate, Integer to Accumulator Word

evaddusiaaw rD,rA (M=0, S=0)

temp10:32 = EXTZ(ACC0:31) + EXTZ(rA0:31)
temp20:32 = EXTZ(ACC32:63) + EXTZ(rA32:63)
ovh = temp10
ovl = temp20
rD0:31 = SATURATE(ovh, 0xFFFFFFFF, temp11:32)
rD32:63 = SATURATE(ovl, 0xFFFFFFFF, temp21:32)

ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

Each word element in rA is added to the corresponding word element in the accumulator to form 33-bit
intermediate sum. If the intermediate sum has overflowed, 0xFFFFFFFF is placed into the accumulator
word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate sum are placed into
the accumulator word and the corresponding rD word.

If there is an overflow from the addition, the overflow information is recorded in the SPEFSCR overflow
and summary overflow bits.

Other registers altered: SPEFSCR, ACC

Figure 6-98. evaddusiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

0 31 32 63

rA

Accumulator

+ +

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 417

evsubfsmiaaw evsubfsmiaaw
Vector Subtract Signed, Modulo, Integer to Accumulator Word

evsubfsmiaaw rD,rA (M=1, S=1)

rD0:31 = ACC0:31 - rA0:31
rD32:63 = ACC32:63 - rA32:63
ACC0:63 = rD0:63

Each word element in rA is subtracted from the corresponding word element in the accumulator and
placed into the corresponding rD word. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-99. evsubfsmiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1

0 31 32 63

rA

Accumulator

– –

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

418 Freescale Semiconductor

evsubfssiaaw evsubfssiaaw
Vector Subtract Signed, Saturate, Integer to Accumulator Word

evsubfssiaaw rD,rA (M=0, S=1)

temp10:32 = EXTS(ACC0:31) - EXTS(rA0:31)
temp20:32 = EXTS(ACC32:63) - EXTS(rA32:63)
ovh = temp10 temp11
ovl = temp20 temp21
rD0:31 = SATURATE_ACC(ovh, temp10, 0x80000000, 0x7FFFFFFF, temp11:32)
rD32:63 = SATURATE_ACC(ovl, temp20, 0x80000000, 0x7FFFFFFF, temp21:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

Each word element in rA is subtracted from the corresponding word element in the accumulator to form
33-bit intermediate difference. If the intermediate difference has overflowed, the appropriate saturation
value (0x7FFFFFFF if positive overflow or 0x80000000 if negative overflow) is placed into the
accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate
difference are placed into the accumulator word and the corresponding rD word.

If there is an overflow from the subtraction, the overflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

Figure 6-100. evsubfssiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1

0 31 32 63

rA

Accumulator

– –

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 419

evsubfumiaaw evsubfumiaaw
Vector Subtract Unsigned, Modulo, Integer to Accumulator Word

evsubfumiaaw rD,rA (M=1, S=0)

rD0:31 = ACC0:31 - rA0:31
rD32:63 = ACC32:63 - rA32:63
ACC0:63 = rD0:63

Each word element in rA is subtracted from the corresponding word element in the accumulator and
placed into the corresponding rD word. The result in rD is also placed in the accumulator.

Other registers altered: ACC

Figure 6-101. evsubfumiaaw

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0

0 31 32 63

rA

Accumulator

– –

Accumulator & rD

e200z759n3 Core Reference Manual, Rev. 2

420 Freescale Semiconductor

evsubfusiaaw evsubfusiaaw
Vector Subtract Unsigned, Saturate, Integer to Accumulator Word

evsubfusiaaw rD,rA (M=0, S=0)

temp10:32 = EXTZ(ACC0:31) - EXTZ(rA0:31)
temp20:32 = EXTZ(ACC32:63) - EXTZ(rA32:63)
ovh = temp10
ovl = temp20
rD0:31 = SATURATE(ovh, 0x00000000, temp11:32)
rD32:63 = SATURATE(ovl, 0x00000000, temp21:32)
ACC0:31 = rD0:31
ACC32:63 = rD32:63
SPEFSCROVH = ovh
SPEFSCROV = ovl
SPEFSCRSOVH = SPEFSCRSOVH | ovh
SPEFSCRSOV = SPEFSCRSOV | ovl

Each word element in rA is subtracted from the corresponding word element in the accumulator to form
33-bit intermediate difference. If the intermediate difference has underflowed, 0x00000000 is placed
into the accumulator word and the corresponding rD word. Otherwise, the low 32 bits of the intermediate
difference are placed into the accumulator word and the corresponding rD word.

If there is an underflow from the subtraction, the underflow information is recorded in the SPEFSCR
overflow and summary overflow bits.

Other registers altered: SPEFSCR, ACC

Figure 6-102. evsubfusiaaw

6.4.4 Initializing and reading the accumulator

To read the accumulator contents into a register, a multiply-accumulate instruction where one of its
operands is a zero should be used, as the following sequence shows:

evxor RD, RD, RD // Zero the contents of RD, not necessary if
// a zero is available in some register.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0

0 31 32 63

RA

Accumulator

– –

Accumulator & RD

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 421

evmwumiaa RD, RD, RD // Multiply 0 with 0, add the 0 result to
// accumulator and store back the value in acc and RD

To initialize the accumulator, the evmra instruction is used:

e200z759n3 Core Reference Manual, Rev. 2

422 Freescale Semiconductor

evmra evmra
Move Register to Accumulator

evmra rD,rA

RD0:63 = acc0:63 = RA0:63

The contents of rA are written into the accumulator and copied into rD. This is the method for initializing
the accumulator.

6.5 SPE vector load/store instructions
SPE Vector load and store instructions are provided with a variety of options. The mnemonics are formed
as follows:

ev{l,st}<X><Y>[Z]x

• X specifies the size of the load

• Y specifies the size of data packed into the value being loaded. Thus evldhx specified a load that
brings in a double-word composed of four half words.

• Z specifies the operation to be performed such as unpack or splat.

All load and store instructions are specified as indexed forms. A specification of a 0 in the rA field of the
instruction results in the non-indexed form of the instruction. For all loads and stores, only the lower 32
bits of registers rA and rB are used and the effective address is 32 bits.

PowerISA 2.06 load instructions are implemented such that the upper half of all registers are left
unchanged for a load.

0 5 6 10 11 15 16 20 21 31

4 RD RA 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 423

evldd evldd
Vector Load Double into Double

evldd rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
RD = MEM(EA,8)

Figure 6-103 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-103. evldd results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 0 0 0 0 0 1

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

f e d c ah g b

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

424 Freescale Semiconductor

evlddx evlddx
Vector Load Double into Double Indexed

evlddx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD = MEM(EA,8)

Figure 6-104 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-104. evlddx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 0 0 0 0

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

f e d c ah g b

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 425

evldw evldw
Vector Load Double into Words

evldw rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
RD0:31 = MEM(EA,4)
RD32:63 = MEM(EA+4,4)

Figure 6-105 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-105. evldw results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 0 0 0 0 1 1

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

b a h g ed c f

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

426 Freescale Semiconductor

evldwx evldwx
Vector Load Double into Words Indexed

evldwx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:31 = MEM(EA,4)
RD32:63 = MEM(EA+4,4)

Figure 6-106 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-106. evldwx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 0 0 1 0

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

b a h g ed c f

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 427

evldh evldh
Vector Load Double into Halfwords

evldh rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
RD0:15 = MEM(EA,2)
RD16:31 = MEM(EA+2,2)
RD32:47 = MEM(EA+4,2)
RD48:63 = MEM(EA+6,2)

Figure 6-107 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-107. evldh results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 0 0 0 1 0 1

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

d c f e gb a h

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

428 Freescale Semiconductor

evldhx evldhx
Vector Load Double into Halfwords Indexed

evldhx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = MEM(EA,2)
RD16:31 = MEM(EA+2,2)
RD32:47 = MEM(EA+4,2)
RD48:63 = MEM(EA+6,2)

Figure 6-108 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-108. evldhx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 0 1 0 0

c d e f h

0 1 2 3 4 5 6 7

a b g

c d e f ha b g

d c f e gb a h

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 429

evlwhe evlwhe
Vector Load Word into Half words Even

evlwhe rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
RD0:15 = MEM(EA,2)
RD16:31 = 0x0000
RD32:47 = MEM(EA+2,2)
RD48:63 = 0x0000

Figure 6-109 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-109. evlwhe results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 0 1 0 0 0 1

c d

0 1 2 3

a b

Z Z c d Za b Z

Z Z d c Zb a Z

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

430 Freescale Semiconductor

evlwhex evlwhex
Vector Load Word into Halfwords Even Indexed

evlwhex rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = MEM(EA,2)
RD16:31 = 0x0000
RD32:47 = MEM(EA+2,2)
RD48:63 = 0x0000

Figure 6-110 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-110. evlwhex results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 1 0 0 0 0

c d

0 1 2 3

a b

Z Z c d Za b Z

Z Z d c Zb a Z

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 431

evlwhou evlwhou
Vector Load Word into Halfwords Odd Unsigned (zero-extended)

evlwhou rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
RD0:15 = 0x0000
RD16:31 = MEM(EA,2)
RD32:47 = 0x0000
RD48:63 = MEM(EA+2,2)

Figure 6-111 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-111. evlwhou results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 0 1 0 1 0 1

c d

0 1 2 3

a b

a b Z Z dZ Z c

b a Z Z cZ Z d

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

432 Freescale Semiconductor

evlwhoux evlwhoux
Vector Load Word into Halfwords Odd Unsigned Indexed (zero-extended)

evlwhoux rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = 0x0000
RD16:31 = MEM(EA,2)
RD32:47 = 0x0000
RD48:63 = MEM(EA+2,2)

Figure 6-112 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-112. evlwhoux results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 1 0 1 0 0

c d

0 1 2 3

a b

a b Z Z dZ Z c

b a Z Z cZ Z d

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 433

evlwhos evlwhos
Vector Load Word into Halfwords Odd Signed (with sign extension)

evlwhos rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
RD0:31 = EXTS(MEM(EA,2))
RD32:63 = EXTS(MEM(EA+2,2))

Figure 6-113 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-113. evlwhos results in big- and little-endian modes

In the big-endian memory, the msb of a and c are sign-extended. In the little-endian memory, the msb of b
and d are sign-extended.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 0 1 0 1 1 1

c d

0 1 2 3

a b

a b S S dS S c

b a S S cS S d

Memory

GPR in big endian

GPR in little endian

Byte addr

S = sign

S = sign

e200z759n3 Core Reference Manual, Rev. 2

434 Freescale Semiconductor

evlwhosx evlwhosx
Vector Load Word into Halfwords Odd Signed Indexed (with sign extension)

evlwhosx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:31 = EXTS(MEM(EA,2))
RD32:63 = EXTS(MEM(EA+2,2))

Figure 6-114 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-114. evlwhosx results in big- and little-endian modes

In the big-endian memory, the msbs of a and c are sign-extended. In the little-endian memory, the msbs of
b and d are sign-extended.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 1 0 1 1 0

c d

0 1 2 3

a b

a b S S dS S c

b a S S cS S d

Memory

GPR in big endian

GPR in little endian

Byte addr

S = sign

S = sign

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 435

evlwwsplat evlwwsplat
Vector Load Word into Word and Splat

evlwwsplat rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
RD0:31 = MEM(EA,4)
RD32:63 = MEM(EA,4)

Figure 6-115 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-115. evlwwsplat results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 0 1 1 0 0 1

c d

0 1 2 3

a b

c d a b da b c

b a d c ad c b

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

436 Freescale Semiconductor

evlwwsplatx evlwwsplatx
Vector Load Word into Word and Splat Indexed

evlwwsplatx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:31 = MEM(EA,4)
RD32:63 = MEM(EA,4)

Figure 6-116 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-116. evlwwsplatx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 1 1 0 0 0

c d

0 1 2 3

a b

c d a b da b c

b a d c ad c b

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 437

evlwhsplat evlwhsplat
Vector Load Word into Halfwords and Splat

evlwhsplat rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
RD0:15 = MEM(EA,2)
RD16:31 = MEM(EA,2)
RD32:47 = MEM(EA+2,2)
RD48:63 = MEM(EA+2,2)

Figure 6-117 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-117. evlwhsplat results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 0 1 1 1 0 1

c d

0 1 2 3

a b

a b c d da b c

b a d c cb a d

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

438 Freescale Semiconductor

evlwhsplatx evlwhsplatx
Vector Load Word into Halfwords and Splat Indexed

evlwhsplatx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = MEM(EA,2)
RD16:31 = MEM(EA,2)
RD32:47 = MEM(EA+2,2)
RD48:63 = MEM(EA+2,2)

Figure 6-118 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-118. evlwhsplatx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 1 1 1 0 0

c d

0 1 2 3

a b

a b c d da b c

b a d c cb a d

Memory

GPR in big endian

GPR in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 439

evlhhesplat evlhhesplat
Vector Load Halfword into Halfword Even and Splat

evlhhesplat rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*2)
RD0:15 = MEM(EA,2)
RD16:31 = 0x0000
RD32:47 = MEM(EA,2)
RD48:63 = 0x0000

Figure 6-119 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-119. evlhhesplat results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<1

0 1 1 0 0 0 0 1 0 0 1

0 1

a b

Z Z a b Za b Z

Z Z b a Zb a Z

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

440 Freescale Semiconductor

evlhhesplatx evlhhesplatx
Vector Load Halfword into Halfword Even and Splat Indexed

evlhhesplatx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = MEM(EA,2)
RD16:31 = 0x0000
RD32:47 = MEM(EA,2)
RD48:63 = 0x0000

Figure 6-120 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-120. evlhhesplatx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 1 0 0 0

0 1

a b

Z Z a b Za b Z

Z Z b a Zb a Z

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 441

evlhhousplat evlhhousplat
Vector Load Halfword into Halfword Odd Unsigned and Splat

evlhhousplat rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*2)
RD0:15 = 0x0000
RD16:31 = MEM(EA,2)
RD32:47 = 0x0000
RD48:63 = MEM(EA,2)

Figure 6-121 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-121. evlhhousplat results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<1

0 1 1 0 0 0 0 1 1 0 1

0 1

a b

a b Z Z bZ Z a

b a Z Z aZ Z b

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

442 Freescale Semiconductor

evlhhousplatx evlhhousplatx
Vector Load Halfword into Halfword Odd Unsigned and Splat Indexed

evlhhousplatx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:15 = 0x0000
RD16:31 = MEM(EA,2)
RD32:47 = 0x0000
RD48:63 = MEM(EA,2)

Figure 6-122 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-122. evlhhousplatx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 1 1 0 0

0 1

a b

a b Z Z bZ Z a

b a Z Z aZ Z b

Memory

GPR in big endian

GPR in little endian

Byte addr

Z = zero

Z = zero

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 443

evlhhossplat evlhhossplat
Vector Load Halfword into Halfword Odd Signed and Splat

evlhhossplat rD,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*2)
RD0:31 = EXTS(MEM(EA,2))
RD32:63 = EXTS(MEM(EA,2))

Figure 6-123 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-123. evlhhossplat results in big- and little-endian modes

In big-endian memory, the msb of a is sign-extended. In the little-endian memory, the msb of b is
sign-extended.

0 5 6 10 11 15 16 20 21 31

4 RD RA UIMM1

1 d = UIMM<<1

0 1 1 0 0 0 0 1 1 1 1

0 1

a b

a b S S bS S a

b a S S aS S b

Memory

GPR in big endian

GPR in little endian

Byte addr

S = sign

S = sign

e200z759n3 Core Reference Manual, Rev. 2

444 Freescale Semiconductor

evlhhossplatx evlhhossplatx
Vector Load Halfword into Halfword Odd Signed and Splat Indexed

evlhhossplatx rD,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
RD0:31 = EXTS(MEM(EA,2))
RD32:63 = EXTS(MEM(EA,2))

Figure 6-124 shows how bytes are loaded into rD as determined by the endian mode.

Figure 6-124. evlhhossplatx results in big- and little-endian modes

In big-endian memory, the msb of a is sign-extended. In the little-endian memory, the msb of b is
sign-extended.

0 5 6 10 11 15 16 20 21 31

4 RD RA RB 0 1 1 0 0 0 0 1 1 1 0

0 1

a b

a b S S bS S a

b a S S aS S b

Memory

GPR in big endian

GPR in little endian

Byte addr

S = sign

S = sign

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 445

evstdd evstdd
Vector Store Double of Double

evstdd rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
MEM(EA,8) = RS0:63

Figure 6-125 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-125. evstdd results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 1 0 0 0 0 1

c d e f ha b g

0 1 2 3 4 5 6 7

c d e f ha b g

f e d c ah g b

GPR

Memory in big endian

Memory in little endian

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

446 Freescale Semiconductor

evstddx evstddx
Vector Store Double of Double Indexed

evstddx rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,8) = RS0:63

Figure 6-126 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-126. evstddx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 0 0 0 0 0

c d e f ha b g

f e d c ah g b

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3 4 5 6 7

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 447

evstdw evstdw
Vector Store Double of Two Words

evstdw rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
MEM(EA,4) = RS0:31
MEM(EA+4,4) = RS32:63

Figure 6-127 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-127. evstdw results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 1 0 0 0 1 1

c d e f ha b g

b a h g ed c f

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3 4 5 6 7

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

448 Freescale Semiconductor

evstdwx evstdwx
Vector Store Double of Two Words Indexed

evstdwx rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,4) = RS0:31
MEM(EA+4,4) = RS32:63

Figure 6-128 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-128. evstdwx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 0 0 0 1 0

c d e f ha b g

b a h g ed c f

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3 4 5 6 7

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 449

evstdh evstdh
Vector Store Double of Four Halfwords

evstdh rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*8)
MEM(EA,2) = RS0:15
MEM(EA+2,2) = RS16:31
MEM(EA+4,2) = RS32:47
MEM(EA+6,2) = RS48:63

Figure 6-129 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-129. evstdh results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<3

0 1 1 0 0 1 0 0 1 0 1

c d e f ha b g

d c f e gb a h

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3 4 5 6 7

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

450 Freescale Semiconductor

evstdhx evstdhx
Vector Store Double of Four Halfwords Indexed

evstdhx rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,2) = RS0:15
MEM(EA+2,2) = RS16:31
MEM(EA+4,2) = RS32:47
MEM(EA+6,2) = RS48:63

Figure 6-130 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-130. evstdhx results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 0 0 1 0 0

c d e f ha b g

d c f e gb a h

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3 4 5 6 7

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 451

evstwwe evstwwe
Vector Store Word of Word from Even

evstwwe rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
MEM(EA,4) = RS0:31

Figure 6-131 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-131. evstwwe results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 1 1 1 0 0 1

c da b

b ad c

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

452 Freescale Semiconductor

evstwwex evstwwex
Vector Store Word of Word from Even Indexed

evstwwex rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,4) = RS0:31

Figure 6-132 shows how bytes are stored in memory as determined by the endian mode.
g

Figure 6-132. evstwwex results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 1 1 0 0 0

c da b

b ad c

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 453

evstwwo evstwwo
Vector Store Word of Word from Odd

evstwwo rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
MEM(EA,4) = rS32:63

Figure 6-133 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-133. evstwwo results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 1 1 1 1 0 1

g he f

f eh g

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

454 Freescale Semiconductor

evstwwox evstwwox
Vector Store Word of Word from Odd Indexed

evstwwox rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,4) = rS32:63

Figure 6-134 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-134. evstwwox results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 1 1 1 0 0

g he f

f eh g

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 455

evstwhe evstwhe
Vector Store Word of Two Halfwords from Even

evstwhe rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
MEM(EA,2) = RS0:15
MEM(EA+2,2) = RS32:47

Figure 6-135 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-135. evstwhe results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 1 1 0 0 0 1

e fa b

f eb a

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

456 Freescale Semiconductor

evstwhex evstwhex
Vector Store Word of Two Halfwords from Even Indexed

evstwhex rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,2) = RS0:15
MEM(EA+2,2) = RS32:47

Figure 6-136 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-136. evstwhex results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 1 0 0 0 0

e fa b

f eb a

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 457

evstwho evstwho
Vector Store Word of Two Halfwords from Odd

evstwho rS,d(rA)

if (rA == 0) then b = 0
else b = (rA)
EA = b + EXTZ(UIMM*4)
MEM(EA,2) = RS16:31
MEM(EA+2,2) = RS48:63

Figure 6-137 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-137. evstwho results in big- and little-endian modes

0 5 6 10 11 15 16 20 21 31

4 RS RA UIMM1

1 d = UIMM<<2

0 1 1 0 0 1 1 0 1 0 1

g hc d

h gd c

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

458 Freescale Semiconductor

evstwhox evstwhox
Vector Store Word of Two Halfwords from Odd Indexed

evstwhox rS,rA,rB

if (rA == 0) then b = 0
else b = (rA)
EA = b + (rB)
MEM(EA,2) = RS16:31
MEM(EA+2,2) = RS48:63

Figure 6-138 shows how bytes are stored in memory as determined by the endian mode.

Figure 6-138. evstwhox results in big- and little-endian modes

6.6 SPE instruction timing
Instruction timing in number of processor clock cycles for SPE instructions are shown in Table 6-4,
Table 6-5, and Table 6-6. Pipelined instructions are shown with cycles of total latency and throughput
cycles. Divide instructions are not pipelined and block other instructions from executing during divide
execution.

6.6.1 SPE integer simple instructions timing

Instruction timing for SPE integer simple instructions is shown in Table 6-4. The table is sorted by opcode.
These instructions are issued as a pair of operations.

0 5 6 10 11 15 16 20 21 31

4 RS RA RB 0 1 1 0 0 1 1 0 1 0 0

Table 6-4. Timing for integer simple instructions

Instruction Latency Throughput Comments

brinc 1 1 —

evabs 1 1 —

evaddiw 1 1 —

g hc d

h gd c

Memory in big endian

Memory in little endian

c d e f ha b g

0 1 2 3

GPR

Byte addr

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 459

evaddw 1 1 —

evand 1 1 —

evandc 1 1 —

evcmpeq 1 1 —

evcmpgts 1 1 —

evcmpgtu 1 1 —

evcmplts 1 1 —

evcmpltu 1 1 —

evcntlsw 1 1 —

evcntlzw 1 1 —

eveqv 1 1 —

evextsb 1 1 —

evextsh 1 1 —

evmergehi 1 1 —

evmergehilo 1 1 —

evmergelo 1 1 —

evmergelohi 1 1 —

evnand 1 1 —

evneg 1 1 —

evnor 1 1 —

evor 1 1 —

evorc 1 1 —

evrlw 1 1 —

evrlwi 1 1 —

evrndw 1 1 —

evsel 1 1 —

evslw 1 1 —

Table 6-4. Timing for integer simple instructions (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

460 Freescale Semiconductor

6.6.2 SPE load and store instruction timing

Instruction timing for SPE load and store instructions is shown in Table 6-4. The table is sorted by opcode.
Actual timing will depend on alignment; the table indicates timing for aligned operands.

evslwi 1 1 —

evsplatfi 1 1 —

evsplati 1 1 —

evsrwis 1 1 —

evsrwiu 1 1 —

evsrws 1 1 —

evsrwu 1 1 —

evsubfw 1 1 —

evsubifw 1 1 —

evxor 1 1 —

Table 6-5. SPE load and store instruction timing

Instruction Latency Throughput Comments

evldd 3 1 —

evlddx 3 1 —

evldh 3 1 —

evldhx 3 1 —

evldw 3 1 —

evldwx 3 1 —

evlhhesplat 3 1 —

evlhhesplatx 3 1 —

evlhhossplat 3 1 —

evlhhossplatx 3 1 —

evlhhousplat 3 1 —

evlhhousplatx 3 1 —

Table 6-4. Timing for integer simple instructions (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 461

6.6.3 SPE complex integer instruction timing

Instruction timing for SPE complex integer instructions is shown in Table 6-6. The table is sorted by
opcode. For the divide instructions, the number of stall cycles is (latency) for following instructions.

evlwhe 3 1 —

evlwhex 3 1 —

evlwhos 3 1 —

evlwhosx 3 1 —

evlwhou 3 1 —

evlwhoux 3 1 —

evlwhsplat 3 1 —

evlwhsplatx 3 1 —

evlwwsplat 3 1 —

evlwwsplatx 3 1 —

evstdd 3 1 —

evstddx 3 1 —

evstdh 3 1 —

evstdhx 3 1 —

evstdw 3 1 —

evstdwx 3 1 —

evstwhe 3 1 —

evstwhex 3 1 —

evstwho 3 1 —

evstwhox 3 1 —

evstwwe 3 1 —

evstwwex 3 1 —

evstwwo 3 1 —

evstwwox 3 1 —

Table 6-5. SPE load and store instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

462 Freescale Semiconductor

Table 6-6. SPE complex integer instruction timing

Instruction Latency Throughput Comments

evaddsmiaaw 1 1 —

evaddssiaaw 1 1 —

evaddumiaaw 1 1 —

evaddusiaaw 1 1 —

evdivws 12–321 12–321 —

evdivwu 12–321 12–321 —

evmhegsmfaa 4 1 —

evmhegsmfan 4 1 —

evmhegsmiaa 4 1 —

evmhegsmian 4 1 —

evmhegumiaa 4 1 —

evmhegumian 4 1 —

evmhesmf 4 1 —

evmhesmfa 4 1 —

evmhesmfaaw 4 1 —

evmhesmfanw 4 1 —

evmhesmi 4 1 —

evmhesmia 4 1 —

evmhesmiaaw 4 1 —

evmhesmianw 4 1 —

evmhessf 4 1 —

evmhessfa 4 1 —

evmhessfaaw 4 1 —

evmhessfanw 4 1 —

evmhessiaaw 4 1 —

evmhessianw 4 1 —

evmheumi 4 1 —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 463

evmheumia 4 1 —

evmheumiaaw 4 1 —

evmheumianw 4 1 —

evmheusiaaw 4 1 —

evmheusianw 4 1 —

evmhogsmfaa 4 1 —

evmhogsmfan 4 1 —

evmhogsmiaa 4 1 —

evmhogsmian 4 1 —

evmhogumiaa 4 1 —

evmhogumian 4 1 —

evmhosmf 4 1 —

evmhosmfa 4 1 —

evmhosmfaaw 4 1 —

evmhosmfanw 4 1 —

evmhosmi 4 1 —

evmhosmia 4 1 —

evmhosmiaaw 4 1 —

evmhosmianw 4 1 —

evmhossf 4 1 —

evmhossfa 4 1 —

evmhossfaaw 4 1 —

evmhossfanw 4 1 —

evmhossiaaw 4 1 —

evmhossianw 4 1 —

evmhoumi 4 1 —

evmhoumia 4 1 —

Table 6-6. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

464 Freescale Semiconductor

evmhoumiaaw 4 1 —

evmhoumianw 4 1 —

evmhousiaaw 4 1 —

evmhousianw 4 1 —

evmra 4 1 —

evmwhsmf 4 1 —

evmwhsmfa 4 1 —

evmwhsmi 4 1 —

evmwhsmia 4 1 —

evmwhssf 4 1 —

evmwhssfa 4 1 —

evmwhumi 4 1 —

evmwhumia 4 1 —

evmwlsmiaaw 4 1 —

evmwlsmianw 4 1 —

evmwlssiaaw 4 1 —

evmwlssianw 4 1 —

evmwlumi 4 1 —

evmwlumia 4 1 —

evmwlumiaaw 4 1 —

evmwlumianw 4 1 —

evmwlusiaaw 4 1 —

evmwlusianw 4 1 —

evmwsmf 4 1 —

evmwsmfa 4 1 —

evmwsmfaa 4 1 —

evmwsmfan 4 1 —

Table 6-6. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 465

6.7 Instruction forms and opcodes
Table 6-7 gives the division of the opcode space for the new SPE instructions.

evmwsmi 4 1 —

evmwsmia 4 1 —

evmwsmiaa 4 1 —

evmwsmian 4 1 —

evmwssf 4 1 —

evmwssfa 4 1 —

evmwssfaa 4 1 —

evmwssfan 4 1 —

evmwumi 4 1 —

evmwumia 4 1 —

evmwumiaa 4 1 —

evmwumian 4 1 —

evsubfsmiaaw 1 1 —

evsubfssiaaw 1 1 —

evsubfumiaaw 1 1 —

evsubfusiaaw 1 1 —

1 Timing is data dependent

Table 6-7. Opcode space division

Opcode bits
Instruction Class

0–5 21–25

4 0100* SPE APU integer simple instructions

4 01010 EFPU floating-point instructions

4 01011 Embedded floating-point APU instructions

4 01100 SPE APU load/store instructions

4 01101 SPE APU reserved for future use

Table 6-6. SPE complex integer instruction timing (continued)

Instruction Latency Throughput Comments

e200z759n3 Core Reference Manual, Rev. 2

466 Freescale Semiconductor

6.7.1 SPE vector integer simple instructions

For instructions that have signed and unsigned forms, bit 31 is 1 for the signed form and 0 for the unsigned
form. For instructions that have immediate forms, bit 30 is 1 for immediate forms. All instructions have
the destination register specified in the bits 6–10, which differs from Power Architecture ISA/Book E
where some instructions have the destination in bits 11–15.

4 0111* SPE APU reserved for future use

4 10*** SPE APU integer complex instructions

4 11*** SPE APU integer complex instructions: reserved for future use

Table 6-8. Opcodes for integer simple instructions

Instruction
Opcode

Comments
0–5 6–10 11–15 16–20 21–31

brinc 4 rD RA rB 010 0000 1111 —

evabs 4 RD RA 00000 010 0000 1000 —

evaddiw 4 RD UIMM RB 010 0000 0010 —

evaddw 4 RD RA RB 010 0000 0000 —

evand 4 RD RA RB 010 0001 0001 RD = RA & RB

evandc 4 RD RA RB 010 0001 0010 RD = RA & (~RB)

evcmpeq 4 crfD 00 RA RB 010 0011 0100 —

evcmpgts 4 crfD 00 RA RB 010 0011 0001 —

evcmpgtu 4 crfD 00 RA RB 010 0011 0000 —

evcmplts 4 crfD 00 RA RB 010 0011 0011 —

evcmpltu 4 crfD 00 RA RB 010 0011 0010 —

evcntlsw 4 RD RA 00000 010 0000 1110 —

evcntlzw 4 RD RA 00000 010 0000 1101 —

eveqv 4 RD RA RB 010 0001 1001 RD = ~(RA XOR RB)

evextsb 4 RD RA 00000 010 0000 1010 —

evextsh 4 RD RA 00000 010 0000 1011 —

Table 6-7. Opcode space division (continued)

Opcode bits
Instruction Class

0–5 21–25

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 467

evmergehi 4 RD RA RB 010 0010 1100 —

evmergehilo 4 RD RA RB 010 0010 1110 —

evmergelo 4 RD RA RB 010 0010 1101 —

evmergelohi 4 RD RA RB 010 0010 1111 —

evnand 4 RD RA RB 010 0001 1110 RD = ~(RA & RB)

evneg 4 RD RA 00000 010 0000 1001 —

evnor 4 RD RA RB 010 0001 1000 RD = ~(RA | RB)

evor 4 RD RA RB 010 0001 0111 RD = RA | RB

evorc 4 RD RA RB 010 0001 1011 RD = RA | (~RB)

evrlw 4 RD RA RB 010 0010 1000 —

evrlwi 4 RD RA UIMM 010 0010 1010 —

evrndw 4 RD RA 00000 010 0000 1100 —

evsel 4 RD RA RB 010 0111 1crfS crfS is a 3-bit field

evslw 4 RD RA RB 010 0010 0100 —

evslwi 4 RD RA UIMM 010 0010 0110 —

evsplatfi 4 RD SIMM 00000 010 0010 1011 —

evsplati 4 RD SIMM 00000 010 0010 1001 —

evsrwis 4 RD RA UIMM 010 0010 0011 —

evsrwiu 4 RD RA UIMM 010 0010 0010 —

evsrws 4 RD RA RB 010 0010 0001 —

evsrwu 4 RD RA RB 010 0010 0000 —

evsubfw 4 RD RA RB 010 0000 0100 —

evsubifw 4 RD UIMM RB 010 0000 0110 —

evxor 4 RD RA RB 010 0001 0110 RD = RA XOR RB

Table 6-8. Opcodes for integer simple instructions (continued)

Instruction
Opcode

Comments
0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

468 Freescale Semiconductor

6.7.2 Opcodes for SPE load and store instructions

Load instructions have a ‘0’ in bit 26 whereas all stores have a ‘1’ in bit 26. Bits 27 and 28 indicate the
size of the data access to memory. Bit 31 indicates whether the index is immediate or the contents of a
register. All store instructions have the source of the data register specified in bits 6:10 (RS).

Table 6-9. SPE load and store instruction opcodes

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31

evldd 4 RD RA UIMM 011 0000 0001 —

evlddx 4 RD RA RB 011 0000 0000 —

evldh 4 RD RA UIMM 011 0000 0101 —

evldhx 4 RD RA RB 011 0000 0100 —

evldw 4 RD RA UIMM 011 0000 0011 —

evldwx 4 RD RA RB 011 0000 0010 —

evlhhesplat 4 RD RA UIMM 011 0000 1001 —

evlhhesplatx 4 RD RA RB 011 0000 1000 —

evlhhossplat 4 RD RA UIMM 011 0000 1111 —

evlhhossplatx 4 RD RA RB 011 0000 1110 —

evlhhousplat 4 RD RA UIMM 011 0000 1101 —

evlhhousplatx 4 RD RA RB 011 0000 1100 —

evlwhe 4 RD RA UIMM 011 0001 0001 —

evlwhex 4 RD RA RB 011 0001 0000 —

evlwhos 4 RD RA UIMM 011 0001 0111 —

evlwhosx 4 RD RA RB 011 0001 0110 —

evlwhou 4 RD RA UIMM 011 0001 0101 —

evlwhoux 4 RD RA RB 011 0001 0100 —

evlwhsplat 4 RD RA UIMM 011 0001 1101 —

evlwhsplatx 4 RD RA RB 011 0001 1100 —

evlwwsplat 4 RD RA UIMM 011 0001 1001 —

evlwwsplatx 4 RD RA RB 011 0001 1000 —

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 469

6.7.3 Opcodes for SPE complex integer instructions

evstdd 4 RS RA UIMM 011 0010 0001 —

evstddx 4 RS RA RB 011 0010 0000 —

evstdh 4 RS RA UIMM 011 0010 0101 —

evstdhx 4 RS RA RB 011 0010 0100 —

evstdw 4 RS RA UIMM 011 0010 0011 —

evstdwx 4 RS RA RB 011 0010 0010 —

evstwhe 4 RS RA UIMM 011 0011 0001 —

evstwhex 4 RS RA RB 011 0011 0000 —

evstwho 4 RS RA UIMM 011 0011 0101 —

evstwhox 4 RS RA RB 011 0011 0100 —

evstwwe 4 RS RA UIMM 011 0011 1001 —

evstwwex 4 RS RA RB 011 0011 1000 —

evstwwo 4 RS RA UIMM 011 0011 1101 —

evstwwox 4 RS RA RB 011 0011 1100 —

Table 6-10. Opcodes for complex integer instructions, sorted by mnemonic

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

evaddsmiaaw 4 RD RA 00000 100 1100 1001

evaddssiaaw 4 RD RA 00000 100 1100 0001

evaddumiaaw 4 RD RA 00000 100 1100 1000

evaddusiaaw 4 RD RA 00000 100 1100 0000

evdivws 4 RD RA RB 100 1100 0110

evdivwu 4 RD RA RB 100 1100 0111

evmhegsmfaa 4 RD RA RB 101 0010 1011

Table 6-9. SPE load and store instruction opcodes (continued)

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

470 Freescale Semiconductor

evmhegsmfan 4 RD RA RB 101 1010 1011

evmhegsmiaa 4 RD RA RB 101 0010 1001

evmhegsmian 4 RD RA RB 101 1010 1001

evmhegumiaa 4 RD RA RB 101 0010 1000

evmhegumian 4 RD RA RB 101 1010 1000

evmhesmf 4 RD RA RB 100 0000 1011

evmhesmfa 4 RD RA RB 100 0010 1011

evmhesmfaaw 4 RD RA RB 101 0000 1011

evmhesmfanw 4 RD RA RB 101 1000 1011

evmhesmi 4 RD RA RB 100 0000 1001

evmhesmia 4 RD RA RB 100 0010 1001

evmhesmiaaw 4 RD RA RB 101 0000 1001

evmhesmianw 4 RD RA RB 101 1000 1001

evmhessf 4 RD RA RB 100 0000 0011

evmhessfa 4 RD RA RB 100 0010 0011

evmhessfaaw 4 RD RA RB 101 0000 0011

evmhessfanw 4 RD RA RB 101 1000 0011

evmhessiaaw 4 RD RA RB 101 0000 0001

evmhessianw 4 RD RA RB 101 1000 0001

evmheumi 4 RD RA RB 100 0000 1000

evmheumia 4 RD RA RB 100 0010 1000

evmheumiaaw 4 RD RA RB 101 0000 1000

evmheumianw 4 RD RA RB 101 1000 1000

evmheusiaaw 4 RD RA RB 101 0000 0000

evmheusianw 4 RD RA RB 101 1000 0000

evmhogsmfaa 4 RD RA RB 101 0010 1111

Table 6-10. Opcodes for complex integer instructions, sorted by mnemonic (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 471

evmhogsmfan 4 RD RA RB 101 1010 1111

evmhogsmiaa 4 RD RA RB 101 0010 1101

evmhogsmian 4 RD RA RB 101 1010 1101

evmhogumiaa 4 RD RA RB 101 0010 1100

evmhogumian 4 RD RA RB 101 1010 1100

evmhosmf 4 RD RA RB 100 0000 1111

evmhosmfa 4 RD RA RB 100 0010 1111

evmhosmfaaw 4 RD RA RB 101 0000 1111

evmhosmfanw 4 RD RA RB 101 1000 1111

evmhosmi 4 RD RA RB 100 0000 1101

evmhosmia 4 RD RA RB 100 0010 1101

evmhosmiaaw 4 RD RA RB 101 0000 1101

evmhosmianw 4 RD RA RB 101 1000 1101

evmhossf 4 RD RA RB 100 0000 0111

evmhossfa 4 RD RA RB 100 0010 0111

evmhossfaaw 4 RD RA RB 101 0000 0111

evmhossfanw 4 RD RA RB 101 1000 0111

evmhossiaaw 4 RD RA RB 101 0000 0101

evmhossianw 4 RD RA RB 101 1000 0101

evmhoumi 4 RD RA RB 100 0000 1100

evmhoumia 4 RD RA RB 100 0010 1100

evmhoumiaaw 4 RD RA RB 101 0000 1100

evmhoumianw 4 RD RA RB 101 1000 1100

evmhousiaaw 4 RD RA RB 101 0000 0100

evmhousianw 4 RD RA RB 101 1000 0100

evmra 4 RD RA 00000 100 1100 0100

Table 6-10. Opcodes for complex integer instructions, sorted by mnemonic (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

472 Freescale Semiconductor

evmwhsmf 4 RD RA RB 100 0100 1111

evmwhsmfa 4 RD RA RB 100 0110 1111

evmwhsmi 4 RD RA RB 100 0100 1101

evmwhsmia 4 RD RA RB 100 0110 1101

evmwhssf 4 RD RA RB 100 0100 0111

evmwhssfa 4 RD RA RB 100 0110 0111

evmwhumi 4 RD RA RB 100 0100 1100

evmwhumia 4 RD RA RB 100 0110 1100

evmwlsmiaaw 4 RD RA RB 101 0100 1001

evmwlsmianw 4 RD RA RB 101 1100 1001

evmwlssiaaw 4 RD RA RB 101 0100 0001

evmwlssianw 4 RD RA RB 101 1100 0001

evmwlumi 4 RD RA RB 100 0100 1000

evmwlumia 4 RD RA RB 100 0110 1000

evmwlumiaaw 4 RD RA RB 101 0100 1000

evmwlumianw 4 RD RA RB 101 1100 1000

evmwlusiaaw 4 RD RA RB 101 0100 0000

evmwlusianw 4 RD RA RB 101 1100 0000

evmwsmf 4 RD RA RB 100 0101 1011

evmwsmfa 4 RD RA RB 100 0111 1011

evmwsmfaa 4 RD RA RB 101 0101 1011

evmwsmfan 4 RD RA RB 101 1101 1011

evmwsmi 4 RD RA RB 100 0101 1001

evmwsmia 4 RD RA RB 100 0111 1001

evmwsmiaa 4 RD RA RB 101 0101 1001

evmwsmian 4 RD RA RB 101 1101 1001

Table 6-10. Opcodes for complex integer instructions, sorted by mnemonic (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 473

evmwssf 4 RD RA RB 100 0101 0011

evmwssfa 4 RD RA RB 100 0111 0011

evmwssfaa 4 RD RA RB 101 0101 0011

evmwssfan 4 RD RA RB 101 1101 0011

evmwumi 4 RD RA RB 100 0101 1000

evmwumia 4 RD RA RB 100 0111 1000

evmwumiaa 4 RD RA RB 101 0101 1000

evmwumian 4 RD RA RB 101 1101 1000

evsubfsmiaaw 4 RD RA 00000 100 1100 1011

evsubfssiaaw 4 RD RA 00000 100 1100 0011

evsubfumiaaw 4 RD RA 00000 100 1100 1010

evsubfusiaaw 4 RD RA 00000 100 1100 0010

Table 6-11. Opcodes for complex integer instructions, sorted by opcode

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

evmhessf 4 RD RA RB 100 0000 0011

evmhossf 4 RD RA RB 100 0000 0111

evmheumi 4 RD RA RB 100 0000 1000

evmhesmi 4 RD RA RB 100 0000 1001

evmhesmf 4 RD RA RB 100 0000 1011

evmhoumi 4 RD RA RB 100 0000 1100

evmhosmi 4 RD RA RB 100 0000 1101

evmhosmf 4 RD RA RB 100 0000 1111

evmhessfa 4 RD RA RB 100 0010 0011

evmhossfa 4 RD RA RB 100 0010 0111

Table 6-10. Opcodes for complex integer instructions, sorted by mnemonic (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

474 Freescale Semiconductor

evmheumia 4 RD RA RB 100 0010 1000

evmhesmia 4 RD RA RB 100 0010 1001

evmhesmfa 4 RD RA RB 100 0010 1011

evmhoumia 4 RD RA RB 100 0010 1100

evmhosmia 4 RD RA RB 100 0010 1101

evmhosmfa 4 RD RA RB 100 0010 1111

evmwhssf 4 RD RA RB 100 0100 0111

evmwlumi 4 RD RA RB 100 0100 1000

evmwhumi 4 RD RA RB 100 0100 1100

evmwhsmi 4 RD RA RB 100 0100 1101

evmwhsmf 4 RD RA RB 100 0100 1111

evmwssf 4 RD RA RB 100 0101 0011

evmwumi 4 RD RA RB 100 0101 1000

evmwsmi 4 RD RA RB 100 0101 1001

evmwsmf 4 RD RA RB 100 0101 1011

evmwhssfa 4 RD RA RB 100 0110 0111

evmwlumia 4 RD RA RB 100 0110 1000

evmwhumia 4 RD RA RB 100 0110 1100

evmwhsmia 4 RD RA RB 100 0110 1101

evmwhsmfa 4 RD RA RB 100 0110 1111

evmwssfa 4 RD RA RB 100 0111 0011

evmwumia 4 RD RA RB 100 0111 1000

evmwsmia 4 RD RA RB 100 0111 1001

evmwsmfa 4 RD RA RB 100 0111 1011

evaddusiaaw 4 RD RA 00000 100 1100 0000

evaddssiaaw 4 RD RA 00000 100 1100 0001

Table 6-11. Opcodes for complex integer instructions, sorted by opcode (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 475

evsubfusiaaw 4 RD RA 00000 100 1100 0010

evsubfssiaaw 4 RD RA 00000 100 1100 0011

evmra 4 RD RA 00000 100 1100 0100

evdivws 4 RD RA RB 100 1100 0110

evdivwu 4 RD RA RB 100 1100 0111

evaddumiaaw 4 RD RA 00000 100 1100 1000

evaddsmiaaw 4 RD RA 00000 100 1100 1001

evsubfumiaaw 4 RD RA 00000 100 1100 1010

evsubfsmiaaw 4 RD RA 00000 100 1100 1011

evmheusiaaw 4 RD RA RB 101 0000 0000

evmhessiaaw 4 RD RA RB 101 0000 0001

evmhessfaaw 4 RD RA RB 101 0000 0011

evmhousiaaw 4 RD RA RB 101 0000 0100

evmhossiaaw 4 RD RA RB 101 0000 0101

evmhossfaaw 4 RD RA RB 101 0000 0111

evmheumiaaw 4 RD RA RB 101 0000 1000

evmhesmiaaw 4 RD RA RB 101 0000 1001

evmhesmfaaw 4 RD RA RB 101 0000 1011

evmhoumiaaw 4 RD RA RB 101 0000 1100

evmhosmiaaw 4 RD RA RB 101 0000 1101

evmhosmfaaw 4 RD RA RB 101 0000 1111

evmhegumiaa 4 RD RA RB 101 0010 1000

evmhegsmiaa 4 RD RA RB 101 0010 1001

evmhegsmfaa 4 RD RA RB 101 0010 1011

evmhogumiaa 4 RD RA RB 101 0010 1100

evmhogsmiaa 4 RD RA RB 101 0010 1101

Table 6-11. Opcodes for complex integer instructions, sorted by opcode (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

476 Freescale Semiconductor

evmhogsmfaa 4 RD RA RB 101 0010 1111

evmwlusiaaw 4 RD RA RB 101 0100 0000

evmwlssiaaw 4 RD RA RB 101 0100 0001

evmwlumiaaw 4 RD RA RB 101 0100 1000

evmwlsmiaaw 4 RD RA RB 101 0100 1001

evmwssfaa 4 RD RA RB 101 0101 0011

evmwumiaa 4 RD RA RB 101 0101 1000

evmwsmiaa 4 RD RA RB 101 0101 1001

evmwsmfaa 4 RD RA RB 101 0101 1011

evmheusianw 4 RD RA RB 101 1000 0000

evmhessianw 4 RD RA RB 101 1000 0001

evmhessfanw 4 RD RA RB 101 1000 0011

evmhousianw 4 RD RA RB 101 1000 0100

evmhossianw 4 RD RA RB 101 1000 0101

evmhossfanw 4 RD RA RB 101 1000 0111

evmheumianw 4 RD RA RB 101 1000 1000

evmhesmianw 4 RD RA RB 101 1000 1001

evmhesmfanw 4 RD RA RB 101 1000 1011

evmhoumianw 4 RD RA RB 101 1000 1100

evmhosmianw 4 RD RA RB 101 1000 1101

evmhosmfanw 4 RD RA RB 101 1000 1111

evmhegumian 4 RD RA RB 101 1010 1000

evmhegsmian 4 RD RA RB 101 1010 1001

evmhegsmfan 4 RD RA RB 101 1010 1011

evmhogumian 4 RD RA RB 101 1010 1100

evmhogsmian 4 RD RA RB 101 1010 1101

Table 6-11. Opcodes for complex integer instructions, sorted by opcode (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 477

evmhogsmfan 4 RD RA RB 101 1010 1111

evmwlusianw 4 RD RA RB 101 1100 0000

evmwlssianw 4 RD RA RB 101 1100 0001

evmwlumianw 4 RD RA RB 101 1100 1000

evmwlsmianw 4 RD RA RB 101 1100 1001

evmwssfan 4 RD RA RB 101 1101 0011

evmwumian 4 RD RA RB 101 1101 1000

evmwsmian 4 RD RA RB 101 1101 1001

evmwsmfan 4 RD RA RB 101 1101 1011

Table 6-11. Opcodes for complex integer instructions, sorted by opcode (continued)

Instruction
Opcode bits

0–5 6–10 11–15 16–20 21–31

e200z759n3 Core Reference Manual, Rev. 2

478 Freescale Semiconductor

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 479

Chapter 7
Interrupts and Exceptions
The PowerISA 2.06 document defines the mechanisms by which the e200z759n3 core implements
interrupts and exceptions. The document uses the terminology Interrupt as the action in which the
processor saves its old context and begins execution at a pre-determined interrupt handler address.
Exceptions are referred to as events that, when enabled, cause the processor to take an interrupt. This
section uses the same terminology.

The Power Architecture exception mechanism allows the processor to change to supervisor state as a result
of unusual conditions arising in the execution of instructions, and from external signals, bus errors, or
various internal conditions. When interrupts occur, information about the state of the processor is saved to
machine state save/restore registers (SRR0/SRR1, CSRR0/CSRR1, or DSRR0/DSRR1,
MCSRR0/MCSRR1) and the processor begins execution at an address (interrupt vector) determined by the
Interrupt Vector Prefix register (IVPR), and one of the Interrupt Vector Offset registers (IVOR). Processing
of instructions within the interrupt handler begins in supervisor mode.

Multiple exception conditions can map to a single interrupt vector, and may be distinguished by examining
registers associated with the interrupt. The Exception Syndrome register (ESR) is updated with
information specific to the exception type when an interrupt occurs.

To prevent loss of state information, interrupt handlers must save the information stored in the machine
state save/restore registers, soon after the interrupt has been taken. Four sets of these registers are
implemented; SRR0 and SRR1 for non-critical interrupts, CSRR0 and CSRR1 for critical interrupts,
DSRR0 and DSRR1 for debug interrupts (when the Debug APU is enabled), and MCSRR0 and MCSRR1
for machine check interrupts. Hardware supports nesting of critical interrupts within non-critical
interrupts, machine check interrupts within both critical and non-critical interrupts, and debug interrupts
within both critical, non-critical, and machine check interrupts. It is up to the interrupt handler to save
necessary state information if interrupts of a given class are re-enabled within the handler.

The following terms are used to describe the stages of exception processing:

Recognition Exception recognition occurs when the condition that can cause an exception is
identified by the processor. This is also referred to as an exception event.

Taken An interrupt is said to be taken when control of instruction execution is passed to
the interrupt handler; that is, the context is saved and the instruction at the
appropriate vector offset is fetched and the interrupt handler routine begins.

Handling Interrupt handling is performed by the software linked to the appropriate vector
offset. Interrupt handling is begun in supervisor mode.

Returning from an interrupt is performed by executing an rfi, rfci, rfdi, or rfmci instruction or se_rfi,
se_rfci, se_rfdi, or se_rfmci VLE instruction to restore state information from the respective machine state
save/restore register pair.

7.1 e200z759n3 interrupts
As specified by the PowerISA 2.06 architecture, interrupts can be either precise or imprecise, synchronous
or asynchronous, and critical or non-critical. Asynchronous exceptions are caused by events external to

e200z759n3 Core Reference Manual, Rev. 2

480 Freescale Semiconductor

the processor’s instruction execution; synchronous exceptions are directly caused by instructions or an
event somehow synchronous to the program flow, such as a context switch. A precise interrupt
architecturally guarantees that no instruction beyond the instruction causing the exception has (visibly)
executed. Critical interrupts are provided with a separate save/restore register pair (CSRR0/CSRR1) to
allow certain critical exceptions to be handled within a non-critical interrupt handler. Machine check
interrupts are also provided with a separate save/restore register pair (MCSRR0/MCSRR1) to allow
machine check exceptions to be handled within a non-critical or critical interrupt handler.

The types of interrupts handled are shown in Table 7-1. Refer to Chapter 7 of Book E: Enhanced
PowerPCtm Architecture v0.99 for exact details of each interrupt type.

These classifications are discussed in greater detail in Section 7.7, Interrupt definitions. Interrupts
implemented in e200z759n3 and the exception conditions that cause them are listed in Table 7-2.

Table 7-1. Interrupt classifications

Interrupt types Synchronous/asynchronous Precise/imprecise
Critical/non-critical/

debug/ machine
check

System Reset Asynchronous, non-maskable Imprecise —

Machine Check — — Machine Check

Non-Maskable Input interrupt Asynchronous, non-maskable Imprecise Machine Check

Critical Input interrupt
Watchdog Timer interrupt

Asynchronous, maskable Imprecise Critical

External Input Interrupt
Fixed-Interval Timer interrupt

Decrementer interrupt

Asynchronous, maskable Imprecise Non-critical

Performance Monitor interrupts Synchronous/Asynchronous,
maskable

Imprecise Non-critical

Instruction-based Debug interrupts Synchronous Precise Critical / Debug

Debug Interrupt (UDE)
Debug Imprecise interrupt

Asynchronous Imprecise Critical / Debug

Data Storage / Alignment / TLB
interrupts

Instruction Storage / TLB interrupts

Synchronous Precise Non-critical

Table 7-2. Exceptions and conditions

Interrupt type
Interrupt vector
offset register

Causing conditions

System reset none,
vector to
[p_rstbase[0:29]] ||
2’b00

Reset by assertion of p_reset_b.

Critical Input IVOR 01 p_critint_b is asserted and MSRCE=1.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 481

Machine check IVOR 1 • p_mcp_b transitions from negated to asserted
 • ISI, ITLB Error on first instruction fetch for an exception handler
 • Parity Error signaled on cache access
 • External bus error

Machine check
(NMI)

IVOR 1 p_nmi_b transitions from negated to asserted.

Data Storage IVOR 2 • Access control.
 • Byte ordering due to misaligned access across page boundary to

pages with mismatched E bits
 • Cache locking exception

Instruction Storage IVOR 3 • Access control.
 • Byte ordering due to misaligned instruction across page boundary to

pages with mismatched VLE bits, or access to page with VLE set, and
E indicating little-endian.

 • Misaligned Instruction fetch due to a change of flow to an odd halfword
instruction boundary on a BookE (non-VLE) instruction page

External Input IVOR 41 p_extint_b is asserted and MSREE=1.

Alignment IVOR 5 • lmw, stmw not word aligned
 • lwarx or stwcx. not word aligned, lharx or sthcx. not halfword aligned
 • dcbz with disabled cache, or to W or I storage
 • SPE ld and st instructions not properly aligned

Program IVOR 6 Illegal, Privileged, Trap, AP enabled.

Floating-point
unavailable

IVOR 7 Unused by e200z759n3.

System call IVOR 8 Execution of the System Call (sc, se_sc) instruction

AP unavailable IVOR 9 Unused by e200z759n3

Decrementer IVOR 10 As specified in Book E: Enhanced PowerPCtm Architecture v0.99, Ch. 8,
pg. 190-191

Fixed Interval
Timer

IVOR 11 As specified in Book E: Enhanced PowerPCtm Architecture v0.99, Ch. 8,
pg. 191-192

Watchdog Timer IVOR 12 As specified in Book E: Enhanced PowerPCtm Architecture v0.99, Ch. 8,
pg. 192-194

Data TLB Error IVOR 13 Data translation lookup did not match a valid entry in the TLB

Instruction TLB
Error

IVOR 14 Instruction translation lookup did not match a valid entry in the TLB

Debug IVOR 15 Trap, Instruction Address Compare, Data Address Compare, Instruction
Complete, Branch Taken, Return from Interrupt, Interrupt Taken, Debug
Counter, External Debug Event, Unconditional Debug Event

Reserved IVOR 16-31 —

Table 7-2. Exceptions and conditions (continued)

Interrupt type
Interrupt vector
offset register

Causing conditions

e200z759n3 Core Reference Manual, Rev. 2

482 Freescale Semiconductor

7.2 Exception Syndrome Register (ESR)
The Exception Syndrome Register (ESR) provides a syndrome to differentiate between exceptions that can
generate the same interrupt type. e200z759n3 adds some implementation specific bits to this register, as
seen in Figure 7-1.

The ESR bits are defined in Table 7-3.

SPE/EFPU
Unavailable
Exception

IVOR 32 See Section 6.2.6.1, SPE APU Unavailable exception, and
Section 5.2.5.1, EFPU unavailable exception

EFPU Data
Exception

IVOR 33 See Section 5.2.5.2, Embedded floating-point data exception

EFPU Round
Exception

IVOR 34 See Section 5.2.5.3, Embedded floating-point round exception

Performance
Monitor

IVOR 35 Performance Monitor Enabled Condition or Event

1 Autovectored External and Critical Input interrupts use this IVOR. Vectored interrupts supply an interrupt vector
offset directly.

0 P
IL

P
P

R

P
T

R

F
P

S
T 0

D
LK

IL
K

A
P

P
U

O

B
O

P
IE 0

S
P

E

0

V
LE

M
I

0

M
IF 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 62; Read/Write; Reset - 0x0

Figure 7-1. Exception Syndrome Register (ESR)

Table 7-3. ESR field descriptions

Bits Name Description Associated interrupt type

0:3
(32:35)

— Allocated1 —

4
(36)

PIL Illegal Instruction exception
(For e200z759n3, PIL used for all illegal/unimplemented
instructions)

Program

5
(37)

PPR Privileged Instruction exception Program

6
(38)

PTR Trap exception Program

Table 7-2. Exceptions and conditions (continued)

Interrupt type
Interrupt vector
offset register

Causing conditions

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 483

7
(39)

FP Floating-point operation Alignment (not on Zen)
Data Storage (not on Zen)
Data TLB (not on Zen)
Program

8
(40)

ST Store operation Alignment
Data Storage
Data TLB

9
(41)

— Reserved2 —

10
(42)

DLK Data Cache Locking Data Storage

11
(43)

ILK Instruction Cache Locking Data Storage

12
(44)

AP Auxiliary Processor operation
(Not used by Zen)

Alignment (not on Zen)
Data Storage (not on Zen)
Data TLB (not on Zen)
Program (not on Zen)

13
(45)

PUO Unimplemented Operation exception
(Not used by e200z759n3, PIL used for all
illegal/unimplemented instructions)

Program

14
(46)

BO Byte Ordering exception
Mismatched Instruction Storage exception

Data Storage
Instruction Storage

15
(47)

PIE Program Imprecise exception
(Reserved)

Currently unused by Zen

16:23
(48:55)

— Reserved2 —

24
(56)

SPE SPE/EFPU APU Operation SPE/EFPU Unavailable
EFPU Floating-point Data
Exception
EFPU Floating-point Round
Exception
Alignment
Data Storage
Data TLB

25
(57)

— Allocated1 —

Table 7-3. ESR field descriptions (continued)

Bits Name Description Associated interrupt type

e200z759n3 Core Reference Manual, Rev. 2

484 Freescale Semiconductor

7.3 Machine State Register (MSR)
The Machine State Register defines the state of the processor. The e200z759n3 MSR is shown in
Figure 7-2.

The MSR bits are defined in Table 7-4.

26
(58)

VLEMI VLE Mode Instruction SPE/EFPU Unavailable
EFPU Floating-point Data
Exception
EFPU Floating-point Round
Exception
Data Storage
Data TLB
Instruction Storage
Alignment
Program
System Call

27:29
(59:61)

— Allocated1 —

30
(62)

MIF Misaligned Instruction Fetch Instruction Storage
Instruction TLB

31
(63)

— Allocated1 —

1 These bits are not implemented and should be written with zero for future compatibility.
2 These bits are not implemented, and should be written with zero for future compatibility.

0

U
C

LE

S
P

E

0 W
E

C
E 0 E
E

P
R

F
P

M
E

F
E

0

0 D
E

F
E

1

0 IS D
S 0

P
M

M

R
I 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Read/ Write; Reset - 0x0

Figure 7-2. Machine State Register (MSR)

Table 7-4. MSR field descriptions

Bits Name Description

0:4
(32:36)

— Reserved1

5
(37)

UCLE User Cache Lock Enable
0 Execution of the cache locking instructions in user mode (MSRPR=1) disabled; DSI

exception taken instead, and ILK or DLK set in ESR.
1 Execution of the cache lock instructions in user mode enabled.

Table 7-3. ESR field descriptions (continued)

Bits Name Description Associated interrupt type

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 485

6
(38)

SPE SPE/EFPU Available
0 Execution of SPE and EFPU APU vector instructions is disabled; SPE/EFPU Unavailable

exception taken instead, and SPE bit is set in ESR.
1 Execution of SPE and EFPU APU vector instructions is enabled.

7:12
(39:44)

— Reserved1

13
(45)

WE Wait State (Power management) enable. This bit is defined as optional in the PowerISA 2.06
architecture.
0 Power management is disabled.
1 Power management is enabled. The processor can enter a power-saving mode when

additional conditions are present. The mode chosen is determined by the DOZE, NAP,
and SLEEP bits in the HID0 register, described in Section 2.4.11, Hardware
Implementation Dependent Register 0 (HID0).

14
(46)

CE Critical Interrupt Enable
0 Critical Input and Watchdog Timer interrupts are disabled.
1 Critical Input and Watchdog Timer interrupts are enabled.

15
(47)

— Reserved1

16
(48)

EE External Interrupt Enable
0 External Input, Decrementer, and Fixed-Interval Timer interrupts are disabled.
1 External Input, Decrementer, and Fixed-Interval Timer interrupts are enabled.

17
(49)

PR Problem State
0 The processor is in supervisor mode, can execute any instruction, and can access any

resource (e.g. GPRs, SPRs, MSR, etc.).
1 The processor is in user mode, cannot execute any privileged instruction, and cannot

access any privileged resource.

18
(50)

FP Floating-Point Available
0 Floating point unit is unavailable. The processor cannot execute floating-point

instructions, including floating-point loads, stores, and moves.
1 Floating-point unit is available. The processor can execute floating-point instructions.
Note that for e200z759n3, the floating point unit is not supported in hardware, and an Illegal
Instruction exception will be generated for attempted execution of PowerISA 2.06 floating
point instructions regardless of the setting of FP. FP is ignored, but cleared on exceptions.

19
(51)

ME Machine Check Enable
0 Asynchronous Machine Check interrupts are disabled.
1 Asynchronous Machine Check interrupts are enabled.

20
(52)

FE0 Floating-point exception mode 0 (not used by Zen)

21
(53)

— Reserved1

22
(54)

DE Debug Interrupt Enable
0 Debug interrupts are disabled.
1 Debug interrupts are enabled.

23
(55)

FE1 Floating-point exception mode 1 (not used by Zen)

Table 7-4. MSR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

486 Freescale Semiconductor

7.3.1 Machine Check Syndrome Register (MCSR)

When the processor takes a machine check interrupt, it updates the Machine Check Syndrome register
(MCSR) to differentiate between machine check conditions. The MCSR is shown in Figure 7-3.

24
(56)

— Reserved1

25
(57)

— Preserved1

26
(58)

IS Instruction Address Space
0 The processor directs all instruction fetches to address space 0 (TS=0 in the relevant TLB

entry).
1 The processor directs all instruction fetches to address space 1 (TS=1 in the relevant

TLB entry).

27
(59)

DS Data Address Space
0 The processor directs all data storage accesses to address space 0 (TS=0 in the relevant

TLB entry).
1 The processor directs all data storage accesses to address space 1 (TS=1 in the relevant

TLB entry).

28
(60)

— Reserved1

29
(61)

PMM PMM Performance monitor mark bit.
System software can set PMM when a marked process is running to enable statistics to be
gathered only during the execution of the marked process. MSRPR and MSRPMM together
define a state that the processor (supervisor or user) and the process (marked or unmarked)
may be in at any time. If this state matches an individual state specified in the Performance
Monitor registers PMLCa n, the state for which monitoring is enabled, counting is enabled.

30
(62)

RI Recoverable Interrupt - This bit is provided for software use to detect nested exception
conditions. This bit is cleared by hardware when a Machine Check interrupt is taken

31
(63)

— Preserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

M
C

P

IC
_D

P
E

R
R

C
P

_P
E

R
R

D
C

_D
P

E
R

R

E
X

C
P

_E
R

R

IC
_T

P
E

R
R

D
C

_T
P

E
R

R

IC
_L

K
E

R
R

D
C

_L
K

E
R

R

0

N
M

I

M
A

V

M
E

A

0 IF LD S
T G 0

S
N

P
E

R
R

B
U

S
_I

R
E

R
R

B
U

S
_D

R
E

R
R

B
U

S
_W

R
E

R
R

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 572; Read/Clear; Reset - 0x0

Figure 7-3. Machine Check Syndrome Register (MCSR)

Table 7-4. MSR field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 487

Table 7-5 describes MCSR fields. The MCSR indicates the source of a machine check condition. When an
“Async Mchk” or “Error Report” syndrome bit in the MCSR is set, the core complex asserts p_mcp_out
for system information.

All bits in the MCSR are implemented as “write ‘1’ to clear”. Software in the machine check handler is
expected to clear the MCSR bits it has sampled prior to re-enabling MSRME to avoid a redundant machine
check exception and to prepare for updated status bit information on the next machine check interrupt.
Hardware will not clear a bit in the MCSR other than at reset. Software will typically sample MCSR early
in the machine check handler, and will use the sampled value to clear those bits that were set at the time
of sampling. Note that additional bits may become set during the handler after sampling if an asynchronous
event occurs. By writing back only the originally sampled bits, another machine check can be generated
to process the new conditions after the original handler re-enables MSRME either explicitly, or by restoring
the MSR from MSRR1 at the return.

Note that any set bit in the MCSR other than status-type bits will cause a subsequent machine check
interrupt once MSRME=1.

Table 7-5. MCSR field descriptions

Bit Name Description
Exception

Type1 Recoverable

0
(32)

MCP Machine check input pin Async
Mchk

Maybe

1
(33)

IC_DPERR Instruction Cache data array parity error Async
Mchk

Precise

2
(34)

CP_PERR Data Cache push parity error Async
Mchk

Unlikely

3
(35)

DC_DPERR Data Cache data array parity error Async
Mchk

Maybe

4
(36)

EXCP_ERR ISI, ITLB, or Bus Error on first instruction fetch for an
exception handler

Async
Mchk

Precise

5
(37)

IC_TPERR Instruction Cache Tag parity error Async
Mchk

Precise

6
(38)

DC_TPERR Data Cache Tag parity error Async
Mchk

Maybe

7
(39)

IC_LKERR Instruction Cache Lock error
Indicates a cache control operation or invalidation
operation invalidated one or more locked lines in the
ICache or encountered an uncorrectable lock error, or
that an ICache miss with an uncorrectable lock error
occurred. May also be set on locked line refill error.

Status —

8
(40)

DC_LKERR Data Cache Lock error
Indicates a cache control operation or invalidation
operation invalidated one or more locked lines in the
DCache or encountered an uncorrectable lock error, or
that an ICache miss with an uncorrectable lock error
occurred. May also be set on locked line refill error.

Status —

e200z759n3 Core Reference Manual, Rev. 2

488 Freescale Semiconductor

9:10
(41:42)

— Reserved, should be cleared. —

11
(43)

NMI NMI input pin NMI —

12
(44)

MAV MCAR Address Valid
Indicates that the address contained in the MCAR was
updated by hardware to correspond to the first
detected Async Mchk error condition

Status —

13
(45)

MEA MCAR holds Effective Address
If MAV=1,MEA=1 indicates that the MCAR contains an
effective address and MEA=0 indicates that the MCAR
contains a physical address

Status —

14
(46)

— Reserved, should be cleared. —

15
(47)

IF Instruction Fetch Error Report
An error occurred during the attempt to fetch an
instruction. This could be due to a parity error, or an
external bus error. MCSRR0 contains the instruction
address.

Error
Report

Precise

16
(48)

LD Load type instruction Error Report
An error occurred during the attempt to execute the
load type instruction located at the address stored in
MCSRR0. This could be due to a parity error or an
external bus error.

Error
Report

Precise

17
(49)

ST Store type instruction Error Report
An error occurred during the attempt to execute the
store type instruction located at the address stored in
MCSRR0. This could be due to a parity error, or on
certain external bus errors.

Error
Report

Precise

18
(50)

G Guarded instruction Error Report
An error occurred during the attempt to execute the
load or store type instruction located at the address
stored in MCSRR0 and the access was guarded and
encountered an error on the external bus.

Error
Report

Precise

19:25
(51:57)

— Reserved, should be cleared. —

26
(58)

SNPERR Snoop Lookup Error
An error occurred during certain snoop operations.
This is typically due to a data cache tag parity error, in
which case DC_TPERR will also be set.

Async
Mchk

Unlikely?

27
(59)

BUS_IRERR Read bus error on Instruction fetch or linefill Async
Mchk

Precise if data
used

28
(60)

BUS_DRERR Read bus error on data load or linefill Async
Mchk

Precise if data
used

Table 7-5. MCSR field descriptions (continued)

Bit Name Description
Exception

Type1 Recoverable

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 489

7.4 Interrupt Vector Prefix Registers (IVPR)
The Interrupt Vector Prefix Register is used during interrupt processing for determining the starting
address of a software handler used to handle an interrupt. The value contained in the Vector Offset field of
the IVOR selected for a particular interrupt type is concatenated with the Vector Base value held in the
Interrupt Vector Prefix register (IVPR) to form an instruction address from which execution is to begin.
The format of IVPR is shown in Figure 7-4.

The IVPR fields are defined in Table 7-6.

29
(61)

BUS_WRERR Write bus error on store or cache line push Async
Mchk

Unlikely

30:31
(62:63)

— Reserved, should be cleared. — —

1 The Exception Type indicates the exception type associated with a given syndrome bit

- “Error Report” indicates that this bit is only set for error report exceptions that cause machine check interrupts.
These bits are only updated when the machine check interrupt is actually taken. Error report exceptions are not
gated by MSRME. These are synchronous exceptions. These bits will remain set until cleared by software writing a
“1” to the bit position(s) to be cleared.

- “Status” indicates that this bit is provides additional status information regarding the logging of a machine check
exception. These bits will remain set until cleared by software writing a “1” to the bit position(s) to be cleared.

- “NMI” indicates that this bit is only set for the non-maskable interrupt type exception that causes a machine check
interrupt. This bit is only updated when the machine check interrupt is actually taken. NMI exceptions are not gated
by MSRME. This is an asynchronous exception. This bit will remain set until cleared by software writing a “1” to the
bit position.
- “Async Mchk” indicates that this bit is set for an asynchronous machine check exception. These bits are set
immediately upon detection of the error. Once any “Async Mchk” bit is set in the MCSR, a machine check interrupt
will occur if MSRME=1. If MSRME=0, the machine check exception will remain pending. These bits will remain set
until cleared by software writing a “1” to the bit position(s) to be cleared.

Vector Base 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 63; Read/Write

Figure 7-4. e200z759n3 Interrupt Vector Prefix Register (IVPR)

Table 7-5. MCSR field descriptions (continued)

Bit Name Description
Exception

Type1 Recoverable

e200z759n3 Core Reference Manual, Rev. 2

490 Freescale Semiconductor

7.5 Interrupt Vector Offset Registers (IVORxx)
The Interrupt Vector Offset Registers are used during interrupt processing for determining the starting
address of a software handler used to handle an interrupt. The value contained in the Vector Offset field of
the IVOR selected for a particular interrupt type is concatenated with the value held in the Interrupt Vector
Prefix register (IVPR) to form an instruction address from which execution is to begin. The format of a
e200z759n3 IVOR is shown in Figure 7-5.

The IVOR fields are defined in Table 7-7.

7.6 Hardware Interrupt Vector Offset Values (p_voffset[0:15])
The p_voffset[0:15] input signals provide a hardware vector offset to be used when exception processing
begins for an incoming interrupt request. These signals are sampled along with the p_extint_b and
p_critint_b interrupt request inputs, and must be driven to a valid value when either of these signals is

Table 7-6. IVPR field descriptions

Bits Name Description

0:15
(32:47)

Vec Base Vector Base
This field is used to define the base location of the vector table, aligned to a 64 KB boundary.
This field provides the high-order 16 bits of the location of all interrupt handlers. The contents
of the IVORxx register appropriate for the type of exception being processed are concatenated
with the IVPR Vector Base to form the address of the handler in memory.

16:31
(48:63)

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

0 Vector Offset 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 400-415, 528-530; Read/Write

Figure 7-5. e200z759n3 Interrupt Vector Offset Register (IVOR)

Table 7-7. IVOR field descriptions

Bits Name Description

0:15
(32:47)

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

16:27
(48:59)

Vector
Offset

Vector Offset
This field is used to provide a quadword index from the base address provided by the IVPR to
locate an interrupt handler.

28:31
(60:63)

— Reserved1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 491

asserted unless the p_avec_b signal is also asserted. If p_avec_b is asserted, these inputs are not used.
p_voffset[0:11] are used in forming the exception handler address, and p_voffset[12:15] are reserved and
should be driven low.

7.7 Interrupt definitions

7.7.1 Critical Input interrupt (IVOR0)

A Critical Input exception is signaled to the processor by the assertion of the critical interrupt pin
(p_critint_b). When e200z759n3 detects the exception, if the exception is enabled by MSRCE,
e200z759n3 takes the Critical Input interrupt. The p_critint_b input is a level-sensitive signal expected to
remain asserted until e200z759n3 acknowledges the interrupt. If p_critint_b is negated early, recognition
of the interrupt request is not guaranteed. After e200z759n3 begins execution of the critical interrupt
handler, the system can safely negate p_critint_b.

A Critical Input interrupt may be delayed by other higher priority exceptions or if MSRCE is cleared when
the exception occurs.

Table 7-8 lists register settings when a Critical Input interrupt is taken.

When the Debug APU is enabled, the MSRDE bit is not automatically cleared by a Critical Input interrupt,
but can be configured to be cleared via the HID0 register (HID0CICLRDE). Refer to Section 2.4.11,
Hardware Implementation Dependent Register 0 (HID0).

IVOR0 is the vector offset register used by autovectored Critical Input interrupts to determine the interrupt
handler location. e200z759n3 also provides the capability to directly vector Critical Input interrupts to
multiple handlers by allowing a Critical Input interrupt request to be accompanied by a vector offset. The

Table 7-8. Critical Input interrupt—register settings

Register Setting description

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME —
FE0 0
DE —/01

1 DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the
Debug APU is enabled.

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR016:27 || 4b0000 (autovectored)
IVPR0:15 || p_voffset[0:11] || 4b0000 (non-autovectored)

e200z759n3 Core Reference Manual, Rev. 2

492 Freescale Semiconductor

p_voffset[0:11] input signals are used in place of the value in IVOR0 to form the interrupt vector when a
Critical Input interrupt request is not autovectored (p_avec_b negated when p_critint_b asserted).

7.7.2 Machine Check interrupt (IVOR1)

e200z759n3 implements the Machine Check exception as defined in the Freescale EIS Machine Check
APU except for automatic clearing of the MSRDE bit (see later paragraph). This behavior is different from
the definition in PowerISA 2.06. e200z759n3 initiates a Machine Check interrupt if any of the machine
check sources listed in Table 7-2 is detected.

As defined in Freescale EIS Machine Check APU, a machine check interrupt is taken for error report and
NMI type machine check conditions even if MSRME is cleared, without the processor generating an
internal checkstop condition. Processing of asynchronous type machine check sources (the sources
reflected in the MCSR “async mchk” syndrome bits) is gated by MSRME.

The Freescale EIS Machine Check APU defines a separate set of save/restore registers (MCSRR0/1), a
Machine Check Syndrome register (MCSR) to record the source(s) of machine checks, and a Machine
Check Address register (MCAR) to hold an address associated with a machine check for certain classes of
machine checks. Return from Machine Check instructions (rfmci, se_rfmci) are also provided to support
returns using MCSRR0/1.

The MSRRI status bit is provided for software use in determining if multiple nested machine check
exceptions have occurred. Software may interrogate the MCSRR1RI bit to determine if a machine check
occurred during the initial portion of a machine check handler prior to handler code, which sets MSRRI to
‘1’ to indicate that the handler can now tolerate another machine check condition without losing state
necessary for recovery.

The MSRDE bit is not automatically cleared by a Machine Check exception, but can be configured to be
cleared or left unchanged via the HID0 register (HID0MCCLRDE). Refer to Section 2.4.11, Hardware
Implementation Dependent Register 0 (HID0).

7.7.2.1 Machine check causes

Machine check causes are divided into different types:

• Error Report Machine Check conditions

• Non-Maskable Interrupt (NMI) machine check exceptions

• Asynchronous machine check exceptions

This division is intended to facilitate machine check handling in uni-processor, multiprocessor and
multi-threaded systems. Although the initial implementation of the e200z759n3 does not implement
multithreading, future versions are expected to, and the machine check model will remain compatible. In
addition, the model is equally applicable to a single-threaded design.

7.7.2.1.1 Error report machine check exceptions

Error report machine check exceptions are directly associated with the current instruction execution
stream, and are presented to the interrupt mechanism in a manner analogous to an Instruction storage or
data storage interrupt. Since the execution stream cannot continue execution without suffering from

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 493

corruption of architectural state, these exceptions are not masked by MSRME. Error report machine check
exceptions are not necessarily recoverable if they occur during the initial portion of a machine check
handler. The MSRRI and MCSRR1RI bits are provided to assist software in determining recoverability.

For error report machine check exceptions, the MCSR (Machine Check Status Register) is updated only
when the machine check interrupt is actually taken. The MCAR is not updated for error report machine
check exceptions.

Error report machine check exceptions encountered by program execution can be flushed if an older
exception exists or if an asynchronous interrupt or machine check is taken before the instruction that
encountered the error becomes the oldest instruction in the machine. In this case the corresponding MCSR
bit will not be set due to the flushed exception condition (although the corresponding bit may have already
been set by a previous instruction’s exception). Note that an async machine check condition may occur for
the same error condition prior to the error report machine check, and the error report machine check may
be discarded.

Depending on the type of error, the MCSR IF, LD, G, or ST bit(s) will be set by hardware to reflect the
error being reported. Software is responsible for clearing these syndrome bits by writing a ‘1’ to the bit(s)
to be cleared. Hardware will not clear an error report bit once it is set.

— MCSRIF will be set if the error occurred during an instruction fetch.

— MCSRLD will be set if the error occurred for a load instruction. If the error occurred for a
guarded load and the error source was from the external bus, MCSRG will also be set.

— MCSRST will be set if the error occurred in the data cache (parity) or MMU (DTLB Error or
DSI) for a store type instruction (including dcbz), if an external termination error was received
on a cache-inhibited guarded store or on a store conditional instruction, or if an unsuccessful
flush with invalidation occurs on a store conditional instruction due to a tag or data parity error
or external bus error. If an external termination error occurred on a cache-inhibited guarded
store, or on a guarded store conditional, MCSRG will also be set.

Note that most (if not all) error report machine check exceptions will be accompanied by an associated
asynchronous machine check exception on a single-threaded e200z759n3, although this will not generally
be the case for a multi-threaded version.

e200z759n3 Core Reference Manual, Rev. 2

494 Freescale Semiconductor

Table 7-9. Error report machine check exceptions

Synchronous machine
check source

Error type MCSR updates Precise1

Instruction Fetch (ICache tag array parity error or data array
parity error) & L1CSR1ICEA=’00’

 IF yes

(ICache uncorrectable tag array parity error
& L1CSR1ICEA=’01’ & line potentially
locked (locked or lock parity error) was
invalidated

 IF yes

cacheable miss & L1CSR1ICEA=’00’ & any
line with lock parity error

 IF yes

cacheable miss & L1CSR1ICEA=’01’ & and
line with uncorrectable lock parity error was
invalidated

 IF yes

External termination error IF yes

Load instruction (DCache tag array parity error or data array
parity error) & L1CSR0DCEA=‘00’

 LD yes

(DCache uncorrectable tag array parity
error or data array parity error) &
L1CSR0DCEA=‘01’ & (line potentially locked
(locked or lock parity error) was invalidated,
or line potentially dirty (dirty or dirty parity
error))

 LD yes

cacheable miss & L1CSR0DCEA=’00’ & any
line with lock parity error, or dirty parity
error on replacement line

LD yes

cacheable miss & L1CSR0DCEA=’01’ & line
with uncorrectable lock parity error was
invalidated

 LD yes

External termination error on load data LD, [G]2 yes

Load and reserve instruction DCache tag array parity error &
L1CSR0DCEA=‘00’

 LD yes

DCache hit and dirty parity error &
L1CSR0DCEA=‘00’

 LD yes

(DCache uncorrectable tag array parity
error or data array parity error) &
L1CSR0DCEA=‘01’ & line potentially dirty
(dirty or dirty parity error)

 LD yes

DCache data push parity error3 LD yes

External termination error on dirty push3 LD yes

External termination error on load LD, [G]2 yes

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 495

Store instruction DCache tag array parity error &
L1CSR0DCEA=‘00’

 ST yes

DCache uncorrectable tag array parity error
& L1CSR0DCEA=‘01’ & (line potentially
locked (locked or lock parity error) was
invalidated, or line potentially dirty (dirty or
dirty parity error))

 ST yes

cacheable miss & L1CSR0DCEA=’00’ & any
line with lock parity error, or dirty parity
error on replacement line

 ST yes

cacheable miss & L1CSR0DCEA=’01’ & line
with uncorrectable lock parity error was
invalidated

 ST yes

External termination error on CI+G store4 ST, G yes

Store conditional instruction DCache tag array parity error &
L1CSR0DCEA=‘00’

ST yes

DCache hit and dirty parity error &
L1CSR0DCEA=‘00’

 ST yes

DCache uncorrectable tag array parity error
& L1CSR0DCEA=‘01’ & line potentially dirty
(dirty or dirty parity error)

 ST yes

DCache data push parity error5 ST yes

External termination error on dirty push5 ST yes

External termination error on store
conditional

ST, [G]6 yes

dcbst instruction DCache tag array parity error & miss &
L1CSR0DCEA=‘00’ & any line with error is
potentially dirty (dirty or dirty parity error)

 LD yes

DCache uncorrectable tag array parity error
& cacheable miss & L1CSR0DCEA=‘01’ &
line potentially dirty (dirty or dirty parity
error)

 LD yes

dcbf instruction DCache tag array parity error & miss &
L1CSR0DCEA=‘00’ & (line potentially locked
(locked or lock parity error) or line
potentially dirty (dirty or dirty parity error))

 LD yes

DCache uncorrectable tag array parity error
& miss & L1CSR0DCEA=‘01’ & (line
potentially locked (locked or lock parity
error) or line potentially dirty (dirty or dirty
parity error))

 LD yes

Table 7-9. Error report machine check exceptions (continued)

Synchronous machine
check source

Error type MCSR updates Precise1

e200z759n3 Core Reference Manual, Rev. 2

496 Freescale Semiconductor

dcblc instruction DCache tag array parity error & cacheable
miss & L1CSR0DCEA=‘00’ & line potentially
locked (locked or lock parity error)

 LD yes

DCache uncorrectable tag array parity error
& cacheable miss & L1CSR0DCEA=‘01’ &
line potentially locked (locked or lock parity
error)

 LD yes

dcbtls, dcbtstls instruction (DCache tag array parity error or lock error)
& miss & L1CSR0DCEA=‘00’

 LD yes

DCache uncorrectable tag array parity error
& cacheable miss & L1CSR0DCEA=‘01’ &
(line potentially locked (locked or lock parity
error) was invalidated, or line potentially
dirty (dirty or dirty parity error))

 LD yes

cacheable miss & L1CSR0DCEA=’00’ & any
line with lock parity error, or dirty parity
error on replacement line

LD yes

cacheable miss & L1CSR0DCEA=’01’ & line
with uncorrectable lock parity error was
invalidated

 LD yes

External termination error on linefill LD, [G]2 yes

dcbz instruction7 (DCache tag array parity error or lock error)
& cacheable miss & L1CSR0DCEA=‘00’

ST yes

DCache uncorrectable tag array parity error
& cacheable miss & L1CSR0DCEA=‘01’ &
(line potentially locked (locked or lock parity
error) was invalidated, or line potentially
dirty (dirty or dirty parity error))

 ST yes

cacheable miss & L1CSR0DCEA=’00’ & any
line with lock parity error, or dirty parity
error on replacement line

ST yes

dcbz instruction7 cacheable miss & L1CSR0DCEA=’01’ & line
with uncorrectable lock parity error was
invalidated

 ST yes

L1FINV0 flush or flush with
invalidate operation

DCache tag parity error &
L1CSR0DCEA=‘00’and line potentially dirty
(dirty or dirty parity error)

LD yes

DCache uncorrectable tag parity error &
L1CSR0DCEA=‘01’and line potentially dirty
(dirty or dirty parity error)

Table 7-9. Error report machine check exceptions (continued)

Synchronous machine
check source

Error type MCSR updates Precise1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 497

7.7.2.1.2 Non-maskable interrupt machine check exceptions

Non-maskable interrupt exceptions are reported via the p_nmi_b input pin, which is transition sensitive.
NMI exceptions are not gated by MSRME, thus are not necessarily recoverable if an NMI exception occurs
during the initial part of a machine check exception handler. The MSRRI and MCSRR1RI bits are provide
to assist software in determining recoverability.

For NMI machine check exceptions, MCSRNMI is updated (set) only when the machine check interrupt is
actually taken. Hardware does not clear the MCSRNMI syndrome bit. Software is responsible for clearing
this syndrome bit by writing a ‘1’ to the bit(s) to be cleared. Hardware will not clear an NMI bit once it is
set.

The MCAR is not updated for NMI machine check exceptions.

7.7.2.1.3 Asynchronous machine check exceptions

The remainder of machine check exceptions are classified as asynchronous machine check exceptions, as
they are reported directly by the subsystem or resource that detected the condition. For many cases, the
asynchronous condition will be reported simultaneously with a corresponding error report condition.
These conditions are reported by immediately setting the corresponding MCSR “async mchk” syndrome

icblc instruction ICache tag array parity error & cacheable
miss & L1CSR1ICEA=‘00’ & line potentially
locked (locked or lock parity error)

 IF yes

ICache uncorrectable tag array parity error
& cacheable miss & L1CSR1ICEA=‘01’ &
line potentially locked (locked or lock parity
error) was invalidated

IF yes

icbtls instruction (ICache tag array parity error or lock error)
& cacheable miss & L1CSR1ICEA=‘00’

 IF yes

ICache uncorrectable tag array parity error
& cacheable miss & L1CSR1ICEA=‘01’ &
line potentially locked (locked or lock parity
error) was invalidated

 IF yes

External termination error on linefill IF yes

Exception vectoring
ISI, ITLB, or Bus Error on first instruction
fetch for an exception handler

IF yes

1 MCSRR0 will point to the instruction associated with the machine check condition
2 G will be set if the load was a guarded load.
3 Can only occur if the load and reserve causes a dirty line to be flushed
4 Only reported if the store was a cache-inhibited guarded store
5 Can only occur if the store conditional causes a dirty line to be flushed
6 Only reported if the store was a guarded store.
7 Alignment error may be generated concurrently

Table 7-9. Error report machine check exceptions (continued)

Synchronous machine
check source

Error type MCSR updates Precise1

e200z759n3 Core Reference Manual, Rev. 2

498 Freescale Semiconductor

bit, regardless of the state of MSRME. Interrupts due to asynchronous machine check exceptions are gated
by MSRME. If MSRME=0 at the time an async mchk bit becomes set, the interrupt will be postponed until
MSRME is later set to ‘1’ (although a machine check interrupt may occur at the time of the event due to an
error report exception). Asynchronous events are cumulative; hardware does not clear an async mchk
syndrome bit. Software is responsible for clearing these syndrome bits by writing a ‘1’ to the bit(s) to be
cleared. Hardware will not clear an async mchk bit once it is set.

If MCSRMAV is cleared at the time an asynchronous machine check exception occurs that has a
corresponding address (either an effective or real address) to log in the MCAR, then the MCAR and the
MCSRMEA bit are updated, and the MCSRMAV bit is set. If MCSRMAV was previously set, then the MCAR
and the MCSRMEA bit are not affected.

Table 7-10 details all asynchronous machine check sources.

Table 7-10. Asynchronous machine check exceptions

Asynchronous
machine check source

Transaction
source

Error type
MCSR update1

MCAR
update2

External n/a Machine Check Input Pin3 MCP none

Instruction Cache Instruction
Fetch

Tag array parity error &
L1CSR1ICEA=00

MAV IC_TPERR RA

ICache hit, data array
parity error &
L1CSR1ICEA=00

IC_DPERR RA

ICache cacheable miss,
lock error, &
L1CSR1ICEA=00

IC_TPERR,
IC_LKERR

RA

L1CSR1ICEA=01 &
auto-invalidation of locked
or potentially locked line
due to uncorrectable tag
parity error

IC_TPERR,
IC_LKERR

RA

icblc Tag array parity error &
cacheable miss &
L1CSR1ICEA=00 & line
potentially locked (locked
or lock parity error)

IC_TPERR,
[IC_LKERR (if
lock parity error)]

RA

icbtls (Tag array parity error or
lock error) & cacheable
miss & L1CSR1ICEA=00

IC_TPERR,
[IC_LKERR (if
lock parity error)]

RA

icblc
icbtls

L1CSR1ICEA=01 &
Auto-invalidation of locked
line due to uncorrectable
tag parity error

IC_TPERR,
IC_LKERR

RA

Data Cache dcblc Tag array parity error &
cacheable miss &
L1CSR0DCEA=00 & line
potentially locked (lock or
lock parity error)

MAV DC_TPERR,
[DC_LKERR (if
lock parity error)]

RA

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 499

Data Cache load or store Tag array parity error &
L1CSR0DCEA=00

MAV DC_TPERR,
[DC_LKERR (if
lock parity error
on line with tag
parity error)]

RA

L1FINV0
flush or flush
w/inv & line

dirty or
potentially

dirty

Tag array parity error &
L1CSR0DCEA=00

DC_TPERR RA

dcbtls
dcbtstls

dcbz

Tag array parity error &
cacheable miss &
L1CSR0DCEA=00

DC_TPERR RA

dcbf Tag array parity error &
miss & L1CSR0DCEA=00 &
(line potentially locked
(locked or lock parity error)
or line potentially dirty
(dirty or dirty parity error))

DC_TPERR,
[DC_LKERR (if
lock parity error)]

RA

atomic load
or store

Hit & L1CSR0DCEA=00 &
line has dirty parity error

DC_TPERR RA

dcbst,
atomic load

or store

Tag array parity error &
miss & L1CSR0DCEA=00 &
line potentially dirty (dirty
or dirty parity error)

DC_TPERR,
[DC_LKERR (if
lock parity error)]

RA

load or store
dcbtls

dcbtstls
dcbz

DCache cacheable miss &
L1CSR0DCEA=‘00’ & lock
parity error

DC_TPERR,
DC_LKERR

RA

load or store
dcbtls

dcbtstls
dcbz

DCache cacheable miss &
L1CSR0DCEA=‘00’ & dirty
parity error on line to be
replaced

DC_TPERR RA

load or store
dcbtls

dcbtstls
dcbz

DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & (line
potentially locked (locked
or lock parity error) was
invalidated, or line
potentially dirty (dirty or
dirty parity error))

DC_TPERR,
[DC_LKERR]

RA

Table 7-10. Asynchronous machine check exceptions (continued)

Asynchronous
machine check source

Transaction
source

Error type
MCSR update1

MCAR
update2

e200z759n3 Core Reference Manual, Rev. 2

500 Freescale Semiconductor

Data Cache L1FINV0
flush w/inv

DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & line
potentially dirty (dirty or
dirty parity error))

MAV DC_TPERR RA

dcblc DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & (line
potentially locked (locked
or lock parity error) was
invalidated

DC_TPERR,
[DC_LKERR]

RA

dcbst,
atomic load

or store

DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & line
potentially dirty (dirty or
dirty parity error)

DC_TPERR,
[DC_LKERR (if
uncorrectable
lock parity error)]

RA

dcbf DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & (line
potentially locked (locked
or lock parity error) or line
potentially dirty (dirty or
dirty parity error))

DC_TPERR,
[DC_LKERR (if
uncorrectable
lock parity error)]

RA

L1FINV0
flush

DCache uncorrectable tag
array parity error &
L1CSR0DCEA=‘01’ & line
potentially dirty (dirty or
dirty parity error)

DC_TPERR RA

load DCache hit, data array
parity error &
L1CSR0DCEA=00

DC_DPERR RA

DCache hit, data array
parity error &
L1CSR0DCEA=‘01’ & line
potentially dirty (dirty or
dirty parity error)

DC_DPERR RA

replacement
push

dcbf push
dcbst push
L1FINV0

push

reservation
instruction

forced-push

Data array push parity
error

CP_PERR RA

Table 7-10. Asynchronous machine check exceptions (continued)

Asynchronous
machine check source

Transaction
source

Error type
MCSR update1

MCAR
update2

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 501

Table 7-11details the priority of asynchronous machine check updates to the MCAR when multiple
simultaneous async machine check conditions occur. Note that since a lower priority condition may occur

Data Cache snoop
lookup

Tag array parity error &
(cacheable miss, or hit only
to way with tag parity error)

MAV DC_TPERR,
SNPERR

RA
(snoop

address)

BIU store or
push

Bus error on write or push MAV BUS_WRERR RA

load
store/w alloc

ate dcbtls
dcbtstls

Bus error on load fetch or
linefill

BUS_DRERR RA

load Bus error on error recovery
refill

BUS_DRERR RA

instruction
fetch

Bus error on error recovery
refill

BUS_IRERR RA

icbtls
CI or cache

disabled
Ifetch

Bus error on icbtls fill
Bus error on CI Ifetch
Bus error on cache
disabled Ifetch

BUS_IRERR RA

load Bus error on locked line
error recovery refill

BUS_DRERR,
DC_LKERR

RA

instruction
fetch

Bus error on locked line
error recovery refill

BUS_IRERR,
IC_LKERR

RA

Snoop Lookup INV snoop
command

type

Tag array parity error &
(miss, or hit only to way
with tag parity error)

 MAV SNPERR,
DC_TPERR

RA4

Exception Vectoring first
instruction
fetch for an
exception
handler

ISI or Bus Error on first
instruction fetch for an
exception handler

MAV EXCP_ERR RA

first
instruction
fetch for an
exception
handler

ITLB Error on first
instruction fetch for an
exception handler

MAV EXCP_ERR EA

1 The MCSR update column indicates which bits in the MCSR will be updated when the exception is logged.
2 The MCAR update column indicates whether or not the error will provide either a real address (RA), effective

address (EA), or no address (none) that is associated with the error.
3 The machine check input pin is used by the platform logic to indicate machine check type errors that are detected

by the platform. Software must query error logging information within the platform logic to determine the specific
error condition and source.

4 The RA stored in the MCAR for this case will be Snoop Address value, with the index bits set to 0.

Table 7-10. Asynchronous machine check exceptions (continued)

Asynchronous
machine check source

Transaction
source

Error type
MCSR update1

MCAR
update2

e200z759n3 Core Reference Manual, Rev. 2

502 Freescale Semiconductor

and then a higher priority condition may subsequently occur prior to the machine check interrupt handler
reading the MCSR and MCAR, the interrupt handler may not necessarily see the higher priority MCAR
value, even though multiple MCSR bits are set.

Table 7-11. Asynchronous machine check MCAR update priority

Priority
(0 — highest)

Asynchronous
machine check

source
Transaction source Error type (MCSR update)

0 Exception
Vectoring

first instruction fetch
for an exception
handler

ISI or Bus Error on first
instruction fetch for an
exception handler

EXCP_ERR

first instruction fetch
for an exception
handler

ITLB Error on first instruction
fetch for an exception
handler

EXCP_ERR

1 Data Cache replacement push
dcbf push
dcbst push
L1FINV0 push
reservation-type
instruction forced
push

Dirty push parity error CP_PERR

2 BIU store or push Bus error on write or push BUS_WRERR

3 Data Cache load or store
dcblc
dcbtls
dcbtstls
dcbz

Uncorrectable tag array
parity error &
L1CSR0DCEA=01 & locked
line invalidated

DC_TPERR,
DC_LKERR

4 Instruction Cache icblc
icbtls
instruction fetch

Uncorrectable tag array
parity error &
L1CSR1ICEA=01 & locked
line invalidated

IC_TPERR,
IC_LKERR

5 BIU load Bus error on locked line error
recovery refill

BUS_DRERR,
DC_LKERR

6 BIU instruction fetch Bus error on locked line error
recovery refill

BUS_IRERR,
IC_LKERR

7 Data Cache load or store
dcbf
dcbtls
dcbtstls
dcbz
L1FINV0 flush or flush
w/inv & line dirty

Tag array parity error &
L1CSR0DCEA=00

DC_TPERR

Uncorrectable tag array
parity error &
L1CSR0DCEA=01 & line dirty
or potentially dirty

7 Data Cache load or store
dcbtls
dcbtstls
dcbz

Cacheable miss &
L1CSR0DCEA=‘00’ & dirty
parity error on line to be
replaced

DC_TPERR

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 503

7 Data Cache load or store
dcbtls
dcbtstls
dcbz

Cacheable miss &
L1CSR0DCEA=00 & lock
parity error

DC_TPERR,
DC_LKERR

Cacheable miss &
L1CSR0DCEA=01 &
uncorrectable lock parity
error

8 Data Cache dcbst Tag array parity error &
L1CSR0DCEA=00 & line
potentially dirty (dirty or dirty
parity error)

DC_TPERR,
[DC_LKERR (if

lock parity error)]

Uncorrectable tag array
parity error &
L1CSR0DCEA=01 & line
potentially dirty (dirty or dirty
parity error)

DC_TPERR,
[DC_LKERR (if

uncorrectable lock
parity error)]

9 Data Cache dcblc Tag array parity error &
L1CSR0DCEA=00 & line
potentially locked (locked or
lock parity error)

DC_TPERR,
[DC_LKERR (if

lock parity error)]

Uncorrectable tag array
parity error &
L1CSR0DCEA=01 & line
potentially locked (locked or
lock parity error)

DC_TPERR,
[DC_LKERR (if

uncorrectable lock
parity error)]

10 Data Cache load Data array parity error &
L1CSR0DCEA=00

DC_DPERR

Data array parity error & line
dirty or potentially dirty &
L1CSR0DCEA=01

11 Instruction Cache icblc Tag array parity error &
L1CSR1ICEA=00 & line
locked or lock parity error

IC_TPERR,
[IC_LKERR]

icbtls Tag array parity error &
L1CSR1ICEA=00

IC_TPERR

Cacheable miss &
L1CSR1ICEA=00 & lock
parity error

IC_TPERR,
IC_LKERR

Cacheable miss &
L1CSR1ICEA=01 &
uncorrectable lock parity
error

Table 7-11. Asynchronous machine check MCAR update priority (continued)

Priority
(0 — highest)

Asynchronous
machine check

source
Transaction source Error type (MCSR update)

e200z759n3 Core Reference Manual, Rev. 2

504 Freescale Semiconductor

7.7.2.2 Machine check interrupt actions

Machine Check interrupts for “error report” conditions and NMI are enabled and taken regardless of the
state of MSRME. Machine check interrupts due to an “async mchk” syndrome bit being set in MCSR are
only taken when MSRME =1. When a Machine Check interrupt is taken, registers are updated as shown in
Table 7-12.

12 BIU load store/w allocate
dcbtls
dcbtstls

Bus error on load or linefill or
data refill

BUS_DRERR

13 BIU icbtls

CI or cache disabled
Ifetch

Bus error on linefill or data
refill
Bus error on CI Ifetch
Bus error on cache disabled
Ifetch

BUS_IRERR

14 Data Cache snoop lookup Tag parity error & (miss, or
hit only to way with tag parity
error)

DC_TPERR,
SNPERR

15 Instruction Cache Instruction Fetch Tag array parity error &
L1CSR1ICEA=00

IC_TPERR

16 Instruction Cache Data array parity error &
L1CSR1ICEA=00

IC_DPERR

17 Instruction Cache Instruction Fetch Cacheable miss &
L1CSR1ICEA=00 & lock
parity error

IC_TPERR,
IC_LKERR

Cacheable miss &
L1CSR1ICEA=01 &
uncorrectable lock parity
error

Table 7-12. Machine check interrupt — register settings

Register Setting description

MCSRR0 On a best-effort basis e200z759n3 sets this to the address of some instruction that was executing or
about to be executing when the machine check condition occurred.

MCSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME 0
FE0 0
DE 0/—1

FE1 0
IS 0
DS 0
PMM 0
RI 0

Table 7-11. Asynchronous machine check MCAR update priority (continued)

Priority
(0 — highest)

Asynchronous
machine check

source
Transaction source Error type (MCSR update)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 505

The Machine Check Syndrome register is provided to identify the source(s) of a machine check, and in
conjunction with MCSRR1RI, may be used to identify recoverable events.

The MSRRI status bit is provided for software use in determining if multiple nested machine check
exceptions have occurred. Software may interrogate the MCSRR1RI bit to determine if a machine check
occurred during the initial portion of a machine check handler prior to handler code that sets MSRRI to ‘1’
to indicate that the handler can now tolerate another machine check condition without losing state
necessary for recovery. The interrupt handler should set MSRRI as soon as possible after saving off
working registers and MCSRR0,1 to avoid loss of state if another machine check condition were to occur.

The Machine Check input pin p_mcp_b can be masked by HID0EMCP.

The Non-Maskable Interrupt machine check input pin p_nmi_b is never masked.

Precise external termination errors occur when a load or cache-inhibited or guarded store is terminated by
assertion of p_tea_b (external bus ERROR termination response); these result in both an “error report”
and an “async mchk” machine check exception.

Some machine check exceptions are unrecoverable in the sense that execution cannot resume in the
context that existed before the interrupt; however, system software can use the machine check interrupt
handler to try to identify and recover from the machine check condition.

7.7.2.3 Checkstop state

Machine checks no longer result in a checkstop and there is no checkstop state implemented on Zen z7.

7.7.3 Data Storage interrupt (IVOR2)

A Data Storage interrupt (DSI) may occur if no higher priority exception exists and one of the following
exception conditions exists:

• Read or Write Access Control exception condition

• Byte Ordering exception condition

• Cache Locking exception condition

Access control is defined as in PowerISA 2.06. A Byte Ordering exception condition occurs for any
misaligned access across a page boundary to pages with mismatched E bits. Cache locking exception

ESR Unchanged

MCSR Updated to reflect the source(s) of a machine check. Hardware only sets appropriate bits, no previously
set bits are cleared by hardware.

MCAR See Table 7-10

Vector IVPR0:15 || IVOR116:27 || 4b0000

1 DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the
Debug APU is enabled.

Table 7-12. Machine check interrupt — register settings (continued)

Register Setting description

e200z759n3 Core Reference Manual, Rev. 2

506 Freescale Semiconductor

conditions occur for any attempt to execute a dcbtls, dcbtstls, dcblc, icbtls, or icblc in user mode with
MSRUCLE = 0.

Table 7-13 lists register settings when a DSI is taken.

7.7.4 Instruction Storage interrupt (IVOR3)

An Instruction Storage interrupt (ISI) occurs when no higher priority exception exists and an Execute
Access Control exception occurs. This interrupt is implemented as defined by PowerISA 2.06.,with the
addition of Misaligned Instruction Fetch exceptions, and the extension of the Byte Ordering exception
status to also cover Mismatched Instruction Storage exceptions.

Exception extensions implemented in e200z759n3 for PowerISA VLE involve extending the definition of
the Instruction Storage Interrupt to include Byte Ordering exceptions for instruction accesses, and
Misaligned Instruction Fetch exceptions, and corresponding updates to the ESR as shown in Table 7-14
and Table 7-15.

Table 7-15 lists register settings when an ISI is taken.

Table 7-13. Data Storage Interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Access:
Byte ordering:
Cache locking:

[ST], [SPE], [VLEMI]. All other bits cleared.
[ST], [SPE], [VLEMI], BO. All other bits cleared.
(DLK, ILK), [VLEMI], [ST]. All other bits cleared.

MCSR Unchanged

DEAR For Access and Byte ordering exceptions, set to the effective address of a byte within the page whose
access caused the violation. Undefined on Cache locking exceptions (Zen does not update the DEAR
on a cache locking exception)

Vector IVPR0:15 || IVOR216:27 || 4b0000

Table 7-14. ISI exceptions and conditions

Interrupt type
Interrupt vector
offset register

Causing conditions

Instruction Storage IVOR 3 • Access control.
 • Byte ordering due to misaligned instruction across page boundary to

pages with mismatched VLE bits, or access to page with VLE set, and
E indicating little-endian.

 • Misaligned Instruction fetch due to a change of flow to an odd halfword
instruction boundary on a BookE (non-VLE) instruction page

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 507

7.7.5 External Input interrupt (IVOR4)

An External Input exception is signaled to the processor by the assertion of the external interrupt pin
(p_extint_b). The p_extint_b input is a level-sensitive signal expected to remain asserted until
e200z759n3 acknowledges the external interrupt. If p_extint_b is negated early, recognition of the
interrupt request is not guaranteed. When e200z759n3 detects the exception, if the exception is enabled by
MSREE, e200z759n3 takes the External Input interrupt.

An External Input interrupt may be delayed by other higher priority exceptions or if MSREE is cleared
when the exception occurs.

Table 7-16 lists register settings when an External Input interrupt is taken.

Table 7-15. Instruction storage interrupt—register settings

Register Setting Description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR [BO, MIF, VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR316:27 || 4b0000

Table 7-16. External Input interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR416:27 || 4b0000
IVPR0:15 || p_voffset[0:11] || 4b0000 (non-autovectored)

e200z759n3 Core Reference Manual, Rev. 2

508 Freescale Semiconductor

IVOR4 is the vector offset register used by autovectored External Input interrupts to determine the
interrupt handler location. e200z759n3 also provides the capability to directly vector External Input
interrupts to multiple handlers by allowing a External Input interrupt request to be accompanied by a
vector offset. The p_voffset[0:11] input signals are used in place of the value in IVOR4 when a External
Input interrupt request is not autovectored (p_avec_b negated when p_extint_b asserted).

7.7.6 Alignment interrupt (IVOR5)

e200z759n3 implements the Alignment interrupt as defined by PowerISA 2.06. An Alignment exception
is generated when any of the following occurs:

• The operand of lmw or stmw not word aligned.

• The operand of lwarx or stwcx. not word aligned.

• The operand of lharx or sthcx. not halfword aligned.

• Execution of a dcbz instruction is attempted with a disabled cache.

• Execution of a dcbz instruction with an enabled cache and W or I =1.

• Execution of a SPE APU load or store instruction that is not properly aligned.

Table 7-17 lists register settings when an alignment interrupt is taken.

7.7.7 Program interrupt (IVOR6)

e200z759n3 implements the Program interrupt as defined by PowerISA 2.06. A program interrupt occurs
when no higher priority exception exists and one or more of the following exception conditions defined in
PowerISA 2.06 occur:

• Illegal Instruction exception

• Privileged Instruction exception

• Trap exception

Table 7-17. Alignment interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR [ST], [SPE], [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPR0:15 || IVOR516:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 509

• Unimplemented Operation exception

e200z759n3 will invoke an Illegal Instruction program exception on attempted execution of the following
instructions:

• Unimplemented instructions

• Instruction from the illegal instruction class

• mtspr and mfspr instructions with an undefined SPR specified

• mtdcr and mfdcr instructions with an undefined DCR specified

e200z759n3 will invoke a Privileged Instruction program exception on attempted execution of the
following instructions when MSRPR=1 (user mode):

• A privileged instruction

• mtspr and mfspr instructions that specify a SPRN value with SPRN5=1 (even if the SPR is
undefined).

e200z759n3 will invoke an Trap exception on execution of the tw and twi instructions if the trap
conditions are met and the exception is not also enabled as a Debug interrupt.

e200z759n3 will invoke an Illegal instruction program exception on attempted execution of the
instructions lswi, lswx, stswi, stswx, mfapidi, mfdcrx, mtdcrx, or on any PowerISA 2.06 floating point
instruction when MSRFP=1. All other defined or allocated instructions that are not implemented by
e200z759n3 will cause a illegal instruction program exception.

Table 7-18 lists register settings when a Program interrupt is taken.

7.7.8 Floating-Point Unavailable interrupt (IVOR7)

The Floating-point Unavailable exception is not used by e200z759n3.

Table 7-18. Program interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Illegal:
Privileged:
Trap:

PIL, [VLEMI]. All other bits cleared.
PPR, [VLEMI]. All other bits cleared.
PTR, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR616:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

510 Freescale Semiconductor

7.7.9 System Call interrupt (IVOR8)

A System Call interrupt occurs when a System Call (sc, se_sc) instruction is executed and no higher
priority exception exists.

Exception extensions implemented in e200z759n3 for PowerISA VLE include modification of the System
Call Interrupt definition to include updating the ESR.

Table 7-19 lists register settings when a System Call interrupt is taken.

7.7.10 Auxiliary Processor Unavailable interrupt (IVOR9)

An Auxiliary Processor Unavailable exception is defined by PowerISA 2.06 to occur when an attempt is
made to execute an APU instruction that is implemented but configured as unavailable, and no higher
priority exception condition exists.

e200z759n3 does not utilize this interrupt.

7.7.11 Decrementer interrupt (IVOR10)

e200z759n3 implements the Decrementer exception as described in Chapter 8, “Timer Facilities”
beginning on page 181 in Book E: Enhanced PowerPCtm Architecture v0.99. A Decrementer interrupt
occurs when no higher priority exception exists, a Decrementer exception condition exists (TSRDIS=1),
and the interrupt is enabled (both TCRDIE and MSREE=1).

The Timer Status Register (TSR) holds the Decrementer interrupt bit set by the Timer facility when an
exception is detected. Software must clear this bit in the interrupt handler to avoid repeated Decrementer
interrupts.

Table 7-20 lists register settings when a Decrementer interrupt is taken.

Table 7-19. System Call interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the instruction following the sc instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR [VLEMI] All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR816:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 511

7.7.12 Fixed-Interval Timer interrupt (IVOR11)

e200z759n3 implements the Fixed-Interval Timer (FIT) exception as described in Chapter 8, “Timer
Facilities” beginning on page 181 in Book E: Enhanced PowerPCtm Architecture v0.99. The triggering of
the exception is caused by selected bits in the Time Base register changing from 0 to 1.

A Fixed-Interval Timer interrupt occurs when no higher priority exception exists, a FIT exception exists
(TSRFIS=1), and the interrupt is enabled (both TCRFIE and MSREE=1).

The Timer Status Register (TSR) holds the FIT interrupt bit set by the Timer facility when an exception is
detected. Software must clear this bit in the interrupt handler to avoid repeated FIT interrupts.

Table 7-21 lists register settings when a FIT interrupt is taken.

Table 7-20. Decrementer interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR1016:27 || 4b0000

Table 7-21. Fixed-Interval Timer interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

e200z759n3 Core Reference Manual, Rev. 2

512 Freescale Semiconductor

7.7.13 Watchdog Timer interrupt (IVOR12)

e200z759n3 implements the Watchdog Timer (WDT) exception as described in Chapter 8, “Timer
Facilities” beginning on page 181 in Book E: Enhanced PowerPCtm Architecture v0.99. The triggering of
the exception is caused by the first enabled watchdog time-out.

A Watchdog Timer interrupt occurs when no higher priority exception exists, a Watchdog Timer exception
exists (TSRWIS=1), and the interrupt is enabled (both TCRWIE and MSRCE=1).

The Timer Status Register (TSR) holds the Watchdog interrupt bit set by the Timer facility when an
exception is detected. Software must clear this bit in the interrupt handler to avoid repeated Watchdog
interrupts.

Table 7-22 lists register settings when a Watchdog Timer interrupt is taken.

The MSRDE bit is not automatically cleared by a Watchdog Timer interrupt, but can be configured to be
cleared via the HID0 register (HID0CICLRDE). Refer to Section 2.4.11, Hardware Implementation
Dependent Register 0 (HID0).

7.7.14 Data TLB Error interrupt (IVOR13)

A Data TLB Error interrupt occurs when no higher priority exception exists and a Data TLB Error
exception exists due to a data translation lookup miss in the TLB.

DEAR Unchanged

Vector IVPR0:15 || IVOR1116:27 || 4b0000

Table 7-22. Watchdog Timer interrupt—register settings

Register Setting description

CSRR0 Set to the effective address of the instruction that the processor would have attempted to execute next
if no exception conditions were present.

CSRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME —
FE0 0
DE 0/—1

1 DE is cleared when the Debug APU is disabled. Clearing of DE is optionally supported by control in HID0 when the
Debug APU is enabled.

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR1216:27 || 4b0000

Table 7-21. Fixed-Interval Timer interrupt—register settings (continued)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 513

Table 7-23 lists register settings when a DTLB interrupt is taken.

7.7.15 Instruction TLB Error interrupt (IVOR14)

A Instruction TLB Error interrupt occurs when no higher priority exception exists and an Instruction TLB
Error exception exists due to an instruction translation lookup miss in the TLB.

Exception extensions implemented in e200z759n3 for PowerISA VLE involve extending the definition of
the Instruction TLB Error Interrupt to include updating the ESR.

Table 7-24 lists register settings when an ITLB interrupt is taken.

Table 7-23. Data TLB Error interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting load/store instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR [ST], [SPE], [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Set to the effective address of a byte of the load or store whose access caused the violation.

Vector IVPR0:15 || IVOR1316:27 || 4b0000

Table 7-24. Instruction TLB Error interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR [MIF] All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR1416:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

514 Freescale Semiconductor

7.7.16 Debug interrupt (IVOR15)

e200z759n3 implements the Debug Interrupt as defined in PowerISA 2.06 with the following changes:

• When the Debug APU is enabled, Debug is no longer a critical interrupt, but uses DSRR0 and
DSRR1 for saving machine state on context switch

• A Return from debug interrupt instruction (rfdi or se_rfdi) is implemented to support the new
machine state registers

• A Critical Interrupt Taken debug event is defined to allow critical interrupts to generate a debug
event

• A Critical Return debug event is defined to allow debug events to be generated for rfci and se_rfci
instructions

There are multiple sources that can signal a Debug exception. A Debug interrupt occurs when no higher
priority exception exists, a Debug exception exists in the Debug Status Register, and Debug interrupts are
enabled (both DBCR0IDM=1 (internal debug mode) and MSRDE=1). Enabling debug events and other
debug modes are discussed further in Chapter 12, Debug Support. With the Debug APU enabled, (See
Section 2.4.11, Hardware Implementation Dependent Register 0 (HID0)) the Debug interrupt has its own
set of machine state save/restore registers (DSRR0, DSRR1) to allow debugging of both critical and
non-critical interrupt handlers. In addition, the capability is provided to allow interrupts to be handled
while in a debug software handler. External and Critical interrupts are not automatically disabled when a
Debug interrupt occurs but can be configured to be cleared via the HID0 register (HID0DCLREE, DCLRCE).
Refer to Section 2.4.11, Hardware Implementation Dependent Register 0 (HID0). When the Debug APU
is disabled, Debug interrupts use the CSRR0 and CSRR1 registers to save machine state.

NOTE
For additional details regarding the following descriptions of debug
exception types, refer to Section 12.2, Software debug events and
exceptions.

An Instruction Address Compare (IAC) debug exception occurs when there is an instruction address match
as defined by the debug control registers and Instruction Address Compare events are enabled. This could
either be a direct instruction address match or a selected set of instruction addresses. IAC has the highest
interrupt priority of all instruction-based interrupts, even if the instruction itself may have encountered an
Instruction TLB error or Instruction Storage exception.

A Branch Taken (BRT) debug exception is signaled when a branch instruction is considered taken by the
branch unit and branch taken events are enabled. The Debug interrupt is taken when no higher priority
exception is pending.

A Data Address Compare (DAC) exception is signaled when there is a data access address match as
defined by the debug control registers and Data Address Compare events are enabled. This could either be
a direct data address match or a selected set of data addresses, or a combination of data address and data
value matching. The Debug interrupt is taken when no higher priority exception is pending.

The e200z759n3 implementation provides IAC linked with DAC exceptions. This results in a DAC
exception only if one or more IAC conditions are also met. See Chapter 12, Debug Support, for more
details.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 515

A Trap (TRAP) debug exception occurs when a program trap exception is generated while trap events are
enabled. If MSRDE is set, the Debug exception has higher priority than the Program exception in this case,
and will be taken instead of a Trap type Program Interrupt. The Debug interrupt is taken when no higher
priority exception is pending. If MSRDE is cleared when a trap debug exception occurs, a Trap exception
type Program interrupt will occur instead.

A Return (RET) debug exception occurs when executing an rfi or se_rfi instruction and return debug
events are enabled. Return debug exceptions are not generated for rfci or se_rfci instructions. If MSRDE=1
at the time of the execution of the rfi or se_rfi, a Debug interrupt will occur provided there exists no higher
priority exception that is enabled to cause an interrupt. CSRR0 (Debug APU disabled) or DSRR0 (Debug
APU enabled) will be set to the address of the rfi or se_rfi instruction. If MSRDE=0 at the time of the
execution of the rfi or se_rfi, a Debug interrupt will not occur immediately, but the event will be recorded
by setting the DBSRRET and DBSRIDE status bits.

A Critical Return (CRET) debug exception occurs when executing an rfci or se_rfci instruction and
critical return debug events are enabled. Critical return debug exceptions are only generated for rfci or
se_rfci instructions. If MSRDE=1 at the time of the execution of the rfci or se_rfci, a Debug interrupt will
occur provided there exists no higher priority exception that is enabled to cause an interrupt. CSRR0
(Debug APU disabled) or DSRR0 (Debug APU enabled) will be set to the address of the rfci or se_rfci
instruction. If MSRDE=0 at the time of the execution of the rfci or se_rfci, a Debug interrupt will not occur
immediately, but the event will be recorded by setting the DBSRCRET and DBSRIDE status bits. Note that
critical return debug events should not normally be enabled unless the Debug APU is enabled to avoid
corruption of CSRR0/1.

An Instruction Complete (ICMP) debug exception is signaled following execution and completion of an
instruction while this event is enabled.

A mtmsr or mtdbcr0 that causes both MSRDE and DBCR0IDM to end up set, enabling precise debug
mode, may cause an Imprecise (Delayed) Debug exception to be generated due to an earlier recorded event
in the Debug Status register.

An Interrupt Taken (IRPT) debug exception occurs when a non-critical interrupt context switch is detected.
This exception is imprecise and unordered with respect to the program flow. Note that an IRPT Debug
interrupt will only occur when detecting a non-critical interrupt on e200z759n3. The value saved in
CSRR0/DSRR0 will be the address of the non-critical interrupt handler.

A Critical Interrupt Taken (CIRPT) debug exception occurs when a critical interrupt context switch is
detected. This exception is imprecise and unordered with respect to the program flow. Note that a CIRPT
Debug interrupt will only occur when detecting a critical interrupt on e200z759n3. The value saved in
CSRR0/DSRR0 will be the address of the critical interrupt handler. Note that Critical Interrupt Taken
debug events should not normally be enabled unless the Debug APU is enabled to avoid corruption of
CSRR0/1.

An Unconditional Debug Event (UDE) exception occurs when the Unconditional Debug Event pin
(p_ude) transitions to the asserted state.

Debug Counter Debug exceptions occur when enabled and one of the Debug counters decrements to zero.

External Debug exceptions occur when enabled and one of the External Debug Event pins (p_devt1,
p_devt2) transitions to the asserted state.

e200z759n3 Core Reference Manual, Rev. 2

516 Freescale Semiconductor

The Debug Status Register (DBSR) provides a syndrome to differentiate between debug exceptions that
can generate the same interrupt. For more details see Chapter 12, Debug Support”.

Table 7-25 lists register settings when a Debug interrupt is taken.

7.7.17 System Reset interrupt

e200z759n3 implements the System Reset interrupt as defined in PowerISA 2.06. The System Reset
exception is a non-maskable, asynchronous exception signaled to the processor through the assertion of
system-defined signals.

Table 7-25. Debug interrupt—register settings

Register Setting description

CSRR0/
DSRR01

1 assumes that the Debug interrupt is precise

Set to the effective address of the excepting instruction for IAC, BRT, RET, CRET, and TRAP.
Set to the effective address of the next instruction to be executed following the excepting instruction for
DAC and ICMP.
For a UDE, IRPT, CIRPT, DCNT, or DEVT type exception, set to the effective address of the instruction
that the processor would have attempted to execute next if no exception conditions were present.

CSRR1/
DSRR1

Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —/02

EE —/02

PR 0

2 conditional based on control bits in HID0

FP 0
ME —
FE0 0
DE 0

FE1 0
IS 0
DS 0
PMM 0
RI —

DBSR3

3 Note that multiple DBSR bits may be set

Unconditional Debug Event:
Instr. Complete Debug Event:
Branch Taken Debug Event:
Interrupt Taken Debug Event:
Critical Interrupt Taken Debug
Event:
Trap Instruction Debug Event:
Instruction Address Compare:
Data Address Compare:
Return Debug Event:
Critical Return Debug Event:
Debug Counter Event:
External Debug Event:
and optionally, an
Imprecise Debug Event flag

UDE
ICMP
BRT
IRPT
CIRPT

TRAP
{IAC1, IAC2, IAC3, IAC4}
{DAC1R, DAC1W, DAC2R, DAC2W}
RET
CRET
{DCNT1, DCNT2}
{DEVT1, DEVT2}

{IDE}

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR1516:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 517

A System reset may be initiated by either asserting the p_reset_b input signal or during power-on reset by
asserting m_por. The m_por signal must be asserted during power up and must remain asserted for a
period that allows internal logic to be reset. The p_reset_b signal must also remain asserted for a period
that allows internal logic to be reset. This period is specified in the hardware specifications. If m_por or
p_reset_b are asserted for less than the required interval, the results are not predictable.

When a reset request occurs, the processor branches to the system reset exception vector (value on
p_rstbase[0:29] concatenated with 2’b00) without attempting to reach a recoverable state. If reset occurs
during normal operation, all operations cease and the machine state is lost. CPU internal state after a reset
is defined in Section 2.6, Reset settings.

Reset may also be initiated by Watchdog Timer or Debug Reset Control. Watchdog Timer and Debug Reset
Control provide the capability to assert the p_wrs[0:1] and p_dbrstc[0:1] signals. External logic may
factor this into the p_reset_b input signal to cause a e200z759n3 reset to occur.

Table 7-26 shows the TSR register bits associated with Watchdog Timer reset status. Note that these bits
will be cleared when a processor reset occurs, thus if the p_wrs[0:1] outputs are factored into p_reset_b,
they will only be seen in the “00” state by software.

Table 7-27 shows the DBSR register bits associated with reset status.

Table 7-28 lists register settings when a System Reset interrupt is taken.

Table 7-26. TSR Watchdog Timer reset status

Bits Name Function

2:3
(34:35)

WRS 00 No action performed by Watchdog Timer
01 Watchdog Timer second time-out caused p_wrs[1] to be asserted
10 Watchdog Timer second time-out caused p_wrs[0] to be asserted
11 Watchdog Timer second time-out caused p_wrs[0] and p_wrs[1] to be asserted

Table 7-27. DBSR most recent reset

Bits Name Function

2:3
(34:35)

MRR 00 No reset occurred since these bits were last cleared by software
01 A reset occurred since these bits were last cleared by software
10 Reserved
11 Reserved

Table 7-28. System Reset Interrupt—register settings

Register Setting description

CSRR0 Undefined.

CSRR1 Undefined.

MSR UCLE 0
SPE 0
WE 0
CE 0
EE 0
PR 0

FP 0
ME 0
FE0 0
DE 0

FE1 0
IS 0
DS 0
PMM 0
RI 0

e200z759n3 Core Reference Manual, Rev. 2

518 Freescale Semiconductor

7.7.18 SPE/EFPU APU Unavailable interrupt (IVOR32)

The SPE APU Unavailable exception is taken if MSRSPE is cleared and execution of a SPE or EFPU APU
instruction other than the scalar floating-point instructions (efsxxx) or brinc is attempted. When the
SPE/EFPU APU Unavailable exception occurs, the processor suppresses execution of the instruction
causing the exception. Table 7-29 lists register settings when a SPE/EFPU Unavailable interrupt is taken.

7.7.19 Embedded Floating-point Data interrupt (IVOR33)

The Embedded Floating-point Data interrupt is taken if no higher priority exception exists and a EFPU
Floating-point Data exception is generated. When a Floating-point Data exception occurs, the processor
suppresses execution of the instruction causing the exception.

Table 7-30 lists register settings when a EFPU Floating-point Data interrupt is taken.

ESR Cleared

DEAR Undefined

Vector [p_rstbase[0:29]] || 2’b00

Table 7-29. SPE/EFPU Unavailable interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting SPE/EFPU instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR3216:27 || 4b0000

Table 7-30. Embedded Floating-point Data interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the excepting EFPU instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

Table 7-28. System Reset Interrupt—register settings (continued)

Register Setting description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 519

7.7.20 Embedded Floating-point Round interrupt (IVOR34)

The Embedded Floating-point Round interrupt is taken when a EFPU floating-point instruction generates
an inexact result and inexact exceptions are enabled.

Table 7-31 lists register settings when a EFPU Floating-point Round interrupt is taken.

7.7.21 Performance monitor interrupt (IVOR35)

Zen Z7 provides a performance monitor interrupt that may be generated by an enabled condition or event.
An enabled condition or event is as follows:

A PMCx register overflow condition occurs with the following settings:

• PMLCaxCE = 1; that is, for the given counter the overflow condition is enabled.

• PMCxOV = 1; that is, the given counter indicates an overflow.

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR3316:27 || 4b0000

Table 7-31. Embedded Floating-point Round interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the instruction following the excepting EFPU instruction.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR SPE, [VLEMI]. All other bits cleared.

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR3416:27 || 4b0000

Table 7-30. Embedded Floating-point Data interrupt—register settings (continued)

Register Setting description

e200z759n3 Core Reference Manual, Rev. 2

520 Freescale Semiconductor

For a performance monitor interrupt to be signaled on an enabled condition or event, PMGC0PMIE must
be set.

Although an exception condition may occur with MSREE = 0, the interrupt cannot be taken until MSREE
= 1.

The priority of the performance monitor interrupt is below all other asynchronous interrupts. For details,
see Section 8.4, Performance monitor interrupt.

Table 7-32 lists register settings when an performance monitor interrupt is taken.

7.8 Exception recognition and priorities
The following list of exception categories describes how e200z759n3 handles exceptions up to the point
of signaling the appropriate interrupt to occur. Also, instruction completion is defined as updating all
architectural registers associated with that instruction as necessary, and then removing the instruction from
the pipeline.

• Interrupts caused by asynchronous events (exceptions). These exceptions are further distinguished
by whether they are maskable and recoverable.

— Asynchronous, non-maskable, non-recoverable:

System reset by assertion of p_reset_b

Has highest priority and is taken immediately regardless of other pending exceptions or
recoverability. (Includes Watchdog Timer Reset Control and Debug Reset Control)

— Asynchronous, non-maskable, possibly non-recoverable:

Non-maskable interrupt by assertion of p_nmi_b

Has priority over any other pending exception except system reset conditions. Recoverability
is dependent on whether MCSRR0/1 are holding essential state info and are overwritten when
the NMI occurs.

Table 7-32. Performance monitor interrupt—register settings

Register Setting description

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the contents of the MSR at the time of the interrupt

MSR UCLE 0
SPE 0
WE 0
CE —
EE 0
PR 0

FP 0
ME —
FE0 0
DE —

FE1 0
IS 0
DS 0
PMM 0
RI —

ESR Unchanged

MCSR Unchanged

DEAR Unchanged

Vector IVPR0:15 || IVOR3516:27 || 4b0000

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 521

— Asynchronous, maskable/non-maskable, recoverable/non-recoverable:

Machine check interrupt

Has priority over any other pending exception except system reset conditions. Recoverability
is dependent on the source of the exception.

— Asynchronous, maskable, recoverable:

External Input, Fixed-Interval Timer, Decrementer, Critical Input, Performance Monitor,
Unconditional Debug, External Debug Event, Debug Counter Event, and Watchdog Timer
interrupts

Before handling this type of exception, the processor needs to reach a recoverable state. A
maskable recoverable exception will remain pending until taken or cancelled by software.

• Synchronous, non instruction-based interrupts. The only exception is this category is the Interrupt
Taken debug exception, recognized by an interrupt taken event. It is not considered
instruction-based but is synchronous with respect to the program flow.

— Synchronous, maskable, recoverable:

Interrupt Taken debug event

The machine will be in a recoverable state due to the state of the machine at the context
switch triggering this event.

• Instruction-based interrupts. These interrupts are further organized by the point in instruction
processing in which they generate an exception.

— Instruction Fetch:

Instruction Storage, Instruction TLB, and Instruction Address Compare debug exceptions

Once these types of exceptions are detected, the excepting instruction is tagged. When the
excepting instruction is next to begin execution and a recoverable state has been reached, the
interrupt is taken. If an event prior to the excepting instruction causes a redirection of
execution, the instruction fetch exception is discarded (but may be encountered again).

— Instruction Dispatch/Execution:

Program, System Call, Data Storage, Alignment, SPE/EFPU Unavailable, Data TLB,
Embedded Floating-point Data, Embedded Floating-point Round, Debug (Trap, Branch Taken,
Ret) interrupts

These types of exceptions are determined during decode or execution of an instruction. The
exception remains pending until all instructions before the exception causing instruction in
program order complete. The interrupt is then taken without completing the exception-causing
instruction. If completing previous instructions causes an exception, that exception takes
priority over the pending instruction dispatch/execution exception, which is discarded (but may
be encountered again when instruction processing resumes).

— Post-Instruction Execution:

Debug (Data Address Compare, Instruction Complete) interrupt

e200z759n3 Core Reference Manual, Rev. 2

522 Freescale Semiconductor

These Debug exceptions are generated following execution and completion of an instruction
while the event is enabled. If executing the instruction produces conditions for another type of
exception with higher priority, that exception is taken and the post-instruction exception is
discarded for the instruction (but may be encountered again when instruction processing
resumes).

7.8.1 Exception priorities

Exceptions are prioritized as described in Table 7-33. Some exceptions may be masked or imprecise,
which will affect their priority. Non-maskable exceptions such as reset and machine check may occur at
any time and are not delayed even if an interrupt is being serviced, thus state information for any interrupt
may be lost. Reset and certain machine checks are non-recoverable.

Table 7-33. e200z759n3 exception priorities

Priority Exception Cause IVOR

Asynchronous exceptions

0 System reset Assertion of p_reset_b, Watchdog Timer Reset Control, or Debug
Reset Control

none

1 Machine check Assertion of p_mcp_b, assertion of p_nmi_b, Cache Parity errors,
exception on fetch of first instruction of an interrupt handler, external
bus errors

1

2 — —

31 Debug:
 • UDE
 • DEVT1
 • DEVT2
 • DCNT1
 • DCNT2
 • IDE

 • Assertion of p_ude (Unconditional Debug Event)
 • Assertion of p_devt1 and event enabled (External Debug Event 1)
 • Assertion of p_devt2 and event enabled (External Debug Event 2)
 • Debug Counter 1 exception
 • Debug Counter 2 exception
 • Imprecise Debug Event (event imprecise due to previous higher

priority interrupt

15

41 Critical Input Assertion of p_critint_b 0

51 Watchdog Timer Watchdog Timer first enabled time-out 12

61 External Input Assertion of p_extint_b 4

71 Fixed-Interval Timer Posting of a FIT exception in TSR due to programmer-specified bit
transition in the Time Base register

11

81 Decrementer Posting of a Decrementer exception in TSR due to
programmer-specified Decrementer condition

10

91 Performance Monitor Performance Monitor Enabled Condition or Event 35

Instruction Fetch exceptions

10 Debug:
 • IAC (unlinked) • Instruction address compare match for enabled IAC debug event

and DBCR0IDM asserted

15

11 ITLB Error Instruction translation lookup miss in the TLB 14

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 523

12 Instruction Storage • Access control.
 • Byte ordering due to misaligned instruction across page boundary

to pages with mismatched VLE bits, or access to page with VLE
set, and E indicating little-endian.

 • Misaligned Instruction fetch due to a change of flow to an odd
halfword instruction boundary on a BookE (non-VLE) instruction
page, due to value in LR, CTR, or xSRR0

3

Instruction Dispatch/Execution interrupts

13 Program:
 • Illegal • Attempted execution of an illegal instruction.

6

14 Program:
 • Privileged • Attempted execution of a privileged instruction in user-mode

6

15 SPE/EFPU
Unavailable

Any SPE or EFPU unavailable exception condition. 32

16 Program:
 • Unimplemented • Attempted execution of an unimplemented instruction. (unused by

e200z759n3)

6

17 Debug:
 • BRT
 • Trap
 • RET
 • CRET

 • Attempted execution of a taken branch instruction
 • Condition specified in tw or twi instruction met.
 • Attempted execution of a rfi instruction.
 • Attempted execution of an rfci instruction.
Note: Exceptions requires corresponding debug event enabled,

MSRDE=1, and DBCR0IDM=1.

15

18 Program:
 • Trap • Condition specified in tw or twi instruction met and not trap debug.

6

System Call Execution of the System Call (sc, se_sc) instruction. 8

EFPU Floating-point
Data

Denormalized, NaN, or Infinity data detected as input or output, or
underflow, overflow, divide by zero, or invalid operation in the EFPU
APU.

33

EFPU Round Inexact Result 34

19 Alignment lmw, stmw, lwarx, or stwcx. not word aligned.
lharx, or sthcx. not halfword aligned.
dcbz with cache disabled.

5

Table 7-33. e200z759n3 exception priorities (continued)

Priority Exception Cause IVOR

e200z759n3 Core Reference Manual, Rev. 2

524 Freescale Semiconductor

20 Debug:
Debug with concurrent
DTLB or DSI
exception, or
concurrent async
machine check:
 • DAC/IAC linked2

 • DAC unlinked2

Debug with concurrent DTLB or DSI exception, or async machine
check condition on the DAC. DBSRIDE also set.

 • Data Address Compare linked with Instruction Address Compare
 • Data Address Compare unlinked
Note: Exceptions requires corresponding debug event enabled,

MSRDE=1, and DBCR0IDM=1. In this case, the Debug
exception is considered imprecise, and DBSRIDE will be set.
Saved PC will point to the load or store instruction causing the
DAC event.

15

21 Data TLB Error Data translation lookup miss in the TLB. 13

22 Data Storage • Access control.
 • Byte ordering due to misaligned access across page boundary to

pages with mismatched E bits.
 • Cache locking due to attempt to execute a dcbtls, dcbtstls, dcblc,

icbtls, or icblc in user mode with MSRUCLE = 0.

2

23 Alignment dcbz to W=1 or I=1 storage with cache enabled 5

24 Debug:
 • IRPT
 • CIRPT

 • Interrupt taken (non-critical)
 • Critical Interrupt taken (critical only)
Note: Exceptions requires corresponding debug event enabled,

MSRDE=1, and DBCR0IDM=1.

15

Post-instruction execution exceptions

25 Debug:
 • DAC/IAC linked2

 • DAC unlinked2
 • Data Address Compare linked with Instruction Address Compare
 • Data Address Compare unlinked
Note: Exceptions requires corresponding debug event enabled,

MSRDE=1, and DBCR0IDM=1. Saved PC will point to the
instruction following the load or store instruction causing the
DAC event.

15

26 Debug:
 • ICMP • Completion of an instruction.

Note: Exceptions requires corresponding debug event enabled,
MSRDE=1, and DBCR0IDM=1.

15

1 These asynchronous exceptions are sampled at instruction boundaries, thus may actually occur after exceptions
that are due to a currently executing instruction. If one of these exceptions occurs during execution of an instruction
in the pipeline, it is not processed until the pipeline has been flushed, and the exception associated with the
excepting instruction may occur first.

2 When no Data Storage Interrupt or Data TLB Error occurs, e200z759n3 implements the data address compare
debug exceptions as post-instruction exceptions, which differ from the PowerISA 2.06 definition. When a TEA
(either a DTLB error or DSI or Machine Check (external TEA)) occurs in conjunction with an enabled DAC or linked
DAC/IAC on a load or store class instruction, or a Debug Counter event based on a counted DAC, the Debug
Interrupt takes priority, and the saved PC value will point to the load or store class instruction, rather than to the next
instruction.

Table 7-33. e200z759n3 exception priorities (continued)

Priority Exception Cause IVOR

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 525

7.9 Interrupt processing
When an interrupt is taken, the processor uses SRR0/SRR1 for non-critical interrupts, CSRR0/CSRR1 for
critical interrupts, MCSRR0/MCSRR1 for machine check interrupts, and either CSRR0/CSRR1 or
DSRR0/DSRR1 for debug interrupts to save the contents of the MSR and to assist in identifying where
instruction execution should resume after the interrupt is handled.

When an interrupt occurs, one of SRR0/CSRR0/DSRR0/MCSRR0 is set to the address of the instruction
that caused the exception, or to the following instruction if appropriate.

SRR1 is used to save machine state (selected MSR bits) on non-critical interrupts and to restore those
values when an rfi instruction is executed.

CSRR1 is used to save machine status (selected MSR bits) on critical interrupts and to restore those values
when an rfci instruction is executed.

DSRR1 is used to save machine status (selected MSR bits) on debug interrupts when the Debug APU is
enabled and to restore those values when an rfdi instruction is executed.

MCSRR1 is used to save machine status (selected MSR bits) on machine check interrupts and to restore
those values when an rfmci instruction is executed.

The Exception Syndrome register is loaded with information specific to the exception type. Some interrupt
types can only be caused by a single exception type, and thus do not use an ESR setting to indicate the
interrupt cause.

The Machine State register is updated to preclude unrecoverable interrupts from occurring during the
initial portion of the interrupt handler. Specific settings are described in Table 7-34.

For Alignment, Data Storage, or Data TLB Miss interrupts, the Data Exception Address Register (DEAR)
is loaded with the address that caused the interrupt to occur.

For Machine Check interrupts, the Machine Check Syndrome register is loaded with information specific
to the exception type. For certain machine checks, the MCAR is loaded with an address corresponding to
the machine check.

Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception
type. The location is determined by the Interrupt Vector Prefix Register (IVPR), and an Interrupt Vector
Offset Register (IVOR) specific for each type of interrupt (see Table 7-2).

Table 7-34 shows the MSR settings for different interrupt categories.

Table 7-34. MSR setting due to interrupt

Bits
MSR

definition
Reset

setting
Non-critical

interrupt
Critical

interrupt
Debug Interrupt

Machine Check
interrupt

5 (37) UCLE 0 0 0 0 0

6 (38) SPE 0 0 0 0 0

13 (45) WE 0 0 0 0 0

14 (46) CE 0 — 0 —/01 0

e200z759n3 Core Reference Manual, Rev. 2

526 Freescale Semiconductor

7.9.1 Enabling and disabling exceptions

When a condition exists that may cause an exception to be generated, it must be determined whether the
exception is enabled for that condition.

• System reset exceptions cannot be masked.

• Machine check exceptions cannot be masked from sources other than the machine check pin, and
certain other async machine check status settings. Assertion of p_mcp_b is only recognized if the
machine check pin enable bit (HID0EMCP) is set. Certain machine check exceptions can be enabled
and disabled through bit(s) in the HID0 register.

• Asynchronous, maskable non-critical exceptions (such as the External Input and Decrementer) are
enabled by setting MSREE. When MSREE=0, recognition of these exception conditions is delayed.
MSREE is cleared automatically when a non-critical or critical interrupt is taken to mask further
recognition of conditions causing those exceptions.

• Asynchronous, maskable critical exceptions (such as Critical Input and Watchdog Timer) are
enabled by setting MSRCE. When MSRCE=0, recognition of these exception conditions is delayed.
MSRCE is cleared automatically when a critical interrupt is taken to mask further recognition of
conditions causing those exceptions.

• Synchronous and asynchronous Debug exceptions are enabled by setting MSRDE. When
MSRDE=0, recognition of these exception conditions is masked. MSRDE is cleared automatically
when a Debug interrupt is taken to mask further recognition of conditions causing those
exceptions. See Chapter 12, Debug Support, for more details on individual control of debug
exceptions.

16 (48) EE 0 0 0 —/01 0

17 (49) PR 0 0 0 0 0

18 (50) FP 0 0 0 0 0

19 (51) ME 0 — — — 0

20 (52) FE0 0 0 0 0 0

22 (54) DE 0 — —/01 0 —/01

23 (55) FE1 0 0 0 0 0

26 (58) IS 0 0 0 0 0

27 (59) DS 0 0 0 0 0

29 (61) PMM 0 0 0 0 0

30 (62) RI 0 — — — 0

Reserved and preserved bits are unimplemented and read as 0.

1 Conditionally cleared based on control bits in HID0

Table 7-34. MSR setting due to interrupt (continued)

Bits
MSR

definition
Reset

setting
Non-critical

interrupt
Critical

interrupt
Debug Interrupt

Machine Check
interrupt

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 527

7.9.2 Returning from an interrupt handler

The return from interrupt (rfi, se_rfi), return from critical interrupt (rfci, se_rfci) return from debug
interrupt (rfdi, se_rfdi), and return from machine check interrupt (rfmci, se_rfmci) instructions perform
context synchronization by allowing previously-issued instructions to complete before returning to the
interrupted process. In general, execution of return from interrupt type instructions ensures the following:

• All previous instructions have completed to a point where they can no longer cause an exception.
This includes post-execute type exceptions.

• Previous instructions complete execution in the context (privilege and protection) under which
they were issued.

• The rfi and se_rfi instructions copy SRR1 bits back into the MSR.

• The rfci and se_rfci instructions copy CSRR1 bits back into the MSR.

• The rfdi and se_rfdi instructions copy DSRR1 bits back into the MSR.

• The rfmci and se_rfmci instructions copy MCSRR1 bits back into the MSR.

• Instructions fetched after this instruction execute in the context established by this instruction.

• Program execution resumes at the instruction indicated by SRR0 for rfi and se_rfi, CSRR0 for rfci
and se_rfci, MCCSRR0 for rfmci and se_rfmci, and DSRR0 for rfdi and se_rfdi.

Note that the return instructions rfi and se_rfi may be subject to a Return type debug exception, and that
the return from critical interrupt instructions rfci and se_rfci may be subject to a Critical Return type debug
exception. For a complete description of context synchronization, refer to Book E: Enhanced PowerPCtm
Architecture.

7.10 Process switching
The following instructions are useful for restoring proper context during process switching:

• The msync instruction orders the effects of data memory instruction execution. All instructions
previously initiated appear to have completed before the msync instruction completes, and no
subsequent instructions appear to be initiated until the msync instruction completes.

• The isync instruction waits for all previous instructions to complete and then discards any fetched
instructions, causing subsequent instructions to be fetched (or refetched) from memory and to
execute in the context (privilege, translation, and protection) established by the previous
instructions.

• The stwcx. instructions clears any outstanding reservations, ensuring that a load and reserve
instruction in an old process is not paired with a store conditional instruction in a new one.

e200z759n3 Core Reference Manual, Rev. 2

528 Freescale Semiconductor

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 529

Chapter 8
Performance Monitor
This chapter describes the performance monitor, which is generally defined by the Freescale EIS and
implemented as an APU on the e200z759n3 core. Although the programming model is defined by the EIS,
some features are defined by the implementation; in particular, the events that can be counted.

8.1 Overview
The performance monitor provides the ability to count predefined events and processor clocks associated
with particular operations, such as cache misses, mispredicted branches, or the number of cycles an
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.

The performance monitor can be used to do the following:

• Improve system performance by monitoring software execution and then recoding algorithms for
more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to
optimize task scheduling or data distribution algorithms.

• Characterize processors in environments not easily characterized by benchmarking.

• Help system developers bring up and debug their systems.

The performance monitor comprises the following resources:

• The performance monitor mark bit in the MSR (MSRPMM). This bit controls which programs are
monitored.

• The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.

• The external inputs p_pm_qual and p_pm_event.

• The external outputs p_pmc0_ov, p_pmc1_ov, p_pmc2_ov, and p_pmc3_ov

• PMRs:

— The performance monitor counter registers PMC0–PMC3 are 32-bit counters used to count
software-selectable events. UPMC0–UPMC3 provide user-level read access to these registers.
Counted events are those that should be of general value. They are identified in Table 8-10.

— The performance monitor global control register PMGC0 controls the counting of performance
monitor events. It takes priority over all other performance monitor control registers. UPMGC0
provides user-level read access to PMGC0.

— The performance monitor local control registers PMLCa0–PMLCa3 and PMLCb0–PMLCb3
control individual performance monitor counters. Each counter has a corresponding PMLCa
and PMLCb register. UPMLCa0–UPMLCa3 and UPMLCb0–UPMLCb3 provide user-level
read access to PMLCa0–PMLCa3 and PMLCb0–PMLCb3.

• The performance monitor interrupt follows the Book E interrupt model and is assigned to interrupt
vector offset register 35 (IVOR35). It has the lowest priority of all asynchronous interrupts.

Software communication with the performance monitor APU is achieved through PMRs rather than SPRs.

e200z759n3 Core Reference Manual, Rev. 2

530 Freescale Semiconductor

8.2 Performance Monitor APU instructions
The Performance Monitor APU defines the mfpmr and mtpmr instructions for reading and writing the
PMRs as shown below.

mfpmr mfpmr
Move from Performance Monitor Register

mfpmr rD,PMRN Form: X

GPR(rD) PMREG(PMRN)

The contents of the performance monitor register designated by PMRN are placed into GPR[rD].

When MSRPR = 1, specifying a performance monitor register that is not implemented or is write-only and
is not privileged (i.e. PMRN5=0) results in an illegal instruction exception-type Program Interrupt. When
MSRPR = 1, specifying a performance monitor register that is not implemented or is write-only and is
privileged (i.e. PMRN5=1) results in a privileged instruction exception-type Program Interrupt. When
MSRPR = 0, specifying a performance monitor register that is not implemented or is write-only results in
an illegal instruction exception type Program Interrupt.

mtpmr mtpmr
Move to Performance Monitor Register

mtpmr PMRN, rS Form: X

PMREG(PMRN) GPR(rS)

The contents of GPR[rS] are placed into the performance monitor register designated by PMRN.

When MSRPR = 1, specifying a performance monitor register that is not implemented or is read-only and
is not privileged (i.e. PMRN5=0) results in an illegal instruction exception-type Program Interrupt. When
MSRPR = 1, specifying a performance monitor register that is not implemented or is read-only and is
privileged (i.e. PMRN5=1) results in a privileged instruction exception-type Program Interrupt. When
MSRPR = 0, specifying a performance monitor register that is not implemented or is read-only results in
an illegal instruction exception type Program Interrupt.

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD PMRN5:9 PMRN0:4 0 1 0 1 0 0 1 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS PMRN5:9 PMRN0:4 0 1 1 1 0 0 1 1 1 0 /

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 531

8.3 Performance Monitor APU registers
The Freescale EIS defines a set of register resources used exclusively by the performance monitor. PMRs
are similar to the SPRs defined in the Book E architecture and are accessed by mtpmr and mfpmr
instructions, which are also defined by the Freescale EIS. Table 8-1 lists supervisor-level (privileged)
PMRs.

User-level PMRs in Table 8-2 are read-only and are accessed with mfpmr.

Table 8-1. Supervisor-level PMRs (PMR[5] = 1)

Name Register name PMR number
pmr[0–4

]
pmr[5–9

]
Section/

page

PMC0 Performance monitor counter 0 16 00000 10000 8.3.9/8-540

PMC1 Performance monitor counter 1 17 00000 10001

PMC2 Performance monitor counter 2 18 00000 10010

PMC3 Performance monitor counter 3 19 00000 10011

PMGC0 Performance monitor global control register 0 400 01100 10000 8.3.3/8-532

PMLCa
0

Performance monitor local control a0 144 00100 10000 8.3.5/8-534

PMLCa
1

Performance monitor local control a1 145 00100 10001

PMLCa
2

Performance monitor local control a2 146 00100 10010

PMLCa
3

Performance monitor local control a3 147 00100 10011

PMLCb
0

Performance monitor local control b0 272 01000 10000 8.3.7/8-535

PMLCb
1

Performance monitor local control b1 273 01000 10001

PMLCb
2

Performance monitor local control b2 274 01000 10010

PMLCb
3

Performance monitor local control b3 275 01000 10011

Table 8-2. User-level PMRs (PMR[5] = 0) (read-only)

Name Register Name
PMR

Number
pmr[0–4] pmr[5–9]

Section/
Page

UPMC0 User performance monitor counter 0 0 00000 00000 8.3.10/8-541

UPMC1 User performance monitor counter 1 1 00000 00001

UPMC2 User performance monitor counter 2 2 00000 00010

UPMC3 User performance monitor counter 3 3 00000 00011

e200z759n3 Core Reference Manual, Rev. 2

532 Freescale Semiconductor

8.3.1 Invalid PMR references

Behavior when an invalid PMR is referenced depends on the privilege level of the register and MSRPR.
Table 8-3 shows the response for various references to invalid PMRs.

8.3.2 References to read-only PMRs

If a mtpmr instruction is executed to a read-only PMR, e200z759n3 will take an Illegal exception.

8.3.3 Performance Monitor Global Control Register 0 (PMGC0)

The performance monitor global control register PMGC0 shown in Figure 8-1 controls all performance
monitor counters.

UPMGC0 User performance monitor global control
register 0

384 01100 00000 8.3.4/8-534

UPMLCa0 User performance monitor local control a0 128 00100 00000 8.3.6/8-535

UPMLCa1 User performance monitor local control a1 129 00100 00001

UPMLCa2 User performance monitor local control a2 130 00100 00010

UPMLCa3 User performance monitor local control a3 131 00100 00011

UPMLCb0 User performance monitor local control b0 256 01000 00000 8.3.8/8-540

UPMLCb1 User performance monitor local control b1 257 01000 00001

UPMLCb2 User performance monitor local control b2 258 01000 00010

UPMLCb3 User performance monitor local control b3 259 01000 00011

Table 8-3. Response to an invalid PMR reference

PMR address bit 5 MSRPR Response

0 (user) x Illegal exception

1 (supervisor) 0 (supervisor) Illegal exception

1 (user) Privileged exception

FA
C

P
M

IE

F
C

E
C

E

0

T
B

S
E

L

0

T
B

E
E

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PMR - 400; Read/Write; Reset - 0x0

Figure 8-1. Performance Monitor Global Control Register (PMGC0)

Table 8-2. User-level PMRs (PMR[5] = 0) (read-only) (continued)

Name Register Name
PMR

Number
pmr[0–4] pmr[5–9]

Section/
Page

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 533

PMGC0 is cleared by reset. Reading this register does not change its contents. Table 8-4 describes PMGC0
fields.

Table 8-4. PMGC0 field descriptions

Bits Name Description

0
(32)

FAC Freeze All Counters.
0 The PMCs are incremented (if permitted by other PMGC/PMLC control bits).
1 The PMCs are not incremented.
When FAC is set to 1 by hardware or software, it has no effect on PMLCaxFC;
PMLCaxFC maintains it’s current value until changed by software. FAC setting by
hardware is controlled by PMGC0FCECE.

1
(33)

PMIE Performance monitor interrupt enable
0 Performance monitor interrupts are disabled.
1 Performance monitor interrupts are enabled and occur when an enabled condition

or event occurs, at which time PMGC0PMIE is cleared
Software can clear PMIE to prevent performance monitor interrupts. Performance
monitor interrupts are caused by time base events or PMCx counter overflows.

2
(34)

FCECE Freeze Counters on Enabled Condition or Event
0 The PMCs can be incremented (if permitted by other PM control bits).
1 The PMCs can be incremented (if permitted by other PM control bits) only until an

enabled condition or event occurs. When an enabled condition or event occurs,
PMGC0FAC is set to 1. It is up to software to clear PMGC0FAC to 0.

An enabled condition or event is defined as one of the following:
 • When the msb = 1 in PMCx and PMLCaxCE = 1.
 • When the time-base bit specified by PMGC0TBSEL transitions to 1 and

PMGC0TBEE=1.
The use of the trigger and freeze counter conditions depends on the enabled
conditions and events described in Section 7.2, “Performance Monitor Interrupt.”

3:18
(35:50)

— Reserved, should be cleared.

19:20
(51:52)

TBSEL Time Base Selector. Selects the time base bit that can cause a time base transition
event (the event occurs when the selected bit changes from 0 to 1).
00 TB63 (TBL31)
01 TB55 (TBL23)
10 TB51 (TBL19)
11 TB47 (TBL15)
Time-base frequency is implementation-dependent, so software should invoke a
system service program to obtain the frequency before choosing a TBSEL value.

21:22
(53:54)

— Reserved, should be cleared.

23
(55)

TBEE Time base transition Event Enable
0 Time base transition events are disabled.
1 Time base transition events are enabled. A time base transition is signaled to the

performance monitor if the TB bit specified in PMGC0TBSEL changes from 0 to 1.
Time base transition events can be used to freeze counters (PMGC0FCECE) or signal
an exception (PMGC0PMIE). Although the exception signal condition may occur with
MSREE = 0, the interrupt cannot be taken until MSREE = 1.
Changing PMGC0TBSEL while PMGC0TBEE is enabled may cause a false 0 to 1
transition that signals the specified action (freeze, exception) to occur immediately.

24:31
(56:63)

— Reserved, should be cleared.

e200z759n3 Core Reference Manual, Rev. 2

534 Freescale Semiconductor

8.3.4 User Performance Monitor Global Control Register 0 (UPMGC0)

UPMGC0 provides user-level read access to PMGC0. UPMGC0 can be read by user-level software with
the mfpmr instruction using PMR 384.

8.3.5 Performance Monitor Local Control A Registers (PMLCa0–PMLCa3)

The local control A registers (PMLCa0–PMLCa3) function as event selectors and give local control for
the corresponding performance monitor counters. PMLCa is used in conjunction with the corresponding
PMLCb register. PMLCa registers are shown in Figure 8-2.

PMLCa registers are cleared by reset. Table 8-5 describes PMLCa fields.

F
C

F
C

S

F
C

U

F
C

M
1

F
C

M
0

C
E 0 EVENT 0 PMP 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PMR - 144, 145, 146, 147; Read/Write; Reset - 0x0

Figure 8-2. Performance Monitor Local Control A Registers (PMLCa0–PMLCa3)

Table 8-5. PMLCa0–PMLCa3 field descriptions

Bits Name Description

0
(32)

FC Freeze Counter.
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC will not be incremented.

1
(33)

FCS Freeze Counter in Supervisor state.
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC will not be incremented if MSRPR is cleared.

2
(34)

FCU Freeze Counter in User state.
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC will not be incremented if MSRPR is set.

3
(35)

FCM1 Freeze Counter while Mark is set.
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC will not be incremented if MSRPMM is set.

4
(36)

FCM0 Freeze Counter while Mark is cleared.
0 The PMC can be incremented (if enabled by other performance monitor control fields).
1 The PMC will not be incremented if MSRPMM is cleared.

5
(37)

CE Condition Enable.
0 verflow conditions for PMCn cannot occur (PMCn cannot cause interrupts or freeze counters)
1 An overflow condition is present when the most-significant-bit of PMCn is equal to 1.
It is recommended that CE be cleared when counter PMCn is selected for chaining.

6:7
(38:39)

— Reserved for EVENT expansion, should be cleared.

8:15
(40:47)

EVENT Event selector. See Section 8.7, Event selection

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 535

8.3.6 User Performance Monitor Local Control A Registers
(UPMLCa0–UPMLCa3)

The PMLCa register contents are aliased to UPMLCa0–UPMLCa3, which can be read by user-level
software with mfpmr using PMR numbers in Table 8-2.

8.3.7 Performance Monitor Local Control B Registers (PMLCb0–PMLCb3)

Local control B registers PMLCb0–PMLCb3) specify triggering conditions, a threshold value and a
multiple to apply to a threshold event selected for the corresponding performance monitor counter. For the
e200z759n3, thresholding is supported only for PMC0 and PMC1. PMLCb is used in conjunction with the
corresponding PMLCa register.

PMLCb is cleared by reset. Table 8-6 describes PMLCb fields.

16
(48)

— Reserved, should be cleared.

17:19
(49:51)

PMP Performance Monitor Watchpoint Periodicity Select
000 Performance Monitor Watchpoint x asserts on any change of counterx bit 32 (period=231)
001 Performance Monitor Watchpoint x asserts on any change of counterx bit 43 (period=220)
010 Performance Monitor Watchpoint x asserts on any change of counterx bit 49 (period=214)
011 Performance Monitor Watchpoint x asserts on any change of counterx bit 55 (period=28)
100 Performance Monitor Watchpoint x asserts on any change of counterx bit 59 (period=24)
101 Performance Monitor Watchpoint x asserts on any change of counterx bit 61 (period=22)
110 Performance Monitor Watchpoint x asserts on any change of counterx bit 62 (period=21)
111 Performance Monitor Watchpoint x asserts on any change of counterx bit 63 (period=20)1

20:31
(52:63)

— Reserved, should be cleared.

1 For certain events that may count an even number of times per cycle, this watchpoint is not guaranteed to assert
with PMP=111.

0

T
R

IG
O

N
C

T
L

0

T
R

IG
O

F
F

C
T

L

0

T
R

IG
O

N
S

E
L

0

T
R

IG
O

F
F

S
E

L

T
R

IG
G

E
R

E
D

0

T
H

R
E

S
H

M
U

L

0 THRESHOLD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PMR - 272, 273, 274, 275; Read/Write; Reset - 0x0

Figure 8-3. Performance Monitor Local Control B Registers (PMLCb0–PMLCb3)

Table 8-5. PMLCa0–PMLCa3 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

536 Freescale Semiconductor

Table 8-6. PMLCb0–PMLCb3 field descriptions

Bits Name Description

0
(32)

—
Reserved, should be cleared.

1:3
(33:35)

TRIGONCNTL Trigger-on Control Class - Class of Trigger-on source
000 Trigger-on control is disabled if TRIGONSEL is 0000 (i.e. counting is not affected

by triggers). All other values for TRIGONSEL are reserved.
001 Trigger-on control based on selected PMC condition(s)
010 Trigger-on based on selected processor event(s)
011 Trigger-on based on selected hardware signal(s)
100Trigger-on based on selected watchpoint occurrence (watchpoint #0–15)
101 Trigger-on based on selected watchpoint occurrence (extension for watchpoint

#16-31)
11x Reserved
Indicates the condition under which triggering to start counting occurs. No triggering will
occur while PMGC0FAC or PMLCanFC is set to ‘1’.

4
(36)

— Reserved, should be cleared.

5:7
(37:39)

TRIGOFFCNTL Trigger-off Control Class - Class of Trigger-off source
000 Trigger-off control is disabled if TRIGOFFSEL is 0000 (i.e. counting is not affected

by triggers) All other values for TRIGOFFSEL are reserved.
001 Trigger-off control based on selected PMC condition(s)
010 Trigger-off based on selected processor event(s)
011 Trigger-off based on selected hardware signal(s)
100 Trigger-off based on selected watchpoint occurrence (watchpoint #0–15)
101 Trigger-off based on selected watchpoint occurrence (extension for watchpoint

#16-31)
11x Reserved

Indicates the condition under which triggering to stop counting occurs. No triggering
will occur while PMGC0FAC or PMLCanFC is set to ‘1’.

8
(40)

— Reserved, should be cleared.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 537

9:12
(41:44)

TRIGONSEL Trigger-on Source Select - Source Select based on setting of TRIGONCTL

TRIGONCTL = 000:
0000 Trigger-on control is disabled
0001 –1111 : Reserved

TRIGONCTL = 001:
This field should be to the ID of the PMCy that should trigger event counting to start.
When PMCy overflows, the trigger will be generated.
When TRIGONSEL = PMCx (i.e. self-select), no triggering will occur due to any counter
change. If TRIGONSEL = TRIGOFFSEL, triggering results are undefined.
0000 Trigger-on when PMC0OV transitions to a ‘1’.
0001 Trigger-on when PMC1OV transitions to a ‘1’.
0010 Trigger-on when PMC2OV transitions to a ‘1’.
0011 Trigger-on when PMC3OV transitions to a ‘1’.
0100 – 1111 : Reserved

TRIGONCTL = 010:
0000 Trigger-on when next processor interrupt occurs (software may want to set

PMGC0PMIE = 0 for this setting).
0001 – 1111 : Reserved

TRIGONCTL = 011:
0000 Trigger on assertion of p_devnt_out[0]
0001 Trigger on assertion of p_devnt_out[1]
0010 Trigger on assertion of p_devnt_out[2]
0011 Trigger on assertion of p_devnt_out[3]
0100 Trigger on assertion of p_devnt_out[4]
0101 Trigger on assertion of p_devnt_out[5]
0110 Trigger on assertion of p_devnt_out[6]
0111 Trigger on assertion of p_devnt_out[7]
1000 Trigger on rise of p_pmcn_qual input
1001 – 1111 : Reserved

TRIGONCTL = 100:
0000 Trigger-on based on watchpoint #0 occurrence
0001 Trigger-on based on watchpoint #1 occurrence
0010 Trigger-on based on watchpoint #2 occurrence

. . .
1110 Trigger-on based on watchpoint #14 occurrence
1111 Trigger-on based on watchpoint #15 occurrence

TRIGONCTL = 101:
0000 Trigger-on based on watchpoint #16 occurrence
0001 Trigger-on based on watchpoint #17 occurrence
0010 Trigger-on based on watchpoint #18 occurrence

. . .
1100 Trigger-on based on watchpoint #28 occurrence
1101 Trigger-on based on watchpoint #29 occurrence
1110 – 1111 : Reserved

13
(45)

— Reserved, should be cleared.

Table 8-6. PMLCb0–PMLCb3 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

538 Freescale Semiconductor

14:17
(46:49)

TRIGOFFSEL Trigger-off Source Select - Source Select based on setting of TRIGOFFCTL

TRIGOFFCTL = 000:
0000 Trigger-off control is disabled
0001 – 1111 : Reserved

TRIGOFFCTL = 001:
This field should be to the ID of the PMCy that should trigger event counting to stop.
When PMCy overflows, the trigger will be generated.
When TRIGOFFSEL = PMCx (i.e. self-select), no triggering will occur due to any counter
change. If TRIGONSEL = TRIGOFFSEL, triggering results are undefined.
0000 Trigger-off when PMC0OV transitions to a ‘1’.
0001 Trigger-off when PMC1OV transitions to a ‘1’.
0010 Trigger-off when PMC2OV transitions to a ‘1’.
0011 Trigger-off when PMC3OV transitions to a ‘1’.
0100 – 1111 : Reserved

TRIGOFFCTL = 010:
0000 Trigger-on when next processor interrupt occurs (software may want to set

PMGC0PMIE = 0 for this setting).
0001 – 1111 : Reserved

TRIGOFFCTL = 011:
0000 Trigger-off based on assertion of p_devnt_out[0]
0001 Trigger-off based on assertion of p_devnt_out[1]
0010 Trigger-off based on assertion of p_devnt_out[2]
0011 Trigger-off based on assertion of p_devnt_out[3]
0100 Trigger-off based on assertion of p_devnt_out[4]
0101 Trigger-off based on n assertion of p_devnt_out[5]
0110 Trigger-off based on assertion of p_devnt_out[6]
0111 Trigger-off based on assertion of p_devnt_out[7]
1000 Trigger-off based on fall of p_pmcn_qual input
1001 – 1111 : Reserved

TRIGOFFCTL = 100:
0000 Trigger-off based on watchpoint #0 occurrence
0001 Trigger-off based on watchpoint #1 occurrence
0010 Trigger-off based on watchpoint #2 occurrence

. . .
1110 Trigger-off based on watchpoint #14 occurrence
1111 Trigger-off based on watchpoint #15 occurrence

TRIGOFFCTL = 101:
0000 Trigger-off based on watchpoint #16 occurrence
0001 Trigger-off based on watchpoint #17 occurrence
0010 Trigger-off based on watchpoint #18 occurrence

. . .
1100 Trigger-off based on watchpoint #28 occurrence
1101 Trigger-off based on watchpoint #29 occurrence
1110 – 1111 : Reserved

Table 8-6. PMLCb0–PMLCb3 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 539

18
(50)

TRIGGERED Triggered
0 Counter has not been triggered
1 Counter has been triggered
TRIGGERED can be set or cleared by hardware or software.

TRIGGERED setting by hardware is controlled by PMLCbxTRIGONCTL. If
PMLCbxTRIGONCTL is set to enable trigger-on control, TRIGGERED will be set by
hardware when the next trigger-on event occurs and TRIGGERED is currently cleared.
TRIGGERED clearing by hardware is controlled by PMLCbxTRIGOFFCTL. If
PMLCbxTRIGOFFCTL is set to enable trigger-off control, TRIGGERED will be cleared by
hardware when the next trigger-off event occurs and TRIGGERED is currently set.

The state of TRIGGERED qualifies counting if either PMLCbxTRIGONCTL or
PMLCbxTRIGOFFCTL is set to enable triggering (other qualifiers on counting such as
PMGC0FAC and PMLCa controls operate independently of TRIGGERED). If both
PMLCbxTRIGONCNTL and PMLCbxTRIGOFFCTL are cleared to disable triggering, the state
of TRIGGERED has no effect on counting.

TRIGGERED has no effect on PMLCaxFC; PMLCaxFC maintains it’s current value until
changed by software.

19:20
(51:52)

— Reserved, should be cleared.

21:23
(53:55)

THRESHMUL1 Threshold multiple.
000 Threshold field is multiplied by 1 (PMLCbnTHRESHOLD 1)
001 Threshold field is multiplied by 2 (PMLCbnTHRESHOLD 2)
010 Threshold field is multiplied by 4 (PMLCbnTHRESHOLD 4)
011 Threshold field is multiplied by 8 (PMLCbnTHRESHOLD 8)
100 Threshold field is multiplied by 16 (PMLCbnTHRESHOLD 16)
101 Threshold field is multiplied by 32 (PMLCbnTHRESHOLD 32)
110 Threshold field is multiplied by 64 (PMLCbnTHRESHOLD 64)
111 Threshold field is multiplied by 128 (PMLCbnTHRESHOLD 128)

24:25
(56:57)

— Reserved, should be cleared.

26:31
(58:63)

THRESHOLD1 Threshold

Only events that exceed this value multiplied by THRESHMUL are counted. Events to
which a threshold value applies are implementation dependent, as are the unit (for
example duration in cycles) and the granularity with which the threshold value is
interpreted.
By varying the threshold value, software can obtain a profile of the event characteristics
subject to thresholding by monitoring a program repeatedly using a different threshold
value each time.

1 These Fields are not implemented in PMLCb2 and PMLCb3, and read as zero.

Table 8-6. PMLCb0–PMLCb3 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

540 Freescale Semiconductor

8.3.8 User Performance Monitor Local Control B registers
(UPMLCb0–UPMLCb3)

The contents of PMLCb0–PMLCb3 are aliased to UPMLCb0–UPMLCb3, which can be read by user-level
software with mfpmr using PMR numbers in Table 8-2.

8.3.9 Performance Monitor Counter registers (PMC0–PMC3)

The performance monitor counter registers PMC0–PMC3 shown in Figure 8-4 are 32-bit counters that can
be programmed to generate overflow event signals when they overflow. Each counter is enabled to count
up to 128 processor events.

PMCs are cleared by reset. Table 8-7 describes the PMC register fields.

The minimum value for a counter is 0 (0x0000_0000) and the maximum value is 4,294,967,295
(0xFFFF_FFFF). A counter can increment by 0, 1, 2, 3, or 4 (based on the number of events occurring in
a given counter cycle) up to the maximum value and then wraps to the minimum value.

A counter enters the overflow state when the high-order bit is set. A performance monitor interrupt handler
can easily identify overflowed counters, even if the interrupt is masked for many cycles (during which the
counters may continue incrementing). A high-order bit is normally set only when the counter increments
from a value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648
(0x8000_0000).

NOTE
Initializing PMCs to overflowed values is discouraged. If an overflowed
value is loaded into a PMCn that held a non-overflowed value (and
PMGC0PMIE, PMLCanCE, and MSREE are set), an interrupt may be falsely
generated before any events are counted.

O
V

Counter Value

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PMR - 16, 17, 18, 19; Read/Write; Reset - 0x0

Figure 8-4. Performance Monitor Counter registers (PMC0–PMC3)

Table 8-7. PMC0–PMC3 field descriptions

Bits Name Description

0
(32)

OV Overflow
0 - Counter has not reached an overflow state.
1 - Counter has reached an overflow state.
Note: this bit is not sticky, thus will not remain set if the counter

subsequently counts past 0xFFFF_FFFF.

1:31
(33:63)

Counter Value
Indicates the number of occurrences of the specified event.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 541

The response to an overflow condition depends on the configuration, as follows:

• If PMLCanCE is clear, no special actions occur on overflow of PMCn: the counter continues
incrementing, and no event is signaled.

• If PMLCanCE and PMGC0FCECE are both set, all counters are frozen when PMCn overflows.

• If PMLCanCE and PMGC0PMIE are set, an exception is signaled on overflow of PMCn.
Performance Monitor Interrupts are masked when MSREE =0. An exception may be signaled while
MSREE =0, but the interrupt is not taken until MSREE =1 and is only guaranteed to be taken if the
overflow condition is still present (i.e., the counter has not counted past 0xFFFF_FFFF, in which
case the OV bit would become cleared) and the configuration has not been changed in the
meantime to disable the exception. If PMLCanCE or PMGC0PMIE is cleared, the exception is no
longer signaled.

The following sequence is recommended for setting counter values and configurations:

1. Set PMGC0FAC to freeze the counters.

2. Using mtpmr instructions, initialize counters and configure control registers.

3. Release the counters by clearing PMGC0FAC with a final mtpmr.

8.3.10 User Performance Monitor Counter registers (UPMC0–UPMC3)

The contents of PMC0–PMC3 are aliased to UPMC0–UPMC3, which can be read by user-level software
with the mfpmr instruction using PMR numbers in Table 8-2.

8.4 Performance monitor interrupt
The performance monitor interrupt is triggered by an enabled condition or event. The enabled condition
or events defined for the e200z759n3 are the following:

• A PMCn overflow condition occurs when both of the following are true:

— The counter’s overflow condition is enabled; PMLCanCE is set.

— The counter indicates an overflow; PMCnOV is set.

• A time base event occurs with the following settings:

— Time base events are enabled with PMGC0TBEE = 1

— The TBL bit specified in PMGC0TBSEL changes from 0 to 1

The two performance monitor exception conditions are treated differently with respect to whether or not
the conditions are level-sensitive or edge-sensitive. A performance monitor exception condition that is
caused by a PMCn overflow condition is level-sensitive to the values of PMLCAnCE and PMCnOV. This
means that as long as these values are both set to ‘1’, then the exception condition continues to exist and
the performance monitor interrupt can be taken if the remainder of the performance monitor interrupt
gating conditions are met. However, the exception due to the time base event is set only when both
PMGC0TBEE=1 and the transition from ‘0’ to ‘1’ occurs in the specified TBL bit. This condition is not
cleared once it occurs, regardless of whether the TBL bit subsequently transitions to a ‘0’, but this
exception is automatically cleared whenever any performance monitor interrupt is subsequently taken.

e200z759n3 Core Reference Manual, Rev. 2

542 Freescale Semiconductor

If PMGC0PMIE is set, an enabled condition or event triggers the signaling of a performance monitor
exception.

If PMGC0FCECE is set, an enabled condition or event forces all performance monitor counters to freeze.

Although the performance monitor exception condition may occur with MSREE =0, the interrupt cannot
be taken until MSREE =1. If PMCn overflows and would signal an exception (PMLCanCE=1 and
PMGC0PMIE=1) while MSREE =0, and freezing of the counters is not enabled (PMGC0FCECE is clear), it
is possible that PMCn could wrap around to all zeros again without the performance monitor interrupt
being taken.

Interrupt handlers should clear a counter overflow condition or the corresponding Condition Enable to
avoid a repeated interrupt to occur for the same event.

The priority of the performance monitor interrupt is specified in Section 7.8.1, Exception priorities.

8.5 Event counting
This section describes configurability and specific unconditional counting modes.

8.5.1 MSR-based context filtering

Counting can be configured to be conditionally enabled if conditions in the processor state match a
software-specified condition. Because a software task scheduler may switch a processor’s execution
among multiple processes and because statistics on only a particular process may be of interest, a facility
is provided to mark a process. The performance monitor mark bit, MSRPMM, is used for this purpose.
System software may set this bit when a marked process is running. This enables statistics to be gathered
only during the execution of the marked process. The states of MSRPR and MSRPMM define a state that
the processor (supervisor or user) and the process (marked or unmarked) may be in at any time. If this state
matches an individual state specified by the PMLCanFCS,FCU,FCM1,FCM0 fields, counting is enabled for
PMCn.

For the e200z759n3 implementation, a given event may or may not support MSR-based context filtering.
For events that do not support MSR-based context filtering, the FCS, FCU, FCM1, and FCM0 controls
have no effect on the counting of that event.

The processor states and the settings of the FCS, FCU, FCM1, and FCM0 bits in PMLCan necessary to
enable monitoring of each processor state are shown in Table 8-8.

Table 8-8. Processor States and PMLCa0–PMLCa3 bit settings

Processor State FCS FCU FCM1 FCM0

All (no context filtering) 0 0 0 0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

Marked and supervisor 0 1 0 1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 543

8.6 Examples
The following sections provide examples of how to use the performance monitor facility.

8.6.1 Chaining counters

The counter chaining feature can be used to allow a higher event count than is possible with a single
counter. Chaining two counters together effectively adds 32 bits to a counter register where rollover of the
first counter generates a carry out feeding the second counter. By defining the event of interest to be
another PMC’s rollover occurrence, the chained counter increments each time the first counter rolls over
to zero. Multiple counters may be chained together.

Because the entire chained value cannot be read in a single instruction, a rollover may occur between
counter reads, producing an inaccurate value. A sequence like the following is necessary to read the
complete chained value when it spans multiple counters and the counters are not frozen. The example
shown is for a two-counter case.
loop: mfpmr Rx,pmctr1 #load from upper counter

mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop #loop if carry occurred between reads

The comparison and loop are necessary to ensure that a consistent set of values has been obtained. The
above sequence is not necessary if the counters are frozen.

8.6.2 Thresholding

Threshold event measurement enables the counting of duration and usage events. For example, data cache
load miss cycles (events C0:xx and C1:xx) require a threshold value. A data cache load miss cycles event
is counted only when the number of cycles spent waiting for the miss is greater than the threshold. Because
this event is supported by two counters and each counter has an individual threshold, one execution of a
performance monitor program can sample two different threshold values. Measuring code performance
with multiple concurrent thresholds may expedite code profiling significantly.

Not marked and supervisor 0 1 1 0

User 1 0 0 0

Marked and user 1 0 0 1

Not marked and user 1 0 1 0

None (counting disabled) X X 1 1

None (counting disabled) 1 1 X X

Table 8-8. Processor States and PMLCa0–PMLCa3 bit settings (continued)

Processor State FCS FCU FCM1 FCM0

e200z759n3 Core Reference Manual, Rev. 2

544 Freescale Semiconductor

8.7 Event selection
Event selection is specified through the PMLCan registers described in Section 8.3.5, Performance
Monitor Local Control A Registers (PMLCa0–PMLCa3). The event-select fields in PMLCanEVENT are
described in Table 8-10, which lists encodings for the selectable events to be monitored. Table 8-10
establishes a correlation between each counter, events to be traced, and the pattern required for the desired
selection.

The Spec/Nonspec column indicates whether the event count includes any occurrences due to processing
that was not architecturally required by the Power Architecture sequential execution model (speculative
processing).

• Speculative counts include speculative operations that were later flushed.

• Nonspeculative counts do not include speculative operations, which are flushed.

The PR, PMM filtering column indicates whether a given event supports MSR-based context filtering.

Table 8-9 describes how event types are indicated in Table 8-10.

Table 8-10 describes performance monitor events.

Table 8-9. Event types

Event type Label Description

Reference Ref:# Shared across counters PMC0–PMC3.

Common Com:# Shared across counters PMC0–PMC3.

Counter-specific C[0–3]:# Counted only on one or more specific counters. The notation indicates the counter to
which an event is assigned. For example, an event assigned to counter PMC0 is shown
as C0:#.

Table 8-10. Performance monitor event selection

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

General events

Com:0 Nothing Nonspec - Register counter holds current value

Ref:12 Processor cycles Nonspec yes Every processor cycle not in waiting, halted,
stopped states and not in a debug session.

Com:23 Instructions completed Nonspec yes Completed instructions. , 1, 2, or 3 per cycle.

Com:32 Processor cycles with 0
instructions issued

Nonspec yes Ref:1 cycles with no instructions entering execution

Com:42 Processor cycles with 1
instruction issued

Nonspec yes Ref:1 cycles with one instruction entering execution

Com:52 Processor cycles with 2
instructions issued

Nonspec yes Ref:1 cycles with two instructions entering execution

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 545

Com:63 Instruction words
fetched

Spec yes Fetched instruction words. 0, 1, or 2, 3, or 4 per
cycle. (note that an instruction word may hold 1 or 2
instructions, or 2 partial instructions when fetching
from a VLE page)

Com:7 — — — —

Com:8 PM_EVENT transitions — — 0 to 1 transitions on the p_pm_event input.

Com:9 PM_EVENT cycles — — Processor (Ref:1) cycles that occur when the
p_pm_event input is asserted.

Instruction types completed

Com:103 Branch instructions
completed

Nonspec yes Completed branch instructions, includes branch and
link type instructions

Com:113 Branch and link type
instructions completed

Nonspec yes Completed branch and link type instructions

Com:123 Conditional branch
instructions completed

Nonspec yes Completed conditional branch instructions

Com:133 Taken Branch
instructions completed

Nonspec yes Completed branch instructions that were taken.
Includes branch and link type instructions.

Com:143 Taken Conditional
Branch instructions

completed

Nonspec yes Completed conditional branch instructions that were
taken.

Com:153 Load instructions
completed

Nonspec yes Completed load, load-multiple type instructions

Com:163 Store instructions
completed

Nonspec yes Completed store, store-multiple type instructions

Com:173 Load micro-ops
completed

Nonspec yes Completed load micro-ops. (l*, evl*, load-update (1
load micro-op), load-multiple (1–32 micro-ops),
dcbt, dcbtls, dcbtst, dcbtstls, and dcbtst, dcbf,
dcblc, dcbst, icbi, icblc, icbt, icbtls). Misaligned
loads crossing a 64-bit boundary count as two
micro-ops.

Com:183 Store micro-ops
completed

Nonspec yes Completed store micro-ops. (st*, evst*,
store-update (1 store micro-op), store-multiple
(1–32 micro-ops), dcbi, dcbz). Misaligned stores
crossing a 64-bit boundary count as two micro-ops.

Com:193 Integer instructions
completed

Nonspec yes Completed simple integer instructions (not a
load-type/store-type/branch/mul/div, EFPU, or SPE)

Com:203 Multiply instructions
completed

Nonspec yes Completed Multiply instructions (non-EFPU)

Com:213 Divide instructions
completed

Nonspec yes Completed Divide instructions including SPE
(non-EFPU)

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

546 Freescale Semiconductor

Com:223 Divide instruction
execution cycles

Nonspec yes Cycles of execution for all Divide instructions
(non-EFPU)

Com:233 SPE/EFPU instructions
completed

Nonspec yes Completed SPE/EFPU instructions. Does not
include SPE/EFPU load and store instructions.

Com:243 SPE simple instructions
completed

Nonspec yes Completed SPE simple instructions. All SPE
instructions included except SPE load and store
instructions, div, dotp, mul and mac-type
instructions.

Com:253 SPE mul/mac/dotp
instructions completed

Nonspec yes Completed SPE mul/mac/dotp instructions. Does
not include other SPE instructions, or brinc
instructions.

Com:263 EFPU FP instructions
completed

Nonspec yes Completed EFPU FP (evfs, efs) instructions.

Com:273 Number of return from
interrupt instructions

Nonspec yes Includes all types of return from interrupts (i.e. rfi,
rfci, rfdi, rfmci, and VLE variants)

Branch prediction and execution events

Com:283 Finished branches that
miss the BTB

Spec yes Includes all taken branch instructions that missed in
the BTB

Com:293 Branches mispredicted
(for any reason)

Spec yes Counts branch instructions mispredicted due to
direction or target (for example if the LR or CTR
contents change).

Com:303 Branches in the BTB
mispredicted due to
direction prediction.

Spec yes Counts branch instructions that hit the BTB with
mispredicted due to direction prediction.

Com:313 Incorrect target
prediction using the link

stack

Spec yes —

Com:323 BTB hits Spec yes Branch instructions that hit in the BTB

Com:33 — — — —

Com:34 — — — —

Pipeline stalls

Com:35 — — — —

Com:36 — — — —

Com:372 Cycles decode stalled
due to no instructions

available

Spec yes No instruction available to decode

Com:382 Cycles issue stalled Spec yes Cycles the issue buffer is not empty but 0
instructions issued

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 547

Com:392 Cycles branch issue
stalled

Spec yes Branch held in decode awaiting resolution

Com:402 Cycles execution stalled
waiting for load data

Spec yes load stalls

Com:412 Cycles execution stalled
waiting for

non-load/store
SPE/EFPU result data

Spec yes Stalled waiting on mul, div, FP or MAC results

Load/store, data cache, and data line fill events

Com:42 — — — —

Com:43 — — — —

Com:443 Total translation hits Spec yes —

Com:453 Load translation hits Spec yes Cacheable l* or evl* micro-ops translated. (includes
load micro-ops from load-multiple and load-update
instructions)

Com:463 Store translation hits Spec yes Cacheable st* or evst* micro-ops translated.
(includes micro-ops from store-multiple, and
store-update instructions)

Com:473 Touch translation hits Spec yes Cacheable dcbt and dcbtst instructions translated
(L1 only) and causing linefills. (Doesn’t count
touches that are converted to nops i.e. exceptions,
non-cacheable, HID0[NOPTI] is set, cache hits, etc.)

Com:483 Data cache op
translation hits

Spec yes dcba, dcbf, dcbst, and dcbz instructions translated

Com:493 Data cache lock set
instructions completed

Nonspec yes dcbtls and dcbtstls instructions completed

Com:503 Data cache lock clear
instructions completed

Nonspec yes dcblc instructions completed

Com:513 Cache-inhibited load
access translation hits

Spec yes Cache inhibited load accesses translated

Com:523 Cache-inhibited store
access translation hits

Spec yes Cache inhibited store accesses translated

Com:533 Guarded load translation
hits

Spec yes Guarded loads translated

Com:543 Guarded store
translation hits

Spec yes Guarded stores translated

Com:553 Write-through store
translation hits

Spec yes Write-through stores translated

Com:563 Misaligned load or store
accesses translated

Spec yes Misaligned load or store accesses translated. Count
once per misaligned load or store.

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

548 Freescale Semiconductor

Com:573 DCache linefills Spec yes Counts DCache reloads for any reason, including
touch-type reloads. Typically used to determine
approximate data cache miss rate (along with
loads/stores completed).

Com:583 DCache copybacks Spec yes Does not count copybacks due to dcbf, dcbst, or
L1FINV0 operations

Com:593 DCache sequential
accesses

Spec yes Number of sequential accesses

Com:603 DCache stream hits Spec yes Number of load hits due to streaming

Com:613 DCache linefill buffer hits Spec yes Number of load hit to the linefill buffer

Com:623 Store stalls due to store
to line of active linefill

Spec yes Stall cycles due to store to linefill in progress

Com:633 Store buffer full stalls Spec yes Stall cycles due to store buffer full

Com:642 DCache throttling stalls Spec yes Cycles the data cache asserts p_d_halt_zlb, which
actually cause a CPU stall

Com:653 DCache recycled
accesses

Spec yes Number of loads or stores recycled for a re-lookup

Com:663 DCache recycled access
stalls

Spec yes Number of stall cycles due to recycled accesses for
a re-lookup

Com:673 DCache CPU aborted
accesses

Spec yes Number of aborted requests

Com:683 Data MMU miss Spec yes Counts number of DTLB events

Com:693 Data MMU error Spec yes Counts number of DSI events

Fetch, instruction cache, instruction line fill, and instruction prefetch events

Com:70 — — — —

Com:71 — — — —

Com:723 ICache linefills Spec yes Counts ICache reloads due to demand fetch. Used
to determine instruction cache miss rate (along with
instructions completed)

Com:733 Number of fetches Spec yes Counts fetches that write at least one instruction to
the instruction buffer. (With instruction fetched
(com:4), can used to compute
instructions-per-fetch)

Com:743 ICache lock set
instructions completed

Nonspec yes icbtls instructions completed

Com:753 ICache lock clear
instructions completed

Nonspec yes icblc instructions completed

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 549

Com:763 Cache-inhibited
instruction access

translation hits

Spec yes Cache-inhibited instruction accesses translated

Com:772 ICache throttling stalls Spec yes Cycles the instruction cache asserts p_i_halt_zlb,
which actually causes a CPU stall

Com:783 ICache recycled
accesses

Spec yes Number of instruction access requests recycled for
a re-lookup

Com:793 ICache recycled access
stalls

Spec yes Number of stall cycles due to recycled accesses for
a re-lookup

Com:803 ICache CPU aborted
accesses

Spec yes Number of aborted requests

Com:813 Instruction MMU miss Spec yes Counts number of events

Com:823 Instruction MMU error Spec yes Counts number of events

BIU interface usage

Com:83 — — — —

Com:84 — — — —

Com:853 BIU instruction-side
requests

Spec yes instruction-side transactions

Com:863 BIU instruction-side
cycles

Spec yes instruction-side transaction cycles

Com:873 BIU data-side requests Spec yes data-side transactions

Com:883 BIU data-side copyback
requests

Spec yes Replacement pushes including dcbf, dcbst,
L1FINV0, copybacks.

Com:893 BIU data-side cycles Spec yes data-side transaction cycles

Com:903 BIU single-beat write
cycles

Non-Spec yes single beat write transaction cycles

Com:91 — — — —

Snoop

Com:92 Snoop requests N/A — Externally generated snoop requests. (Counts
snoop TSs.)

Com:93 Snoop hits N/A — Snoop hits on all data-side resources regardless of
the cache state (modified, shared, or exclusive)

Com:943 Snoop induced CPU to
DCache stalls

N/A — Cycles a pending DCache access from CPU is
stalled due to contention with snoops

Com:95 Snoop Queue full cycles N/A — Cycles the snoop queue is full

Com:96 — — — —

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

550 Freescale Semiconductor

Chaining events4

Com:97 PMC0 rollover N/A — PMC0OV transitions from 1 to 0.

Com:98 PMC1 rollover N/A — PMC1OV transitions from 1 to 0.

Com:99 PMC2 rollover N/A — PMC2OV transitions from 1 to 0.

Com:100 PMC3 rollover N/A — PMC3OV transitioned from 1 to 0.

Interrupt events

Com:101 — — — —

Com:102 — — — —

Com:103 Interrupts taken Nonspec — —

Com:104 External input interrupts
taken

Nonspec — —

Com:105 Critical input interrupts
taken

Nonspec — —

Com:106 Watchdog timer
interrupts taken

Nonspec — —

Com:107 System call and trap
interrupts

Nonspec yes —

Com:1082 Cycles in which
MSREE=0

Nonspec — —

Com:1092 Cycles in which
MSRCE=0

Nonspec — —

Ref:110 Transitions of TBL bit
selected by

PMGC0TBSEL.

Nonspec — —

DEVENT events

Com:111 DEVNT0 is generated Nonspec yes assertion of p_devnt_out0 detected

Com:112 DEVNT1 is generated Nonspec yes assertion of p_devnt_out1 detected

Com:113 DEVNT2 is generated Nonspec yes assertion of p_devnt_out2 detected

Com:114 DEVNT3 is generated Nonspec yes assertion of p_devnt_out3 detected

Com:115 DEVNT4 is generated Nonspec yes assertion of p_devnt_out4 detected

Com:116 DEVNT5 is generated Nonspec yes assertion of p_devnt_out5 detected

Com:117 DEVNT6 is generated Nonspec yes assertion of p_devnt_out6 detected

Com:118 DEVNT7 is generated Nonspec yes assertion of p_devnt_out7 detected

Watchpoint events

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 551

Com:1192 Watchpoint #0 occurs Nonspec yes assertion of jd_watchpt0 detected

Com:1202 Watchpoint #1 occurs Nonspec yes assertion of jd_watchpt1 detected

Com:1212 Watchpoint #2 occurs Nonspec yes assertion of jd_watchpt2 detected

Com:1222 Watchpoint #3 occurs Nonspec yes assertion of jd_watchpt3 detected

Com:1232 Watchpoint #4 occurs Nonspec yes assertion of jd_watchpt4 detected

Com:1242 Watchpoint #5 occurs Nonspec yes assertion of jd_watchpt5 detected

Com:1252 Watchpoint #6 occurs Nonspec yes assertion of jd_watchpt6 detected

Com:1262 Watchpoint #7 occurs Nonspec yes assertion of jd_watchpt7 detected

Com:1272 Watchpoint #8 occurs Nonspec yes assertion of jd_watchpt8 detected

Com:1282 Watchpoint #9 occurs Nonspec yes assertion of jd_watchpt9 detected

Com:129 Watchpoint #10 occurs Nonspec yes assertion of jd_watchpt10 detected

Com:130 Watchpoint #11 occurs Nonspec yes assertion of jd_watchpt11 detected

Com:131 Watchpoint #12 occurs Nonspec yes assertion of jd_watchpt12 detected

Com:132 Watchpoint #13 occurs Nonspec yes assertion of jd_watchpt13 detected

Com:1332 Watchpoint #14 occurs Nonspec yes assertion of jd_watchpt14 detected

Com:1342 Watchpoint #15 occurs Nonspec yes assertion of jd_watchpt15 detected

Com:1352 Watchpoint #16 occurs Nonspec yes assertion of jd_watchpt16 detected

Com:1362 Watchpoint #17 occurs Nonspec yes assertion of jd_watchpt17 detected

Com:1372 Watchpoint #18 occurs Nonspec yes assertion of jd_watchpt18 detected

Com:1382 Watchpoint #19 occurs Nonspec yes assertion of jd_watchpt19 detected

Com:139 Watchpoint #20 occurs Nonspec yes assertion of jd_watchpt20 detected

Com:140 Watchpoint #21 occurs Nonspec yes assertion of jd_watchpt21 detected

Com:141 Watchpoint #22 occurs Nonspec yes assertion of jd_watchpt22 detected

Com:142 Watchpoint #23 occurs Nonspec yes assertion of jd_watchpt23 detected

Com:143 Watchpoint #24 occurs Nonspec yes assertion of jd_watchpt24 detected

Com:144 Watchpoint #25 occurs Nonspec yes assertion of jd_watchpt25 detected

Com:145 Watchpoint #26 occurs Nonspec yes assertion of jd_watchpt26 detected

Com:1462 Watchpoint #27 occurs Nonspec yes assertion of jd_watchpt27 detected

Com:1472 Watchpoint #28 occurs Nonspec yes assertion of jd_watchpt28 detected

Com:1482 Watchpoint #29 occurs Nonspec yes assertion of jd_watchpt29 detected

Com:149 — — — —

Com:150 — — — —

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

552 Freescale Semiconductor

NEXUS events

Com:1513 Cycle CPU is stalled by
Nexus3 FIFO full

Nonspec yes OVCR stall control set to stall on FIFO fullness

Threshold events

C0:1523

C1:1523
Data cache load miss

cycles
Spec yes Instances when the number of cycles between a

load miss in the data cache and update of the data
cache exceeds the threshold.

C0:1533

C1:1533
Instruction cache fetch

miss cycles
Spec yes Instances when the number of cycles between miss

in the instruction cache and update of the instruction
cache exceeds the threshold.

C0:1543

C1:1543
External input interrupt

latency cycles
N/A — Instances when the number of cycles between

request for interrupt (p_int_b) asserted (but possibly
masked/disabled) and redirecting fetch to external
interrupt vector exceeds threshold. Once the
redirection has occurred, no further threshold
comparisons are made until either the interrupt
request negates, or the external input interrupt is
re-enabled by setting MSREE.

C0:1553

C1:1553
Critical input interrupt

latency cycles
N/A — Instances when the number of cycles between

request for critical interrupt (p_critint_b) is asserted
(but possibly masked/disabled) and redirecting fetch
to the critical interrupt vector exceeds threshold.
Once the redirection has occurred, no further
threshold comparisons begin until either the
interrupt request negates and is then re-asserted, or
the critical input interrupt is re-enabled by setting
MSRCE.

C0:1563

C1:1563
Watchdog timer interrupt

latency cycles
N/A — Instances when the number of cycles between

watchdog timer time-out request for critical interrupt
becomes pending (watchdog interrupt enabled
(TCRWIE set) and time-out occurs (TSRENW,WIS
become 0b11)) and redirecting fetch to the critical
interrupt vector exceeds the threshold. Once the
redirection has occurred, no further threshold
comparisons begin until either the watchdog
interrupt request negates and is then re-asserted, or
the watchdog interrupt is re-enabled by setting
MSRCE.

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 553

C0:1573

C1:1573
External input interrupt
pending latency cycles

N/A — Instances when the number of cycles between
external interrupt pending (enabled and pin
asserted) and redirecting fetch to the external
interrupt vector exceeds the threshold. Once the
redirection has occurred, no further threshold
comparisons are made until either the interrupt
request negates and is then re-asserted, or the
external input interrupt is re-enabled by setting
MSREE.

C0:1583

C1:1583
Critical input interrupt

pending latency cycles
N/A Instances when the number of cycles between pin

request for critical interrupt pending (enabled and
pin asserted) and redirecting fetch to the critical
interrupt vector exceeds the threshold. Once the
redirection has occurred, no further threshold
comparisons are made until either the interrupt
request negates and is then re-asserted, or the
critical input interrupt is re-enabled by setting
MSRCE.

1 The notation for the PR, and PMM filtering column either contains a ‘yes’ or a ‘-’. A ‘yes’ indicates that the
MSR-based context filtering function is available for that event. A ‘-’ indicates that the MSR-based context filtering
is not available for that event and will have no effect on the counting of that event. See Section 8.5.1, MSR-based
context filtering, for more information.

2 This event is not counted while the processor is in the waiting, halted, or stopped states, or during a debug session
3 This event is not counted while the processor is in a debug session.
4 For chaining events, if a counter is configured to count its own rollover, the result is undefined.

Table 8-10. Performance monitor event selection (continued)

Number Event
Spec/

nonspec
 PR, PMM
filtering1 Count description

e200z759n3 Core Reference Manual, Rev. 2

554 Freescale Semiconductor

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 555

Chapter 9
Power Management

9.1 Power management
Power management is supported by e200z759n3 cores to minimize overall system power consumption.
The e200z759n3 core provides the ability to initiate power management from external sources as well as
through software techniques. The power states on the e200z759n3 core are described below.

9.1.1 Active state

The Active state is the default state for the e200z759n3 core in which all of its internal units are operating
at full processor clock speed. In this state, the e200z759n3 core still provides dynamic power management
in which individual internal functional units may stop clocking automatically whenever they are idle.

9.1.2 Waiting state

The e200z759n3 core enters the Waiting state as a result of executing a wait instruction. Following entry
into the waiting state, instruction execution and bus activity is suspended. Most internal clocks are gated
off in this state. The e200z759n3 core asserts p_waiting to indicate it is in the waiting state. Prior to
entering the waiting state, all outstanding instructions and bus transactions will be completed, and the
cache’s store and push buffers will be flushed. The m_clk input should remain running while in the waiting
state to allow for interrupt sampling, and to allow further transitions into the Halted or Stopped state if
requested and to keep the Time Base operational if it is using m_clk as the clock source.

In the waiting state, the core is waiting for a valid unmasked pending interrupt request. Once a pending
interrupt request is received, the core will exit the waiting state and begin interrupt processing. The return
program counter value will point to the next instruction after the wait instruction. The interrupt can be an
external input interrupt, various critical interrupts, a debug interrupt (based on ICMP), a non-maskable
interrupt, or a machine check interrupt (p_mcp_b assertion, etc.). Once the interrupt processing begins,
the core will not return to the waiting state until another wait instruction is executed.

The waiting state can be temporarily exited and returned to if a request is made to enter hardware debug
mode (various mechanisms), the Halted state, or the Stopped state. After exiting one of these states, the
processor will return to the waiting state. While temporarily exited, the p_waiting output will negate, and
will be re-asserted once the CPU returns to the waiting state.

9.1.3 Halted state

Instruction execution and bus activity is suspended in the Halted state. Most internal clocks are gated off
in this state. The e200z759n3 core asserts p_halted to indicate it is in the halted state. Prior to entering the
halted state, all outstanding bus transactions will be completed, and the cache’s store and push buffers will
be flushed. The m_clk input should remain running while in the Halted state to ensure that snoop requests
continue to be processed, to allow further transitions into the Stopped state if requested, and to keep the
Time Base operational if it is using m_clk as the clock source.

e200z759n3 Core Reference Manual, Rev. 2

556 Freescale Semiconductor

9.1.4 Stopped state

The Stopped state is characterized as having all internal functional units of the e200z759n3 core stopped
except the Time Base unit and the clock control state machine logic. The internal m_clk may be kept
running to keep the Time Base active and to allow quick recovery to the full on state. Clocks are not
running to functional units in this state except for the Time Base. The Stopped state is reached after
transitioning through the Halted state with the p_stop input asserted. The p_stopped output signal will be
asserted once the Stopped state is reached. The CPU will not enter the Stopped state until all snoops have
been processed and the snoop queue is empty. System logic is responsible for ensuring that snoop requests
are no longer generated once the p_stop input is asserted, in order to allow a transition from the Halted to
the Stopped state.

While in the Stopped state, further power savings may be achieved by disabling the Time Base by asserting
p_tbdisable, or by stopping the m_clk input. This is done externally by the system after the e200z759n3
core is safely in the Stopped state and has asserted the p_stopped output signal. To exit from the Stopped
state, the system must first restart the m_clk input.

Since the Time Base unit is off during the Stopped state if it is using m_clk as the clock source and m_clk
is stopped, or if the Time Base clocking is disabled by the assertion of p_tbdisable, system software must
usually have to access an external time base source after returning to the full on state in order to re-initialize
the Time Base unit. In addition, it will not be possible to use a Time Base related interrupt source to exit
low power states.

e200z759n3 also provides the capability of clocking the Time Base from an independent (but externally
synchronized) clock source, which would allow the Time Base to be maintained during the Stopped state,
and would allow a Time Base related interrupt to be generated to indicate an exit condition from the
Stopped state.

Figure 9-1. Power management state diagram

9.1.5 Power management pins

p_waiting - output pin asserted when the e200z759n3 core is in the Waiting state.

Halted

Stopped

~p_stop & p_halt

p_stop

~p_halt & ~ p_stop & p_halt | p_stop

~p_stopp_stop

Active ~p_halt & ~ p_stop

(p_stopped asserted)

(p_halted asserted)

Waiting~p_halt & ~ p_stop
 & ~ipend

ipend

exec wait

~prev_waited

~p_halt & ~ p_stop &
prev_waited

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 557

p_halt - input pin is asserted by system logic to request the core to go into the Halted state. Negating this
pin causes the e200z759n3 core to transition back into the Active or Waiting state if p_stop is also negated.

p_halted - output pin asserted when the e200z759n3 core is in the Halted state.

p_stop - input pin is asserted by system logic to request that the e200z759n3 core go into the Stopped state.
Negating this pin causes the e200z759n3 core to transition back into the Halted state from the Stopped
state.

p_stopped - output pin asserted when the e200z759n3 core is in the Stopped state.

p_tbdisable - input pin is asserted by system logic when clocking of the Time Base should be disabled.

p_tbint - output pin is asserted when an internal Time Base interrupt request is signaled.

p_doze, p_nap, and p_sleep output pins that reflects the state of HID0DOZE, HID0NAP, and HID0SLEEP
respectively. These pins are qualified with MSRWE = 1. Interpretation of these signals is done by the
system logic.

p_wakeup - output pin asserted when an interrupt is pending or other condition that requires the clock to
be running.

9.1.6 Power management control bits

The following bits are used by software to generate a request to enter a power-saving state and to choose
the state to be entered:

• MSRWE—The WE bit is used to qualify assertion of the p_doze, p_nap, and p_sleep output pins
to the system logic. When MSRWE is negated, these pins are negated. When MSRWE is set, these
pins reflect the state of their respective control bits in the HID0 register.

• HID0DOZE —The interpretation of the doze mode bit is done by the external system logic. Doze
mode on the e200z759n3 core is intended to be the halted state with the clocks running.

• HID0NAP —The interpretation of the nap mode bit is done by the external system logic. Nap mode
on the e200z759n3 core may be used for a powerdown state with the Time Base enabled.

• HID0SLEEP —The interpretation of the sleep mode bit is done by the external system logic. Sleep
mode on the e200z759n3 core may be used for a powerdown state with the Time Base disabled.

9.1.7 Software considerations for power management using wait
instructions

Executing a wait instruction causes the e200z759n3 core to complete instruction fetch and execution
activity and await an interrupt. The p_waiting output is asserted once the Waiting state is entered. External
system hardware may interpret the state of this signal and activate the p_halt and/or p_stop inputs to cause
the e200z759n3 core to enter a quiescent state in which clocks may be disabled for low power operation.
Alternatively, system hardware may utilize some other clock control mechanism while the processor is in
the Waiting state, and p_wakeup remains negated.

e200z759n3 Core Reference Manual, Rev. 2

558 Freescale Semiconductor

9.1.8 Software considerations for power management using Doze, Nap or
Sleep

Setting MSR[WE] generates a request to enter a power saving state. The power saving state (doze, nap, or
sleep) must be previously determined by setting the appropriate HID0 bit. Setting MSR[WE] has no direct
effect on instruction execution, but it simply reflected on p_doze, p_nap, and p_sleep depending on the
setting of HID0DOZE, HID0NAP, and HID0SLEEP respectively. Note that the e200z759n3 core is not
affected by assertion of these pins directly. External system hardware may interpret the state of these
signals and activate the p_halt and/or p_stop inputs to cause the e200z759n3 core to enter a quiescent state
in which clocks may be disabled for low power operation.

To ensure a clean transition into and out of a power saving mode, the following program sequence is
recommended:

sync
mtmsr (WE)
isync

loop: br loop (optionally use a wait instruction)

An interrupt is typically used to exit a power saving state. The p_wakeup output is used to indicate to the
system logic that an interrupt (or a debug request) has become pending. System logic uses this output to
re-enable the clocks and exit a low power state. The interrupt handler is responsible for determining how
to exit the low power loop if one is used. Wait instructions will be exited automatically. The vectored
interrupt capability provided by the core may be useful in assisting the determination if an external
hardware interrupt is used to perform the wake-up.

9.1.9 Debug considerations for power management

When a debug request is presented to the e200z759n3 core while in either the Waiting, Halted or Stopped
state, the p_wakeup signal will be asserted, and when m_clk is provided to the CPU, it will temporarily
exit the Waiting, Halted or Stopped state and will enter Debug mode regardless of the assertion of p_halt
or p_stop. The p_waiting, p_halted, and p_stopped outputs will be negated for the duration of the time the
CPU remains in a debug session (jd_debug_b asserted). When the debug session is exited, the CPU will
re-sample the p_halt and p_stop inputs and will re-enter the Halted or Stopped state as appropriate. If the
CPU was previously waiting, and no interrupt was received while in the debug session, it will re-enter the
Waiting state and re-assert p_waiting.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 559

Chapter 10
Memory Management Unit

10.1 Overview
The e200z759n3 Memory Management Unit is a 32-bit PowerISA 2.06 compliant implementation, with
the following feature set:

• Freescale EIS MMU architecture compliant

• Translates from 32-bit effective to 32-bit real addresses

• 32-entry fully associative TLB with support for twenty-three page sizes (1 KB, 2 KB, 4 KB, 8 KB,
16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB,
64 MB, 128 MB, 256 MB, 512 MB, 1 GB, 2 GB, 4 GB)

• Hardware assist for TLB miss exceptions

• Software managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions

• Support for external control of entry matching for a subset of TID values to support non-intrusive
runtime mapping modifications

10.2 Effective to real address translation

10.2.1 Effective addresses

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow
(branches and interrupts). Data accesses are generated by load, store, and cache management instructions.
The e200z759n3 instruction fetch, branch, and load/store units generate 32-bit effective addresses. The
MMU translates this effective address to a 32-bit real address, which is then used for memory accesses.

The PowerISA 2.06 architecture divides the effective (virtual) and real (physical) address space into pages.
The page represents the granularity of effective address translation, permission control, and memory/cache
attributes. The e200z759n3 MMU supports twenty-three page sizes (1 KB, 2 KB, 4 KB, 8 KB, 16 KB,
32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2 MB, 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, 128 MB,
256 MB, 512 M, 1 GB, 2 GB, 4 GB). In order for an effective to real address translation to exist, a valid
entry for the page containing the effective address must be in a Translation Lookaside Buffer (TLB).
Addresses for which no TLB entry exists (a TLB miss) cause Instruction or Data TLB Errors.

10.2.2 Address spaces

Instruction accesses are generated by sequential instruction fetches or due to a change in program flow
(branches and interrupts). Data accesses are generated by load, store, and cache management instructions.

The PowerISA 2.06 architecture defines two effective address spaces for instruction accesses and two
effective address spaces for data accesses. The current effective address space for instruction or data
accesses is determined by the value of MSR[IS] and MSR[DS], respectively. The address space indicator
(the value of either MSR[IS] or MSR[DS], as appropriate) is used in addition to the effective address
generated by the processor for translation into a physical address by the TLB mechanism. Because

e200z759n3 Core Reference Manual, Rev. 2

560 Freescale Semiconductor

MSR[IS] and MSR[DS] are both cleared to ‘0’ when an interrupt occurs, an address space value of 0b0
can be used to denote interrupt-related address spaces (or possibly all system software address spaces), and
an address space value of 0b1 can be used to denote non interrupt-related (or possibly all user address
spaces) address spaces.

The address space associated with an instruction or data access is included as part of the virtual address in
the translation process (AS). The p_tc[1] interface signal indicates the appropriate address space.

10.2.3 Process ID

The PowerISA 2.06 architecture defines that a process ID (PID) value is associated with each effective
address (instruction or data) generated by the processor. At the Book E level, a single PID register is
defined as a 32-bit register, and it maintains the value of the PID for the current process. This PID value
is included as part of the virtual address in the translation process (PID0). For the e200z759n3 MMU, the
PID is 8 bits in length. The most-significant 24 bits are unimplemented and read as ‘0’. The p_pid0[0:7]
interface signals indicate the current process ID.

10.2.4 Translation flow

The effective address, concatenated with the address space value of the corresponding MSR bit (MSR[IS]
or MSR[DS], is compared to the appropriate number of bits of the EPN field (depending on the page size)
and the TS field of TLB entries. If the contents of the effective address plus the address space bit matches
the EPN field and TS bit of the TLB entry, that TLB entry is a candidate for a possible translation match.
In addition to a match in the EPN field and TS, a matching TLB entry must match with the current Process
ID of the access (in PID0), or have a TID value of ‘0’, indicating the entry is globally shared among all
processes.

Figure 10-1 shows the translation match logic for the effective address plus its attributes, collectively
called the virtual address, and how it is compared with the corresponding fields in the TLB entries.

Figure 10-1. Virtual address and TLB entry compare process

The page size defined for a TLB entry determines how many bits of the effective address are compared
with the corresponding EPN field in the TLB entry as shown in Table 10-1. On a TLB hit, the
corresponding bits of the Real Page Number (RPN) field are used to form the real address.

TLB entry Hit

=0?

private page

shared page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID

TLB_entry[TID]

TLB_entry[EPN]
EA page number bits

=?

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 561

On a TLB hit, the generation of the physical address occurs as shown in Figure 10-2.

Table 10-1. Page size field encodings and EPN field comparison

SIZE field
Page size
(2SIZEKB)

EA to EPN comparison

0b00000
0b00001
0b00010
0b00011
0b00100
0b00101
0b00110
0b00111
0b01000
0b01001
0b01010
0b01011
0b01100
0b01101
0b01110
0b01111
0b10000
0b10001
0b10010
0b10011
0b10100
0b10101
0b10110

1 KB
2 KB
4 KB
8 KB

16 KB
32 KB
64 KB
128 KB
256 KB
512 KB
1 MB
2 MB
4 MB
8 MB

16 MB
32 MB
64 MB

128 MB
256 MB
512 MB

1 GB
2 GB
4 GB

EA[0:21] =? EPN[0:21]
EA[0:20] =? EPN[0:20]
EA[0:19] =? EPN[0:19]
EA[0:18] =? EPN[0:18]
EA[0:17] =? EPN[0:17]
EA[0:16] =? EPN[0:16]
EA[0:15] =? EPN[0:15]
EA[0:14] =? EPN[0:14]
EA[0:13] =? EPN[0:13]
EA[0:12] =? EPN[0:12]
EA[0:11] =? EPN[0:11]
EA[0:10] =? EPN[0:10]
EA[0:9] =? EPN[0:9]
EA[0:8] =? EPN[0:8]
EA[0:7] =? EPN[0:7]
EA[0:6] =? EPN[0:6]
EA[0:5] =? EPN[0:5]
EA[0:4] =? EPN[0:4]
EA[0:3] =? EPN[0:3]
EA[0:2] =? EPN[0:2]
EA[0:1] =? EPN[0:1]

EA[0] =? EPN[0]
(none)

e200z759n3 Core Reference Manual, Rev. 2

562 Freescale Semiconductor

Figure 10-2. Effective to real address translation flow

10.2.5 Permissions

An operating system may restrict access to virtual pages by selectively granting permissions for user mode
read, write, and execute, and supervisor mode read, write, and execute on a per page basis. These
permissions can be set up for a particular system (for example, program code might be execute-only, data
structures may be mapped as read/write/no-execute) and can also be changed by the operating system
based on application requests and operating system policies.

The UX, SX, UW, SW, UR, and SR access control bits are provided to support selective permissions
(access control):

• SR—Supervisor read permission. Allows loads and load-type cache management instructions to
access the page while in supervisor mode (MSR[PR=0]).

• SW—Supervisor write permission. Allows stores and store-type cache management instructions to
access the page while in supervisor mode (MSR[PR=0]).

• SX—Supervisor execute permission. Allows instruction fetches to access the page and instructions
to be executed from the page while in supervisor mode (MSR[PR=0]).

• UR—User read permission. Allows loads and load-type cache management instructions to access
the page while in user mode (MSR[PR=1]).

• UW—User write permission. Allows stores and store-type cache management instructions to
access the page while in user mode (MSR[PR=1]).

32-bit Effective Address

32-bit Real Address

Virtual Address

NOTE: n = 32–log2(page size)
n <= 22
n = 20 for 4 KB page size.

PID Effective Page Address Offset

0 n 31

TLB
multiple-entry

MSR[IS] for instruction fetch

AS

MSR[DS] for data access

RPN field of matching entry

n–1

Real Page Number Offset

0 n 31n–1

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 563

• UX—User execute permission. Allows instruction fetches to access the page and instructions to be
executed from the page while in user mode (MSR[PR=1]).

If the translation match was successful, the permission bits are checked as shown in Figure 10-3. If the
access is not allowed by the access permission mechanism, the processor generates an Instruction or Data
Storage interrupt (ISI or DSI). The current privilege level of an access is signaled to the MMU with the
CPU’s p_tc[0] output signal.

Figure 10-3. Granting of access permission

10.2.6 Restrictions on 1 KB and 2 KB page size usage

Because of certain implementation limitations regarding coherency lookup operations (lookup is done by
physical address), if 1 KB or 2 KB pages are used, the low order virtual address bits used to index the cache
(A[20:21] for 1 KB pages, A20 for 2 KB pages) must match the corresponding physical address bit
value(s). For example, if logical page X maps to physical page P, then X and P must have the same values
of A[20:21] for 1 KB pages, and A20 for 2 KB pages. This restriction must be followed for proper CPU
operation.

10.3 Translation Lookaside Buffer (TLB)
The Freescale EIS architecture defines support for zero or more TLBs in an implementation, each with its
own characteristics, and provides configuration information for software to query the existence and
structure of the TLB(s) through a set of special purpose registers: MMUCFG, TLB0CFG, TLB1CFG, etc.
By convention, TLB0 is used for a set associative TLB with fixed page sizes, TLB1 is used for a fully
associative TLB with variable page sizes, and TLB2 is arbitrarily defined by an implementation. The
e200z759n3 MMU supports a TLB that is fully associative and supports variable page sizes, thus it
corresponds to TLB1.

TLB1 consists of a 32-entry, fully associative CAM array with support for twenty-three page sizes. To
perform a lookup, the CAM is searched in parallel for a matching TLB entry. The contents of this TLB
entry are then concatenated with the page offset of the original effective address. The result constitutes the
real (physical) address of the access.

access granted

instruction fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

load-class data access
TLB_entry[UR]

TLB_entry[SR]

store-class data access
TLB_entry[UW]

TLB_entry[SW]

TLB match (see

e200z759n3 Core Reference Manual, Rev. 2

564 Freescale Semiconductor

A hit to multiple TLB entries is considered to be a programming error. If this occurs, the TLB generates
an invalid address but an exception will not be reported.

10.4 Configuration information
Information about the configuration for a given MMU implementation is available to system software by
reading the contents of the MMU configuration SPRs. These SPRs describe the architectural version of
the MMU, the number of TLB arrays, and the characteristics of each TLB array.

10.4.1 MMU Configuration Register (MMUCFG)

The MMU Configuration Register (MMUCFG) is a 32-bit read-only register. The SPR number for
MMUCFG is 1015 in decimal. MMUCFG provides information about the configuration of the
e200z759n3 MMU design. The MMUCFG register is shown in Figure 10-4.

The MMUCFG bits are described in Table 10-3.

Table 10-2. TLB entry bit definitions

Field Comments

V Valid bit for entry

TS Translation address space (compared against AS bit)

TID[0:7] Translation ID (compared against PID0 or ‘0’)

EPN[0:21] Effective page number (compared against effective address)

RPN[0:21] Real page number (translated address)

SIZE[0:4] Page size (see Table 10-1)

SX, SW, SR Supervisor execute, write, and read permission bits

UX, UW, UR User execute, write, and read permission bits

WIMGE Translation attributes (write-through required, cache-inhibited, memory coherence required,
guarded, endian)

U0-U3 User bits — used only by software

IPROT Invalidation protect

VLE VLE page indicator

0

R
A

S
IZ

E

0

N
P

ID
S

P
ID

S
IZ

E

0

N
T

LB
S

M
A

V
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1015; Read-Only

Figure 10-4. MMU Configuration Register (MMUCFG)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 565

10.4.2 TLB0 Configuration Register (TLB0CFG)

The TLB0 Configuration Register (TLB0CFG) is a 32-bit read-only register. The SPR number for
TLB0CFG is 688 in decimal. TLB0CFG provides information about the configuration of TLB0. Since the
e200z759n3 MMU design does not implement TLB0, this register reads as all ‘0’. It is supplied to allow
software to query it in a fashion compatible with other Freescale EIS designs. The TLB0CFG register is
shown in Figure 10-5.

The TLB0CFG bits are described in Table 10-4.

Table 10-3. MMUCFG field descriptions

Bits Name Function

0:7
[32:39]

— Reserved1

1 These bits are not implemented and will be read as zero.

8:14
[40:46]

RASIZE Number of Bits of Real Address supported
0100000- This version of the MMU implements 32 real address bits

15:16
[47:48]

— Reserved1

17:20
[49:52]

NPIDS Number of PID Registers
0001 This version of the MMU implements one PID register (PID0)

21:25
[53:57]

PIDSIZE PID Register Size
00111 PID registers contain 8 bits in this version of the MMU

26:27
[58:59]

— Reserved1

28:29
[60:61]

NTLBS Number of TLBs
01 This version of the MMU implements two TLB structures: a null TLB0 and a

fully-associative TLB for TLB1

30:31
[62:63]

MAVN MMU Architecture Version Number
00 This version of the MMU implements Version 1.0 of the Freescale EIS MMU

Architecture

ASSOC MINSIZE MAXSIZE

IP
R

O
T

A
V

A
IL

P
2P

S
A

0 NENTRY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 688; Read-Only

Figure 10-5. TLB0 Configuration Register (TLB0CFG)

e200z759n3 Core Reference Manual, Rev. 2

566 Freescale Semiconductor

10.4.3 TLB1 Configuration Register (TLB1CFG)

The TLB1 Configuration Register (TLB1CFG) is a 32-bit read-only register. The SPR number for
TLB1CFG is 689 in decimal. TLB1CFG provides information about the configuration of TLB1 in the
e200z759n3 MMU. The TLB1CFG register is shown in Figure 10-6.

The TLB1CFG bits are described in Table 10-5.

Table 10-4. TLB0CFG field descriptions

Bits Name Function

0:7
[32:39]

ASSOC Associativity
0

8:11
[40:43]

MINSIZE Minimum Page Size
0

12:15
[44:47]

MAXSIZE Maximum Page Size
0

16
[48]

IPROT Invalidate Protect Capability
0 Not present in TLB0

17
[49]

AVAIL Page Size Availability
0 No variable page sizes available

18
[50]

P2PSA Power-of-2 Page Size Availability
0 No odd powers of 2 page sizes are supported

19
[51]

— Reserved1

1 These bits are not implemented and will be read as zero.

20:31
[52:63]

NENTRY Number of Entries
0 TLB0 contains 0 entries

ASSOC MINSIZE MAXSIZE

IP
R

O
T

A
V

A
IL

P
2P

S
A

0 NENTRY

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 689; Read-Only

Figure 10-6. TLB1 Configuration Register (TLB1CFG)

Table 10-5. TLB1CFG field descriptions

Bits Name Function

0:7
[32:39]

ASSOC Associativity
0x20 Indicates that TLB1 associativity is 32

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 567

10.5 Software interface and TLB instructions
The TLB is accessed indirectly through several MMU Assist (MAS) registers. Software can write and read
the MMU Assist registers with mtspr and mfspr instructions. These registers contain information related
to reading and writing a given entry within the TLB. Data is read from the TLB into the MAS registers
with a tlbre (TLB read entry) instruction. Data is written to the TLB from the MAS registers with a tlbwe
(TLB write entry) instruction.

Certain fields of the MAS registers are also written by hardware when an Instruction TLB Error or Data
TLB Error interrupt occurs.

On a TLB Error interrupt, the MAS registers will be written by hardware with the proper EA, default
attributes (TID, WIMGE, permissions, etc.), and TLB selection information, and an entry in the TLB to
replace. Software manages this entry selection information by updating a replacement entry value during
TLB miss handling. Software must provide the correct RPN and permission information in one of the
MAS registers before executing a tlbwe instruction.

On taking a DSI or ISI interrupt, software should update the search PID (SPID) and search address space
(SAS) fields in the MAS registers using PID0, and appropriate MSR[IS] or MSR[DS] values that were
used when the DSI or ISI exception was recognized. During the interrupt handler, software can issue a
TLB search instruction (tlbsx), which uses the SPID field along with the SAS field, to determine the entry
related to the DSI or ISI exception. (It is possible that the entry that caused the DSI or ISI interrupt no
longer exists in the TLB by the time the search occurs if a TLB invalidate or replacement removes the entry
between the time the exception is recognized and when the tlbsx is executed.)

The tlbre, tlbwe, tlbsx, tlbivax, and tlbsync instructions are privileged.

8:11
[40:43]

MINSIZE Minimum Page Size
0x0Smallest page size is 1 KB

12:15
[44:47]

MAXSIZE Maximum Page Size
0xB Largest page size is 4 GB

16
[48]

IPROT Invalidate Protect Capability
1 Invalidate Protect Capability is supported in TLB1

17
[49]

AVAIL Page Size Availability
1 All page sizes between MINSIZE and MAXSIZE are supported

18
[50]

P2PSA Power-of-2 Page Size Availability
1 All odd powers of 2 page sizes between MINSIZE and MAXSIZE are supported

(2 KB, 8 KB, 32 KB, etc.)

19
[51]

— Reserved1

20:31
[52:63]

NENTRY Number of Entries
0x20 Indicates that TLB1 contains 32 entries

1 These bits are not implemented and will be read as zero.

Table 10-5. TLB1CFG field descriptions (continued)

Bits Name Function

e200z759n3 Core Reference Manual, Rev. 2

568 Freescale Semiconductor

10.5.1 TLB read entry instruction (tlbre)

The TLB read entry instruction causes the content of a single TLB entry to be placed in the MMU assist
registers. The entry is specified by the TLBSEL and ESEL fields of the MAS0 register. The entry contents
are placed in the MAS1, MAS2, and MAS3 registers. See Table 10-15 for details on how MAS register
fields are updated.

tlbre tlbre
tlb read entry

tlb_entry_id = MAS0(TLBSEL, ESEL)
result = MMU(tlb_entry_id)
MAS1, MAS2, MAS3 = result

10.5.2 TLB write entry instruction (tlbwe)

The TLB write entry instruction causes the contents of certain fields within the MMU assist registers
MAS1, MAS2, and MAS3 to be written into a single TLB entry in the MMU. The entry written is specified
by the TLBSEL, and ESEL fields of the MAS0 register.

tlbwe tlbwe
tlb write entry

tlb_entry_id = MAS0(TLBSEL, ESEL)
MMU(tlb_entry_id) = MAS1, MAS2, MAS3

10.5.3 TLB search instruction (tlbsx)

The TLB search instruction updates the MMU assist registers conditionally based on success or failure of
a lookup of the TLB. The lookup is controlled by an effective address provided by GPR[RB] as specified
in the instruction encoding, as well as by the SAS and SPID search fields in MAS6. The values placed into

31 0 1 1 1 0 1 1 0 0 1 0 0

0 5 6 20 21 30 31

31 0 1 1 1 1 0 1 0 0 1 0 0

0 5 6 20 21 30 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 569

MAS0, MAS1, MAS2, and MAS3 differ depending on a successful or unsuccessful search. See
Table 10-15 for details on how MAS register fields are updated.

tlbsx tlbsx
TLB Search Indexed

tlbsx RA,RB Form X

if RA!=0 then EA = GPR(RA) + GPR(RB)
else EA = GPR(RB)
ProcessIDs = MAS6(SPID), 8’b00000000
AS = MAS6(SAS)
VA = AS || ProcessIDs || EA
if Valid_TLB_matching_entry_exists(VA)
then result = see Table 10-15, column labelled “tlbsx hit”
else result = see Table 10-15, column labelled “tlbsx miss”
MAS0, MAS1, MAS2, MAS3 = result

10.5.4 TLB Invalidate (tlbivax) Instruction

The TLB invalidate operation is performed whenever a TLB Invalidate Virtual Address Indexed (tlbivax)
instruction is executed. This instruction invalidates TLB entries that correspond to the virtual address
calculated by this instruction. The address is detailed in Table 10-6. No other information except for that
shown in Table 10-6 is used for the invalidation (entry AS and TID values are don’t-cared).

Additional information about the targeted TLB entries is encoded in two of the lower bits of the effective
address calculated by the tlbivax instruction. Bit 28 of the tlbivax effective address is the TLBSEL field.
This bit should be set to ‘1’ to ensure TLB1 is targeted by the invalidate. Bit 29 of the tlbivax effective
address is the INV_ALL field. If this bit is set, it indicates that the invalidate operation needs to completely
invalidate all entries of TLB1 that are not marked as invalidation protected (IPROT bit of entry set to ‘1’).

The bits of EA used to perform the tlbivax invalidation of TLB1 are bits 0:21.
t

31 0 RA RB 1 1 1 0 0 1 0 0 1 0 0

0 5 6 10 11 15 16 20 21 30 31

Table 10-6. tlbivax EA bit definitions

Bits Description

0:21 EA[0:21]

22:27 Reserved1

28 TLBSEL(1=TLB1) Should be set to ‘1’ for future compatibility.

e200z759n3 Core Reference Manual, Rev. 2

570 Freescale Semiconductor

tlbivax tlbivax
TLB Invalidate Virtual Address Indexed

tlbivax RA,RB Form X

if RA!=0 then EA = GPR(RA) + GPR(RB)
else EA = GPR(RB)
VA = EA
if (Valid_TLB_matching_entry_exists(VA) or INV_ALL) and Entry_IPROT_not_set
then Invalidate entry

10.5.5 TLB synchronize instruction (tlbsync)

The TLB synchronize instruction is treated as a privileged no-op by the e200z759n3.

tlbsync tlbsync
TLB Synchronize

tlbsync

29 INV_ALL

30:31 Reserved1

1 These bits should be zero for future compatibility. They are ignored.

31 0 RA RB 1 1 0 0 0 1 0 0 1 0 0

0 5 6 10 11 15 16 20 21 30 31

31 0 1 0 0 0 1 1 0 1 1 0 0

0 5 6 10 11 15 16 20 21 30 31

Table 10-6. tlbivax EA bit definitions

Bits Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 571

10.6 TLB operations

10.6.1 Translation reload

The TLB reload function is performed in software with some hardware assist. This hardware assist consists
of:

• Five 32-bit MMU assist registers (MAS0-4,MAS6) for support of the tlbre, tlbwe, and tlbsx TLB
management instructions.

• Loading of MAS0-2 based upon defaults in MAS4 for TLB miss exceptions. This automatically
generates most of the TLB entry.

• Loading of the data exception address register (DEAR) with the effective address of the load, store,
or cache management instruction that caused an Alignment, Data TLB Miss, or Data Storage
Interrupt.

• The tlbwe instruction. When tlbwe is executed, the new TLB entry contained in MAS0-MAS2 is
written into the TLB.

10.6.2 Reading the TLB

The TLB array can be read by first writing the necessary information into MAS0 using mtspr and then
executing the tlbre instruction. To read an entry from the TLB, the TLBSEL field in MAS0 must be set to
‘01’, and the ESEL bits in MAS0 must be set to point to the desired entry. After executing the tlbre
instruction, MAS1-MAS3 will be updated with the data from the selected TLB entry.

10.6.3 Writing the TLB

The TLB1 array can be written by first writing the necessary information into MAS0-MAS3 using mtspr
and then executing the tlbwe instruction. To write an entry into the TLB, the TLBSEL field in MAS0 must
be set to ‘01’, and the ESEL bits in MAS0 must be set to point to the desired entry. When the tlbwe
instruction is executed, the TLB entry information stored in MAS1-MAS3 will be written into the selected
TLB entry.

10.6.4 Searching the TLB

The TLB can be searched using the tlbsx instruction by first writing the necessary information into MAS6.
The tlbsx instruction will search using EPN[0:21] from the GPR selected by the instruction, SAS (search
AS bit) in MAS6, and SPID in MAS6. If the search is successful, the given TLB entry information will be
loaded into MAS0-MAS3. The valid bit in MAS1 is used as the success flag. If the search is successful,
the valid bit in MAS1 will be set; if unsuccessful it is cleared. The tlbsx instruction is useful for finding
the TLB entry that caused a DSI or ISI exception.

e200z759n3 Core Reference Manual, Rev. 2

572 Freescale Semiconductor

10.6.5 TLB miss exception update

When a TLB miss exception occurs, MAS0-MAS3 are updated with the defaults specified in MAS4, and
the AS and EPN[0:21] of the access that caused the exception. In addition, the ESEL bits are updated with
the replacement entry value.

This sets up all the TLB entry data necessary for a TLB write except for the RPN[0:21], the U0-U3 user
bits, and the UX/SX/UW/SW/UR/SR permission bits, all of which are stored in MAS3. Thus, if the
defaults stored in MAS4 are applicable to the TLB entry to be loaded, the TLB miss exception handler will
only have to update MAS3 via mtspr before executing tlbwe. If the defaults are not applicable to the TLB
entry being loaded, then the TLB miss exception handler will have to update MAS0-MAS2 before
performing the TLB write.

10.6.6 IPROT invalidation protection

The IPROT bit is used to protect TLB entries from invalidation. TLB entries with IPROT set are not
invalidated by a tlbivax instruction (even when INV_ALL is indicated), nor by the MMUCSR0[TLB1_FI]
control function. The IPROT bit is used to protect interrupt vectors/handlers, since the instruction fetch of
those vectors must be guaranteed to never take a TLB miss exception.

10.6.7 TLB load on reset

During reset, all TLB entries except entry 0 are invalidated. TLB entry 0 is loaded with the values in the
following table:

Table 10-7. TLB entry 0 values after reset

Field Reset value Comments

VALID 1 Entry is valid

TS 0 Address space 0

TID[0:7] 0x00 TID value for shared (global) page

EPN[0:21] value of
p_rstbase[0:21]

Page address present on p_rstbase[0:29].
See Section 14.2.2.5, Reset base (p_rstbase[0:29])

RPN[0:21] value of
p_rstbase[0:21]

Page address present on p_rstbase[0:29].
See Section 14.2.2.5, Reset base (p_rstbase[0:29])

SIZE[0:4] 00010 4KB page size

SX/SW/SR 111 Full supervisor mode access allowed

UX/UW/UR 111 Full user mode access allowed

WIMG 0100 Cache inhibited, non-coherent

E value of
p_rst_endmode

Value present on p_rst_endmode.
See Section 14.2.2.6, Reset endian mode (p_rst_endmode)

U0-U3 0000 User bits

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 573

10.6.8 The G bit

The G bit provides protection from bus accesses that could be cancelled due to an exception on a prior
uncompleted instruction.

If G=1 (guarded), these types of accesses must stall (if they miss in the cache) until the exception status of
the instruction(s) in progress is known. If G=0 (unguarded), then these accesses may be issued to the bus
regardless of the completion status of other instructions. Since the e200z759n3 does not make requests to
the bus for load or store instructions that miss in the cache until it is known that prior instructions will
complete without exceptions, proper operation will always occur to guarded storage.

10.7 MMU control registers

10.7.1 Data Exception Address Register (DEAR)

The Data Exception Address register is loaded with the effective address of the data access that results in
an Alignment, Data TLB Miss, or DSI exception.

The DEAR register can be read or written using the mfspr and mtspr instructions.

10.7.2 MMU Control and Status Register 0 (MMUCSR0)

The MMU Control and Status Register 0 (MMUCSR0) is a 32-bit register. The SPR number for
MMUCSR0 is 1012 in decimal. MMUCSR0 controls the state of the MMU. The MMUCSR0 register is
shown in Figure 10-8.

IPROT 1 Page is protected from invalidation

VLE the value of
p_rst_vlemode

Value present on p_rst_vlemode signal. See Section 14.2.2.7,
Reset VLE Mode (p_rst_vlemode).

Effective Page Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 61; Read/ Write; Reset - Unaffected

Figure 10-7. Data Exception Address Register (DEAR)

Table 10-7. TLB entry 0 values after reset

Field Reset value Comments

e200z759n3 Core Reference Manual, Rev. 2

574 Freescale Semiconductor

The MMUCSR0 bits are described in Table 10-8.

10.7.3 MMU assist registers (MAS)

The e200z759n3 uses six special purpose registers (MAS0, MAS1, MAS2, MAS3, MAS4, and MAS6) to
facilitate reading, writing, and searching the TLBs. The MAS registers can be read or written using the
mfspr and mtspr instructions. The e200z759n3 does not implement the MAS5 register, present in other
Freescale Book E designs, because the tlbsx instruction only searches based on a single SPID value.

10.7.3.1 MMU Read/Write and Replacement Control register (MAS0)

The MAS0 register is shown in Figure 10-9. Fields are defined in Table 10-9.

0

T
LB

1_
F

I

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1012; Read/ Write; Reset - 0x0

Figure 10-8. MMU Control and Status Register 0 (MMUCSR0)

Table 10-8. MMUCSR0 field descriptions

Bits Name Description

0:29
[32:61]

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

30
[62]

TLB1_FI TLB1 flash invalidate
0 No flash invalidate
1 TLB1 invalidation operation
When written to a ‘1’, a TLB1 invalidation operation is initiated by hardware. Once
complete, this bit is reset to ‘0’. Writing a ‘1’ while an invalidation operation is in progress
will result in an undefined operation. Writing a ‘0’ to this bit while an invalidation operation
is in progress will be ignored. TLB1 invalidation operations require 3 cycles to complete.

31
[63]

— Reserved1

0

T
LB

S
E

L
(0

1)

0 ESEL 0 NV

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 624; Read/ Write; Reset - Unaffected

Figure 10-9. MMU Assist Register 0 (MAS0)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 575

10.7.3.2 Descriptor Context and Configuration Control register (MAS1)

The MAS1 register is shown in Figure 10-10. Fields are defined in Table 10-10.

Table 10-9. MAS0 field descriptions

Bit Name Description

0:1
[32:33]

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

2:3
[34:35]

TLBSEL Selects TLB for access: 00=TLB0, 01=TLB1
(ignored by Zen, should be written to 01 for future compatibility)

4:10
[36:42]

— Reserved1

11:15
[43:47]

ESEL Entry select for TLB.

16:25
[48:57]

— Reserved1

27:31
[59:63]

NV Next replacement victim for TLB1 (software managed) Software updates this field; it
is copied to the ESEL field on a TLB Error (see Table 10-15)

V
A

LI
D

IP
R

O
T

0 TID 0 T
S

TSIZ 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 625; Read/ Write; Reset - Unaffected

Figure 10-10. MMU Assist Register 1 (MAS1)

Table 10-10. MAS1 field descriptions

Bit Name Description

0
[32]

VALID TLB Entry Valid
0 This TLB entry is invalid
1 This TLB entry is valid

1
[33]

IPROT Invalidation Protect
0 Entry is not protected from invalidation
1 Entry is protected from invalidation as described in Section 10.6.6, IPROT

invalidation protection.
Protects TLB entry from invalidation by tlbivax (TLB1 only), or flash invalidates
through MMUSCR0[TLB1_FI].

2:7
[34:39]

— Reserved1

e200z759n3 Core Reference Manual, Rev. 2

576 Freescale Semiconductor

10.7.3.3 EPN and Page Attributes register (MAS2)

The MAS2 register is shown in Figure 10-11. Fields are defined in Table 10-11.

8:15
[40:47]

TID Translation ID bits
This field is compared with the current process IDs of the effective address to be
translated. A TID value of 0 defines an entry as global and matches with all
process IDs.

16:18
[48:50]

— Reserved1

19
[51]

TS Translation address space
This bit is compared with the IS or DS fields of the MSR (depending on the type
of access) to determine if this TLB entry may be used for translation.

20:24
[52:56]

TSIZE Entry’s page size
Supported page sizes are:
0b00000 — 1 KB
0b00001 — 2 KB
0b00010 — 4 KB
0b00011 — 8 KB
0b00100 — 16 KB
0b00101 — 32 KB
0b00110 — 64 KB
0b00111 — 128 KB
0b01000 — 256 KB
0b01001 — 512 KB
0b01010 — 1 MB
0b01011 — 2 MB
0b01100 — 4 MB
0b01101 — 8 MB
0b01110 — 16 MB
0b01111 — 32 MB
0b10000 — 64 MB
0b10001 — 128 MB
0b10010 — 256 MB
0b10011 — 512 MB
0b10100 — 1 GB
0b10101 — 2 GB
0b10110 — 4 GB

All other values are undefined

25:31
[57:63]

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

EPN 0

V
LE W I M G E

Figure 10-11. MMU Assist Register 2 (MAS2)

Table 10-10. MAS1 field descriptions (continued)

Bit Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 577

10.7.3.4 RPN and Access Control register (MAS3)

The MAS3 register is shown in Figure 10-12. Fields are defined in Table 10-12.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 626; Read/ Write; Reset - Unaffected

Table 10-11. MAS2 field descriptions

Bit Name Description

0:21
[32:53]

EPN Effective page number [0:21]

22:25
[54:57]

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

26
[58]

VLE PowerISA VLE
0 This page is a standard BookE page
1 This page is a PowerISA VLE page
This bit will always read as zero and writes will be ignored if p_vle_present is
negated.

27
[59]

W Write-through Required
0 This page is considered write-back with respect to the caches in the system
1 All stores performed to this page are written through to main memory

28
[60]

I Cache Inhibited
0 This page is considered cacheable
1 This page is considered cache-inhibited

29
[61]

M Memory Coherence Required
0 Memory Coherence is not required
1 Memory Coherence is required

30
[62]

G Guarded
0 Access to this page are not guarded, and can be performed before it is known if

they are required by the sequential execution model
1 All loads and stores to this page are performed without speculation (i.e. they are

known to be required)
Zen Z7 uses the guarded attribute as described in Section 11.16, Page table control
bits, for more information.

31
[63]

E Endianness
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order.
Determines endianness for the corresponding page. Refer to Section 15.2.4, Byte
lane specification, for more information

RPN
U
0

U
1

U
2

U
3

U
X

S
X

U
W

S
W

U
R

S
R

Figure 10-12. MMU Assist Register 3 (MAS3)

Figure 10-11. MMU Assist Register 2 (MAS2)

e200z759n3 Core Reference Manual, Rev. 2

578 Freescale Semiconductor

10.7.3.5 Hardware Replacement Assist Configuration register (MAS4)

The MAS4 register is shown in Figure 10-13. Fields are defined in Table 10-13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 627; Read/ Write; Reset - Unaffected

Table 10-12. MAS3 field descriptions

Bit Name Description

0:21
[32:53]

RPN Real page number [0:21]
Only bits that correspond to a page number are valid. Bits that represent offsets

within a page are ignored and should be zero.

22:25
[54:57]

U0-U3
User bits [0-3] for use by system software

26:31
[58:63]

PERMIS
Permission bits (UX, SX, UW, SW, UR, SR)

0

T
LB

S
E

LD
 (0

1)

0

T
ID

S
E

LD

0
T

S
IZ

E
D

0

V
LE

D

W
D

ID M
D

G
D

E
D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 628; Read/ Write; Reset - Unaffected

Figure 10-13. MMU Assist Register 4 (MAS4)

Table 10-13. MAS4 field descriptions

Bit Name Description

0:1
[32:33]

— Reserved1

2:3
[34:35]

TLBSELD Default TLB selected
00=TLB0, 01=TLB1

4:13
[36:45]

— Reserved1

14:15
[46:47]

TIDSELD Default PID# to load TID from
00 PID0
01 Reserved, do not use
10 Reserved, do not use
11 TIDZ (8’h00)) (Use all zeros, the globally shared value)

Figure 10-12. MMU Assist Register 3 (MAS3)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 579

NOTE
MAS5 is not implemented on the MPC560xS.

10.7.3.6 TLB Search Context Register 0 (MAS6)

The MAS6 register is shown in Figure 10-14. Fields are defined in Table 10-14.

16:19
[48:51]

— Reserved1

20:24
[52:56]

TSIZED Default TSIZE value

25
[57]

— Reserved1

26
[58]

VLED Default VLE value

27:31
[59:63]

DWIMGE Default WIMGE values

1 These bits are not implemented, will be read as zero, and writes are ignored.

0 SPID 0

S
A

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 630; Read/ Write; Reset - Unaffected

Figure 10-14. MMU Assist Register 6 (MAS6)

Table 10-14. MAS6 field descriptions

Bit Name Description

0:7
[32:39]

— Reserved1

1 These bits are not implemented, will be read as zero, and writes are ignored.

8:15
[40:47]

SPID PID value for searches

16:30
[48:62]

— Reserved1

31
[63]

SAS AS value for searches

Table 10-13. MAS4 field descriptions (continued)

Bit Name Description

e200z759n3 Core Reference Manual, Rev. 2

580 Freescale Semiconductor

10.7.4 MAS registers summary

The MAS registers are summarized in Figure 10-15.

10.7.5 MAS register updates

Table 10-15 details the updates to each MAS register field for each update type.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
A

S
0

0

T
LB

S
E

L
(0

1)

0

E
S

E
L

0 N
V

M
A

S
1

V
A

LI
D

IP
R

O
T

0 TID 0
T
S

TSIZ 0

M
A

S
2

EPN 0

V
LE W I M G E

M
A

S
3

RPN U
0

U
1

U
2

U
3

U
X

S
X

U
W

S
W

U
R

S
R

M
A

S
4

0

T
LB

S
E

LD

0
T

ID
S

E
LD

0 TSIZED 0

V
LE

D

W
D

ID M
D

G
D

E
D

M
A

S
6

0 SPID 0

S
A

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 10-15. MMU assist registers summary

Table 10-15. MMU assist register field updates

Bit/field
MAS

affecte
d

Instr/data TLB
error

tlbsx hit tlbsx miss tlbre tlbwe ISI/DSI

TLBSEL 0 TLBSELD ‘Hitting TLB’ TLBSELD NC NC NC

ESEL 0 NV matched entry NV NC NC NC

NV 0 NC NC NC NC NC NC

VALID 1 1 1 0 V(array) NC NC

IPROT 1 0 Matched IPROT
if TLB1 hit, else

0

0 IPROT(array) if
TBL1, else 0

NC NC

TID[0:7] 1 TIDSELD
(pid0,TIDZ)

TID(array) SPID TID(array) NC NC

TS 1 MSR(IS/DS) SAS SAS TS(array) NC NC

TSIZE[0:4] 1 TSIZED TSIZE(array) TSIZED TSIZE(array) NC NC

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 581

10.8 TLB coherency control
The e200z759n3 core provides the ability to invalidate a TLB entry as described in the Book E Power
Architecture architecture. The tlbivax instruction invalidates local TLB entries only. No broadcast is
performed, as no hardware-based coherency support is provided.

The tlbivax instruction invalidates by effective address only. This means that only the TLB entry’s EPN
bits are used to determine if the TLB entry should be invalidated. It is therefore possible for a single
tlbivax instruction to invalidate multiple TLB entries, since the AS and TID fields of the entries are
ignored.

10.9 Core interface operation for MMU control instructions
MMU control instructions will utilize the normal CPU interface to perform MMU control instructions. The
address bus will be driven with the effective address value calculated by the instruction (if any), the access
will be treated as a Supervisor Data word-size write, and the Transfer Type encodings will be used to
distinguish these operations from other load and store operations. These transfers will not cause debug
Data Address Compare matches to occur regardless of the effective address that is driven.

10.9.1 Transfer type encodings for MMU control instructions

Transfer type encodings are used to indicate whether a normal access, atomic access, cache management
control access, or MMU management control access is being requested. These attribute signals are driven
with addresses when an access is requested. Table 10-16 shows the definitions of the p_d_ttype[0:5]
encodings.

EPN[0:21] 2 I/D EPN EPN(array) tlbsx EPN EPN(Array) NC NC

VWIMGE 2 Default values VWIMGE(array) Default values VWIMGE(array) NC NC

RPN[0:21] 3 Zeroed RPN(Array) Zeroed RPN(Array) NC NC

ACCESS
(PERMISS +

U0:U3)

3 Zeroed Access(Array) Zeroed Access(Array) NC NC

TLBSELD 4 NC NC NC NC NC NC

TIDSELD[0:1] 4 NC NC NC NC NC NC

TSIZED[0:4] 4 NC NC NC NC NC NC

Default
VWIMGE

4 NC NC NC NC NC NC

SPID 6 PID0 NC NC NC NC NC

SAS 6 MSR(IS/DS) NC NC NC NC NC

Table 10-15. MMU assist register field updates (continued)

Bit/field
MAS

affecte
d

Instr/data TLB
error

tlbsx hit tlbsx miss tlbre tlbwe ISI/DSI

e200z759n3 Core Reference Manual, Rev. 2

582 Freescale Semiconductor

10.10 Effect of hardware debug on MMU operation
Hardware debug facilities utilize normal CPU instructions to access register and memory contents during
a debug session. If desired during a debug session, the debug firmware may disable the translation process
and may substitute default values for the Access Protection (UX, UR, UW, SX, SR, SW) bits, and values
obtained from the OnCE Control Register for Page Attribute (VLE, W, I, M, G, E) bits normally provided
by a matching TLB entry. In addition, no address translation is performed, and instead, a 1:1 mapping of
effective to real addresses is performed. When disabled during the debug session, no TLB miss or TLB
Access Protection related DSI conditions will occur. If the debugger desires to use the normal translation
process, the MMU may be left enabled in the OnCE OCR, and normal translation (including the possibility
of a TLB Miss or DSI) will remain in effect. Refer to Section 12.4.6.3, e200z759n3 OnCE Control
Register (OCR), for more detail on controlling MMU operation during debug sessions.

Table 10-16. Transfer type encoding

p_d_ttype[0:5]1

1 p_ttype[5] ‘e’ is set to set to 0.

Transfer type Instruction

00000e Normal normal loads / stores

000010 Atomic lbarx, lharx, lwarx, stbcx., sthcx., and stwcx.

00010e Flush Data Block dcbst

00011e Flush and Invalidate Data Block dcbf

00100e Allocate and Zero Data Block dcbz

001010 Invalidate Data Block dcbi

00110e Invalidate Instruction Block icbi

001110 Multiple word load/store lmw, stmw

010000 TLB Invalidate tlbivax

010010 TLB Search tlbsx

010100 TLB Read entry tlbre

010110 TLB Write entry tlbwe

011000 Touch for Instruction icbt

011010 Lock Clear for Instruction icblc

011100 Touch for Instruction and Lock Set icbtls

011110 Lock Clear for Data dcblc

10000e Touch for Data dcbt

10001e Touch for Data Store dcbtst

100100 Touch for Data and Lock Set dcbtls

100110 Touch for Data Store and Lock Set dcbtstls

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 583

10.11 External translation alterations for realtime systems
In order to support realtime systems in which dynamic mapping of calibration or other data types is
needed, the MMU provides special capabilities on a subset of TLB entries. These capabilities allow
external hardware to dynamically select one of multiple mappings to one or more physical pages by the
same logical address. This capability provides an inexpensive way of dynamically overlaying selected
RAM pages on top of read-only memory during runtime. The particular physical page a given logical page
maps to can be dynamically altered by means of the p_extpid[6:7] inputs. This capability is only provided
for TLB1 entries #0 – #15, and only for a restricted subset of PID values.

Enabling of the dynamic mapping capability is controlled by the p_extpid_en control input. This input is
sampled with the rising edge of the clock, and when asserted, allows for the dynamic remapping capability
to be used.

When one or more of TLB1 entries #0 – #15 is programmed with a TID value of 8‘b1111xxxx, special
entry-specific logic is enabled for the entry. This logic causes the sampled values of the p_extpid[6:7]
inputs to be used in place of PID0[6:7] for the purposes of comparison of this entry with the current PID0
register contents to determine an entry hit condition.

In addition, for those entries within entries #0 – #15 programmed with a TID value of 8‘b1111xx11, the
comparison of TID[6:7] to PID0[6:7] for a match is always forced true. This means that the hit condition
for these entries is independent of the sampled values of the p_extpid[6:7] inputs.

Entries within entries #0 – #15 programmed with a TID value of 8‘b1111nm00, will match a PID0 value
of 8‘b1111nmxx when p_extpid[6:7] inputs are 00, Those programmed with a TID value of 8‘b1111nm01
will match a PID0 value of 8‘b1111nmxx when p_extpid[6:7] inputs are 01, and those programmed with
a TID value of 8‘b1111nm10 will match a PID0 value of 8‘b1111nmxx when p_extpid[6:7] inputs are 10.
Those entries within entries #0 –#15 programmed with a TID value of 8‘b1111nm11, will match a PID0
value of 8‘b1111nmxx regardless of the sampled values of the p_extpid[6:7] inputs.

This logic allows application software of this type to set up to three independent mappings for a set of
calibration pages, and for external hardware to select between one of the three based on the driven values
of the p_extpid[6:7] inputs. The other pages are mapped with a common set of entries with stored TID
values of 1111xx11, which will match for all sets of calibration page selections. This specialized software
must use PID values in the range of 111100xx to 111111xx.

Software is responsible for coordinating the modification to the p_extpid[6:7] inputs to ensure they only
change when there is no possibility of an error induced by simultaneous use.

Figure 10-16 shows the equivalent logical operation of the capability.

e200z759n3 Core Reference Manual, Rev. 2

584 Freescale Semiconductor

Figure 10-16. External translation alteration TLB entry compare process

TLB entry Hit

=0?

private page

shared page

=?

=?

TLB_entry[V]

TLB_entry[TS]

AS (from MSR[IS] or MSR[DS])

Process ID[0:5]

TLB_entry[TID]

TLB_entry[EPN]
EA page number bits

0

1

modified_PID[6:7]

TLB_entry

p_extpid6:7

TLB_entry[TID6:7]

mask_TID6:7_cmp

TLB_entry[TID0:7]
=?

force compare true
for PID/TID 6:7

[TID0:3]

p_extpid_en

Note: Functionality available for entry # 0-15 only

Process ID[6:7]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 585

Chapter 11
L1 Cache
This chapter describes the organization of the on-chip L1 Caches, cache control instructions, and various
cache operations. It describes the interaction between the caches, the load/store unit (LSU), the instruction
unit, and the memory subsystem. This chapter also describes the replacement algorithm used for the L1
Caches.

The L1 Caches incorporate the following features:

• 16 KB I + 16 KB D harvard cache design

• Virtually indexed, Physically tagged

• 32-byte line size

• 64-bit data, 32-bit address

• Pseudo round-robin replacement algorithm

• 8-entry store buffer

• Push (copyback) buffer

• Linefill buffer

• Hit under fill/copyback

• Supports up to two outstanding misses

• Multi-bit EDC protection for the ICache data and tag arrays, with correction/auto-invalidation
capability

• Multi-bit EDC protection for the DCache tag arrays, parity protection for the DCache data arrays;
with correction/auto-invalidation capability

11.1 Overview
The e200z759n3 processor supports a pair of 16 KB 4-way set-associative split instruction and data caches
with a 32-byte line size. The caches improve system performance by providing low-latency data to the
e200z759n3 instruction and data pipelines, which decouples processor performance from system memory
performance. The caches are virtually indexed and physically tagged.

Instruction and data addresses from the processor to the caches are virtual addresses used to index the
cache array. The MMU provides the virtual to physical translation for use in performing the cache tag
compare. If the physical address matches a valid cache tag entry, the access hits in the cache. For a read
operation, the cache supplies the data to the processor, and for a write operation, the data from the
processor updates the cache. If the access does not match a valid cache tag entry (misses in the cache) or
a write access must be written through to memory, the cache performs a bus cycle on the system bus.

e200z759n3 Core Reference Manual, Rev. 2

586 Freescale Semiconductor

Figure 11-1. e200z759n3 caches

11.2 16 KB cache organization
Each e200z759n3 16 KB cache is organized as four ways of 128 sets with each line containing 32 bytes
(four doublewords) of storage. Figure 11-2 illustrates the cache organization along with the cache line
format.

BUS
INTERFACE

MODULE
ADDRESS/

CONTROL

CACHE

CONTROL LOGIC

TAG ARRAY

DATA ARRAY

DATA PATH

PROCESSOR
CORE

ADDRESS PATH

CONTROL

DATA

ADDRESS

SYSTEM
BUS

DATA

CONTROL

DATA

MEMORY
MANAGEMENT

UNIT

ADDRESS

MODULE
INTERFACE

BUS
ADDRESS/

CONTROL

CACHE

CONTROL LOGIC

TAG ARRAY

DATA ARRAY

DATA PATH

ADDRESS PATH

CONTROL

DATA

ADDRESS

BUS
SYSTEM

DATA

CONTROL

DATA

ADDRESS

DCACHE
INTERFACE

ICACHE
INTERFACE

(INST)

(DATA)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 587

Figure 11-2. 16 KB cache organization and line format

Virtual address bits A[20:26] provide an index to select a set. Ways are selected according to the rules of
set association.

Each line consists of a physical address tag, status bits, and four doublewords of data. Address bits
A[27:29] select the word within the line.

11.3 Cache lookup
Once enabled, the appropriate cache will be searched for a tag match on instruction fetches and data
accesses from the CPU. If a match is found, the cached data is forwarded on a read access to the instruction
fetch unit or the load/store unit (data access), or is updated on a write access, and may also be
written-through to memory if required.

When a read miss occurs, if there is a TLB hit and the I bit of the hitting TLB entry is clear, the translated
physical miss address is used to fetch a four doubleword cache line beginning with the requested
doubleword (critical doubleword first). The line is fetched into a linefill buffer and the critical doubleword
is forwarded to the CPU. Subsequent doublewords may be streamed to the CPU if they have been
requested, or they may be forwarded from the linefill buffer if the data has already been received from the
bus and is valid in the buffer.

When a write miss occurs, if there is a TLB hit, and the I and G bits of the hitting TLB entry are clear and
write allocation is enabled via the L1CSR0[DCWA] control bit, the translated physical address is used to
fetch a four doubleword cache line beginning with the doubleword corresponding to the store address
(critical doubleword first). The line is fetched into the linefill buffer and merged with the store data.
Subsequently, the line is placed into the appropriate cache block. If write allocation is disabled, or the write
is not cacheable or is guarded, no cache line fetch is performed for the write.

During a cache line fill, doublewords received from the bus are placed into the cache linefill buffer, and
may be forwarded (streamed) to the CPU if such a read request is pending. Accesses from the CPU

WAY 0 WAY 1 WAY 2 WAY 3

LINE

•
•
•

•
•
•

•
•
•

•
•
•

LDTAG

TAG - 22 bit Physical Address Tag + Parity

L - Lock bits

CACHE LINE FORMAT

Doubleword3Doubleword2Doubleword1Doubleword0

D - Dirty bits (DCACHE Only)

SET 0
SET 1

SET 126
SET 127

•
•
•

V

V - Valid bit

e200z759n3 Core Reference Manual, Rev. 2

588 Freescale Semiconductor

following delivery of the critical doubleword may be satisfied from the cache (hit under fill, non-blocking)
or from the linefill buffer if the requested information has been already received.

If write allocation is enabled, subsequent stores that hit the linefill buffer address while a linefill is in
progress for a previous store or dcbtst miss will be merged into the linefill buffer. No merging of stores
will be performed during a linefill initiated by a load miss.

When a cache linefill occurs, the linefill buffer contents are placed into the cache array using two accesses;
each occurs after receiving a pair of doublewords.

The cache always fills an entire line, thereby providing validity on a line-by-line basis. A DCache line is
always in one of the following states: invalid, valid, or dirty (and valid). For invalid lines, the V bit is clear,
causing the cache line to be ignored during lookups. Valid lines have their V bit set and D bits cleared,
indicating the line contains valid data consistent with memory. Dirty cache lines have the D and V bits set,
indicating that the line has valid entries that have not been written to memory. ICache lines are either
invalid or valid. In addition, a cache line in either cache may be locked (L bits set) indicating the line is
not available for replacement.

The caches should be explicitly invalidated after a hardware reset; reset does not invalidate the cache lines.
Following initial power-up, the cache contents will be undefined. The L, D and V bits may be set on some
lines, necessitating the invalidation of the caches by software before being enabled.

Figure 11-3 illustrates the general flow of cache operation for each 1616 KB Cache Organization and Line
Format cache to determine if the address is already allocated in the cache.

(1) the cache set index, virtual address bits A[20:26], are used to select one cache set. A set is defined as
the grouping of lines (one from each way), corresponding to the same index into the cache array.

(2) The higher order physical address bits A[0:21] , are used as a tag reference or used to update the cache
line tag field.

(3)The tags from the selected cache set are compared with the tag reference. If any one of the tags matches
the tag reference and the tag status is valid, a cache hit has occurred.

(4) Virtual address bits A[27:28] are used to select one of the four doublewords in each line. A cache hit
indicates that the selected doubleword in that cache line contain valid data (for a read access), or can be
written with new data depending on the status of the W access control bit from the MMU (for a write access
to the DCache).

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 589

Figure 11-3. 16 KB cache lookup flow

11.4 Cache control
Control of the cache is provided by bits in the L1 Cache Control and Status registers (L1CSR0, L1CSR1).
Control bits are provided to enable/disable the cache and to invalidate it of all entries. In addition,
availability of each way of the caches may be selectively controlled for use. This way control provides
cache way locking capability, as well as controlling way availability on a cache line replacement. Ways
0-3 may be selectively disabled for instruction miss replacements and data miss replacements in the
respective caches by using the WID and WDD control bits. Software is responsible for maintaining
coherency between instruction and data caches, since independent copies of a cache line may be present
in both caches; one allocated by an instruction access, another by a data access.

11.4.1 L1 Cache Control and Status Register 0 (L1CSR0)

The L1 Cache Control and Status Register 0 (L1CSR0) is a 32-bit register used for general control of the
data cache as well as providing general control over disabling ways in both caches. The L1CSR0 register
is accessed using a mfspr or mtspr instruction. The SPR number for L1CSR0 is 1010 in decimal. The
L1CSR0 register is shown in Figure 11-4.

31272620210

INDEXTAG DATA / TAG REFERENCE

MUX

COMPARATOR
0

1

2

3

LOGICAL OR

HIT 3

HIT 2

HIT 1

HIT 0

HIT

 SELECT

SET 0

SET 1

SET 127

•
•
•

TAG
REFERENCE

A[0:21]

WAY 0
WAY 1

WAY 2
WAY 3

DATA OR
INSTRUCTION

STATUSDW0DW1DW2DW3

TAG STATUSDW0DW1DW2DW3

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

VIRTUAL ADDRESS

SET
SELECT
A[20:26])

TAG

PHYSICAL ADDRESS

••

••••

••

••

OFST

e200z759n3 Core Reference Manual, Rev. 2

590 Freescale Semiconductor

The L1CSR0 bits are described in Table 11-1.

WID WDD 0

D
C

W
M

DCWA 0

D
C

E
C

E

D
C

E
I

0

D
C

E
D

T

D
C

S
LC

D
C

U
L

D
C

LO

D
C

LF
C

D
C

LO
A

DCEA 0

D
C

B
Z

32

D
C

A
B

T

D
C

IN
V

D
C

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1010; Read/Write; Reset - 0x0

Figure 11-4. L1 Cache Control and Status Register 0 (L1CSR0)

Table 11-1. L1CSR0 field descriptions

Bits Name Description

0:3 WID Way Instruction Disable.
0 The corresponding way in the instruction cache is available for replacement by

instruction miss line fills.
1 The corresponding way instruction cache is not available for replacement by

instruction miss line fills.
Bit 0 corresponds to way 0.
Bit 1 corresponds to way 1.
Bit 2 corresponds to way 2.
Bit 3 corresponds to way 3.
The WID bits may be used for locking ways of the instruction cache, and also are used
in determining the replacement policy of the instruction cache.

4:7 WDD Way Data Disable.
0 The corresponding way in the data cache is available for replacement by data miss

line fills.
1 The corresponding way in the data cache is not available for replacement by data

miss line fills.
Bit 4 corresponds to way 0.
Bit 5 corresponds to way 1.
Bit 6 corresponds to way 2.
Bit 7 corresponds to way 3.
The WDD bits may be used for locking ways of the data cache, and also are used in
determining the replacement policy of the data cache.

8:10 — Reserved1

11 DCWM Data Cache Write Mode
0 Data Cache operates in writethrough mode
1 Data Cache operates in copyback mode
When set to writethrough mode, the “W” page attribute from the MMU is ignored and
all writes are treated as writethrough required. When set, write accesses are
performed in copyback mode unless the “W” page attribute from the MMU is set.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 591

12:13 DCWA Data Cache Write Allocation Policy
00 Cache line allocation on a cacheable write miss is disabled
01 Cache line allocation on a cacheable copyback write miss is enabled
10 Cache line allocation on a cacheable copyback or writethrough write miss is

enabled
11 Reserved
This field also controls merging of store data into the linefill buffer while a cache linefill
is in progress. Store data will not be merged when write allocation is disabled. If DCWA
is non-zero, store data merging is enabled regardless of the type
(writethrough/copyback) of write.

14 — Reserved1

15 DCECE Data Cache Error Checking Enable
0 Error Checking is disabled
1 Error Checking is enabled

16 DCEI Data Cache Error Injection
0 Cache Error Injection is disabled
1 parity errors will be purposefully injected into every byte subsequently written into

the cache. The parity bit of each 8-bit data element written will be inverted. This
includes writes due to store hits as well as writes due to cache line refills.

DCEI will cause injection of errors regardless of the setting of DCECE, although
reporting of errors will be masked while DCECE=0.

17 — Reserved1

18:19 DCEDT Data Cache Error Detection Type
00 Reserved (defaults to DCEDT=01(EDC) actions)
01 EDC Error Detection is selected for the tag array and parity is selected for the data

arrays
1x Reserved

20 DCSLC Data Cache Snoop Lock Clear
0 Snoop has not invalidated a locked line
1 Snoop has invalidated a locked line
Indicates a cache line lock was cleared by a snoop operation that caused an
invalidation. This bit is set by hardware and will remain set until cleared by software
writing 0 to this bit location.

21 DCUL Data Cache Unable to Lock
Indicates a lock set instruction was not effective in locking a cache line. This bit is set
by hardware on an “unable to lock” condition (other than lock overflows), and will
remain set until cleared by software writing 0 to this bit location.

22 DCLO Data Cache Lock Overflow
Indicates a lock overflow (overlocking) condition occurred. This bit is set by hardware
on an “overlocking” condition, and will remain set until cleared by software writing 0 to
this bit location.

Table 11-1. L1CSR0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

592 Freescale Semiconductor

23 DCLFC Data Cache Lock Bits Flash Clear
When written to a ‘1’, a cache lock bits flash clear operation is initiated by hardware.
Once complete, this bit is reset to ‘0’. Writing a ‘1’ while a flash clear operation is in
progress will result in an undefined operation. Writing a ‘0’ to this bit while a flash clear
operation is in progress will be ignored. Cache Lock Bits Flash Clear operations require
approximately 134 cycles to complete. Clearing occurs regardless of the enable (DCE)
value.

24 DCLOA Data Cache Lock Overflow Allocate
Set by software to allow a lock request to replace a locked line when a lock overflow
situation exists.
0 Indicates a lock overflow condition will not replace an existing locked line with the

requested line
1 Indicates a lock overflow condition will replace an existing locked line with the

requested line

25:26 DCEA Data Cache Error Action
00 Error Detection causes Machine Check exception.
01 Error Detection causes Correction/Auto-invalidation. No machine check is

generated for uncorrectable errors unless the cache line was locked and
invalidated or is dirty. Dirty lines are not auto-invalidated. In EDC mode, correction
is performed for single-bit tag errors, single-bit lock errors, and single or multi-bit
dirty errors. Correction is performed for data errors by reloading of the line.

1x Reserved

27 — Reserved1

28 DCBZ32 Data Cache dcba, dcbz operation length
0 dcba, dcbz operations operate on an entire cache line
1 dcba, dcbz operations operate on 32bytes of a cache line

Note: This bit is implemented for forward compatibility. Since cache lines are 32 bytes,
this bit is ignored for dcba, dcbz operations

29 DCABT Data Cache Operation Aborted
Indicates a Cache Invalidate or a Cache Lock Bits Flash Clear operation was aborted
prior to completion. This bit is set by hardware on an aborted condition, and will remain
set until cleared by software writing 0 to this bit location.

30 DCINV Data Cache Invalidate
0 No cache invalidate
1 Cache invalidation operation
When written to a ‘1’, a cache invalidation operation is initiated by hardware. Once
complete, this bit is reset to ‘0’. Writing a ‘1’ while an invalidation operation is in
progress will result in an undefined operation. Writing a ‘0’ to this bit while an
invalidation operation is in progress will be ignored. Cache invalidation operations
require approximately 134 cycles to complete. Invalidation occurs regardless of the
enable (DCE) value.
During cache invalidations, the parity check bits are written with a value dependent on
the DCEDT selection. DCEDT should be written with the desired value for subsequent
cache operation when DCINV is set to ‘1’ for proper operation of the cache.

Table 11-1. L1CSR0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 593

11.4.2 L1 Cache Control and Status Register 1 (L1CSR1)

The L1 Cache Control and Status Register 1 (L1CSR1) is a 32-bit register used for general control of the
instruction cache. The L1CSR1 register is accessed using a mfspr or mtspr instruction. The SPR number
for L1CSR1 is 1011 in decimal. The L1CSR1 register is shown in Figure 11-5.

The L1CSR1 bits are described in Table 11-2.

31 DCE Data Cache Enable
0 Cache is disabled
1 Cache is enabled
When disabled, cache lookups are not performed for normal load or store accesses,
or for snoop requests.
Other L1CSR0 cache control operations are still available. Also, operation of the store
buffer is not affected by DCE.

1 These bits are not implemented and should be written with zero for future compatibility.

0

IC
E

C
E

IC
E

I
0

IC
E

D
T

0

IC
U

L

IC
LO

IC
LF

C

IC
LO

A

IC
E

A

0

IC
A

B
T

IC
IN

V

IC
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1011; Read/Write; Reset - 0x0

Figure 11-5. L1 Cache Control and Status Register 1 (L1CSR1)

Table 11-2. L1CSR1 field descriptions

Bits Name Description

0:14 — Reserved1

15 ICECE Instruction Cache Error Checking Enable
0 Error Checking is disabled
1 Error Checking is enabled

16 ICEI Instruction Cache Error Injection Enable
0 Cache Error Injection is disabled
1 When ICEDT=01, a double-bit error will be injected into each doubleword written

into the cache by inverting the two uppermost parity check bits (p_chk[0:1]).
ICEI will cause injection of errors regardless of the setting of ICECE, although
reporting of errors will be masked when ICECE=0.

17 — Reserved1

17:24 — Reserved1

18:19 ICEDT Instruction Cache Error Detection Type
00 Reserved (defaults to ICEDT=01(EDC) actions)
01 EDC Error Detection is selected
1x - Reserved

20 — Reserved1

Table 11-1. L1CSR0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

594 Freescale Semiconductor

21 ICUL Instruction Cache Unable to Lock
Indicates a lock set instruction was not effective in locking a cache line. This bit is set
by hardware on an “unable to lock” condition (other than lock overflows), and will
remain set until cleared by software writing 0 to this bit location.

22 ICLO Instruction Cache Lock Overflow
Indicates a lock overflow (overlocking) condition occurred. This bit is set by hardware
on an “overlocking” condition, and will remain set until cleared by software writing 0 to
this bit location.

23 ICLFC Instruction Cache Lock Bits Flash Clear
When written to a ‘1’, a cache lock bits flash clear operation is initiated by hardware.
Once complete, this bit is reset to ‘0’. Writing a ‘1’ while a flash clear operation is in
progress will result in an undefined operation. Writing a ‘0’ to this bit while a flash clear
operation is in progress will be ignored. Cache Lock Bits Flash Clear operations
require approximately 134 cycles to complete. Clearing occurs regardless of the
enable (ICE) value.

24 ICLOA Instruction Cache Lock Overflow Allocate
Set by software to allow a lock request to replace a locked line when a lock overflow
situation exists.
0 Indicates a lock overflow condition will not replace an existing locked line with the

requested line
1 Indicates a lock overflow condition will replace an existing locked line with the

requested line

25:26 ICEA Instruction Cache Error Action
00 Error Detection causes Machine Check exception.
01 Error Detection causes Correction/Auto-invalidation. No machine check is

generated unless a locked line is invalidated. Correction is performed for single-bit
tag and lock errors, and lines with multi-bit tag or lock errors are invalidated. In
parity mode, tag or lock errors will result in invalidation of lines. Correction is
performed for single or multi-bit data errors by reloading of the line.

1x Reserved

27:28 — Reserved1

29 ICABT Instruction Cache Operation Aborted
Indicates a Cache Invalidate or a Cache Lock Bits Flash Clear operation was aborted
prior to completion. This bit is set by hardware on an aborted condition, and will remain
set until cleared by software writing 0 to this bit location.

Table 11-2. L1CSR1 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 595

11.4.3 L1 Cache Configuration Register 0 (L1CFG0)

The L1 Cache Configuration Register 0 (L1CFG0) is a 32-bit read-only register. L1CFG0 provides
information about the configuration of the e200z759n3 L1 data cache design. The contents of the L1CFG0
register can be read using a mfspr instruction. The SPR number for L1CFG0 is 515 in decimal. The
L1CFG0 register is shown in Figure 11-6.

The L1CFG0 bits are described in Table 11-3.

30 ICINV Instruction Cache Invalidate
0 No cache invalidate
1 Cache invalidation operation
When written to a ‘1’, a cache invalidation operation is initiated by hardware. Once
complete, this bit is reset to ‘0’. Writing a ‘1’ while an invalidation operation is in
progress will result in an undefined operation. Writing a ‘0’ to this bit while an
invalidation operation is in progress will be ignored. Cache invalidation operations
require approximately 134 cycles to complete. Invalidation occurs regardless of the
enable (ICE) value.
During cache invalidations, the parity check bits are written with a value dependent on
the ICEDT selection. ICEDT should be written with the desired value for subsequent
cache operation when ICINV is set to ‘1’ for proper operation of the cache.

31 ICE Instruction Cache Enable
0 Cache is disabled
1 Cache is enabled
When disabled, cache lookups are not performed for instruction accesses.
Other L1CSR1 cache control operations are still available and are not affected by ICE.

1 These bits are not implemented and should be written with zero for future compatibility.

C
A

R
C

H

C
W

PA

C
FA

H
A

D
C

F
IS

W
A

0

D
C

B
S

IZ
E

D
C

R
E

P
L

D
C

LA

D
C

E
C

A

DCNWAY DCSIZE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

00 1 0 1 0 0 00 10 1 1 00000011 (4 way) 00000010000 (16 KB)

SPR - 515; Read-only

Figure 11-6. L1 Cache Configuration Register 0 (L1CFG0)

Table 11-3. L1CFG0 field descriptions

Bits Name Description

0:1 CARCH Cache Architecture
00 The cache architecture is Harvard

2 CWPA Cache Way Partitioning Available
1 The caches support partitioning of way availability for I/D accesses

Table 11-2. L1CSR1 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

596 Freescale Semiconductor

11.4.4 L1 Cache Configuration Register 1 (L1CFG1)

The L1 Cache Configuration Register 1 (L1CFG1) is a 32-bit read-only register. L1CFG1 provides
information about the configuration of the e200z759n3 L1 instruction cache design. The contents of the
L1CFG1 register can be read using a mfspr instruction. The SPR number for L1CFG1 is 516 in decimal.
The L1CFG1 register is shown in Figure 11-7.

The L1CFG1 bits are described in Table 11-4.

3 DCFAHA Data Cache Flush All by Hardware Available
0 The data cache does not support Flush All in Hardware

4 DCFISWA Data Cache Flush/Invalidate by Set and Way Available
1 The data cache supports flushing/invalidation by Set and Way via the L1FINV0 spr

5:6 — Reserved - read as zeros

7:8 DCBSIZE Data Cache Block Size
00 The data cache implements a block size of 32 bytes

9:10 DCREPL Data Cache Replacement Policy
10 The data cache implements a pseudo-round-robin replacement policy

11 DCLA Data Cache Locking APU Available
1 The data cache implements the line locking APU

12 DCECA Data Cache Error Checking Available
1 The data cache implements error checking

13:20 DCNWAY Data Cache Number of Ways
0x03 The data cache is 4-way set-associative

21:31 DCSIZE Data Cache Size
0x010The size of the data cache is 16 KB.

0

IC
F

IS
W

A

0

IC
B

S
IZ

E

IC
R

E
P

L

IC
LA

IC
E

C
A

ICNWAY ICSIZE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0000 1 0 0 00 10 1 1 00000011 (4 way) 00000010000 (16 Kbyte)

SPR - 516; Read-only

Figure 11-7. L1 Cache Configuration Register 1 (L1CFG1)

Table 11-3. L1CFG0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 597

11.5 Data cache software coherency
Data cache coherency is supported through software operations to invalidate, flush dirty lines to memory
or invalidate dirty lines. The data cache may operate in either writethrough or copyback modes, and in
conjunction with a MMU, may designate certain accesses as writethrough or copyback. Data cache misses
will force the push and store buffers to empty prior to performing the access to ensure coherency.

11.6 Address aliasing
Each cache is virtually indexed and physically tagged, thus the problems associated with potential cache
synonyms due to effective address aliasing are eliminated, unless 1Kbyte or 2Kbyte pages are used. If
1Kbyte or 2Kbyte pages are used and multiple virtual addresses are mapped to the same physical address,
the low order virtual address bits used to index the cache (A[20:21] for 1Kbyte pages, A20 for 2Kbyte
pages) must be the same for each of the virtual pages, and these index bit(s) must match the corresponding
physical address bit(s) value. For example, if logical pages X and Y map to physical page P, then X, Y, and
P must have the same values of A[20:21] for 1Kbyte pages, and A20 for 2Kbyte pages. Note that this
limitation should already met because of the requirements on 1Kbyte and 2Kbyte page usage mandated by
Section 10.2.6, Restrictions on 1 KB and 2 KB page size usage.

Table 11-4. L1CFG1 field descriptions

Bits Name Description

0:3 — Reserved - read as zeros

4 ICFISWA Instruction Cache Flush/Invalidate by Set and Way Available
1 The instruction cache supports invalidation by Set and Way via the L1FINV1 spr

5:6 — Reserved - read as zeros

7:8 ICBSIZE Instruction Cache Block Size
00 The instruction cache implements a block size of 32 bytes

9:10 ICREPL Instruction Cache Replacement Policy
10 The instruction cache implements a pseudo-round-robin replacement policy

11 ICLA Instruction Cache Locking APU Available
1 The instruction cache implements the line locking APU

12 ICECA Instruction Cache Error Checking Available
1 The instruction cache implements error checking

13:20 ICNWAY Instruction Cache Number of Ways
0x03 The instruction cache is 4-way set-associative

21:31 ICSIZE Instruction Cache Size
0x010The size of the instruction cache is 16 KB.

e200z759n3 Core Reference Manual, Rev. 2

598 Freescale Semiconductor

11.7 Cache Operation

11.7.1 Cache enable/disable

The caches are enabled or disabled by using the respective Cache Enable bits, L1CSR0DCE and
L1CSR1ICE. Cache Enable bits are cleared by power-on reset or normal reset, disabling the caches.

When a cache is disabled, the cache tag status bits are ignored, and the cache is not accessed for snoops,
normal loads, stores, or instruction fetches. All normal accesses are propagated to the system bus as
single-beat (non-burst) transactions.

Note that the state of the Cache Inhibited access attribute (the I bit) remains independent of the state of
L1CSR0DCE and L1CSR1ICE. Disabling a cache does not affect the translation logic in the Memory
Management Unit. Translation attributes will still be used when generating attribute information on the
system buses.

The store buffer is still available for use even when the data cache is disabled.

Altering the DCE or ICE bit must be preceded by an isync and msync to prevent the cache from being
disabled or enabled in the middle of a data or instruction access. In addition, the cache may need to be
globally flushed before it is disabled to prevent coherency problems when it is re-enabled.

All cache operations are affected by disabling the cache. Cache management instructions (except for
mtspr L1FINV{0,1} and mtspr L1CSR{0,1}) do not affect a cache when it is disabled.

11.7.2 Cache fills

Cache line fills are requested when a cacheable load or instruction miss occurs. Cacheable store misses
only allocate cache lines if data cache write allocation is enabled for the type of store being performed.

The cache line fill is performed critical doubleword first on the bus using a burst access. The critical
doubleword is forwarded to the requesting unit before being written to the cache, thus minimizing stalls
due to fill delays. Cache line fills load a four doubleword linefill buffer, and updates to the cache array are
performed as half-lines are received.

Read accesses may hit in the line buffer and data supplied from the buffer to the CPU. On writes that hit
to the buffer address, when write allocation is disabled, the writes will stall until the cache fill has been
completed. When write allocation is enabled, these writes will update the linefill buffer if the buffer is
being filled due to a store miss only, otherwise the write will also stall until the linefill completes.

Data may be streamed to the CPU as it arrives from the bus if a corresponding request is pending. In
addition, the cache supports hit under fill, allowing subsequent CPU accesses to be satisfied by cache hits
while the remainder of the line fill completes. This non-blocking capability improves performance by
hiding a portion of the line fill latency when data already in the cache or linefill buffer is subsequently
requested by the CPU.

The cache supports up to three outstanding misses, and will forward these miss requests to the BIU. Miss
data is always returned from the BIU to the Cache in-order.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 599

Cache fill operations are performed as wrapping bursts on the system bus. If an error response is received
on any element of the burst, the burst will be terminated, and the cache line will be marked invalid.

If one or more store hit updates occur to the linefill buffer during allocation of a line for a store miss and
a subsequent error response is received during the linefill, the original store miss access and each
individual hitting store access will be performed on the system bus as if they were non-allocating. In this
case, an async machine check exception will be signaled for the linefill.

11.7.3 Cache line replacement

On a cache miss, the cache controller uses a pseudo-round-robin replacement algorithm to determine
which cache line will be selected to be replaced. There is a single replacement counter for each cache. The
replacement algorithm acts as follows: On a miss, if the replacement pointer is pointing to a way that is
not enabled for replacement (the selected line or way is locked), it is incremented until an available way
is selected (if any). After a cache line is successfully filled without error, the replacement pointer
increments to point to the next cache way. If no way is available for the replacement, the access is treated
as a single beat access and no cache linefill occurs.

Lines selected for replacement that are dirty (modified) must be copied back to main memory. This is
performed by first storing the replaced line in a 32-byte push buffer while the missed data is fetched. After
filling the new line, the contents of the buffer are written to memory beginning with doubleword 0.

Each replacement counter is initialized to point to way 0 on a reset or on a respective cache invalidate all
operation. A replacement counter may also be set to a specific value via a L1FINV0,1 command.

11.7.4 Cache miss access ordering

Cacheable cache misses may be processed out-of-order by e200z759n3. Load misses that are not
cache-inhibited are allowed to bypass buffered stores and push buffer pushes as long as no address alias
exists. Alias checking is performed by comparing the index of the load with the index of each buffered
store and push. If no alias match exists, the load is allowed to bypass buffered stores and pushes, regardless
of the attributes associated with those stores. Load misses will be performed in-order with respect to other
load misses. Store accesses do not bypass loads. Stores are not necessarily performed in order from the
point of view of the memory system, since a store miss may cause a linefill to satisfy the store prior to
previously buffered stores being completed, as long as no aliasing occurs.

Memory access ordering must be enforced by software where required, using the mbar and/or msync
instructions, per the PowerArch storage ordering rules.

11.7.5 Cache-inhibited accesses

When the Cache-Inhibited attribute is indicated by translation and a cache miss occurs, all accesses are
performed as single beat transactions on the system bus. Cache Inhibited status is ignored on all cache hits.
For cache-inhibited load access misses, the processor termination is withheld for the load until the store
buffer has been flushed of all entries, the push buffer has been emptied, and the load has completed to
memory. Cache-inhibited store accesses that are not marked as Guarded are placed in the store buffer

e200z759n3 Core Reference Manual, Rev. 2

600 Freescale Semiconductor

(when enabled) and the processor termination occurs when the store buffer entry is allocated. (see
Section 11.9, Push and store buffers).

11.7.6 Guarded accesses

When the Guarded attribute is indicated by translation and a cache miss occurs, the access will not proceed
on the external bus until all previously initiated demand-accesses have been terminated to the processor
without error. Buffered stores are considered terminated to the processor when they are placed into the
store buffer. Guarded load misses that are not cache-inhibited are allowed to bypass buffered stores and
push buffer pushes as long as no address alias exists, regardless of a buffered store being guarded. Guarded
stores will not allocate cache lines on a miss, but are buffered in the store buffer if the access is not also
cache-inhibited, regardless of being writethrough required or not (regardless of W bit or L1CSR0DCWM
values), and will be performed as single-beat accesses on the bus.

11.7.7 Cache-inhibited guarded accesses

When the Cache-inhibited and Guarded attributes are indicated by translation and a cache miss occurs,
accesses are performed as single beat transactions on the system bus. Cache-inhibited status is normally
ignored on all cache hits. Cache-inhibited status for writethrough stores that are also guarded will not be
ignored however. For cache-inhibited guarded access misses, or for cache-inhibited guarded writethrough
store hits, the processor termination is withheld until the store buffer has been flushed of all entries, the
push buffer has been emptied, and the access has completed to memory (see Section 11.9, Push and store
buffers). Cache-inhibited guarded stores with W=0 or L1CSR0DCWM=1 that hit ignore the
Cache-inhibited and Guarded status.

11.7.8 Cache invalidation

e200z759n3 supports full invalidation of the caches under software control. The caches may be invalidated
through the L1CSR0DCINV and L1CSR1ICINV cache invalidate control bits. This function is available even
when a cache is disabled.

Reset does not invalidate a cache automatically. Software must use the {D,I}CINV control for invalidation
after a reset. Proper use of this bit is to determine that it is clear and then set it with a pair of mfspr mtspr
operations. A 0-to-1 transition on {D,I}CINV causes a flash invalidation to be initiated, which lasts for
multiple (approx. 134) CPU cycles. Once set, the {D,I}CINV bit will be cleared by hardware after the
operation is complete. It will remain set during the invalidation interval, and may be tested by software to
determine when the operation has completed. A mtspr operation to L1CSR{0,1} that attempts to change
the state of {D,I}CINV during invalidation will not affect the state of that bit.

In order to properly generate the tag parity/check bits during the invalidation process, the error detection
type control located in the L1CSR[0,1][D,I]CEDT field should be configured properly at the time the
invalidation operation is initiated. A subsequent change to the error detection type control will require a
new invalidation to avoid improper interpretation of previously stored tag parity/check bits.

During the process of performing the invalidation, a cache does not respond to accesses other than snoop
accesses, and remains busy. Interrupts may still be recognized and processed, potentially aborting the
invalidation operation. When this occurs, the L1CSR{0,1}ABT bit will be set to indicate unsuccessful

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 601

completion of the operation. Software should read the L1CSR{0,1} register to determine that the operation
has completed (L1CSR{0,1}CINV bit cleared), and then check the status of the L1CSR{0,1}ABT bit to
determine completion status.

NOTE
Note that while most implementations of the e200z759n3 will stall further
instruction execution during this invalidation interval, it is not guaranteed
across all implementations, thus software should be written using these
guidelines.

Individual cache lines may be invalidated using the icbi, dcbi, or dcbf instructions. These instructions
require the respective cache to be enabled in order to operate normally.

11.7.9 Cache flush/invalidate by set and way

e200z759n3 supports cache flushing under software control. The caches may be flushed and/or invalidated
by index and way through a mtspr l1finv{0,1} instruction.

The L1 Flush and Invalidate Control Registers (L1FINV{0,1}) are 32-bit SPRs used to select a cache set
and way to be flushed/invalidated. No tag match is required. This function is available even when a cache
is disabled. L1FINV0 is used for data cache operations, while L1FINV1 is used for instruction cache
operations.

11.7.9.1 L1 Flush and Invalidate Control Register 0 (L1FINV0)

The SPR number for L1FINV0 is 1016 in decimal. The L1FINV0 register is shown in Figure 11-8.The
L1FINV0 bits are described in Table 11-5.

.

0 CWAY 0 CSET 0 CCMD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1016; Read/Write; Reset - 0x0

Figure 11-8. L1 Flush/Invalidate Register 0 (L1FINV0)

Table 11-5. L1FINV0 field descriptions

Bits Name Description

0:5 — Reserved1 for way extension

6:7 CWAY Cache Way
Specifies the data cache way to be selected

8:19 — Reserved1 for set extension

20:26 CSET Cache Set
Specifies the cache set to be selected

e200z759n3 Core Reference Manual, Rev. 2

602 Freescale Semiconductor

For cache flush operations, if a transfer error occurs on a data cache line flush, the push of the remaining
portion of the cache line is aborted, the line remains marked dirty and valid, and a machine check condition
is signaled

For flush and flush with invalidation operations, data parity errors do not abort a flush to memory, but a
machine check will be generated at the completion of the flush. In both cases the cache line is left
unchanged. For flush with invalidation operations to clean lines, tag parity errors and data parity errors are
ignored, and the line is invalidated. Note that only the line indicated by CSET and CWAY is checked for
errors; lines in the other ways are ignored.

For invalidation without flushing operations, tag parity errors, data parity errors, and dirty-bit parity errors
are ignored, and the line will be invalidated.

11.7.9.2 L1 Flush and Invalidate Control Register 1 (L1FINV1)

The SPR number for L1FINV1 is 959 in decimal. The L1FINV1 register is shown in Figure 11-9. The
L1FINV1 bits are described in Table 11-6.

27:29 — Reserved1 for set/command extension

30:31 CCMD Cache Command
00 The data contained in this entry is invalidated without flushing
01 The data contained in this entry is flushed if dirty and valid without invalidation
10 The data contained in this entry is flushed if dirty and valid and then is invalidated
11 Reset way replacement pointer to the way indicated by CWAY

1 These bits are not implemented and should be written with zero for future compatibility.

0 CWAY 0 CSET 0 CCMD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 959; Read/Write; Reset - 0x0

Figure 11-9. L1 Flush/Invalidate Register 1 (L1FINV1)

Table 11-6. L1FINV1 field descriptions

Bits Name Description

0:5 — Reserved1 for way extension

6:7 CWAY Cache Way
Specifies the instruction cache way to be selected

8:19 — Reserved1 for set extension

20:26 CSET Cache Set
Specifies the instruction cache set to be selected

Table 11-5. L1FINV0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 603

11.8 Cache parity and EDC protection
Cache parity is supported for both the tag and data arrays of each cache. Six parity check bits are provided
for each tag entry for the tag arrays of both caches to support multi-bit error detection (EDC), and
redundant dirty bits are provided in the data cache to provide dirty-bit parity checking without requiring a
read-modify-write operation when the dirty bit is set. Redundant lock bits are provided as well for both the
ICache and the DCache. Byte parity is supported for the data arrays of the data cache, and eight parity
check bits are provided for each doubleword in the data arrays of the ICache, which are used for multi-bit
error detection (EDC–DED, double error detection). Utilizing EDC protection, many multi-bit errors are
also detected.

Parity and EDC checking is controlled by the L1CSR0DCECE, L1CSR0DCEDT, L1CSR1ICECE, and
L1CSR1ICEDT control fields. When error checking is enabled, checking is performed on each cache
access, whether for lookup, snoop lookup, or for dirty line replacement. Parity or EDC errors are not
signaled by the respective cache when cache error checking is disabled for that cache
(L1CSR[0,1][I,D]CECE=0).

For normal cache lookups due to instruction fetching, loads, or stores, if an uncorrectable tag EDC error
is detected on any portion of the accessed tags, a parity error is signaled, regardless of whether a cache hit
or miss occurs. Otherwise, if a cache hit for a load occurs and a data parity error is detected on any portion
of the accessed doubleword of data, a parity error is also signaled. Data parity errors are ignored for store
hits, since the parity will be updated for the data being stored. Data parity errors are ignored for misses
unless the replacement line is dirty or incurs a dirty bit parity error, since the parity will be updated for the
new linefill data being stored.

Signaling of a parity error may not cause an exception to occur, depending on the error detection action to
be taken. Instead, a correction/auto-invalidation cycle may be performed.

A dirty line push will not be generated for a dirty line replacement that incurs an uncorrectable tag EDC
error. In this case, a machine check will be generated, but no push will have been requested to the external
bus, and the cache line will be left unchanged. For dirty line pushes from the data cache, accessing the data
arrays for the push data may occur after the burst write has been requested on the external bus, thus a push
of dirty data may actually push data that contains a parity error. A machine check will be signaled, but the
burst will not be aborted, and the line will be invalidated and replaced.

Dirty bit parity is checked when invalidation or replacement operations are required. If a dirty parity error
is detected on a cache line replacement, in correction/autoinvalidation mode, it is ignored, and the line is

27:29 — Reserved1 for set/command extension

30:31 CCMD Cache Command
00 The data contained in this entry is invalidated
01 Reserved
10 Reserved
11 Reset way replacement pointer to the way indicated by CWAY

1 These bits are not implemented and should be written with zero for future compatibility.

Table 11-6. L1FINV1 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

604 Freescale Semiconductor

pushed normally. In machine check mode, a machine check exception will be signaled indicating a tag
parity error. Dirty status or dirty parity errors will prevent the auto-invalidation of cache lines with tag
EDC errors. If a dirty parity error occurs, in correction/autoinvalidation mode the line is assumed to be
dirty, and if correction/auto-invalidation is enabled, the error will be corrected by re-writing all three dirty
bits to ‘1’. This implies that a single or multi-bit error that sets one or more dirty bits from an initially
cleared state will cause the line to appear dirty. This should not cause a functional issue however, since the
only result is that a clean but coherent line may be pushed on a flush or replacement in
correction/autoinvalidation mode.

Regardless of the error action mode indicated by {D,I}CEA, lock bit parity errors will not signal an
exception for normal hits without a tag parity error. If correction/auto-invalidation is enabled, on each
cache lookup operation, if a single-bit lock error is detected in one or more ways, it will be corrected by
re-writing all lock bits to the correct state. Uncorrectable lock errors will remain unchanged. For cache hits
without a tag EDC error, all lock parity errors are ignored. Lock parity errors on a cacheable miss (after a
correction attempt if correction/auto-invalidation is enabled) will result in the line(s) being invalidated if
clean and a machine check to be generated. A new line will not be allocated, and the lock bits will not be
updated on the invalidation. Lock bit parity errors are ignored for non-cacheable accesses.

Signaling of a parity error or EDC error may cause a Machine Check exception to occur, and one or more
syndrome bits to be set in the Machine Check Syndrome register, or may instead result in a
correction/auto-invalidation operation and not result in an exception being signaled, or both may occur,
depending on the error action control setting in the appropriate cache control register. Refer to
Section 11.8.1, Cache error action control, for details of the cache error action controls. Refer to
Section 7.7.2, Machine Check interrupt (IVOR1), and to Section 2.4.7, Machine Check Syndrome
Register (MCSR), for a description of Machine Check conditions.

11.8.1 Cache error action control

The L1CSR0DCEA and L1CSR1ICEA control fields allow for selection of several policies to apply when
errors are detected during a cache lookup, and are described in the following subsections.

11.8.1.1 L1CSR[0,1][I,D]CEA = 00, machine check generation on error

Selection of the machine check generation on error policy allows for all errors to be processed by software.
Parity or EDC errors that could result in incorrect operation will cause a machine check condition. In order
to be recoverable, the machine check handler must not incur another parity or EDC error during the initial
portion of the machine check handler. Parity/EDC errors will not generate a machine check exception for
cache-inhibited accesses.

If machine check generation on error is enabled (L1CSR[0,1][I,D]CEA=00) and an EDC error is detected
on any portion of the accessed tags for a cacheable load or store access, a machine check is reported,
regardless of whether a cache hit or miss occurs. Otherwise, if a cache hit occurs and a parity or EDC error
is detected on any portion of the accessed doubleword of data for a load or an instruction access, a machine
check is also reported. For store accesses, data parity errors are ignored. Lock or dirty parity errors on a
cacheable miss will cause a machine check to be reported indicating a lock error and/or a tag parity error.
Dirty parity errors on a cache hit for a reservation instruction (lwarx, stwcx., etc.) will result in a machine
check and will indicate a tag parity error. If a miss occurs and a tag EDC error is detected on a lookup for

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 605

a cacheable reservation instruction (lwarx, stwcx., etc.), it will be ignored if the line is clean, otherwise if
the line is dirty or a dirty parity error occurs, a machine check will be generated and the reservation access
will not be run externally. Cache inhibited reservation accesses will ignore all parity/EDC errors.

11.8.1.2 L1CSR[0,1][I,D]CEA = 01, correction/auto-invalidation on error

The correction/auto-invalidation on error policy attempts to cause most parity and EDC errors to be
transparently handled by correcting lines with single-bit tag errors, and invalidating lines with
uncorrectable tag errors or with data errors and then causing cache refills to reload correct data from
memory, without generation of exceptions. Exceptions are only generated when invalidations could cause
or would cause a change in correct behavior, such as changing the locked status of a line, or invalidating
potentially dirty data. Parity/EDC errors will not generate invalidations that could cause a machine check
exception for cache-inhibited accesses however.

When using EDC protection for the cache tags (L1CSR[0,1][D,I]CEDT=01), single-bit tag errors are
corrected by the cache hardware during a correction/auto-invalidation cycle. Clean unlocked lines with
multi-bit errors are invalidated on cache hits, with no machine check signaled. Clean locked lines with
uncorrectable tag errors are invalidated on cache misses, and a machine check is signaled.

Note that since the data arrays have a higher probability of incurring an error than the tag arrays, due to
the relative storage capacities, most errors will be transparently corrected, even if they are double-bit or
multi-bit errors. Using writethrough mode for critical data will ensure that invalidation or refills are able
to recover from errors transparently in most cases.

11.8.1.2.1 Instruction cache errors

If correction/auto-invalidation on error is enabled (L1CSR1ICEA=01) and an error is detected on any
portion of the accessed tags or data for an access, a correction/auto-invalidation cycle is inserted,
regardless of whether a cache hit or miss occurs. During this cycle, any tag entry with a single-bit tag or
lock error is corrected and re-written to correct the stored error. Tag entries with uncorrectable errors are
invalidated if unlocked or are invalidated if a cache miss will occur after a correction/auto-invalidation
cycle regardless of locked status. If a locked line is invalidated, a machine check will occur, no
replacement will occur, and the locked status will remain set for the invalidated line(s) to assist software
in determining the location of the error(s).

Following the correction/auto-invalidation cycle, a re-lookup is performed for the access. If a cache hit
occurs on a way without a tag EDC error, and an EDC error is detected on any portion of the accessed
doubleword of data, a miss is forced, and the same line is refilled from system memory, retaining the
existing lock status. The replacement pointer for the cache is not updated in these circumstances. If a cache
hit occurs on a way without a tag EDC error, EDC errors on all other lines are ignored, and no invalidations
for those lines will occur.

For all cases of invalidations, if any line that was locked or incurred a lock error was invalidated, a machine
check will also occur, even though auto-invalidation is selected. Invalidation is not blocked for locked
lines or lines with lock parity errors on cache misses. The lock bits will remain unmodified by the
invalidation operation to allow for potential software recovery.

e200z759n3 Core Reference Manual, Rev. 2

606 Freescale Semiconductor

If a refill of a locked line due to a data EDC error encounters an external bus error during the linefill, a
machine check will be generated, the line will be invalidated, and the lock bits will remain set.

11.8.1.2.2 Data cache errors

If correction/auto-invalidation on error is enabled (L1CSR0DCEA=01) and an error is detected on any
portion of the accessed tags, or if a lock or dirty parity error is detected, an invalidation/correction cycle
is inserted, regardless of whether a cache hit or miss occurs. Following the invalidation/correction cycle,
a re-lookup is performed for the access. During the correction/auto-invalidation cycle, any tag entry with
a tag or lock error is corrected if possible, and re-written to correct the stored error. Tag entries with
uncorrectable errors are invalidated if the line is clean and unlocked, or if the line is clean and a miss will
occur after the re-lookup, regardless of lock status. Dirty parity errors are corrected by setting all dirty bits
to ‘1’. Dirty lines and lines with a dirty parity error are not invalidated.

Following the correction/auto-invalidation cycle, a re-lookup is performed for the access. If a cache hit
occurs on a way without a tag EDC error, and a parity error is detected on any portion of the accessed
doubleword of data for a load, if the line is clean, a miss is forced and the line is refilled from system
memory, retaining the existing lock status. The replacement pointer for the cache is not updated in these
circumstances. All other clean unlocked lines with uncorrectable tag errors will have been invalidated
during the correction/auto-invalidation cycle if one was initially needed. Tag EDC errors on lines that were
not invalidated earlier due to lock or dirty status will be ignored since a cache hit occurs. For stores, parity
errors on data are ignored, and no invalidation or refill of any lines will occur on a hit to a way without a
tag EDC error.

Note that since the data arrays have a higher probability of incurring an error than the tag arrays, due to
the relative storage capacities, most errors will be transparently corrected. Using writethrough mode for
critical data will ensure that invalidation or refills are able to recover from errors transparently in most
cases.

If a cache hit occurs on a way without a tag EDC error, and a parity error is detected on any portion of the
accessed doubleword of data for a load, and the line is dirty or a dirty error occurs, no refill of the cache
line will occur, the line will not be invalidated, and a machine check will also occur, even if
auto-invalidation is selected. All other clean unlocked lines with uncorrectable tag errors will also have
been invalidated during the correction/auto-invalidation cycle if one was initially needed. Tag EDC errors
on lines that were not invalidated earlier due to lock or dirty status will be ignored

If a cache hit occurs only on a line(s) with an uncorrectable tag EDC error after a invalidation /correction
cycle has been performed, since the line is dirty or has a dirty parity error (it would have been invalidated
otherwise), a machine check is generated, and no linefill is performed.

If a cache miss occurs and any line with an uncorrectable tag EDC error is dirty or has a dirty parity error,
the line is not invalidated, a machine check is generated, and no linefill is performed. All clean lines with
tag errors will have been invalidated/corrected on a cache miss, regardless of locked status.

For all cases of invalidations, if any line that was locked or incurred a lock error was invalidated, a machine
check will also occur, even though auto-invalidation is selected. Invalidation on a miss is not blocked for
locked lines or lines with lock parity errors unless the access is cache-inhibited or is dirty. The lock bits
will remain unmodified by the invalidation operation to allow for potential software recovery.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 607

If a refill of a locked line due to a data parity error encounters an external bus error during the linefill, a
machine check will be generated, the line will be invalidated, and the lock bits will remain set.

11.8.1.2.3 Data cache line flush or invalidation due to reservation instructions
(l[b,h,w]arx, st[b,h,w]cx.)

Normally, when executing a load and reserve, or a store conditional instruction, a cache line hit results in
the line being pushed (if dirty) and marked clean, and the reservation access performed as a single-beat
access. Certain parity or EDC errors may cause other actions however.

If a cache hit to a line with no tag EDC error occurs when performing a lookup for a load or store
reservation access, the line will be pushed if dirty, or if a dirty parity error occurs, and will be marked as
clean. Locked status will not be changed. A push parity error may occur during the push if a data parity
error is encountered, and a machine check will be generated. In this case the reservation access will not be
performed. Otherwise, a load reservation access is then performed as a single-beat access, ignoring the
cache data. A store reservation access is performed as a writethrough single-beat write access on the bus,
regardless of whether it is marked as writethrough required. If the write access completes without error
and succeeds (no ERROR or XFAIL response from the bus), then the cache is updated with the store data,
but the line is left in a clean state. Uncorrectable tag errors on other clean unlocked lines will cause
invalidation of those lines without signaling a machine check. Uncorrectable tag errors on other cache lines
that are locked or are dirty will be ignored.

Otherwise, if any line has an uncorrectable tag EDC error and is dirty or has a dirty parity error, a machine
check is generated, and the line(s) remains unchanged. Clean unlocked lines with tag EDC errors will be
invalidated or corrected, but locked lines or lines with a lock error will not be invalidated on a cache miss,
since no new cache line will be allocated.

11.8.2 Parity/EDC error handling for cache control operations and
instructions

Parity/EDC errors are not signaled when the respective L1CSR0DCECE and L1CSR1ICECE cache error
checking enable bits are cleared. When set, the following sections describe error handling for cache control
operations and cache control instructions.

11.8.2.1 L1FINV[0,1] operations

For invalidation operations via the L1FINV[0,1] control registers, uncorrectable tag EDC errors will result
in the specified line being invalidated, and no error will be reported, regardless of the setting of
L1CSR[0,1][I,D]CEA. Data parity or EDC errors and dirty errors are ignored. Parity or EDC errors on all
other ways not specified by the CWAY value for the L1FINV[0,1] are ignored, regardless of the settings
of L1CSR[0,1][D,I]CEA.

For flush and flush with invalidate operations via the L1FINV0 control register, if no uncorrectable tag
EDC error occurs on the specified line, it is flushed to memory if dirty or if a dirty parity error occurs, and
then invalidated for flush with invalidate operations, and no machine check is signaled for dirty parity
errors. If an uncorrectable tag EDC error occurs on the specified line, and the line is dirty or a dirty error
is encountered, no flush or invalidation will be performed, the line will remain unchanged, and a machine

e200z759n3 Core Reference Manual, Rev. 2

608 Freescale Semiconductor

check will be generated. For flush operations, an uncorrectable tag EDC error on a clean line will be
ignored, and no error will be reported. For flush with invalidate operations, an uncorrectable tag EDC error
on a clean line will result in the specified line being invalidated, and no error will be reported. Lock status
is ignored for these operations. Data parity errors may result in a push parity error and a machine check
generated, but the line will still be flushed to memory if not prevented due to an uncorrectable tag EDC
error. If a push parity error occurs, the line will be left unaffected for flush with invalidate operations. Lock
status will be cleared on an invalidation or flush with invalidation that does not result in a machine check.

11.8.2.2 Cache touch instructions (dcbt, dcbtst, icbt)

Parity errors are not signaled on a lookup for a dcbt, dcbtst, or icbt instruction. For those instructions, an
uncorrectable tag EDC error results in a nop and no error is reported, regardless of error checking being
enabled. No invalidations will occur.

11.8.2.3 icbi instructions

For icbi instructions, on a hit to any locked or unlocked line without an uncorrectable tag EDC error (with
or without a lock parity error), or on a hit to an unlocked line with an uncorrectable tag EDC error, the
line(s) is invalidated, regardless of the setting of L1CSR1ICEA, and no machine check is generated. If
L1CSR1ICEA = ‘01’, if any line has a tag EDC error, a correction/invalidation cycle is inserted to correct
tags with single-bit errors, and to invalidate unlocked lines with multi-bit errors. Locked lines with
uncorrectable tag errors that miss are unaffected. No machine check will be generated.

If a hit occurs to a line with a tag EDC error (after a correction for L1CSR1ICEA = ‘01’) that is locked or
has a lock parity error, the line is left unaffected, and no machine check is generated, regardless of the
setting of L1CSR1ICEA.

If a miss occurs, all parity/EDC errors are ignored, the lines are left unaffected, and no machine check is
generated, regardless of the setting of L1CSR1ICEA.

All data EDC errors are ignored regardless of L1CSR1ICEA.

11.8.2.4 dcbi instructions

For dcbi instructions, on a hit to a line without a tag EDC error, the line is invalidated, regardless of the
setting of L1CSR0DCEA. For this case, data, lock, and dirty parity errors are ignored. When
L1CSR0DCEA = ‘00’, tag parity/DC errors on other lines are ignored. When L1CSR0DCEA = ‘01’,
uncorrectable tag EDC errors on other lines will also cause clean unlocked lines to be invalidated,
regardless of hit or miss. No machine check is generated regardless of the setting of L1CSR0DCEA.

For dcbi instructions that hit to a line with a tag EDC error, the line(s) is invalidated if clean and unlocked
and no machine check is generated, regardless of the setting of L1CSR0DCEA. Uncorrectable tag EDC
errors will cause other clean unlocked lines to be invalidated when L1CSR0DCEA = ‘01’, regardless of hit
or miss. If a hit occurs to a line with an uncorrectable tag EDC error and the line is dirty, or is locked or
has a lock parity error, the line is left unaffected, and no machine check is generated, regardless of the
setting of L1CSR0DCEA.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 609

For dcbi instructions that miss in all ways, when L1CSR0DCEA = ‘00’, no invalidation is performed
regardless of tag parity /EDC errors and no machine check is signaled. Uncorrectable tag EDC errors will
cause clean unlocked lines to be invalidated when L1CSR0DCEA = ‘01’, and no machine check is signaled.
All other lines are left unchanged.

11.8.2.5 dcbst instructions

For dcbst instructions, on a hit to any line without a tag EDC error, if the line is dirty, or has a dirty bit
error, the line is flushed. Lock errors are ignored. When L1CSR0DCEA = ‘00’, tag EDC errors on other
lines are ignored. When L1CSR0DCEA = ‘01’, uncorrectable tag EDC errors on other lines will also cause
clean unlocked lines to be invalidated, regardless of hit or miss. No machine check is generated regardless
of the setting of L1CSR0DCEA. For dcbst, lock and dirty errors are ignored on a hit. Data parity errors will
not prevent the line from being flushed, but will cause a machine check to be generated due to a push parity
error.

For cacheable dcbst instructions that hit only to a line with a tag EDC error or that miss in all ways, a
machine check will be generated if L1CSR0DCEA = ‘00’ and any line with a tag EDC error is dirty. Lock
errors are ignored. If L1CSR0DCEA = ‘01’, clean unlocked lines with an uncorrectable tag EDC error are
invalidated, and no errors are signaled unless any line with an uncorrectable tag EDC error is also dirty or
has a dirty parity error. If any line with an uncorrectable tag EDC error is dirty, or has a dirty parity error,
the line is not flushed and a machine check is generated, regardless of the settings of L1CSR0DCEA.

11.8.2.6 dcbf instructions

For dcbf instructions, on a hit to any line without a tag EDC error, if the line is dirty, or has a dirty bit error,
the line is flushed and invalidated. Lock errors are ignored. When L1CSR0DCEA = ‘00’, tag parity/EDC
errors on other lines are ignored. When L1CSR0DCEA = ‘01’, uncorrectable tag EDC errors on other lines
will also cause clean unlocked lines to be invalidated, regardless of hit or miss. No machine check is
generated regardless of the setting of L1CSR0DCEA. For dcbf, data parity errors will not prevent the line
from being flushed, but will cause a machine check to be generated due to a push parity error.

For cacheable dcbf instructions that hit only to a line with a tag EDC error or that miss in all ways, a
machine check will be generated if L1CSR0DCEA = ‘00’ and any line with a tag EDC error is dirty, locked,
or has a dirty parity error or a lock parity error. If L1CSR0DCEA = ‘01’, clean unlocked lines with an
uncorrectable tag EDC error are invalidated, and no errors are signaled unless any line with an
uncorrectable tag EDC error is also dirty, locked, or has a dirty parity error or a lock parity error. If any
line with an uncorrectable tag EDC error is dirty, or has a dirty parity error, the line is not flushed and a
machine check is generated. If any line with an uncorrectable tag EDC error is locked, or has a lock parity
error, the line is not invalidated, and a machine check is generated.

11.8.2.7 dcbz instructions

For dcbz instructions, on a hit to any line without a tag EDC error, the line is zeroed and set to dirty. Data
errors, lock errors, and dirty errors are ignored. When L1CSR0DCEA = ‘00’, tag parity/EDC errors on other
lines are ignored. When L1CSR0DCEA = ‘01’, uncorrectable tag EDC errors on other lines will also cause
clean unlocked lines to be invalidated, regardless of hit or miss. No machine check is generated regardless
of the setting of L1CSR0DCEA. For dcbz, lock errors are ignored on a hit.

e200z759n3 Core Reference Manual, Rev. 2

610 Freescale Semiconductor

For cacheable dcbz instructions that hit only to a line with a tag EDC error or that miss in all ways, a
machine check will be generated if L1CSR0DCEA = ‘00’ and any line has a tag parity/EDC or lock error.
If L1CSR0DCEA = ‘01’ all line(s) with an uncorrectable tag EDC error are invalidated if clean. If a clean
line that was locked or had a lock parity error was invalidated, a machine check is generated. If any line
with an uncorrectable tag EDC error is dirty or has a dirty parity error, the line is not affected, and a
machine check is generated, regardless of the settings of L1CSR0DCEA. If a machine check is generated,
no dcbz operation will be performed.

11.8.2.8 Cache locking instructions (dcbtls, dcbtstls, dcblc, icbtls, icblc)

For dcbtls, dcbtstls, dcblc, icbtls, and icblc instructions, on a hit to any line without a tag EDC error, the
lock bits are set or cleared appropriately, and data, lock, and dirty bit parity or EDC errors are ignored.
When L1CSR[0,1][D,I]CEA = ‘00’, tag parity/EDC or lock errors on other lines are ignored. When
L1CSR[0,1][D,I]CEA = ‘01’, uncorrectable tag EDC errors on other lines will also cause clean unlocked
lines to be invalidated, regardless of hit or miss. No machine check is generated regardless of the setting
of L1CSR[0,1][D,I]CEA.

For cacheable dcbtls, dcbtstls, and icbtls instructions that hit only to a line with a tag EDC error or that
miss in all ways, a machine check will be generated if L1CSR[0,1][D,I]CEA = ‘00’ and any line has a tag
parity/EDC error or a lock error. If L1CSR[0,1][D,I]CEA = ‘01’, clean lines with an uncorrectable tag EDC
error are invalidated and if a clean line that was locked or had a lock parity error was invalidated, a machine
check is generated. If any line with an uncorrectable tag EDC error is dirty, or has a dirty parity error, the
line is not affected and a machine check is generated, regardless of the settings of L1CSR[0,1][D,I]CEA.

For cacheable dcblc and icblc instructions that hit only to a line with a tag EDC error or that miss in all
ways, a machine check will be generated if L1CSR[0,1][D,I]CEA = ‘00’ and any line with a tag parity/EDC
error is locked or has a lock parity error. If L1CSR[0,1][D,I]CEA = ‘01’, lock and dirty parity errors will not
cause a machine check on their own, but clean lines with an uncorrectable tag EDC error are invalidated,
and if a clean line that was locked or had a lock parity error was invalidated, a machine check is generated.
If any locked line with an uncorrectable tag EDC error is dirty, or has a dirty parity error, the line is not
affected and a machine check is generated, regardless of the settings of L1CSR[0,1][D,I]CEA.

11.8.3 Cache inhibited accesses and parity/EDC errors

For non-cacheable access misses, no cache parity/EDC exceptions are signaled. When operating with
correction/auto-invalidation disabled, tag EDC errors will cause misses for cache-inhibited accesses, and
no machine check will be generated. When correction/auto-invalidation mode is enabled, a
correction/auto-invalidation cycle will be run to correct/auto-invalidate tag, dirty, and lock errors, but
invalidations will only be performed for uncorrectable tag errors on clean unlocked lines. If a
cache-inhibited load or instruction fetch access hit occurs to a line with no tag EDC error, and the requested
doubleword of data has no parity/EDC error, the access is treated as a cache hit and the CI status is ignored.
Otherwise, if the requested doubleword of data has a parity/EDC error, the access is treated as a
cache-inhibited cache miss and the cache data is ignored, even if dirty. No machine check will be generated
in this case. A cache-inhibited store hit to a line with no tag EDC error will cause the data to be written to
the cache, as well as to memory if the store is a writethrough store, and all data parity errors will be ignored.
If a cache hit occurs to a line with an uncorrectable tag error, the hit is ignored, and the access is performed

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 611

as a cache-inhibited cache miss and the cache data is ignored, even if dirty. No machine check will be
generated in this case.

For cache control instructions such as dcbf, dcbi, icbi, and dcbst that are performed to addresses marked
as cache-inhibited, no machine checks are generated, and the operations are only performed on/for lines
that would not cause exceptions for the non-CI cases.

11.8.4 Snoop operations and parity/EDC errors

For snoop command lookups in which a hit occurs to a cache line with no tag EDC error, tag EDC errors
in other lines are ignored, and no error condition is signaled.

Otherwise, for snoop command lookups in which a tag EDC error occurs and no hit occurs to a tag entry
without a parity/EDC error, no correction attempt for the tags with errors will be made regardless of
L1CSR0DCEA, and the snoop response will indicate an error condition. When such a tag EDC error occurs
on a snoop invalidate command, the invalidation will not occur, and the error will result in a machine
check. The snoop queue will continue to be serviced, and the machine check will not necessarily be
recoverable. A checkstop condition will not occur however. In this respect, it is treated similarly to a
non-maskable interrupt, and the MSR[RI] bit should be used accordingly by software.

11.8.5 EDC checkbit/syndrome coding scheme generation — ICache

When operating with EDC enabled (L1CSR1ICEDT =01), double bit error detection codes are used to
protect the tag and data portions of an instruction cache line. Each tag entry utilizes six check bits to cover
the tag + valid bit, and each doubleword of data in the data arrays utilizes eight check bits. The specific
coding schemes are shown in Table 11-7 and Table 11-8. The lock bits utilize bit-level redundancy, thus
are independently protected.

Table 11-7 shows the checkbit coding for each tag entry. A ‘*’ in the table indicates the bit is XOR’ed to
form the final checkbit value.

Table 11-8 shows the checkbit coding for each doubleword data entry. A ‘*’ in the table indicates the bit
is XOR’ed to form the final checkbit value.

Table 11-7. Tag checkbit generation

Checkbits
p_tchk[0:5]

Tag bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 V

0 * * * * * * * * * * * *

1 * * * * * * * * * * * *

2 * * * * * * * * * * * *

3 * * * * * * * * * * * * *

4 * * * * * * * * * * * * *

5 * * * * * * * * * * * * *

e200z759n3 Core Reference Manual, Rev. 2

612 Freescale Semiconductor

11.8.6 EDC checkbit/syndrome coding scheme generation — DCache

When operating with EDC enabled (L1CSR0DCEDT =01), double bit error detection codes are used to
protect the tag portion of a data cache line. The data array continues to utilize single-bit parity protection.
Each data cache tag entry utilizes six check bits to cover the tag + valid bit. The specific coding scheme
for the tag array is the same as is used for the ICache, and is shown in Table 11-7. The dirty and lock bits
utilize bit-level redundancy, thus are independently protected. Three dirty bits are provided to support
single-bit and double-bit error detection. Correction is performed by setting the dirty bits to ‘1’ if a dirt
parity error occurs and autoinvalidation/correction is enabled. Four lock bits are provided to support
single-bit error correction and double-bit error detection.

11.8.7 Cache error injection

Cache error injection provides a way to test error recovery by intentionally injecting parity errors into the
instruction and/or data cache.

Table 11-8. Data checkbit generation

Checkbits
p_dchk[0:7

]

Data bit

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

0 * * * * * * * * * * * * * * * *

1 * * * * * * * * * * * * * * * * *

2 * * * * * * * * * * * * * * * * *

3 * * * * * * * * * * * * * * * * *

4 * * * * * * * * * *

5 * * * * * * * * *

6 * * * * * * * * *

7 * * * * * * * * *

Checkbit

Data bit

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

0 * * * * * * * * * *

1 * * * * * * * * *

2 * * * * * * * * *

3 * * * * * * * * *

4 * * * * * * * * * * * * * * * *

5 * * * * * * * * * * * * * * * * *

6 * * * * * * * * * * * * * * * * *

7 * * * * * * * * * * * * * * * * *

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 613

Error injection into the instruction cache operates as follows:

• If L1CSR1ICEI is set and L1CSR1ICEDT=01, any instruction cache line fill to the instruction cache
data has the associated two most significant parity check bits inverted in the instruction cache data
array for each doubleword loaded.

Error injection for the data cache operates as follows:

• If L1CSR0DCEI is set, any cache line fill to the data cache data array has all of the associated parity
bits inverted in the data array for each doubleword loaded. Additionally, inverted parity bits are
generated for any bytes stored into the data cache data array on a store hit.

Cache parity error injection is not performed for cache debug write accesses, since parity bit values written
can be directly controlled (See Section 11.19.3, Cache Debug Access Control register (CDACNTL)).

In order to clear the parity errors, a cache invalidation or an invalidation of the lines that could have had
an injected parity error may be performed. Line invalidation may be performed by an icbi/dcbi instruction,
or an L1FINV[0,1] invalidation operation.

11.9 Push and store buffers
The push buffer reduces latency for requested new data on a data cache miss by temporarily holding
displaced dirty data while the new data is fetched from memory. The push buffer contains 32 bytes of
storage (one displaced cache line).

If a data cache miss displaces a dirty line, the linefill request is forwarded to the external bus. While
waiting for the response, the current contents of the dirty cache line are placed into the push buffer. Once
the linefill transaction (burst read) completes, the cache controller can generate the appropriate burst write
bus transaction to write the contents of the push buffer into memory.

The store buffer contains a FIFO that can defer pending write misses or writes marked as write-through in
order to maximize performance. The store buffer can buffer as many as eight words (32 bytes) for this
purpose. The store buffer may be disabled for debug purposes. Operation of the store buffer is independent
of the L1CSR0[DCE] bit. When the store buffer is enabled, non-allocating store operations that miss the
cache or that are marked as writethrough are placed in the store buffer, and the CPU access is terminated.
Each store buffer entry contains 32-bits of physical address, 32-bits of data, size information, and 3 bits of
access attribute information (W, G, and S/U) in order to properly drive the attribute output signals on a
buffered store access. Cache-inhibited guarded stores are not buffered however, and are delayed from
being performed until the push and store buffers have been emptied.

Once the push or store buffer has valid data, the internal bus controller uses the next available external bus
cycle to generate the appropriate write cycles. In the event that another data cache fill is required (e.g.,
cache load or store w/allocate miss to process) during the continued instruction execution by the processor
pipeline, an alias check is performed between the linefill address and all valid entries in the store and push
buffer using the index portion of the access address. If no match is found, the linefill may bypass pending
stores in the store or push buffer. Otherwise, if an alias exists (index matches any valid store buffer entry),
the data cache pipeline will stall until the aliased entries have been flushed from the store and push buffer
before generating the required external bus transaction for the linefill.

Single-beat read transactions will not bypass pending stores in the push or store buffer.

e200z759n3 Core Reference Manual, Rev. 2

614 Freescale Semiconductor

The push buffer is always emptied prior to queued store buffer entries to avoid memory consistency issues.
Once the push buffer has been loaded with dirty data to be written back to memory, a subsequent store may
be buffered, but will not be written to memory until the push has completed.

For cache-inhibited load accesses or cache-inhibited guarded store accesses, the processor termination is
withheld until the store buffer has been flushed of all entries, the push buffer has been emptied, and the
access has completed to memory.

A write to the L1CSR0 register may be used to force the push and store buffers to empty before proceeding
with the actual L1CSR0 update. Additionally, the msync and mbar instructions will also cause these
buffers to be emptied prior to completion.

If an external transfer ERROR response occurs while emptying the store buffer, a machine check exception
is signaled to the CPU, and a store for the next entry to be written (if any) is initiated. If a transfer error
occurs for a push buffer transaction, the push of the remaining portion of the cache line is aborted, and a
machine check exception is signaled to the CPU. This is also the case for a cache control operation that
causes a line to be pushed. Following the transfer error, the line will be marked invalid. If it is possible for
a transfer error to be returned by the system on a push or a buffered store, and this could cause a problem,
the address must be marked guarded and cache inhibited.

External termination errors that occur on any push of a dirty cache line will result in a machine check
condition.

11.10 Cache management instructions
This section describes the implementation of Cache Management instructions in e200z759n3.

11.10.1 Instruction cache block invalidate (icbi) instruction
• icbi is described on page 280 of Book E: Enhanced PowerPCtm Architecture v0.99

• If the cache line containing the byte addressed by the EA associated with this instruction is present
in the instruction cache, it is invalidated, regardless of lock status. If an instruction cache linefill is
in progress and the linefill data corresponds to the EA associated with a icbi, the instruction cache
is not updated with linefill data.

11.10.2 Instruction cache block touch (icbt) instruction
• icbt is described on page 281 of Book E: Enhanced PowerPCtm Architecture v0.99

• If HID0NOPTI is set, this instruction is treated as a no-op.

11.10.3 Data cache block allocate (dcba) instruction
• dcba is described on page 241 of Book E: Enhanced PowerPCtm Architecture v0.99

• This instruction is treated as a no-op.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 615

11.10.4 Data cache block flush (dcbf) instruction
• dcbf is described on page 242 of Book E: Enhanced PowerPCtm Architecture v0.99

• If the cache line containing the byte addressed by the EA associated with this instruction is present
in the data cache, it is copied back to memory if dirty. The line is subsequently invalidated
regardless of whether it was copied back or locked. If a data cache linefill is in progress and the
linefill data corresponds to the EA associated with a dcbf, the data cache is not updated with linefill
data.

• This instruction is treated as a load for the purposes of access protection.

• If the data cache is disabled, this instruction is treated as a no-op.

11.10.5 Data cache block invalidate (dcbi) instruction
• dcbi is described on page 243 of Book E: Enhanced PowerPCtm Architecture v0.99

• If the cache line containing the byte addressed by the EA associated with this instruction is present
in the data cache, it is invalidated, regardless of lock status. No copyback occurs if the line is
present in the data cache and dirty. If a data cache linefill is in progress and the linefill data
corresponds to the EA associated with a dcbi, the data cache is not updated with linefill data.

• This instruction is privileged

• This instruction is treated as a store for the purposes of access protection.

• If the data cache is disabled, this instruction is treated as a no-op in supervisor mode.

11.10.6 Data cache block store (dcbst) instruction
• dcbst is described on page 245 of Book E: Enhanced PowerPCtm Architecture v0.99

• If the cache line containing the byte addressed by the EA associated with this instruction is present
in the data cache, it is copied back to memory if dirty. The line is subsequently marked clean, and
the lock status is unchanged

• This instruction is treated as a load for the purposes of access protection.

• If the data cache is disabled, this instruction is treated as a no-op.

11.10.7 Data cache block touch (dcbt) instruction
• dcbt is described on page 246 of Book E: Enhanced PowerPCtm Architecture v0.99

• If HID0NOPTI is set, this instruction is treated as a no-op.

11.10.8 Data cache block touch for store (dcbtst) instruction
• dcbtst is described on page 247 of Book E: Enhanced PowerPCtm Architecture v0.99

• If HID0NOPTI is set, this instruction is treated as a no-op.

11.10.9 Data cache block set to zero (dcbz) instruction
• dcbz is described on page 248 of Book E: Enhanced PowerPCtm Architecture v0.99

e200z759n3 Core Reference Manual, Rev. 2

616 Freescale Semiconductor

• If the cache line containing the byte addressed by the EA associated with this instruction is present
in the data cache, all bytes in the line are zeroed, the line is marked as modified, and remains valid.
Lock status remains unchanged. If the cache line is not present and the address is cacheable, it is
established in the data cache (without fetching from memory), all bytes in the line are zeroed, and
the line is marked as modified and valid.

• This instruction is treated as a store for the purposes of access protection.

• dcbz causes an Alignment exception if the EA is marked by the MMU as Cache-inhibited and a
data cache miss occurs, or if the EA is marked by the MMU as Writethrough Required, or if the
data cache is disabled or is operating in writethrough mode, or if an overlocking condition prevents
the allocation of a line into the data cache.

11.11 Touch instructions
Due to the limitations of using the icbt, dcbt, and dcbtst instructions, a program that uses these
instructions improperly may actually see a degradation in performance from their use. To avoid this,
e200z759n3 provides the HID0NOPTI control bit to cause these instructions to be treated as nops.

11.12 Cache line locking/unlocking APU

11.12.1 Overview

e200z759n3 supports the Freescale EIS Cache Line Locking APU, which defines user-mode instructions
to perform cache locking/unlocking. Three of the instructions are for data cache locking control (dcblc,
dcbtls, dcbtstls) and two instructions are for instruction cache locking control (icblc, icbtls).

The dcbtls, dcbtstls, and dcblc lock instructions are treated as reads for checking access permissions when
translated by the TLB, and exceptions are taken for Data TLB errors or Data Storage interrupts. The icbtls
and icblc instructions require either execute (X) or read (R) permission when translated by the TLB.
Exceptions are taken using Data TLB errors (DTLB) or Data Storage Interrupts (DSI), not ITLB or ISI.

The user-mode cache lock enable MSR[UCLE] bit may be used to restrict user-mode cache line locking.
If MSR[UCLE] is clear, any cache lock instruction executed in user-mode will take a Cache-locking DSI
exception (unless nop’ed) and set either ESR[DLK] or ESR[ILK]. If MSR[UCLE] is set, cache-locking
instructions can be executed in user-mode and they will not take a DSI for cache-locking. However, they
may still cause a DSI for access violations or cause machine checks for external termination errors.

There are cases when attempting to set a lock will fail even when no DSI or DTLB exceptions occur. These
are as follows:

• The target address is marked cache-inhibited and a cache miss occurs

• The cache is disabled or all ways of the cache are disabled for replacement

• The cache target indicated by the CT field (bits 7-10) of the instruction is not 0

In these cases, the lock set instruction is treated as a NOP, and the cache unable to lock L1CSR{0,1}[CUL]
bit is set.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 617

Assuming no exception conditions occur (DSI or DTLB error), for dcbtls, dcbtstls, and icbtls an attempt
is made to lock the corresponding cache line. If a miss occurs, and all of the available ways (ways enabled
for a particular access type) are already locked in a given cache set, an attempt to lock another line in the
same set will result in an overlocking situation. In this case, the cache overlock bit L1CSR{0,1}[CLO] is
set to indicate that an overlocking situation occurred. This does not cause an exception condition. The new
line is conditionally placed in the cache, displacing a previously locked line depending on the setting of
the appropriate L1CSR0,1[CLOA] bit.

The CUL conditions have priority over the CLO condition.

If multiple NOP or exception conditions arise on a cache lock instruction, the results are determined by
the order of precedence described in Table 11-9.

It is possible to lock all ways of a given cache set. If an attempt is made to perform a non-locking line fill
for a new address in the same cache set, the new line is not put into the cache. It is satisfied on the bus
using a single beat transfer instead of normal burst transfers. If a dcbz instruction is executed, and all ways
available for allocation have been locked, an Alignment exception will be generated and no line is put into
the cache.

Cache line locking interacts with the ability to control replacement of lines in certain cache ways via the
L1CSR0 WID and WDD control bits. If any cache line locking instruction (icbtls, dcbtls, dcbtstls) is
allowed to execute and finds a matching line already present in the cache, the line’s lock bit will be set
regardless of the settings of the WID and WDD fields. In this case, no replacement has been made.
However, for cache misses that occur while executing a cache line lock set instruction, the only candidate
lines available for locking are those that correspond to ways of the cache that have not been disabled for
the particular type of line locking instruction (controlled by WDD for dcbtls and dcbtstls, controlled by
WID for icbtls). Thus, an overlocking condition may result even though fewer than four lines with the
same index are locked.

The cache-locking DSI handler must decide whether or not to lock a given cache line based upon available
cache resources. If the locking instruction is a set lock instruction, and if the handler decides to lock the
line, it should do the following:

• Add the line address to its list of locked lines.

• Execute the appropriate set lock instruction to lock the cache line.

• Modify save/restore register 0 to point to the instruction immediately after the locking instruction
that caused the DSI.

• Execute an rfi.

If the locking instruction is a clear lock instruction, and if the handler decides to unlock the line, it should
do the following:

• Remove the line address from its list of locked lines.

• Execute the appropriate clear lock instruction to unlock the cache line.

• Modify save/restore register 0 to point to the instruction immediately after the locking instruction
that caused the DSI.

• Execute an rfi.

e200z759n3 Core Reference Manual, Rev. 2

618 Freescale Semiconductor

11.12.2 dcbtls — data cache block touch and lock set

dcbtls dcbtls
Data Cache Block Touch and Lock Set

dcbtls CT, RA, RB (E=0) Form X

Description:
if RA=0 then a 640else a GPR(RA)
EA 320 || (a + GPR(RB))32:63
PrefetchDataCacheBlockLockSet(CT, EA)

If CT=0, the cache line corresponding to EA is loaded and locked into the level 1 data cache.

If CT=0 and the line already exists in the data cache, dcbtls locks the line without refetching it from
external memory.

Exceptions:

If the MSR[UCLE] (user-mode cache lock enable) bit is set, dcbtls may be performed while in user mode
(MSR[PR]=1). If the MSR[UCLE] bit is clear, an attempt to perform these instructions in user mode
causes a data cache locking error DSI unless the CT field or other conditions otherwise NOP the
instruction.

The e200z759n3 only supports CT=0. If CT is some value other than 0, the dcbtls is NOP’ed and the
L1CSR0[DCUL] bit is set indicating an unable-to-lock condition occurred. No other exceptions are
reported. If the data cache is disabled, the dcbtls is NOP’ed and the L1CSR0[DCUL] bit is set indicating
an unable-to-lock condition occurred. No other exceptions are reported.

The dcbtls instruction is treated as a load with respect to translation and will cause a DSI interrupt for
access violations, as well as causing a Data TLB error interrupt if the target address cannot be translated.

If the block corresponding to EA is cache-inhibited and a data cache miss occurs, the instruction is
NOP’ed, (no DSI is taken due to the cache-inhibited status), and the L1CSR0[DCUL] bit is set indicating
an unable-to-lock condition occurred.

Other registers altered:

• L1CSR0 (see below)

When a dcbtls is performed to an index, and a way can not be locked, the L1CSR0[DCUL] bit is set
indicating an unable-to-lock condition occurred. This also occurs whenever the dcbtls must be NOP’ed.

When a dcbtls is performed to an index in the data cache that already has all the ways locked, this is
referred to as an over-locking situation. There is no exception generated by an over-locking situation.
Instead the L1CSR0[DCLO] bit is set, indicating an over-lock condition occurred. A line is allocated and

31 / CT RA RB 0 0 1 0 1 0 0 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

Figure 11-10. dcbtls — data cache block touch and lock set

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 619

locked in the cache depending on the setting of the L1CSR0[DCLOA] control bit. If system software wants
to precisely determine if an overlock condition has happened, it must perform the following code
sequence:

dcbtls
msync
mfspr (L1CSR0)

(check L1CSR0[DCUL] bit for cache index unable-to-lock condition)
(check L1CSR0[DCLO] bit for cache index over-lock condition)

11.12.3 dcbtstls — data cache block touch for store and lock set

dcbtstls dcbtstls
Data Cache Block Touch for Store and Lock Set

dcbtstls CT, RA, RB (E=0) Form X

Description:
if RA=0 then a 640else a GPR(RA)
EA 320 || (a + GPR(RB))32:63
PrefetchDataCacheBlockLockSet(CT, EA)

e200z759n3 treats the dcbtstls instruction identically to the dcbtls instruction since no hardware
coherency mechanisms are implemented for the cache.

11.12.4 dcblc — data cache block lock clear

dcblc dcblc
Data Cache Block Lock Clear

dcblc CT, RA, RB (E=0) Form X

Description:
if RA=0 then a 640else a GPR(RA)

31 / CT RA RB 0 0 1 0 0 0 0 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

Figure 11-11. dcbtstls — data cache block touch for store and lock set

31 / CT RA RB 0 1 1 0 0 0 0 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

Figure 11-12. dcblc — data cache block lock clear

e200z759n3 Core Reference Manual, Rev. 2

620 Freescale Semiconductor

EA 320 || (a + GPR(RB))32:63
DataCacheClearLockBit(CT, EA)

If CT=0, and the line is present in the L1 data cache, the lock bit for that line is cleared, making that line
eligible for replacement.

Exceptions:

If the MSR[UCLE] (user-mode cache lock enable) bit is set, dcblc may be performed while in user mode
(MSR[PR]=1). If the MSR[UCLE] bit is clear, an attempt to perform this instructions in user mode causes
a DSI, unless the CT field or other conditions otherwise NOP the instruction.

The e200z759n3 only supports CT=0. If CT is some value other than 0, the dcblc is NOP’ed. No other
exceptions are reported. If the data cache is disabled, the dcblc is NOP’ed. No other exceptions are
reported.

The dcblc instruction is treated as a load with respect to translation and will cause a DSI interrupt for
access violations, as well as causing a Data TLB error interrupt if the target address cannot be translated.

11.12.5 icbtls — instruction cache block touch and lock set

icbtls icbtls
Instruction Cache Block Touch and Lock Set

icbtls CT, RA, RB (E=0) Form X

Description:
if RA=0 then a 640else a GPR(RA)
EA 320 || (a + GPR(RB))32:63

PrefetchInstructionCacheBlockLockSet(CT, EA)

If CT=0, the cache line corresponding to EA is loaded and locked into the level 1 instruction cache.

If CT=0 and the line already exists in the instruction cache, icbtls locks the line without refetching it from
external memory.

Exceptions:

If the MSR[UCLE] (user-mode cache lock enable) bit is set, icbtls may be performed while in user mode
(MSR[PR]=1). If the MSR[UCLE] bit is clear, an attempt to perform these instructions in user mode
causes an Instruction cache locking error DSI unless the CT field or other conditions otherwise NOP the
instruction.

The e200z759n3 only supports CT=0. If CT is some value other than 0, the icbtls is NOP’ed and the
L1CSR1[ICUL] bit is set indicating an unable-to-lock condition occurred. No other exceptions are

31 / CT RA RB 0 1 1 1 1 0 0 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

Figure 11-13. icbtls — instruction cache block touch and lock set

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 621

reported. If the instruction cache is disabled, the icbtls is NOP’ed and the L1CSR1[ICUL] bit is set
indicating an unable-to-lock condition occurred. No other exceptions are reported.

The icbtls instruction requires either execute or read (X or R) permissions with respect to translation and
will cause a DSI interrupt for access violations, as well as causing a Data TLB error interrupt if the target
address cannot be translated.

If the block corresponding to EA is cache-inhibited and an instruction cache miss occurs, the instruction
is NOP’ed, (no DSI is taken due to the cache-inhibited status), and the L1CSR1[ICUL] bit is set indicating
an unable-to-lock condition occurred.

Other registers altered:

• L1CSR1 (see below)

When icbtls is performed to an index and a way can not be locked, the L1CSR1[ICUL] bit is set indicating
an unable-to-lock condition occurred. This also occurs whenever icbtls must be NOP’ed.

When icbtls is performed to an index in the instruction cache that already has all the ways locked, this is
referred to as an over-locking situation. There is no exception generated by an over-locking situation.
Instead the L1CSR1[ICLO] bit is set, indicating an over-lock condition occurred. A line is allocated and
locked in the cache depending on the setting of the L1CSR1[ICLOA] control bit. If system software wants
to precisely determine if an overlock condition has happened, it must perform the following code
sequence:

icbtls
msync
mfspr (L1CSR1)

(check L1CSR1[ICUL] bit for cache index unable-to-lock condition)
(check L1CSR1[ICLO] bit for cache index over-lock condition)

11.12.6 icblc — instruction cache block lock clear

icblc icblc
Instruction Cache Block Lock Clear

icblc CT, RA, RB (E=0) Form X

Description:
if RA=0 then a 640else a GPR(RA)
EA 320 || (a + GPR(RB))32:63

InstCacheClearLockBit(CT, EA)

If CT=0, and the line is present in the instruction cache, the lock bit for that line is cleared, making that
line eligible for replacement.

31 / CT RA RB 0 0 1 1 1 0 0 1 1 0 /

0 5 6 10 11 15 16 20 21 30 31

Figure 11-14. icblc — instruction cache block lock clear

e200z759n3 Core Reference Manual, Rev. 2

622 Freescale Semiconductor

Exceptions:

If the MSR[UCLE] (user-mode cache lock enable) bit is set, icblc may be performed while in user mode
(MSR[PR]=1). If the MSR[UCLE] bit is clear, an attempt to perform these instructions in user mode
causes an Instruction cache locking error DSI unless the CT field or other conditions otherwise NOP the
instruction.

The e200z759n3 only supports CT=0. If CT is some value other than 0, the icblc is NOP’ed. No other
exceptions are reported. If the instruction cache is disabled, the icblc is NOP’ed. No other exceptions are
reported.

The icblc instruction requires either execute or read (X or R) permissions with respect to translation and
will cause a DSI interrupt for access violations, as well as causing a Data TLB error interrupt if the target
address cannot be translated.

11.12.7 Effects of other cache instructions on locked lines

The following cache instructions have no effect on the state of a cache line's lock bit: icbt, dcba, dcbz,
dcbst, dcbt, and dcbtst.

The following cache instructions flush/invalidate and unlock a cache line in the respective L1 caches:
dcbf, dcbi, and icbi.

11.12.8 Flash clearing of lock bits

e200z759n3 supports flash clearing of cache lock bits under software control by using the CFCL (cache
flash clear locks) control bit in the L1CSR{0,1} register.

Lock bits are not cleared automatically upon power-up (m_por) or normal reset (p_reset_b). Software
must use the CLFC control bit to clear the lock bits after a reset. Proper use of this bit is to determine that
it is clear and then set it with a pair of mfspr mtspr operations. A 0-to-1 transition on CLFC causes a flash
clearing of the lock bits to be initiated, which lasts for multiple (approx. 134) CPU cycles. Once set, the
CLFC bit will be cleared by hardware after the operation is complete. It will remain set during the clearing
interval, and may be tested by software to determine when the operation has completed. A mtspr operation
to L1CSR{0,1} that attempts to change the state of L1CSR{0,1}[CLFC] during invalidation will not affect
the state of that bit.

During the process of performing the flash clearing, the cache does not respond to accesses, and remains
busy. Interrupts may still be recognized and processed, potentially aborting the flash clearing operation.
When this occurs, the L1CSR{0,1}[ABT] bit will be set to indicate unsuccessful completion of the
operation. Software should read the L1CSR{0,1} register to determine that the operation has completed
(L1CSR{0,1}[CLFC] bit cleared), and then check the status of the L1CSR{0,1}[ABT] bit to determine
completion status.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 623

NOTE
Note that while most implementations of the e200z759n3 will stall further
instruction execution during this flash clearing interval, it is not guaranteed
across all implementations, thus software should be written using these
guidelines.

11.13 Cache instructions and exceptions
All cache management instructions (except icbt, dcba, dcbt, and dcbtst) can generate TLB miss
exceptions if the effective address cannot be translated, or may generate DSI exceptions due to permission
violations. In addition, dcbz may generate an Alignment interrupt as described in Section 11.10.9, Data
cache block set to zero (dcbz) instruction.

The cache locking instructions dcblc, dcbtls, dcbtstls, icblc and icbtls generate DSI exceptions if the
MSR[UCLE] bit is clear and the locking instruction is executed in user mode (MSR[PR]=1). Data cache
locking instructions that result in a DSI exception for this reason set the ESR[DLK] bit (documented as
DLK0 in Book E), and Instruction cache locking instructions that result in a DSI exception for this reason
set the ESR[ILK] bit (documented as DLK1 in Book E).

11.13.1 Exception conditions for cache instructions

If multiple NOP or exception conditions arise on a cache instruction, the results are determined by the
order of precedence described in Table 11-9.

Table 11-9. Special case handling

Operatio
n

CT!=
0

Cache
disabled

TLB
miss

User &
UCLE=

0

Protectio
n

Violation

WT
or cache
in write-
through
mode

Cache
parity
error

CI and
miss in
cache

All
availabl

e
ways

locked

External
terminatio

n
error

icbt,
dcbt,
dcbtst

NOP NOP NOP — NOP — NOP NOP NOP NOP

dcbtls
dcbtstls
dcblc

DCU
L

DCU
L

NOP

DCUL
DCUL
NOP

DTLB
DTLB
DTLB

DLK
DLK
DLK

DSI
DSI
DSI

—
—
—

MC
MC
MC

DCUL
DCUL

—

DCLO
DCLO

—

MC
MC
—

icbtls
icblc

ICUL
NOP

ICUL
NOP

DTLB
DTLB

ILK
ILK

DSI
DSI

—
—

MC
MC

ICUL
—

ICLO
—

MC
—

dcbz — ALI DTLB — DSI ALI MC ALI ALI —

dcbf,
dcbst

— NOP DTLB — DSI — MC — — MC

icbi,
dcbi

— NOP DTLB — DSI — — — — —

e200z759n3 Core Reference Manual, Rev. 2

624 Freescale Semiconductor

11.13.2 Transfer type encodings for cache management instructions

Transfer type encodings are used to indicate to the Cache whether a normal access, atomic access, cache
management control access, or MMU management control access is being requested. These attribute
signals are driven with addresses when an access is requested. Table 11-10 shows the definitions of the
p_d_ttype[0:5] encodings.

Atomic
load or
store.

—
—

—
—

DTLB
DTLB

—
—

DSI
DSI

—
—

MC
MC

—
—

—
—

MC
MC

load
store

—
—

—
—

DTLB
DTLB

—
—

DSI
DSI

—
—

MC
MC

—
—

—
—

MC
MC

Notes:
— Priority decreases from left to right
— Cache operations that do not set or clear locks ignore the value of the CT field
— “dash” indicates executes normally
— “NOP” indicates treated as a no-op
— DSI = data storage interrupt; ALI = alignment interrupt; DTLB = data TLB interrupt
— DCUL, ICUL = no-op, and set L1CSR0[CUL]
— DCLO, ICLO = no-op, and set L1CSR0[CLO]
— DLK, ILK = data storage interrupt (DSI) and set ESR[DLK] or ESR[ILK]
— MC = Machine Check and update MCAR

Table 11-10. Transfer type encoding

p_d_ttype[0:5]1 Transfer type Instruction

00000e Normal normal loads / stores

000010 Atomic lwarx, stwcx., lharx, sthcx., lbarx, stbcx.

00010e Flush Data Block dcbst

00011e Flush and Invalidate Data Block dcbf

00100e Allocate and Zero Data Block dcbz

001010 Invalidate Data Block dcbi

00110e Invalidate Instruction Block icbi

001110 multiple word load/store lmw, stmw

010000 TLB Invalidate tlbivax

010010 TLB Search tlbsx

010100 TLB Read entry tlbre

010110 TLB Write entry tlbwe

Table 11-9. Special case handling (continued)

Operatio
n

CT!=
0

Cache
disabled

TLB
miss

User &
UCLE=

0

Protectio
n

Violation

WT
or cache
in write-
through
mode

Cache
parity
error

CI and
miss in
cache

All
availabl

e
ways

locked

External
terminatio

n
error

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 625

11.14 Sequential consistency
The Power Architecture architecture requires that all memory operations executed by a single processor
be sequentially self-consistent. This means that all memory accesses appear to be executed in the order
that is specified by the program with respect to exceptions and data dependencies. The e200z759n3 CPU
achieves this effect by operating a single pipeline to the Cache/MMU. All memory accesses are presented
to the MMU in the exact order that they appear in the program and therefore exceptions are determined in
order.

11.15 Self-modifying code requirements
The following sequence of instructions will synchronize the instruction stream.

1. dcbf

2. icbi

3. msync

4. isync

This sequence ensures that the operation is correct for PowerISA 2.06 processors that implement separate
instruction and data caches, as well as for multi-processor cache-coherent systems.

11.16 Page table control bits
The Power Architecture architecture allows certain memory characteristics to be set on a page and on a
block basis. These characteristics include writethrough (using the W-bit), cacheability (using the I-bit),
coherency (using the M-bit), guarded memory (using the G-bit), and endianness (using the E-bit).
Incorrect use of these bits may create situations where coherency paradoxes are observed by the processor.
In particular, this can happen when the state of these bits are changed without appropriate precautions
being taken (that is, flushing the pages that correspond to the changed bits from the cache), or when the
address translations of aliased real addresses specify different values for any of the WIMGE bits.

011000 Touch for Instruction icbt

011010 Lock Clear for Instruction icblc

011100 Touch for Instruction and Lock Set icbtls

011110 Lock Clear for Data dcblc

10000e Touch for Data dcbt

10001e Touch for Data Store dcbtst

100100 Touch for Data and Lock Set dcbtls

100110 Touch for Data Store and Lock Set dcbtstls

1 p_ttype[5] ‘e’ is set to set to 0.

Table 11-10. Transfer type encoding (continued)

p_d_ttype[0:5]1 Transfer type Instruction

e200z759n3 Core Reference Manual, Rev. 2

626 Freescale Semiconductor

Generally, certain mixing of WIMG settings are allowed by the Book E Power Architecture architecture,
however others may present cache coherence paradoxes and are considered programming errors.

11.16.1 Writethrough stores

A writethrough store (WIMGE = b’1xxxx’) may normally hit to a valid cache line. In this case, the cache
line remains in its current state, the store data is written into the cache, and the store goes out on the bus
as a single beat write.

11.16.2 Cache-inhibited accesses

When the Cache-inhibited attribute is indicated by translation (WIMGE = b’x1xxx’) and a cache miss
occurs, all accesses are performed as single beat transactions on the system bus with a size indicator
corresponding to the size of the load, store or prefetch operation. Cache inhibited status is ignored on all
cache hits.

11.16.3 Memory coherence required

For the e200z759n3, the “memory coherence required” storage attribute (WIMGE = b’xx1xx’) is reflected
on the p_d_gbl output during each external data access, to indicate to external coherency logic that
memory coherence is required. This bit is ignored for instruction accesses.

11.16.4 Guarded storage

For the e200z759n3, the guarded storage attribute (WIMGE = b’xxx1x’) is used to determine if a second
outstanding data cache miss may proceed to the system interface prior to the termination of the first
outstanding miss. If the second address is marked as guarded, it will not be presented to the external
interface until the previous miss has been completed without error.

11.16.5 Misaligned accesses and the endian (E) bit

Misaligned load or store accesses that cross page boundaries can cause data corruption if the two pages do
not have the same endianness (that is, one page is big endian while the other page is little endian). If this
occurs, the processor would not get all the bytes, or would get some of them out of order, resulting in
garbled data. To protect against data corruption, the e200z759n3 core takes a DSI exception and set the
BO (byte ordering) bit in the Exception Syndrome register whenever this situation occurs.

11.17 Reservation instructions and cache interactions
The e200z759n3 core treats reservation instruction (lbarx, lharx, lwarx, stbcx., sthcx., and stwcx.) accesses as
though they were cache inhibited, regardless of page attributes. Additionally, a cache line corresponding
to the address of a reservation instruction access will be flushed to memory if dirty, prior to the reservation
access being issued to the bus. This is done to allow external reservation logic to be built that properly
signals a reservation failure. The bus access will be treated as a single-beat transfer.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 627

11.18 Effect of hardware debug on cache operation
Hardware debug facilities utilize normal CPU instructions to access register and memory contents during
a debug session. This may have the unavoidable side-effect of causing the store and push buffers to be
flushed. During hardware debug, the MMU page attributes are controllable by the debug firmware via
settings of the OnCE Control register (OCR). Refer to Section 12.4.6.3, e200z759n3 OnCE Control
Register (OCR).

Cache snoop operations continue to be serviced during debug sessions.

11.19 Cache memory access for debug / error handling
The cache memory provides resources needed to do foreground accesses via mtdcr instructions executed
by the processor, or background accesses through the JTAG/OnCE port to read and write the cache SRAM
arrays. Accesses are supported via a pair of device control registers (DCRs) that are also mapped into
OnCE-accessible registers. These resources are intended for use by special debug tools and by debug or
specialized error recovery exception software, not by general application code.

Access to the cache memory SRAM arrays using mtdcr instructions may be performed by
supervisor-level software after appropriate synchronization has been performed with msync, isync
instruction pairs. Access to the cache memory SRAM arrays using the JTAG port is conditional on the
CPU being in debug mode. The CPU must be placed in debug state prior to initiation of a read or write
access via OnCE.

This facility allows access only to the SRAM arrays used for cache tag and data storage. This function is
available even when the cache is disabled. The cache linefill buffer, push buffer, store buffer, and late write
buffer are all outside of the SRAM arrays and are not accessible. However, before a debug memory access
request is serviced, the push and store buffers will be written to external memory, and the late write and
linefill buffers will be written to the cache arrays.

11.19.1 Cache memory access via software

Cache debug access control and data information are accessed by executing mfdcr and mtdcr instructions
to the Cache Debug Access control and data registers CDACNTL and CDADATA (see Table 11-11 and
Table 11-12). Accesses are performed one word (32 bits) at a time.

For a Cache write access, software must first write the CDADATA register with the desired tag and status
flags, or data values. The second step is to write the CDACNTL register with desired tag or data location
and parity values, and assert the R/W and GO bits in CDACNTL.

Note that writing a 64-bit value for data requires two passes, one for the even word (A29=0) and one for
the odd word (A29=1). Each 32-bit write will update all of the parity/check bits, so in general, if only a
single 32-bit write is performed, it should be preceded by a read of the data that is not being modified, in
order to properly compute or store all 8 parity/check bits when the modified 32-bit data is written. Tag
writes are accomplished in a single pass.

For a Cache read access, software must first access and write the CDACNTL register with desired tag or
data location, and assert the R/W and GO bits in CDACNTL. The second step is to read the CDADATA
register for the tag or data and read the CDACNTL register for parity information.

e200z759n3 Core Reference Manual, Rev. 2

628 Freescale Semiconductor

Completion of any operation can be determined by reading the CDACNTL register. Operations are
indicated as complete when CDACNTL[30:31] = ‘00’. Software should poll the CDACNTL register to
determine when an access has been completed prior to assuming validity of any other information in the
CDACNTL or CDADATA registers.

Note that no parity errors are generated as a result of mtdcr/mfdcr instructions involving the CDACNTL
or CDADATA registers.

To ensure proper cache write operation, the following program sequence is recommended:
msync
isync
mtdcr cdadata, rS1 // set up write data
mtdcr cdacntl, rS2 // write control to initiate write
msync
isync

loop: mfdcr rN, cdacntl // check for done
andi. rT, rN, #3
bne loop
.
.

To ensure proper cache read operation, the following program sequence is recommended:
msync
isync
mtdcr cdacntl, rS2 // write control to initiate read
msync
isync

loop: mfdcr rN, cdacntl // check for done
andi. rT, rN, #3
bne loop
mfdcr rT, cdadata // return data
.
.

Conflict conditions with snoop accesses to the same cache line cannot be resolved in a manner that
guarantees that a value read will not change state before a subsequent value written. No interlocking is
performed, so a cache entry read as being valid or written to a valid state may become invalid at any time.

11.19.2 Cache memory access through JTAG/OnCE port

Cache debug access control and data information are serially accessed through the OnCE controller and
access the Cache Debug Access control and data registers CDACNTL and CDADATA (see Table 11-11
and Table 11-12). Accesses are performed one word (32 bits) at a time.

For a Cache write access, the user must first write the CDADATA register with the desired tag or data
values. The second step is to write the CDACNTL register with desired tag or data location, parity and
dirty information (for data writes only), and assert the R/W and GO bits in CDACNTL.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 629

For a Cache read access, the user must first access and write the CDACNTL register with desired tag or
data location, and assert the R/W and GO bits in CDACNTL. The second step is to access and read the
CDADATA register for the tag or data and read the CDACNTL register for parity.

Completion of any operation can be determined by reading the CDACNTL register. Operations are
indicated as complete when CDACNTL[30:31] = ‘00’. Debug firmware should poll the CDACNTL
register to determine when an access has been completed prior to assuming validity of any other
information in the CDACNTL or CDADATA registers.

Conflict conditions with snoop accesses to the same cache line cannot be resolved in a manner that
guarantees that a value read will not change state before a subsequent value written. No interlocking is
performed, so a cache entry read as being valid or written to a valid state may become invalid at any time.

11.19.3 Cache Debug Access Control register (CDACNTL)

The Cache Debug Access Control Register (CDACNTL) contains location information (T/D, CWAY,
CSET, and WORD), and control (R/W and GO) needed to access the Cache Tag or Data SRAM arrays.
Also included here are the SRAM parity bit values that must be supplied by the user for write accesses,
and that will be supplied by the cache for read accesses. The CDACNTL register is shown in Figure 11-15.

Table 11-11 provides bit definitions for the Cache Debug Access Control Register.

T
/D 0 CWAY 0 CSET WORD PARITY 0

C
A

C
H

E

R
/W GO

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 351; Read/Write; Reset - 0x0

Figure 11-15. Cache Debug Access Control register (CDACNTL)

Table 11-11. CDACNTL field descriptions

Bit Name Description

0 T/D Tag / Data
0 Data array selected
1 Tag array selected

1 — Reserved1

2:3 CWAY Cache Way
Specifies the cache way to be selected

4:5 — Reserved1

6:12 CSET Cache Set:
Specifies the cache set to be selected

13:15 WORD Word (Data array access only, I or D cache)
Specifies one of eight words of selected set

e200z759n3 Core Reference Manual, Rev. 2

630 Freescale Semiconductor

11.19.3.1 Cache Debug Access Data register (CDADATA)

The Cache Debug Access Data Register (CDADATA) contains the SRAM data for a debug access. The
same register is used for Tag and Data SRAM read and write operations for both caches. Note that a single
32-bit word is accessed. Accessing an entire 64-bit doubleword requires two passes. The CDADATA
register is shown in Figure 11-16.

Table 11-12 provides bit definitions for the Cache Debug Access Data Register.

16:23 PARITY /
EDC

CHECK
BITS

Parity check bits2 (I or D cache)

EDC Mode (L1CSR[0,1][D,I]CEDT = 01):
DCache Data array: Byte parity bits. One bit per data byte. bit 16: Parity for byte 0, bit 17: Parity
for byte 1.... bit 23: Parity for byte 7.
ICache Data Array: parity check bits for data. Bits 16:23 correspond to p_dchk[0:7] (See
Table 11-8).
Tag Array: parity check bits for tag. Bits 16:21 correspond to p_tchk[0:5] (See Table 11-7). bits
22:23 reserved.

24:27 — Reserved1

28 CACHE Cache Select
Specifies the cache to be selected
0 Selects the data cache for the operation.
1 Selects the instruction cache for the operation.

29 R/W Read / Write:
0 Selects write operation. Write the data in the CDADATA register to the location specified by

this CDACNTL register.
1 Selects read operation. Read the cache memory location specified by this CDACNTL register

and store the resulting data in the CDADATA register and store the parity bits in this
CDACNTL register.

30:31 GO GO command bits
00 Inactive or complete (no action taken) hardware sets GO=00 when an operation is complete
01 Read or write cache memory location specified by this CDACNTL register.
1x Reserved

1 These bits are not implemented and should be written zero for future compatibility.
2 Cache parity checkers assume odd parity when using parity protection. EDC coding is used otherwise.

TAG or DATA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 350; Read/Write; Reset - Undefined/Unaffected

Figure 11-16. Cache Debug Access Data register (CDADATA)

Table 11-11. CDACNTL field descriptions (continued)

Bit Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 631

11.20 Hardware Debug (Cache) Control Register 0
Hardware debug control register 0 is used to disable certain cache features for hardware debug purposes.
This register is not intended for normal user use. The HDBCR0 register is accessed using a mfspr or mtspr
instruction. The SPR number for HDBCR0 is 976 in decimal. The HDBCR0 register is shown in
Figure 11-17.

The HDBCR0 bits are described in Table 11-13.

Table 11-12. CDADATA field descriptions

Bit(s) Name Description

0:31 TAG TAG Array Access Data - when accessing the tag array of either cache:
0:21 Tag compare bits
22 Reserved
23 Valid bit
24:27 Lock bits. These four bits should have the same value, 1-Locked, 0-Unlocked.
28:30 Dirty bits - (data cache only). These three bits should have the same value, 1-Dirty,

0-Clean.

DATA DATA Array Access Data (Bytes 0:3 of the selected word) - when accessing the data array of
either cache:
0:7 Byte 0
8:15 Byte 1
16:23 Byte 2
24:31 Byte 3

0

M
B

D

S
N

P
D

IS

0

D
S

B

D
S

T
R

M

0

IS
T

R
M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 976; Read/Write; Reset - 0x0; Supervisor-only

Figure 11-17. Hardware Debug Control Register 0 (HDBCR0)

Table 11-13. HDBCR0 field descriptions

Bits Name Description

0:24 — Reserved1

25 MBD Msync/Mbar Broadcast Disable
0 msync/mbar broadcasting is enabled. p_sync_req_out asserted normally and

p_sync_ack_in is used to terminate msync and mbar MO=0,1 instruction execution
1 msync/mbar broadcasting is disabled. p_sync_req_out remains negated, and

p_sync_ack_in is ignored and not used to terminate msync and mbar MO=0,1 instruction
execution.

Note: MBD settings have no effect on the operation of p_sync_req_in and p_sync_ack_out.
Normal handshaking and completion of the synchronization request input will be
performed.

e200z759n3 Core Reference Manual, Rev. 2

632 Freescale Semiconductor

11.21 Hardware cache coherency
Hardware cache coherency is supported to allow for dual-core or CPU + I/O coherency. The cache must
operate in writethrough mode for those pages of memory requiring coherency operations. Coherency is
maintained by the use of snoop invalidation commands provided to the CPU through a dedicated snoop
interface port. Snooping is only performed while the data cache is enabled (L1CSR0DCE =1). Figure 11-18
shows an abstract block diagram of the structure.

26 SNPDIS Snoop Disable
0 Snooping is not disabled. Snoops are processed normally according to the settings of

L1CSR0DCE.
1 Snoop lookups are disabled. Snoops are processed in the same manner as when the data

cache is disabled, i.e null responses are generated and no snoop lookups are performed.

27 — Reserved1

28 DSB Disable Store Buffer
0 Store buffer enabled
1 Store buffer disabled

29 DSTRM Disable Data Cache Streaming
0 DCache streaming is enabled
1 DCache streaming is disabled

30 — Reserved1

31 ISTRM Disable Instruction Cache Streaming
0 ICache streaming is enabled
1 ICache streaming is disabled

1 These bits are not implemented and should be written with zero for future compatibility.

Table 11-13. HDBCR0 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 633

Figure 11-18. Snoop command port

11.21.1 Coherency protocol

The cache operates in a 2-state protocol for coherency purposes. The only state a coherent cache line
should assume is Valid or Invalid. No Modified or Shared state is supported for coherent cache lines
(although modified state is available for non-coherent lines), thus no snoop copyback or intervention
operations are required. A snoop invalidation signaling port is provided to receive coherency requests.
Snoop invalidation requests are received at the snoop invalidation port, and arbitrate with the CPU for
access to the data cache tags for lookup and cache line invalidation. External coherency logic provides
snoop invalidation requests to the snoop invalidation port based on the bus activity of other coherent bus
masters, and these invalidation requests are later processed and a response provided. Memory regions that
require coherency operations must be marked as “memory coherence required” (page’s M bit set) and as
“writethrough” (page’s W bit set).

External data accesses by the CPU reflect the value of the M bit of the accessed page on the p_d_gbl
output. Typically, external coherency logic will monitor external accesses by a CPU (or other agent), and
will request invalidation operations to other coherent entities for write accesses that also have p_d_gbl
asserted. Non-shared data should be placed into pages with the M bit cleared, thus avoiding unnecessary
coherency operations.

11.21.2 Snoop command port

The snoop command port provides the signaling mechanism between external coherency logic and the
snoop request queue. Command requests are received on the p_snp_cmd[0:1], p_snp_id_in[0:3], and
p_snp_addr_in[0:26] inputs when the p_snp_req signal is properly asserted, and responses to snoop
command requests are provided on the p_snp_ack, p_snp_resp[0:4], and p_snp_id_out[0:3] outputs.

Arbiter

DCache Snoop

Snoop

CPU

and
Cache
Control

Port
Control

p_snp_rdy
p_snp_ack, p_snp_resp[0:4]
p_snp_id_out[0:3]

p_snp_cmd[0:1]

p_snp_addr_in[0:26]
p_snp_id_in[0:3]

p_cac_stalled

p_snp_req

Command
Queue

cmdid[0:3] snp_addr[0:26]

e200z759n3 Core Reference Manual, Rev. 2

634 Freescale Semiconductor

Snoop invalidation requests provide the physical address of the data to be invalidated
(p_snp_addr_in[0:26]), along with a four-bit ID field (p_snp_id_in[0:3]), which flows through the
command pipeline and is returned on the p_snp_id_out[0:3] output port along with the completion status
provided on p_snp_resp[0:4] when p_snp_ack is asserted.

The p_snp_rdy output signal provides a handshaking mechanism for flow control of snoop requests to
prevent overflow of the internal snoop queue, which buffers incoming snoop requests from the snoop
command port prior to cache tag lookups and updates. Negation of p_snp_rdy indicates that another snoop
command port request will not be accepted due to resource constraints in the snoop pipeline.

Refer to Section 14.2.9, Coherency control signals, for details on the operating protocol of the snoop
command port.

The command value is stored in the snoop queue along with the snoop address and snoop ID value.
Table 11-14 shows the definitions of the p_snp_cmd[0:1] encodings.

The NULL command is used for testing of interface handshaking and other status gathering purposes. The
NULL command performs a snoop lookup operation, but performs no actual cache tag or status
modifications (even in the presence of tag EDC errors). The INV command causes a snoop lookup and
subsequent invalidation of a matching cache line. The SYNC command causes the snoop queue to be
emptied with highest priority relative to CPU requests.

Table 11-14 shows the definitions of the p_snp_resp[0:4] encodings.

Table 11-14. p_snp_cmd[0:1] Snoop command encoding

p_snp_cmd[0:1] Response type

00 Null - no status bit operation performed, lookup is performed

01 INV - invalidate matching cache entry

10 SYNC - synchronize snoop queue

11 Reserved

Table 11-15. p_snp_resp[0:4] Snoop response encoding

p_snp_resp[0:4]1 Response type

000cc NULL - no operation performed or no matching cache entry

001cc AutoInv - AutoInvalidation performed on clean unlocked lines with tag parity
errors

010cc ERROR - Error in processing a snoop request due to TAG parity error.
For NULL commands, a tag parity error occurred and no hit to a tag without
error occurred. No modification of cache entries, no machine check generated
internally.
For INV commands, a) possible invalidation of locked line with tag parity error
occurred, or b) dirty line left valid with tag parity error, or c) no true hit occurred,
and one or more lines reported tag parity errors. Machine check generated
internally.

01100 SYNC - Sync completed, snoop queue synchronized

100cc HIT Clean- matching unlocked cache entry found

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 635

The NULL response indicates there was no matching cache entry found for a null or invalidate command
or the cache was disabled when the request was originally made. The HIT responses indicates that a
matching cache entry was found. The SYNC response indicated all previous entries in the snoop queue
were emptied. The ERROR response indicates that an error occurred in processing a snoop request due to
a cache tag parity error. The AutoInv response indicates one or more cache lines with tag parity errors was
invalidated.

Responses for a Null command are either NULL, HIT, or ERROR. Responses for an INV command are
either Null (no hit occurred or cache is disabled), Hit (a matching entry was found and invalidated), or
ERROR (a tag parity error was found and left valid, no guarantee of the command success). Responses for
a Sync command are SYNC completed.

11.21.3 Snoop request queue

The snoop request queue provides a queueing mechanism between the snoop command port and the cache.
As requests are accepted from the snoop invalidate port, they are queued into an 8-deep fifo queue for
arbitration to the cache for tag and status lookup and conditional status clearing.

Snoops can be collapsed within the queue under certain circumstances to minimize the number of
invalidation lookups performed. When two consecutive snoop requests refer to the same cache line, they
are collapsed (timing permitting) into a single snoop invalidation cycle. Collapsed entries are indicated
complete via an encoding of the p_snp_resp[0:4] status outputs.

Snoop invalidation requests have a lower priority than CPU data accesses or change of flow accesses when
only a single queue entry is occupied. This allows for some optimization in cycle-stealing of the tag array
from the CPU in an attempt to minimize CPU stalls. Snoop invalidation request priority is raised when a
“snoop sync” command is received on the snoop command port or when a sync request is generated on the
synchronization port (p_sync_req_in), regardless of the number of active queue entries.

11.21.4 Snoop lookup operation

Entries in the snoop request queue are processed in-order after arbitrating for the cache tag and status bit
arrays. Once the CPU has been stalled from performing further tag accesses, the snoop request queue is
processed by performing a tag lookup, and a subsequent status bit write to clear the valid bit of a matching
valid entry. Invalidation hits require two tag array accesses to first read, and then to update the valid bit. A
subsequent snoop lookup may be pipelined while the first lookup of a pair of lookups is being processed
to determine a hit/miss condition. In this manner, a pair of hitting invalidation requests will block the CPU

101cc HIT Dirty- matching unlocked dirty cache entry found

110cc HIT Locked - matching clean locked cache entry found

111cc HIT Dirty Locked - matching dirty locked cache entry found

1 cc - # collapsed requests; 00-no collapsing, 01- two requests combined, 10- three requests
combined, 11- four requests combined

Table 11-15. p_snp_resp[0:4] Snoop response encoding (continued)

p_snp_resp[0:4]1 Response type

e200z759n3 Core Reference Manual, Rev. 2

636 Freescale Semiconductor

for a total of 5 cycles. A single snoop lookup requires 3 cycles of latency on a miss, and 4 cycles on a hit
prior to allowing the CPU to resume cache accesses. If the snoop queue contains enough entries, snoop
read and write accesses to the cache tag are pipelined, and the total blockage will be 3*number_of_hits +
number_of_misses + 1. In certain cases where the CPU has pipelined one or more cache misses, initial
snoop accesses will be interlaced with CPU tag accesses prior to assuming highest priority in order to allow
for proper operation of linefill and copyback operations initiated by the CPU.

As entries are removed from the queue and the invalidation lookups are performed, the results of the
lookups are provided on the response output signals, along with the original request ID.

11.21.5 Snoop errors

Errors can occur during snoop lookup operations and are signaled on the snoop response output port. Tag
parity errors that prevent an accurate hit/miss determination on the snoop request address may result in an
error response signaled via p_snp_resp[0:4], as well as a machine check to the CPU for the INV command
if a locked line was invalidated, if a line was dirty and not invalidated, or if a tag parity error occurred and
no hit occurred to a line without error. When such a tag parity error occurs, the invalidation will not occur
to the line(s) with error. The snoop queue will continue to be serviced, and the machine check will not
necessarily be recoverable. A checkstop condition will not occur however. In this respect, it is treated
similarly to a non-maskable interrupt, and the MSR[RI] bit should be used accordingly by software.

11.21.6 Snoop collisions

Snoop requests may collide with an outstanding or pending cache linefill.

Since there is no particular guarantee of the precise time an actual snoop invalidation lookup will occur
relative to a cache linefill request, the CPU may in some instances be in the process of filling a line
corresponding to a snoop invalidate request. In this case, the snoop will cause the linefills to be marked
such that they are not loaded into the cache. Load miss operations that are in progress may use the data as
it returns however. The responses for these collisions will be based on the state the cache line would have
taken if the linefill completes successfully.

Snoop requests should not collide with dirty line copyback or flush operations, since the coherent pages
must be marked as writethrough required. These snoop collisions will be ignored.

11.21.7 Snoop synchronization

Synchronization of the snoop queue will occur under two conditions; a synchronization port sync request,
and a snoop command port sync request.

11.21.7.1 Synchronization port request

Assertion of the p_sync_req_in signal will cause the snoop queue to assume highest priority, and be
flushed. It is assumed that the system will stop generating snoop requests during a synchronization of the
queue to allow it to drain, but if snoop requests continue to be received, the acknowledgement of the
synchronization request will be delayed until the queue finally drains to the point that all queue entries that
were present prior to the recognition of the sync request have been serviced.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 637

In general, the synchronization port is expected to be utilized to handshake execution of msync
instructions from an alternate CPU, thus there will typically not be additional snoop requests occurring
until the synchronization handshake is complete, since no further bus writes will be requested by the
alternate CPU, but if additional coherency traffic occurs due to another alternate master, it will follow the
normal queueing process and will not block the eventual assertion of the p_sync_ack_out signal.

11.21.7.2 Snoop command port request

Receiving a snoop command port “snoop sync” request encoded via the p_snp_cmd[0:1] inputs of will
cause the snoop queue to assume highest priority, and be flushed to the point the command has reached the
head of the queue and been acknowledged. After the command has been completed, snoop queue priority
will revert to normal operation, unless another “snoop sync” command has been received and placed into
the queue, in which case snoop queue priority will remain elevated until all “snoop sync” commands have
been processed from the queue.

11.21.8 Starvation control

To avoid starvation of a higher priority CPU due to a continuous stream of snoop requests from a lower
priority master that block CPU forward progress, some form of starvation control is desired. This is
implemented with a forward progress counter, which tracks the number of contiguous cycles the CPU has
been prevented from accessing the cache due to snoop command port access requests. Once the count has
been exceeded, the CPU will regain highest priority for one access cycle. A similar counter exists for the
snoop queue, to allow for periodic snoop request processing when the queue holds only a single entry. Each
counter is 4 bits, and causes a priority inversion to occur for tag access upon timeout. The presence of one
or more sync commands in the snoop queue when the counter expires will delay the priority inversion until
the queue has been emptied up to the point that the sync(s) have been completed. Subsequent syncs
received while the starvation timeout is being postponed may also prevent the priority inversion after the
original sync(s) have been completed if additional snoops have been queued during the sync command
processing. This is not normally expected to occur in a typical system however.

In addition, external logic may be used to implement additional safeguards by monitoring the
p_cac_stalled output, which indicates that the CPU has a pending cache access request blocked due to
snoop access activity.

11.21.9 Queue flow control

To avoid overflow of the snoop queue, the p_snp_rdy output is provided to indicate whether an additional
snoop command port request will be accepted on the following clock cycle. When negated, no further
command requests can be honored until a snoop queue entry becomes available.

To provide for flow control of CPU-generated snoop requests to another CPU’s queue, the
p_stall_bus_gwrite input is provided, which will cause further bus activity that is requesting a global
write cycle to be suspended. Other bus traffic is not affected.

e200z759n3 Core Reference Manual, Rev. 2

638 Freescale Semiconductor

11.21.10 Snooping in low power states

Snooping remains enabled while in the Waiting or Halted states if the clock is running. Snoops should only
be issued to the core complex while the core is in the normal, Halted, or Waiting states and both the p_stop
and p_stopped signals are negated. When a request is made to enter stop mode via the assertion of p_stop,
the p_snp_rdy output will be negated. While the core complex is in the Stopped (power-down) state, bus
snooping is disabled, and the p_snp_rdy output is held negated. Snoop requests will be processed around
the assertion of the stop mode entry request (assertion of p_stop) per the normal protocol associated with
p_snp_rdy negation, including acceptance of a snoop request during a small interval around p_snp_rdy
negation, thus additional snoop operations may need to occur prior to entering the stopped state. All snoop
queue entries will be processed prior to the assertion of p_stopped.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 639

Chapter 12
Debug Support
This chapter describes the debug features of the e200z759n3 core.

12.1 Overview
Internal debug support in the e200z759n3 core allows for software and hardware debug by providing
debug functions, such as instruction and data breakpoints and program trace modes. For software based
debugging, debug facilities consisting of a set of software accessible debug registers and interrupt
mechanisms are provided. These facilities are also available to a hardware based debugger, which
communicates using a modified IEEE 1149.1 Test Access Port (TAP) controller and pin interface. When
hardware debug is enabled, the debug facilities controlled by hardware are protected from software
modification.

Software debug facilities are defined as part of PowerISA 2.06. e200z759n3 supports a subset of these
defined facilities. In addition to the facilities defined in PowerISA 2.06, e200z759n3 provides additional
flexibility and functionality in the form of debug event counters, linked instruction and data breakpoints,
and sequential debug event detection. These features are also available to a hardware-based debugger.

The e200z759n3 core also provides support for run-time integrity checking via a Parallel Signature unit,
which is capable of monitoring the internal CPU data read and data write buses, and accumulating a pair
of 32-bit MISR signatures of the data values transferred over these buses.

12.1.1 Software debug facilities

e200z759n3 provides debug facilities to enable hardware and software debug functions, such as instruction
and data breakpoints and program single stepping. The debug facilities consist of a set of debug control
registers (DBCR0-6, DBERC0), a set of address compare registers (IAC1-8, DAC1, and DAC2), a set of
data value compare registers (DVC1, DVC2), a configurable Debug Counter, a Debug Status Register
(DBSR) for enabling and recording various kinds of debug events, and a special Debug interrupt type built
into the interrupt mechanism (see Section 7.7.16, Debug interrupt (IVOR15)). The debug facilities also
provide a mechanism for software-controlled processor reset, and for controlling the operation of the
timers in a debug environment.

Software debug facilities are enabled by setting the internal debug mode bit in Debug Control register 0
(DBCR0IDM). When internal debug mode is enabled, debug events can occur, and can be enabled to record
exceptions in the Debug Status register (DBSR). If enabled by MSRDE, these recorded exceptions cause
Debug interrupts to occur. When DBCR0IDM is cleared (and DBCR0EDM is cleared as well), no debug
events occur, and no status flags are set in DBSR unless already set. In addition, when DBCR0IDM is
cleared (or is overridden by DBCR0EDM being set and DBERC0 indicating no resource is “owned” by
software) no Debug interrupts will occur, regardless of the contents of DBSR. A software Debug interrupt
handler may access all system resources and perform necessary functions appropriate for system debug.

e200z759n3 Core Reference Manual, Rev. 2

640 Freescale Semiconductor

12.1.1.1 PowerISA 2.06 compatibility

The e200z759n3 core implements a subset of the PowerISA 2.06 internal debug features. The following
restrictions on functionality are present:

• Instruction address compares do not support compare on physical (real) addresses.

• Data address compares do not support compare on physical (real) addresses.

12.1.2 Additional debug facilities

In addition to the debug functionality defined in PowerISA 2.06, e200z759n3 provides capability to link
instruction and data breakpoints, provides a configurable debug event counter to allow debug exception
generation capability, and also provides a sequential breakpoint control mechanism.

e200z759n3 also defines two new debug events (CIRPT, CRET) for debugging around critical interrupts.

In addition, e200z759n3 implements the Debug APU, which when enabled allows Debug Interrupts to
utilize a dedicated set of save/restore registers (DSRR0, DSRR1) for saving state information when a
Debug Interrupt occurs, and for restoring this state information at the end of a debug interrupt handler by
means of the rfdi or se_rfdi instructions.

Zen also provides the capability of sharing resources between hardware and software debuggers. See
Section 12.1.4, Sharing debug resources by software/hardware.

12.1.3 Hardware debug facilities

The e200z759n3 core contains facilities that allow for external test and debugging. A modified IEEE
1149.1 control interface is used to communicate with the core resources. This interface is implemented
through a standard 1149.1 TAP (test access port) controller.

By using public instructions, the external debugger can freeze or halt the e200z759n3 core, read and write
internal state and debug facilities, single-step instructions, and resume normal execution.

Hardware Debug is enabled by setting the External Debug Mode enable bit in Debug Control register 0
(DBCR0EDM), which is also aliased to EDBCR0EDM. Setting DBCR0EDM overrides the Internal Debug
Mode enable bit DBCR0IDM unless resources are provided back to software via the settings in DBERC0.
When the Hardware Debug facility is enabled, software is blocked from modifying the “hardware-owned”
debug facilities. In addition, since resources are “owned” by the hardware debugger, inconsistent values
may be present if software attempts to read “hardware-owned” debug-related resources.

When hardware debug is enabled by setting [E]DBCR0EDM=1, the control registers and resources
described in Section 12.3, Debug registers are reserved for use by the external debugger. The same events
described in Section 12.2, Software debug events and exceptions are also used for external debugging, but
exceptions are not generated to running software. Hardware-owned debug events enabled in the respective
DBCR0-6 registers are recorded in the EDBSR0 register (not the DBSR) regardless of MSRDE, and no
debug interrupts are generated unless the resource is granted back to software via DBERC0 settings, and
debug mode entry is not masked by the corresponding event bit in EDBSRMSK0. Instead, the CPU will
enter debug mode when an enabled event causes a EDBSR0 bit to become set. DBCR0EDM, EDBSR0,
EDBSRMSK0, and DBERC0 may only be written through the OnCE port.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 641

A program trace PC FIFO is also provided to support program change of flow capture.

Access to most debug resources (registers) requires that the CPU clock (m_clk) be running in order to
perform write accesses from the external hardware debugger.

12.1.4 Sharing debug resources by software/hardware

Debug resources may be shared by a hardware debugger and software debug based on the settings of debug
control register DBERC0. When DBCR0EDM is set, DBERC0 settings determine which debug resources
are allocated to software and which resources remain under exclusive hardware control. Software-owned
resources that set DBSR bits when DBCR0IDM=1 will cause a debug interrupt to occur when enabled with
MSRDE. Hardware-owned resources that set EDBSR0 bits when [E]DBCR0EDM=1 will cause an entry
into debug mode if the event is not masked in EDBSRMSK0. DBERC0 is read-only by software. When
resource sharing is enabled, (DBCR0EDM=1 and DBERC0IDM=1), only software-owned resources may
be modified by software. Hardware always has full access to all registers and all register fields through the
OnCE register access mechanism, and it is up to the debug firmware to properly implement modifications
to these registers with read-modify-write operations to implement any control sharing with software.
Hardware-owned resources will set status bits in the EDBSR0 register instead of in DBSR. Settings in
DBERC0 should be considered by the debug firmware in order to preserve software settings of control and
status registers as appropriate when hardware modifications to the debug registers is performed.

12.1.4.1 Simultaneous hardware and software debug event handing

Since it is possible that a “hardware-owned” resource can produce a debug event in conjunction with a
software-owned resource producing a different debug event simultaneously, a priority ordering
mechanism is implemented that guarantees that the hardware event is handled as soon as possible, while
preserving the recognition of the software event. The CPU will give highest priority to the software event
initially in order to reach a recoverable boundary, and then will give highest priority to the hardware event
in order to enter debug mode as near the point of event occurrence as possible. This is implemented by
allowing software exception handing to begin internal to the CPU and to reach the point where the current
program counter and MSR values have been saved into DSRR0/1, and the new PC pointing to the debug
interrupt handler, along with the new MSR updates. At this point, hardware priority takes over, and the
CPU enters debug mode.

Figure 12-1 shows the e200z759n3 debug resources.

e200z759n3 Core Reference Manual, Rev. 2

642 Freescale Semiconductor

Figure 12-1. e200z759n3 debug resources

12.2 Software debug events and exceptions
Software debug events and exceptions are available when internal debug mode is enabled (DBCR0IDM=1)
and not overridden by external debug mode (DBCR0EDM must either be cleared or corresponding
resources must be allocated to software debug by the settings in DBERC0). When enabled, debug events
cause debug exceptions to be recorded in the Debug Status Register. Specific event types are enabled by
the Debug Control Registers (DBCR0–6). The Unconditional Debug Event (UDE) is an exception to this
rule; it is always enabled. Once a Debug Status Register (DBSR) bit is set by a debug resource that is
“owned” by software (other than MRR and CNT1TRG), if Debug interrupts are enabled by MSRDE, a
Debug interrupt will be generated. The debug interrupt handler is responsible for ensuring that multiple
repeated debug interrupts do not occur by clearing the DBSR as appropriate.

Certain debug events are not allowed to occur when MSRDE=0 and DBCR0IDM=1. In such situations, no
debug exception occurs and thus no DBSR bit is set. Other debug events may cause debug exceptions and
set DBSR bits regardless of the state of MSRDE. A Debug interrupt will be delayed until MSRDE is later
set to ‘1’.

PSTAT#
ATTR#
ADDR#

.

..

j_tdo, j_tdo_en

j_tdi

j_tclk

Breakpoint and
Trace Logic

OnCE
Controller
and
Serial
Interface

Debug
Registers
and
Comparators

PC
FIFO

Pipeline
Information

j_tms

dbg_dbgrq

cpu_dbgack

jd_watchpt[0:n]

#-internal signals
to/from CPU only

p_devt[1,2]

j_trst_b

jd_de_en
jd_debug_b

DATA#

jd_en_once

jd_de_b

jd_mclk_on

p_ude

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 643

When a Debug Status Register bit is set while MSRDE=0, an Imprecise Debug Event flag (DBSRIDE) will
also be set to indicate that an exception bit in the Debug Status Register was set while Debug interrupts
were disabled. Debug interrupt handler software can use this bit to determine whether the address recorded
in Debug Save/Restore Register 0 is an address associated with the instruction causing the debug
exception, or the address of the instruction that enabled a delayed Debug interrupt by setting the MSRDE
bit. A mtmsr or mtdbcr0 that causes both MSRDE and DBCR0IDM to become set, enabling precise debug
mode, may cause an Imprecise (Delayed) Debug exception to be generated due to an earlier recorded event
in the Debug Status register.

There are eight types of debug events defined by PowerISA 2.06:

1. Instruction Address Compare debug events

2. Data Address Compare debug events

3. Trap debug events

4. Branch Taken debug events

5. Instruction Complete debug events

6. Interrupt Taken debug events

7. Return debug events

8. Unconditional debug events

These events are described in detail beginning on page 198 of Book E: Enhanced PowerPCtm Architecture
v0.99.

In addition, e200z759n3 defines additional debug events:

• The Debug Counter debug events DCNT1 and DCNT2, which are described in Section 12.2.11,
Debug Counter debug event.

• The External debug events DEVT1 and DEVT2, which are described in Section 12.2.12, External
debug event.

• The Critical Interrupt Taken debug event CIRPT, which is described in Section 12.2.8, Critical
Interrupt Taken debug event.

• The Critical Return debug event CRET, which is described in Section 12.2.10, Critical Return
debug event.

The e200z759n3 debug configuration supports most of these event types. Unsupported PowerISA 2.06
defined functionality is as follows:

• Instruction Address Compare and Data Address Compare Real address mode is not supported

A brief description of each of the event types follows. In these descriptions, DSRR0 and DSRR1 are used,
assuming that the Debug APU is enabled. If it is disabled, use CSRR0 and CSRR1 respectively.

12.2.1 Instruction Address Compare event

Instruction Address Compare debug events occur when enabled and execution is attempted of an
instruction at an address that meets the criteria specified in the DBCR0, DBCR1, DBCR5, DBCR6, and
IAC1-8 Registers. Instruction Address compares may specify user/supervisor mode and instruction space
(MSRIS), along with an effective address, masked effective address, or range of effective addresses for

e200z759n3 Core Reference Manual, Rev. 2

644 Freescale Semiconductor

comparison (range compares are not supported for IAC5-8). This event can occur and be recorded in
DBSR regardless of the setting of MSRDE. IAC events will not occur when an instruction would not have
normally begun execution due to a higher priority exception at an instruction boundary.

IAC compares perform a 31-bit compare for VLE instruction pages, and 30-bit compares for BookE
instruction pages. Each halfword fetched by the instruction fetch unit will be marked with a set of bits
indicating whether an Instruction Address Compare occurred on that halfword. Debug exceptions will
occur if enabled and a 16-bit instruction, or the first halfword of a 32-bit instruction, is tagged with an IAC
hit. For instruction fetches that miss in the TLB, BookE pages are assumed, and a 30-bit compare is
performed.

12.2.2 Data Address Compare event

Data Address Compare debug events occur when enabled and execution of a load or store class instruction
or a cache maintenance instruction results in a data access that meets the criteria specified in the DBCR0,
DBCR2, DBCR4, DAC1, DAC2, DVC1, and DVC2 Registers. Data address compares may specify
user/supervisor mode and data space (MSRDS), along with an effective address, masked effective address,
or range of effective addresses for comparison. This event can occur and be recorded in DBSR regardless
of the setting of MSRDE. Two address compare values (DAC1, DAC2) are provided.

NOTE
In contrast to the PowerISA 2.06 definition, Data Address Compare events
on e200z759n3 do not prevent the load or store class instruction from
completing. If a load or store class instruction completes successfully
without a Data TLB or Data Storage interrupt, Data Address Compare
exceptions are reported at the completion of the instruction. If the exception
results in a precise Debug interrupt, the address value saved in DSRR0 (or
CSRR0 if the Debug APU is disabled) is the address of the instruction
following the load or store class instruction. For DVC DAC events, the
exception can be imprecisely reported even further past the load or store
class instruction generating the event (without necessarily affecting
DBSRIDE) and the saved address value can point to a subsequent instruction
past the next instruction. This occurrence is indicated in the
DBSRDAC_OFST field.

If a load or store class instruction does not complete successfully due to a
Data TLB or Data Storage exception or a machine check condition for the
load or store, and a Data Address Compare debug exception also occurs, or
a Debug Counter event based on a counted DAC occurs, the result is an
imprecise Debug interrupt, the address value saved in DSRR0 (or CSRR0 if
the Debug APU is disabled) is the address of the load or store class
instruction, and the DBSRIDE bit will be set. In addition to occurring when
DBCR0IDM=1, this circumstance can also occur when DBCR0EDM=1.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 645

NOTE
DAC events will not be recorded or counted if a load multiple word or store
multiple word instruction is interrupted prior to completion by a critical
input or external input interrupt.

NOTE
DAC events are not signaled on the second portion of a misaligned load or
store that is broken up into two separate accesses.

NOTE
DAC events are not signaled on the tlbre, tlbwe, tlbsx, or tlbivax
instructions.

NOTE
DAC[1,2] events are not signaled if DVC[1,2]M is non-zero and a DSI or
DTLB exception occurs on the load or store, since the load or store access
is not performed. For a lmw or stmw transfer however, if a DVC
successfully occurs on a transfer and a later transfer encounters a DSI or
DTLB exception, the DAC event will be reported, since a successful data
value compare took place.

12.2.2.1 Data Address Compare event status updates

Data Address Compare debug events with Data Value compares can be reported ambiguously in several
circumstances involving issuing a sequence of load or store class instructions. Due to the CPU pipeline
and the delay in performing the data value compare following completion of the access, if the first load or
store class instruction generates a DVC DAC, a second and possibly third load or store class instruction
may also generate a DAC or DVC DAC event, or may generate a DTLB or DSI exception with or without
a simultaneous DAC event.

Also, since non-load/store instructions may be dual-issued in combination with a load/store instruction,
the actual number of additional instructions that are completed following a recognized DVC DAC on a
load/store instruction may vary from 0 to 5. This value will be reported in the DBSRDAC_OFST field when
the DVC DAC status is recorded.

Table 12-1 outlines the settings of the DBSR, DSRR0 saved value, and potential updating of the ESR and
MMU MASx registers for various exception cases on sequences of load/store class instructions. Not all
exception combinations are covered in the table, such as IAC, ITLB, ISI, or Alignment exceptions on
subsequent instructions. In general these exceptions will cause further instruction issue to be halted,
execution of the excepting instruction to be aborted, and reporting of these exceptions will be masked. The
saved DSRR0 value will point to this excepting instruction, and the exception(s) may be regenerated after
returning from the debug interrupt handler and attempting to re-execute the instruction pointed to by
DSRR0. In addition, in the examples in Table 12-1, the DAC_OFST and DSRR0 values assume no dual
issue occurs. If dual-issue occurs with the first, second, or third column, then the DAC_OFST and DSRR0
values will point beyond the values shown.

e200z759n3 Core Reference Manual, Rev. 2

646 Freescale Semiconductor

Table 12-1. DAC events and resultant updates

1st
load/store

class
instruction

2nd
instruction
(load/store

class unless
otherwise
specified)

3rd
instruction
(load/store

class unless
otherwise
specified)

Result

DTLB Error,
no DAC

— — Take DTLB exception, no DBSR update, update MASx registers for
1st load/store class instruction. Update ESR.

DSI, no DAC — — Take DSI exception, no DBSR update, no MASx register update.
Update ESR.

DTLB Error,
with DACx

— — Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST not set. No MASx register update for 1st load/store class
instruction. DSRR0 points to 1st load/store class instruction. No ESR
update.

DSI, with
DACx

— — Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST not set. DSRR0 points to 1st load/store class instruction.
No MASx register update. No ESR update.

DACx — — Take Debug exception, DBSR update setting DACx, DAC_OFST not
set. DSRR0 points to 2nd load/store class instruction. No MASx
register update. No ESR update.

DVC DACx No
exceptions,

any
instruction

No
exceptions,

Non-ldst
instruction

Take Debug exception, DBSR update setting DACx, DAC_OFST set
to 3’b001. DSRR0 points to 3rd instruction. No MASx register update.
No ESR update.

DVC DACx No
exceptions

No
exceptions,

Ldst
instruction

Take Debug exception, DBSR update setting DACx, DAC_OFST set
to 3’b010. DSRR0 points to instruction after 3rd instruction. No MASx
register update. No ESR update.

DVC DACx DTLB Error,
no DAC

— Take Debug exception, DBSR update setting DACx, DAC_OFST not
set. DSRR0 points to 2nd load/store class instruction. no MASx
register update. No ESR update. No debug counter updates for 2nd
ld/st instruction.
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.

DVC DACx DSI, no DAC — Take Debug exception, DBSR update setting DACx, DAC_OFST not
set. DSRR0 points to 2nd load/store class instruction. No MASx
register update. No ESR update. No debug counter updates for 2nd
ld/st instruction.
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.

DVC DACx DTLB Error,
with DACy

— Take Debug exception, DBSR update setting DACx. DAC_OFST not
set. DSRR0 points to 2nd load/store class instruction. No MASx
register update. No ESR update. No debug counter update occurs for
the 2nd ld/st.
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 647

DVC DACx DSI, with
DACy

— Take Debug exception, DBSR update setting DACx. DAC_OFST not
set. DSRR0 points to 2nd load/store class instruction. No MASx
register update. No ESR update. No debug counter update occurs for
the 2nd ld/st.
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.

DVC DACx DACy — Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b001. DSRR0 points to 3rd instruction. Debug
counter update occurs for the 2nd ld/st as appropriate.
Note: In this case debug counter updates can occur for the 2nd ld/st

even though the 1st ld/st has a DVC DAC exception1.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

DVC DACx DVC DACy,
Normal Ldst

Non-Ldst
instruction

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b001. DSRR0 points to the 3rd instruction.
Debug counter update occurs for the 2nd ld/st as appropriate.
Note: In this case debug counter updates occur for the 2nd ld/st even

though the 1st ld/st has a DVC DAC exception1.
Note: In this case if x==y, then the resultant state of DBSR and

DSRR0 may be indistinguishable from the “no DACy” case.

DVC DACx DVC DACy,
Normal Ldst

Ldst
instruction,

no exception

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b010. DSRR0 points to instruction after the 3rd
load/store class instruction. Debug counter update occurs for the 2nd
and 3rd ld/st as appropriate.
Note: In this case debug counter updates occur for the 2nd and 3rd

ld/st even though the 1st ld/st has a DVC DAC exception2.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

DVC DACx DVC DACy,
Normal Ldst

DSI Error,
with or

without DAC

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b001. No ESR update. DSRR0 points to 3rd
instruction. Debug counter update occurs for the 2nd ld/st as
appropriate.
Note: In this case debug counter updates occur for the 2nd ld/st even

though the 1st ld/st has a DVC DAC exception1.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

Note: In this case the 3rd ld/st exception is masked. This behavior is
implementation dependent and may differ on other CPUs.

Table 12-1. DAC events and resultant updates (continued)

1st
load/store

class
instruction

2nd
instruction
(load/store

class unless
otherwise
specified)

3rd
instruction
(load/store

class unless
otherwise
specified)

Result

e200z759n3 Core Reference Manual, Rev. 2

648 Freescale Semiconductor

DVC DACx DVC DACy,
Normal Ldst

DTLB, with or
without DAC

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b001. No ESR update. No MASx register
updates. DSRR0 points to 3rd instruction. Debug counter update
occurs for the 2nd ld/st as appropriate.
Note: In this case debug counter updates occur for the 2nd ld/st even

though the 1st ld/st has a DVC DAC exception1.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

Note: In this case the 3rd ld/st exception is masked. This behavior is
implementation dependent and may differ on other CPUs.

DVC DACx DVC DACy,
Normal Ldst

DACy, or DVC
DACy

Normal Ldst
or multiple
word Ldst

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b010. DSRR0 points to instruction after the 3rd
load/store class instruction. Debug counter update occurs for the 2nd
and 3rd ld/st as appropriate.
Note: In this case debug counter updates occur for the 2nd and 3rd

ld/st even though the 1st ld/st has a DVC DAC exception2.
Note: In this case if x==y, then the resultant state of DBSR and

DSRR0 may be indistinguishable from the “no DACy” case.

DVC DACx DVC DACy,
Ldst multiple
(lmw, stmw)

Any
instruction

including ld/st

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b001. DSRR0 points to the 3rd instruction.
Debug counter update occurs for the 2nd ld/st multiple as
appropriate.
Note: In this case debug counter updates occur for the 2nd ld/st

multiple even though the 1st ld/st has a DVC DAC exception1.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

DVC DACx Any
instruction

(no
exception)

DSI, with or
without DAC,
Normal Ldst
or multiple
word Ldst

Take Debug exception, DBSR update setting DACx. DAC_OFST set
to 3’b001. DSRR0 points to the 3rd instruction. No MASx register
update. No ESR update. No debug counter update occurs for the 3rd
instruction. Debug counter update occurs for the 2nd instruction as
appropriate.
Note: In this case debug counter updates occur for the 2nd

instruction even though the 1st ld/st has a DVC DAC
exception1.

Note: In this case the 3rd ld/st exception is masked. This behavior is
implementation dependent and may differ on other CPUs.

DVC DACx Any
instruction

(no
exception)

DACy, or DVC
DACy

Normal Ldst
or multiple
word Ldst

Take Debug exception, DBSR update setting DACx, DACy.
DAC_OFST set to 3’b010. DSRR0 points to instruction after the 3rd
class instruction. Debug counter update occurs for the 2nd and 3rd
instruction as appropriate.
Note: In this case debug counter updates occur for the 2nd and 3rd

instructions even though the 1st ld/st has a DVC DAC
exception2.

Note: In this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

Table 12-1. DAC events and resultant updates (continued)

1st
load/store

class
instruction

2nd
instruction
(load/store

class unless
otherwise
specified)

3rd
instruction
(load/store

class unless
otherwise
specified)

Result

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 649

Table 12-2 – Table 12-5 show some example updates for specific code sequences of dual issuing of
load/store class instructions with non-load/store class instructions and the results of DAC and DVC events
on selected ones of the load/store instructions.

1 The 2nd instruction may cause DAC, ICMP or IAC events to be counted.
2 The 2nd and 3rd instructions may cause DAC, ICMP or IAC events to be counted.

Table 12-2. DAC events and resultant updates, dual-issue case 1

Instruction
Sequence:

The following
pairs dual-issue:
(1) load/store
(2) alu
(3) load/store
(4) alu
(5) load/store
(6) alu

Event(s) Result

Instruction (1):
DTLB Error, no DAC

Take DTLB exception, no DBSR update, update MASx registers for 1st
load/store instruction. Update ESR.

Instruction (1):
DSI, no DAC

Take DSI exception, no DBSR update, no MASx register update.
Update ESR.

Instruction (1):
DTLB Error, with

DACx

Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST set to 3’b000. DSRR0 points to instruction (1). No MASx
register update. No ESR update.

Instruction (1):
DSI, with DACx

Instruction (1):
DACx

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b000. DSRR0 points to instruction (2). No MASx register update. No
ESR update.

Instruction (1):
DVC DACx

No other exceptions

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b100. DSRR0 points to instruction (6). No MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(5) as
appropriate. No debug counter or event updates for instruction (6)

Instruction (1):
DVC DACx

Instruction (3):
DTLB Error, with or

without DAC

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b001. DSRR0 points to instruction (3). no MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(2) as
appropriate. No debug counter or event updates for instructions (3)-(6).
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.
Instruction (1):

DVC DACx
Instruction (3):

DSI, with or without
DAC

e200z759n3 Core Reference Manual, Rev. 2

650 Freescale Semiconductor

Instruction (1):
DVC DACx

Instruction (3):
DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b010. DSRR0 points to instruction (4). Debug counter update
occurs for instructions (1)-(3) as appropriate. No debug counter or
event updates for instructions (4)-(6).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b100. DSRR0 points to instruction (6). No MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(5) as
appropriate. No debug counter or event updates for instruction (6).
Note: In this case debug counter updates can occur for instructions

(2)-(5) even though the 1st ld/st has a DVC DAC exception.

Note: In this case if x==y, then the resultant state of DBSR and DSRR0
may be indistinguishable from the “no DACy” case.

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (5):
DSI, with or without

DAC

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b010. No ESR update. DSRR0 points to instruction (4). Debug
counter update occurs for instructions (1)-(3) as appropriate. No debug
counter or event updates for instructions (4)-(6).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.
Note: In this case the 3rd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (5):
DTLB Error, with or

without DAC

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (5):
DACy or DVC DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b100. No ESR update. DSRR0 points to instruction (6). Debug
counter update occurs for instructions (1)-(5) as appropriate.
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Table 12-2. DAC events and resultant updates, dual-issue case 1 (continued)

Instruction
Sequence:

The following
pairs dual-issue:
(1) load/store
(2) alu
(3) load/store
(4) alu
(5) load/store
(6) alu

Event(s) Result

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 651

Table 12-3. DAC events and resultant updates, dual-issue case 2

Instruction
Sequence:

The following
pairs dual-issue:
(1) load/store
(2) alu
(3) load/store
(4) alu
(5) alu
(6) load/store

Event(s) Result

Instruction (1):
DTLB Error, no DAC

Take DTLB exception, no DBSR update, update MASx registers for 1st
load/store instruction. Update ESR.

Instruction (1):
DSI, no DAC

Take DSI exception, no DBSR update, no MASx register update.
Update ESR.

Instruction (1):
DTLB Error, with

DACx

Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST set to 3’b000. DSRR0 points to instruction (1). No MASx
register update. No ESR update.

Instruction (1):
DSI, with DACx

Instruction (1):
DACx

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b000. DSRR0 points to instruction (2). No MASx register update. No
ESR update.

Instruction (1):
DVC DACx

No other exceptions

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b101. DSRR0 points to instruction after instruction (6). No MASx
register update. No ESR update.Debug counter update occurs for
instructions (1)-(6) as appropriate.

Instruction (1):
DVC DACx

Instruction (3):
DTLB Error, with or

without DAC

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b001. DSRR0 points to instruction (3). no MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(2) as
appropriate. No debug counter or event updates for instructions (3)-(6).
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.
Instruction (1):

DVC DACx
Instruction (3):

DSI, with or without
DAC

Instruction (1):
DVC DACx

Instruction (3):
DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b010. DSRR0 points to instruction (4). Debug counter update
occurs for instructions (1)-(3) as appropriate. No debug counter or
event updates for instructions (4)-(6).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b101. DSRR0 points to instruction (7). No MASx register update. No
ESR update.Debug counter update occurs for instructions (1)-(6) as
appropriate.
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

e200z759n3 Core Reference Manual, Rev. 2

652 Freescale Semiconductor

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (6):
DSI, with or without

DAC

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b010. No ESR update. DSRR0 points to instruction (4). Debug
counter update occurs for instructions (1)-(3) as appropriate. No debug
counter or event updates for instruction (4).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Note: In this case the 3rd ld/st exception is masked. This behavior is
implementation dependent and may differ on other CPUs.

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (6):
DTLB Error, with or

without DAC

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Instruction (6):
DACy or DVC DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b101. No ESR update. DSRR0 points to instruction (7). Debug
counter update occurs for instructions (1)-(6) as appropriate. No debug
counter or event updates for instruction (7).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Table 12-3. DAC events and resultant updates, dual-issue case 2 (continued)

Instruction
Sequence:

The following
pairs dual-issue:
(1) load/store
(2) alu
(3) load/store
(4) alu
(5) alu
(6) load/store

Event(s) Result

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 653

Table 12-4. DAC events and Resultant Updates, Dual-issue case 3

Instruction
Sequence:

The following
pairs dual-issue:

(1) load/store
(2) alu

(3) alu
(4) alu

(5) load/store
(6) alu

Event(s) Result

Instruction (1):
DTLB Error, no DAC

Take DTLB exception, no DBSR update, update MASx registers for 1st
load/store instruction. Update ESR.

Instruction (1):
DSI, no DAC

Take DSI exception, no DBSR update, no MASx register update.
Update ESR.

Instruction (1):
DTLB Error, with

DACx

Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST set to 3’b000. DSRR0 points to instruction (1). No MASx
register update. No ESR update.

Instruction (1):
DSI, with DACx

Instruction (1):
DACx

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b000. DSRR0 points to instruction (2). No MASx register update. No
ESR update.

Instruction (1):
DVC DACx

No other exceptions

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b100. DSRR0 points to instruction (6). No MASx register update. No
ESR update.Debug counter update occurs for instructions (1)-(5) as
appropriate. No debug counter or event updates for instruction (6).

Instruction (1):
DVC DACx

Instruction (5):
DTLB Error, with or

without DAC

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b011. DSRR0 points to instruction (5). no MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(4) as
appropriate. No debug counter or event updates for instructions (5)-(6).
Note: Note: in this case the 2nd ld/st exception is masked. This

behavior is implementation dependent and may differ on other
CPUs.Instruction (1):

DVC DACx
Instruction (5):

DSI, with or without
DAC

e200z759n3 Core Reference Manual, Rev. 2

654 Freescale Semiconductor

Instruction (1):
DVC DACx

Instruction (5):
DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b100. DSRR0 points to instruction (6). Debug counter update
occurs for instructions (1)-(5) as appropriate. No debug counter or
event updates for instruction (6).
Note: Note: in this case if x==y, then the resultant state of DBSR and

DSRR0 may be indistinguishable from the “no DACy” case.

Instruction (1):
DVC DACx

Instruction (5):
DVC DACy

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b100. DSRR0 points to instruction (6). No MASx register update. No
ESR update.Debug counter update occurs for instructions (1)-(5) as
appropriate. No debug counter or event updates for instruction (6)

Note: Note: in this case if x==y, then the resultant state of DBSR and
DSRR0 may be indistinguishable from the “no DACy” case.

Table 12-5. DAC events and resultant updates, dual-issue case 4

Instruction
Sequence:

The following
pairs dual-issue:

(1) load/store
(2) alu

(3) load/store
(4) alu

(5) alu
(6) alu

Event(s) Result

Instruction (1):
DTLB Error, no DAC

Take DTLB exception, no DBSR update, update MASx registers for 1st
load/store instruction. Update ESR.

Instruction (1):
DSI, no DAC

Take DSI exception, no DBSR update, no MASx register update.
Update ESR.

Instruction (1):
DTLB Error, with

DACx

Take Debug exception, DBSR update setting DACx and IDE,
DAC_OFST set to 3’b000. DSRR0 points to instruction (1). No MASx
register update. No ESR update.

Instruction (1):
DSI, with DACx

Table 12-4. DAC events and Resultant Updates, Dual-issue case 3 (continued)

Instruction
Sequence:

The following
pairs dual-issue:

(1) load/store
(2) alu

(3) alu
(4) alu

(5) load/store
(6) alu

Event(s) Result

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 655

12.2.3 Linked Instruction Address and Data Address Compare event

Data Address Compare debug events may be ‘linked’ with an Instruction Address Compare event by
setting the DAC1LNK and/or DAC2LNK control bits in DBCR2 to further refine when a Data Address
Compare debug event is generated. DAC1 may be linked with IAC1, and DAC2 (when not used as a mask
or range bounds register) may be linked with IAC3. When linked, a DAC1 (or DAC2) debug event occurs

Instruction (1):
DACx

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b000. DSRR0 points to instruction (2). No MASx register update. No
ESR update.

Instruction (1):
DVC DACx

No other exceptions

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b011. DSRR0 points to instruction (5). No MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(4) as
appropriate. No debug counter or event updates for instructions (5)-(6)

Instruction (1):
DVC DACx

Instruction (3):
DTLB Error, with or

without DAC

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b001. DSRR0 points to instruction (3). no MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(2) as
appropriate. No debug counter or event updates for instructions (3)-(6).
Note: In this case the 2nd ld/st exception is masked. This behavior is

implementation dependent and may differ on other CPUs.
Instruction (1):

DVC DACx
Instruction (3):

DSI, with or without
DAC

Instruction (1):
DVC DACx

Instruction (3):
DACy

Take Debug exception, DBSR update setting DACx, DACy. DAC_OFST
set to 3’b010. DSRR0 points to instruction (4). Debug counter update
occurs for instructions (1)-(3) as appropriate. No debug counter or
event updates for instructions (4)-(6).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Instruction (1):
DVC DACx

Instruction (3):
DVC DACy

Take Debug exception, DBSR update setting DACx, DAC_OFST set to
3’b011. DSRR0 points to instruction (5). No MASx register update. No
ESR update. Debug counter update occurs for instructions (1)-(4) as
appropriate. No debug counter or event updates for instructions (5)-(6).
Note: In this case if x==y, then the resultant state of DBSR and DSRR0

may be indistinguishable from the “no DACy” case.

Table 12-5. DAC events and resultant updates, dual-issue case 4 (continued)

Instruction
Sequence:

The following
pairs dual-issue:

(1) load/store
(2) alu

(3) load/store
(4) alu

(5) alu
(6) alu

Event(s) Result

e200z759n3 Core Reference Manual, Rev. 2

656 Freescale Semiconductor

when the same instruction that generates the DAC1 (or DAC2) ‘hit’ also generates an IAC1 (or IAC3)
‘hit’. When linked, the IAC1 (or IAC3) event is not recorded in the Debug Status register, regardless of
whether a corresponding DAC1 (or DAC2) event occurs, or whether the IAC1 (or IAC3) event enable is
set.

When enabled and execution of a load or store class instruction results in a data access with an address that
meets the criteria specified in the DBCR0, DBCR2, DBCR4, DAC1, DAC2, DVC1, and DVC2 Registers,
and the instruction also meets the criteria for generating an Instruction Address Compare event, a Linked
Data Address Compare debug event occurs. This event can occur and be recorded in DBSR regardless of
the setting of MSRDE. The normal DAC1 and DAC2 status bits in the DBSR are used for recording these
events. The IAC1 and IAC3 status bits are not set if the corresponding Instruction Address Compare
register is linked.

Linking is enabled using control bits in DBCR2. If Data Address Compare debug events are used to control
or modify operation of the Debug Counter, linking is also available, even though DBCR0 may not have
enabled IAC or DAC events. Also, Instruction Address Compare events that are linked may still affect the
Debug Counter (if enabled to), thus may be used to either trigger a counter, or be counted, in contrast to
being blocked from affecting the DBSR.

NOTE
Linked DAC events will not be recorded or counted if a load multiple word
or store multiple word type instruction is interrupted prior to completion by
a critical input or external input interrupt.

12.2.4 Trap debug event

A Trap debug event (TRAP) occurs if Trap debug events are enabled (DBCR0TRAP=1), a Trap instruction
(tw, twi) is executed, and the conditions specified by the instruction for the trap are met. This event can
occur and be recorded in DBSR regardless of the setting of MSRDE. When a Trap debug event occurs, the
DBSRTRAP bit is set to 1 to record the debug exception.

12.2.5 Branch Taken debug event

A Branch Taken debug event (BRT) occurs if Branch Taken debug events are enabled (DBCR0BRT=1) and
execution is attempted of a branch instruction that will be taken (either an unconditional branch, or a
conditional branch whose branch condition is true), and MSRDE=1 or DBCR0EDM=1. Branch Taken
debug events are not recognized if MSRDE=0 and DBCR0EDM=0 at the time of execution of the branch
instruction and thus DBSRIDE can not be set by a Branch Taken debug event. When a Branch Taken debug
event is recognized, the DBSRBRT bit is set to 1 to record the debug exception, and the address of the
branch instruction will be recorded in DSRR0.

12.2.6 Instruction Complete debug event

An Instruction Complete debug event (ICMP) occurs if Instruction Complete debug events are enabled
(DBCR0ICMP=1), execution of any instruction is completed, and MSRDE=1 or DBCR0EDM=1. If
execution of an instruction is suppressed due to the instruction causing some other exception that is
enabled to generate an interrupt, then the attempted execution of that instruction does not cause an

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 657

Instruction Complete debug event. The sc instruction does not fall into the category of an instruction whose
execution is suppressed, since the instruction actually executes and then generates a System Call interrupt.
In this case, the Instruction Complete debug exception will also be set. When an Instruction Complete
debug event is recognized, DBSRICMP is set to 1 to record the debug exception and the address of the next
instruction to be executed will be recorded in DSRR0.

Instruction Complete debug events are not recognized if MSRDE=0 and DBCR0EDM=0 at the time of
execution of the instruction, thus DBSRIDE is not generally set by an ICMP debug event.

One circumstance may cause the DBSRICMP and DBSRIDE bits to be set. This occurs when a EFPU Round
exception occurs. Since the instruction is by definition completed (SRR0 points to the following
instruction), this interrupt takes higher priority than the Debug interrupt so as not to be lost, and DBSRIDE
is set to indicate the imprecise recognition of a Debug interrupt. In this case, the Debug interrupt will be
taken with SRR0 pointing to the instruction following the instruction that generated the EFPU Round
exception, and DSRR0 will point to the Round exception handler. In addition to occurring when
DBCR0IDM=1, this circumstance can also occur when DBCR0EDM=1.

NOTE

Instruction complete debug events are not generated by the execution of an instruction that sets MSRDE to
‘1’ while DBCR0ICMP=1, nor by the execution of an instruction that sets DBCR0ICMP to ‘1’ while
MSRDE=1 or DBCR0EDM=1.

12.2.7 Interrupt Taken debug event

An Interrupt Taken debug event (IRPT) occurs if Interrupt Taken debug events are enabled
(DBCR0IRPT=1) and a non-critical interrupt occurs. Only non-critical class interrupts cause an Interrupt
Taken debug event. This event can occur and be recorded in DBSR regardless of the setting of MSRDE.
When an Interrupt Taken debug event occurs, the DBSRIRPT bit is set to 1 to record the debug exception.
The value saved in DSRR0 will be the address of the non-critical interrupt handler.

12.2.8 Critical Interrupt Taken debug event

A Critical Interrupt Taken debug event (CIRPT) occurs if Critical Interrupt Taken debug events are enabled
(DBCR0CIRPT=1) and a critical interrupt (other than a Debug interrupt when the Debug APU is disabled)
occurs. Only critical class interrupts cause a Critical Interrupt Taken debug event. This event can occur and
be recorded in DBSR regardless of the setting of MSRDE. When a Critical Interrupt Taken debug event
occurs, the DBSRCIRPT bit is set to 1 to record the debug exception. The value saved in DSRR0 will be
the address of the critical interrupt handler. Note that this debug event should not normally be enabled
unless the Debug APU is also enabled to avoid corruption of CSRR0/1.

12.2.9 Return debug event

A Return debug event (RET) occurs if Return debug events are enabled (DBCR0RET=1) and an attempt is
made to execute an rfi or se_rfi instruction. This event can occur and be recorded in DBSR regardless of
the setting of MSRDE. When a Return debug event occurs, the DBSRRET bit is set to 1 to record the debug
exception.

e200z759n3 Core Reference Manual, Rev. 2

658 Freescale Semiconductor

If MSRDE=0 and DBCR0EDM=0 at the time of the execution of the rfi or se_rfi (i.e. before the MSR is
updated by the rfi or se_rfi), then DBSRIDE is also set to 1 to record the imprecise debug event.

If MSRDE=1 at the time of the execution of the rfi or se_rfi, a Debug interrupt will occur provided there
exists no higher priority exception that is enabled to cause an interrupt. Debug Save/Restore Register 0
will be set to the address of the rfi or se_rfi instruction.

12.2.10 Critical Return debug event

A Critical Return debug event (CRET) occurs if Critical Return debug events are enabled
(DBCR0CRET=1) and an attempt is made to execute an rfci or se_rfci instruction. This event can occur
and be recorded in DBSR regardless of the setting of MSRDE. When a Critical Return debug event occurs,
the DBSRCRET bit is set to 1 to record the debug exception.

If MSRDE=0 and DBCR0EDM=0 at the time of the execution of the rfci or se_rfci (i.e. before the MSR is
updated by the rfci or se_rfci), then DBSRIDE is also set to 1 to record the imprecise debug event.

If MSRDE=1 at the time of the execution of the rfci or se_rfci, a Debug interrupt will occur provided there
exists no higher priority exception that is enabled to cause an interrupt. Debug Save/Restore Register 0
will be set to the address of the rfci or se_rfci instruction. Note that this debug event should not normally
be enabled unless the Debug APU is also enabled to avoid corruption of CSRR0/1.

12.2.11 Debug Counter debug event

A Debug Counter debug event (DCNT1, DCNT2) occurs if Debug Counter debug events are enabled
(DBCR0DCNT1=1 or DBCR0DCNT2=1), a Debug Counter is enabled, and a Counter decrements to zero.
This event can occur and be recorded in DBSR regardless of the setting of MSRDE. When a Debug Counter
debug event occurs, DBSRDCNT{1,2} is set to ‘1’ to record the debug exception.

12.2.12 External debug event

An External debug event (DEVT1, DEVT2) occurs if External debug events are enabled (DBCR0DEVT1=1
or DBCR0DEVT2=1), and the respective p_devt1 or p_devt2 input signal transitions to the asserted state.
This event can occur and be recorded in DBSR regardless of the setting of MSRDE. When an External
debug event occurs, DBSRDEVT{1,2} is set to ‘1’ to record the debug exception.

12.2.13 Unconditional debug event

An Unconditional debug event (UDE) occurs when the Unconditional Debug Event (p_ude) input
transitions to the asserted state, and either DBCR0IDM=1 or DBCR0EDM=1. The Unconditional debug
event is the only debug event that does not have a corresponding enable bit for the event in DBCR0. This
event can occur and be recorded in DBSR regardless of the setting of MSRDE. When an Unconditional
debug event occurs, the DBSRUDE bit is set to ‘1’ to record the debug exception.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 659

12.3 Debug registers
This section describes debug-related registers that are software accessible. These registers are intended for
use by special debug tools and debug software, not by general application code.

Access to these registers (other than DBSR) by software is conditioned by the External Debug Mode
control bit (DBCR0EDM/EDBCR0EDM) and the settings of debug control register DBERC0, which can be
set by the hardware debug port. If DBCR0EDM is set and if the bit in DBERC0 corresponding to the
resource is cleared, software is prevented from modifying debug register values other than in DBSR, since
the resource is not “owned” by software. Software always has ownership of DBSR. Execution of a mtspr
instruction targeting a debug register or register field not “owned” by software will not cause modifications
to occur, and no exception will be signaled. In addition, since the external debugger hardware may be
manipulating debug register values, the state of these registers or register fields not “owned” by software
is not guaranteed to be consistent if accessed (read) by software with a mfspr instruction, other than the
DBCR0EDM bit itself and the DBERC0 register. Hardware always has full access to all registers and all
register fields through the OnCE register access mechanism, and it is up to the debug firmware to properly
implement modifications to these registers with read-modify-write operations to implement any control
sharing with software. Settings in DBERC0 should be considered by the debug firmware in order to
preserve software settings of control registers as appropriate when hardware modifications to the debug
registers is performed.

12.3.1 Debug address and value registers

Instruction Address Compare registers IAC1-8 are used to hold instruction addresses for address
comparison purposes. In addition, IAC2 and IAC4 hold mask information for IAC1 and IAC3 respectively
and IAC6 and IAC8 hold mask information for IAC5 and IAC7 respectively, when Address Bit Match
compare modes are selected. Note that when performing instruction address compares, the low order two
address bits of the instruction address and the corresponding IAC register are ignored for BookE
instruction pages, and the low order bit of the instruction address and the corresponding IAC register is
ignored for VLE instruction pages.

Data Address Compare registers DAC1 and DAC2 are used to hold data access addresses for address
comparison purposes. In addition, DAC2 holds mask information for DAC1 when Address Bit Match
compare mode is selected.

Data Value Compare registers DVC1 and DVC2 are used to hold data values for data comparison purposes.
DVC1 and DVC2 are 64-bit registers. Data value comparisons are used to qualify Data Address compare
debug events. DVC1 is associated with DAC1, and DVC2 is associated with DAC2. The most significant
byte of the DVC1(2) register (labeled B0 in Figure 12-2) corresponds to the byte data value transferred
to/from memory byte offset 0, 8, ..., and the least significant byte of the register (labeled B7 in Figure 12-2)
corresponds to byte offset 7, F, When enabled for performing data value comparisons, each enabled
byte in DVC1(2) is compared with the memory value transferred on the corresponding active byte lane of
the data memory interface to determine if a match occurs. Inactive byte lanes do not participate in the
comparison, they are implicitly masked. Table 14-11 shows active byte lanes for data transfers. Software
must also program the DVC1(2) register byte positions based on the endian mode and alignment of the
access. Misaligned accesses are not fully supported, since the data address and data value comparisons are
only performed on the initial access in the case of a misaligned access; thus, accesses that cross a 64-bit

e200z759n3 Core Reference Manual, Rev. 2

660 Freescale Semiconductor

boundary cannot be fully matched. For address and size combinations that involve two transfers, only the
initial transfer is used for data address and value matching. DVC1 and DVC2 may be read or written using
mtspr and mfspr instructions. All 64-bits of the GPR will be accessed, regardless of the value of the
MSRSPE bit.

12.3.2 Debug Counter register (DBCNT)

The Debug Counter register (DBCNT) contains two 16-bit counters (CNT1 and CNT2) that can be
configured to operate independently, or can be concatenated into a single 32-bit counter. Each counter can
be configured to count down (decrement) when one or more count-enabled events occur. The counters will
operate regardless of whether counters are enabled to generate debug exceptions. When a count value
reaches zero, a Debug Count event is signaled, and a Debug event can be generated (if enabled). Upon
reaching zero, the counter(s) are frozen. A debug counter signals an event on the transition from a value
of one to a final value of zero. Loading a value of zero into the counter prevents the counter from counting.
The Debug Counter is configured by the contents of Debug Control Register 3. The DBCNT register is
shown in Figure 12-3.

Refer to Section 12.3.3.4, Debug Control Register 3 (DBCR3), for more information about updates to the
DBCNT register. Certain caveats exist on how the DBCNT and DBCR3 register are modified when one
or more counters are enabled.

12.3.3 Debug Control and Status registers

Debug Control Registers (DBCR0-6 and DBERC0) are used to enable debug events, reset the processor,
control timer operation during debug events, and set the debug mode of the processor. The Debug Status
register (DBSR) records debug exceptions while Internal Debug Mode is enabled.

e200z759n3 requires that a context synchronizing instruction follow a mtspr DBCR0-6 or DBSR to ensure
that any alterations enabling/disabling debug events are effective. The context synchronizing instruction
may or may not be affected by the alteration. Typically, an isync instruction is used to create a

B0 B1 B2 B3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

B4 B5 B6 B7

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

SPR - 318 (DVC1), 319 (DVC2); Read/Write; Reset - Unaffected

Figure 12-2. DVC1, DVC2 registers

CNT1 CNT2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 562; Read/Write; Reset - Unaffected

Figure 12-3. DBCNT register

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 661

synchronization boundary beyond which it can be guaranteed that the newly written control values are in
effect.

For watchpoint generation and counter operation, configuration settings contained in DBCR1-5 are used,
even though the corresponding event(s) may be disabled (via DBCR0) from setting DBSR flags.

12.3.3.1 Debug Control Register 0 (DBCR0)

Debug Control Register 0 is used to enable debug modes and controls which debug events are allowed to
set DBSR or EDBSR0 flags. e200z759n3 adds some implementation specific bits to this register, as seen
in Figure 12-4.

Table 12-6 provides field descriptions for Debug Control Register 0.

E
D

M

ID
M RST

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4
DAC1 DAC2

R
E

T

IA
C

5

IA
C

6

IA
C

7

IA
C

8

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

0 F
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 308; Read/Write; Reset1 - 0x0

1 DBCR0EDM is affected by j_trst_b or m_por assertion, and remains reset while in the Test_Logic_Reset state, but is
not affected by p_reset_b. All other bits are reset by processor reset p_reset_b if DBCR0EDM=0, as well as
unconditionally by m_por. If DBCR0EDM=1, DBERC0 masks off hardware-owned resources (other than RST) from
reset by p_reset_b, and only software-owned resources indicated by DBERC0 and the DBCR0RST field will be reset
by p_reset_b. The DBCR0RST field will always be reset by p_reset_b regardless of the value of DBCR0EDM.

Figure 12-4. DBCR0 register

Table 12-6. DBCR0 field descriptions

Bit(s) Name Description

0 EDM External Debug Mode. This bit is read-only by software.
0 External debug mode disabled. Internal debug events not mapped into external debug events.
1 External debug mode enabled. Events will not cause the CPU to vector to interrupt code.

Software is not permitted to write to debug registers {DBCR0-6, DBCNT, IAC1-8, DAC1-2}
unless permitted by settings in EDBCR0. Hardware-owned events will set status bits in
EDBSR0.

When external debug mode is enabled, hardware-owned resources in debug registers are not
affected by processor reset p_reset_b. This allows the debugger to set up hardware debug
events that remain active across a processor reset.

Programming Notes:
It is recommended that debug status bits in the Debug Status Registers be cleared before
disabling external debug mode to avoid any internal imprecise debug interrupts.
Software may use this bit to determine if external debug has control over the debug registers.
The hardware debugger must set the EDM bit to ‘1’ before other bits in this register (and other
debug registers) may be altered. On the initial setting of this bit to ‘1’, all other bits are
unchanged. This bit is only writable through the OnCE port.

1 IDM Internal Debug Mode
0 Debug exceptions are disabled. Debug events do not affect DBSR.
1 Debug exceptions are enabled. Enabled debug events owned by software will update the

DBSR. If MSRDE=1, the occurrence of a debug event, or the recording of an earlier debug
event in the Debug Status Register when MSRDE was cleared, will cause a Debug interrupt.

e200z759n3 Core Reference Manual, Rev. 2

662 Freescale Semiconductor

2:3 RST Reset Control
00 No function
01 p_dbrstc[1] pin asserted by Debug Reset Control. Allows external device to initiate

processor or system reset
10 p_dbrstc[0] pin asserted by Debug Reset Control. Allows external device to initiate

processor or system reset.
11 Reserved

4 ICMP Instruction Complete Debug Event Enable
0 ICMP debug events are disabled
1 ICMP debug events are enabled

5 BRT Branch Taken Debug Event Enable
0 BRT debug events are disabled
1 BRT debug events are enabled

6 IRPT Interrupt Taken Debug Event Enable
0 IRPT debug events are disabled
1 IRPT debug events are enabled

7 TRAP Trap Taken Debug Event Enable
0 TRAP debug events are disabled
1 TRAP debug events are enabled

8 IAC1 Instruction Address Compare 1 Debug Event Enable
0 IAC1 debug events are disabled
1 IAC1 debug events are enabled

9 IAC2 Instruction Address Compare 2 Debug Event Enable
0 IAC2 debug events are disabled
1 IAC2 debug events are enabled

10 IAC3 Instruction Address Compare 3 Debug Event Enable
0 IAC3 debug events are disabled
1 IAC3 debug events are enabled

11 IAC4 Instruction Address Compare 4 Debug Event Enable
0 IAC4 debug events are disabled
1 IAC4 debug events are enabled

12:13 DAC1 Data Address Compare 1 Debug Event Enable
00 DAC1 debug events are disabled
01 DAC1 debug events are enabled only for store-type data storage accesses
10 DAC1 debug events are enabled only for load-type data storage accesses
11 DAC1 debug events are enabled for load-type or store-type data storage accesses

14:15 DAC2 Data Address Compare 2 Debug Event Enable
00 DAC2 debug events are disabled
01 DAC2 debug events are enabled only for store-type data storage accesses
10 DAC2 debug events are enabled only for load-type data storage accesses
11 DAC2 debug events are enabled for load-type or store-type data storage accesses

16 RET Return Debug Event Enable
0 RET debug events are disabled
1 RET debug events are enabled

Table 12-6. DBCR0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 663

12.3.3.2 Debug Control Register 1 (DBCR1)

Debug Control Register 1 is used to configure Instruction Address Compare operation. The DBCR1
register is shown in Figure 12-5.

17 IAC5 Instruction Address Compare 5 Debug Event Enable
0 IAC5 debug events are disabled
1 IAC5 debug events are enabled

18 IAC6 Instruction Address Compare 6 Debug Event Enable
0 IAC6 debug events are disabled
1 IAC6 debug events are enabled

19 IAC7 Instruction Address Compare 7 Debug Event Enable
0 IAC7 debug events are disabled
1 IAC7 debug events are enabled

20 IAC8 Instruction Address Compare 8 Debug Event Enable
0 IAC8 debug events are disabled
1 IAC8 debug events are enabled

21 DEVT1 External Debug Event 1 Enable
0 DEVT1 debug events are disabled
1 DEVT1 debug events are enabled

22 DEVT2 External Debug Event 2 Enable
0 DEVT2 debug events are disabled
1 DEVT2 debug events are enabled

23 DCNT1 Debug Counter 1 Debug Event Enable
0 Counter 1 debug events are disabled
1 Counter 1 debug events are enabled

24 DCNT2 Debug Counter 2 Debug Event Enable
0 Counter 2 debug events are disabled
1 Counter 2 debug events are enabled

25 CIRPT Critical Interrupt Taken Debug Event Enable
0 CIRPT debug events are disabled
1 CIRPT debug events are enabled

26 CRET Critical Return Debug Event Enable
0 CRET debug events are disabled
1 CRET debug events are enabled

27:30 — Reserved

31 FT Freeze Timers on Debug Event
0 TimeBase Timers are unaffected by set DBSR/EDBSR0 bits
1 Disable clocking of TimeBase timers if any DBSR bit is set (any EDBSR0 bit set if DBCR0FT

owned by hardware) except MRR or CNT1TRG

Table 12-6. DBCR0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

664 Freescale Semiconductor

Table 12-7 provides field descriptions for Debug Control Register 1.

IA
C

1U
S

IA
C

1E
R

IA
C

2U
S

IA
C

2E
R

IA
C

12
M

0

IA
C

3U
S

IA
C

3E
R

IA
C

4U
S

IA
C

4E
R

IA
C

34
M

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 309; Read/Write; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b.

Figure 12-5. DBCR1 register

Table 12-7. DBCR1 field descriptions

Bits Name Description

0:1 IAC1US Instruction Address Compare 1 User/Supervisor Mode
00 IAC1 debug events not affected by MSRPR
01 Reserved
10 IAC1 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC1 debug events can only occur if MSRPR=1. (User mode)

2:3 IAC1ER Instruction Address Compare 1 Effective/Real Mode
00 IAC1 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC1 debug events are based on effective address and can only occur if MSRIS=0
11 IAC1 debug events are based on effective address and can only occur if MSRIS=1

4:5 IAC2US Instruction Address Compare 2 User/Supervisor Mode
00 IAC2 debug events not affected by MSRPR
01 Reserved
10 IAC2 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC2 debug events can only occur if MSRPR=1. (User mode)

6:7 IAC2ER Instruction Address Compare 2 Effective/Real Mode
00 IAC2 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC2 debug events are based on effective address and can only occur if MSRIS=0
11 IAC2 debug events are based on effective address and can only occur if MSRIS=1

8:9 IAC12M Instruction Address Compare 1/2 Mode
00 Exact address compare. IAC1 debug events can only occur if the address of the instruction

fetch is equal to the value specified in IAC1. IAC2 debug events can only occur if the address
of the instruction fetch is equal to the value specified in IAC2.

01 Address bit match. IAC1 debug events can occur only if the address of the instruction fetch,
ANDed with the contents of IAC2 are equal to the contents of IAC1, also ANDed with the
contents of IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10 Inclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC1 and less than the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

11 Exclusive address range compare. IAC1 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value
specified in IAC2. IAC2 debug events do not occur. IAC1US and IAC1ER settings are used.

10:15 — Reserved

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 665

12.3.3.3 Debug Control Register 2 (DBCR2)

Debug Control Register 2 is used to configure Data Address Compare and Data Value Compare
operation.The DBCR2 register is shown in Figure 12-6.

16:17 IAC3US Instruction Address Compare 3 User/Supervisor Mode
00 IAC3 debug events not affected by MSRPR
01 Reserved
10 IAC3 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC3 debug events can only occur if MSRPR=1 (User mode)

18:19 IAC3ER Instruction Address Compare 3 Effective/Real Mode
00 IAC3 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC3 debug events are based on effective address and can only occur if MSRIS=0
11 IAC3 debug events are based on effective address and can only occur if MSRIS=1

20:21 IAC4US Instruction Address Compare 4 User/Supervisor Mode
00 IAC4 debug events not affected by MSRPR
01 Reserved
10 IAC4 debug events can only occur if MSRPR=0 (Supervisor mode).
11 IAC4 debug events can only occur if MSRPR=1. (User mode)

22:23 IAC4ER Instruction Address Compare 4 Effective/Real Mode
00 IAC4 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC4 debug events are based on effective address and can only occur if MSRIS=0
11 IAC4 debug events are based on effective address and can only occur if MSRIS=1

24:25 IAC34M Instruction Address Compare 3/4 Mode
00 Exact address compare. IAC3 debug events can only occur if the address of the instruction

fetch is equal to the value specified in IAC3. IAC4 debug events can only occur if the address
of the instruction fetch is equal to the value specified in IAC4.

01 Address bit match. IAC3 debug events can occur only if the address of the instruction fetch,
ANDed with the contents of IAC4 are equal to the contents of IAC3, also ANDed with the
contents of IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

10 Inclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is greater than or equal to the value specified in IAC3 and less than the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

11 Exclusive address range compare. IAC3 debug events can occur only if the address of the
instruction fetch is less than the value specified in IAC3 or is greater than or equal to the value
specified in IAC4. IAC4 debug events do not occur. IAC3US and IAC3ER settings are used.

26:31 — Reserved

D
A

C
1U

S

D
A

C
1E

R

D
A

C
2U

S

D
A

C
2E

R

D
A

C
12

M

D
A

C
1L

N
K

D
A

C
2L

N
K

D
V

C
1M

D
V

C
2M

DVC1BE DVC2BE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 12-6. DBCR2 Register

Table 12-7. DBCR1 field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

666 Freescale Semiconductor

Table 12-8 provides field descriptions for Debug Control Register 2.

SPR - 310; Read/Write; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b.

Table 12-8. DBCR2 field descriptions

Bit(s) Name Description

0:1 DAC1US Data Address Compare 1 User/Supervisor Mode
00 DAC1 debug events not affected by MSRPR
01 Reserved
10 DAC1 debug events can only occur if MSRPR=0 (Supervisor mode)
11 DAC1 debug events can only occur if MSRPR=1. (User mode)

2:3 DAC1ER Data Address Compare 1 Effective/Real Mode
00 DAC1 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 DAC1 debug events are based on effective address and can only occur if MSRDS=0
11 DAC1 debug events are based on effective address and can only occur if MSRDS=1

4:5 DAC2US Data Address Compare 2 User/Supervisor Mode.
00 DAC2 debug events not affected by MSRPR
01 Reserved
10 DAC2 debug events can only occur if MSRPR=0 (Supervisor mode)
11 DAC2 debug events can only occur if MSRPR=1. (User mode)

6:7 DAC2ER Data Address Compare 2 Effective/Real Mode
00 DAC2 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 DAC2 debug events are based on effective address and can only occur if MSRDS=0
11 DAC2 debug events are based on effective address and can only occur if MSRDS=1

8:9 DAC12M Data Address Compare 1/2 Mode
00 Exact address compare. DAC1 debug events can only occur if the address of the data

access is equal to the value specified in DAC1. DAC2 debug events can only occur if the
address of the data access is equal to the value specified in DAC2.

01 Address bit match. DAC1 debug events can occur only if the address of the data access
ANDed with the contents of DAC2, are equal to the contents of DAC1 also ANDed with the
contents of DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are
used.

10 Inclusive address range compare. DAC1 debug events can occur only if the address of the
data access is greater than or equal to the value specified in DAC1 and less than the value
specified in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are
used.

11 Exclusive address range compare. DAC1 debug events can occur only if the address of the
data access is less than the value specified in DAC1 or is greater than or equal to the value
specified in DAC2. DAC2 debug events do not occur. DAC1US and DAC1ER settings are
used.

Figure 12-6. DBCR2 Register

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 667

10 DAC1LNK Data Address Compare 1 Linked
0 No effect
1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do not affect

DBSR
When linked to IAC1, DAC1 debug events are conditioned based on whether the instruction
also generated an IAC1 debug event

11 DAC2LNK Data Address Compare 2 Linked
0 No effect eopg events are linked to IAC3 debug events. IAC3 debug events do not affect

DBSR
When linked to IAC3, DAC2 debug events are conditioned based on whether the instruction
also generated an IAC3 debug event. DAC2 can only be linked if DAC12M specifies Exact
Address Compare since DAC2 debug events are not generated in the other compare modes.

12:13 DVC1M Data Value Compare 1 Mode
When DBCR4DVC1C=0:
00 DAC1 debug events not affected by data value compares.
01 DAC1 debug events can only occur when all bytes specified in the DVC1BE field match the

corresponding data byte values for active byte lanes of the memory access.
10 DAC1 debug events can only occur when any byte specified in the DVC1BE field matches

the corresponding data byte value for active byte lanes of the memory access.
11 DAC1 debug events can only occur when all bytes specified in the DVC1BE field within at

least one of the halfwords of the data value of the memory access matches the
corresponding DVC1 value.

Note: Inactive byte lanes of the memory access are automatically masked.

When DBCR4DVC1C=1:
00 Reserved
01 DAC1 debug events can only occur when any byte specified in the DVC1BE field does not

match the corresponding data byte value for active byte lanes of the memory access. If all
active bytes match, then no event will be generated.

10 DAC1 debug events can only occur when all bytes specified in the DVC1BE field do not
match the corresponding data byte values for active byte lanes of the memory access. If
any active byte match occurs, no event will be generated.

11 Reserved
Note: Inactive byte lanes of the memory access are automatically masked.

Table 12-8. DBCR2 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

668 Freescale Semiconductor

14:15 DVC2M Data Value Compare 2 Mode
When DBCR4DVC2C=0:
00 DAC2 debug events not affected by data value compares.
01 DAC2 debug events can only occur when all bytes specified in the DVC2BE field match the

corresponding data byte values for active byte lanes of the memory access.
10 DAC2 debug events can only occur when any byte specified in the DVC2BE field matches

the corresponding data byte value for active byte lanes of the memory access.
11 DAC2 debug events can only occur when all bytes specified in the DVC2BE field within at

least one of the halfwords of the data value of the memory access matches the
corresponding DVC2 value.

Note: Inactive byte lanes of the memory access are automatically masked.

When DBCR4DVC2C=1:
00 Reserved
01 DAC2 debug events can only occur when any byte specified in the DVC2BE field does not

match the corresponding data byte value for active byte lanes of the memory access. If all
active bytes match, then no event will be generated.

10 DAC2 debug events can only occur when all bytes specified in the DVC2BE field do not
match the corresponding data byte values for active byte lanes of the memory access. If
any active byte match occurs, no event will be generated.

11 Reserved
Note: Inactive byte lanes of the memory access are automatically masked.

16:23 DVC1BE Data Value Compare 1 Byte Enables
Specifies which bytes in the aligned doubleword value associated with the memory access are
compared to the corresponding bytes in DVC1. Inactive byte lanes of a memory access smaller
than 64-bits are automatically masked by hardware. If all bits in the DVC1BE field are clear,
then a match will occur regardless of the data. Misaligned accesses that cross a doubleword
boundary are not fully supported.
1xxxxxxx - Byte lane 0 is enabled for comparison with the value in bits 0:7 of DVC1.
x1xxxxxx - Byte lane 1 is enabled for comparison with the value in bits 8:15 of DVC1.
xx1xxxxx - Byte lane 2 is enabled for comparison with the value in bits 16:23 of DVC1.
xxx1xxxx - Byte lane 3 is enabled for comparison with the value in bits 24:31 of DVC1.
xxxx1xxx - Byte lane 4 is enabled for comparison with the value in bits 32:39 of DVC1.
xxxxx1xx - Byte lane 5 is enabled for comparison with the value in bits 40:47 of DVC1.
xxxxxx1x - Byte lane 6 is enabled for comparison with the value in bits 48:55 of DVC1.
xxxxxxx1 - Byte lane 7 is enabled for comparison with the value in bits 56:63 of DVC1.

24:31 DVC2BE Data Value Compare2 Byte Enables
Specifies which bytes in the aligned doubleword value associated with the memory access are
compared to the corresponding bytes in DVC2. Inactive byte lanes of a memory access smaller
than 64-bits are automatically masked by hardware. If all bits in the DVC1BE field are clear,
then a match will occur regardless of the data. Misaligned accesses that cross a doubleword
boundary are not fully supported.
1xxxxxxx - Byte lane 0 is enabled for comparison with the value in bits 0:7 of DVC2.
x1xxxxxx - Byte lane 1 is enabled for comparison with the value in bits 8:15 of DVC2.
xx1xxxxx - Byte lane 2 is enabled for comparison with the value in bits 16:23 of DVC2.
xxx1xxxx - Byte lane 3 is enabled for comparison with the value in bits 24:31 of DVC2.
xxxx1xxx - Byte lane 4 is enabled for comparison with the value in bits 32:39 of DVC2.
xxxxx1xx - Byte lane 5 is enabled for comparison with the value in bits 40:47 of DVC2.
xxxxxx1x - Byte lane 6 is enabled for comparison with the value in bits 48:55 of DVC2.
xxxxxxx1 - Byte lane 7 is enabled for comparison with the value in bits 56:63 of DVC2.

Table 12-8. DBCR2 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 669

12.3.3.4 Debug Control Register 3 (DBCR3)

Debug Control Register 3 (DBCR3) is used to enable and configure the Debug Counter and debug counter
events. For counter operation, the specific debug events that cause counters to decrement are specified in
DBCR3. Note that the corresponding events do not need to be (and probably should not be) enabled in
DBCR0. The IAC1–IAC4 and DAC1–DAC2 control fields in DBCR0 are ignored for counter operations,
and the control fields in DBCR3 determine when counting is enabled. DBCR1 and DBCR2 control fields
are also used to determine the configuration of IAC1–4 and DAC1–2 operation for counting, even though
corresponding events may be disabled via DBCR0. Multiple count-enabled events that occur during
execution of an instruction will typically cause only a single decrement of a counter. As an example, if
more than one IAC or DAC register hits and is enabled for counting, only a single count will occur per
counter. During lmw and stmw instructions, multiple DACx hits could occur. If the instruction is not
interrupted prior to completion, a single decrement of a counter will occur. Note that if the counters are
operating independently, both may count for the same instruction.

The Debug Counter Register (DBCNT) is configured by DBCR3CONFIG to operate either as separate
16-bit Counter 1 and Counter 2, or as a combined 32-bit counter (using control bits in DBCR3 for
Counter 1). Counters are enabled whenever any of their respective Count Enable event control bits are set
to ‘1’ and either DBCR0IDM or DBCR0EDM is set to ‘1’. Counters are frozen during a hardware “debug
session” (see Section 12.4.2, OnCE introduction). Counter 1 may be configured to count down on a
number of different debug events. Counter 2 is also configurable to count down on instruction complete,
instruction or data address compare events, and external events.

Special capability is provided for Counter 1 to be triggered to begin counting down by a subset of events
(IAC1, IAC3, DAC1R, DAC1W, DEVT1, DEVT2, and Counter 2). When one or more of the Counter 1
trigger bits is set (IAC1T1, IAC3T1, DAC1RT1, DAC1WT1, DEVT1T1, DEVT2T1, CNT2T1), Counter
1 is frozen until at least one of the triggering events occurs, and is then enabled to begin operation.
Depending on the trigger source, if it is enabled for counting, the trigger event may be counted. Triggering
status for Counter 1 is provided in the Debug Status Register or External Debug Status Register 0.
Triggering mode is enabled by a mtspr DBCR3, which sets one or more of the trigger enable bits and also
enables Counter 1. Once set, the trigger can be re-armed by clearing the DBSRCNT1TRG or
EDBSR0CNT1TRG status bit.

Most combinations of enables do not make sense and should be avoided. As an example, if DBCR3ICMP
is set for Counter 1, no other count enable should be set for Counter 1. Conversely, multiple Instruction
Address Compare count enables are allowed to be set and may be useful.

Due to instruction pipelining issues and other constraints, most combinations of events are not supported
for event counting. Only the following combinations are intended to be used, and other combinations are
not supported:

• Any combination of IAC[1–4]

• Any combination of DAC[1–2] including linking

• Any combination of DEVT[1–2]

• Any combination of IRPT, RET

Limited support is provided for the following combinations:

e200z759n3 Core Reference Manual, Rev. 2

670 Freescale Semiconductor

• Any combination of IAC[1–4] with DAC[1–2] (linked or unlinked). Note that these combinations
may be reported in an imprecise fashion, with DBSRIDE set in such cases.

Due to pipelining and detection of IAC events early in the pipeline and DAC events late in the pipeline,
no guarantee is made on the exact instruction boundary that a debug exception will be generated when IAC
and DAC events are combined for counting. This also applies to the case where Counter 1 is being
triggered by Counter 2, and a combination of IAC and DAC events are being enabled for the counters,
even if only one of these types is enabled for a particular counter. In general, when an IAC event logically
follows closely behind a DAC event (within several instructions), it cannot be recognized immediately
since the DAC event has not necessarily been generated in the pipeline at the time the IAC is seen, and
thus the counter may not decrement to zero for the IAC event until after the instruction with the IAC (and
perhaps several additional instructions) has proceeded down the execution pipeline. The instruction
boundary where the debug exception is actually generated in this case will typically follow the IAC by up
to several instructions.

Note that the counters will operate regardless of whether counters are enabled to generate debug
exceptions.

If Counter 2 is being used to trigger Counter 1, Counter 2 events should not normally be enabled in DBCR,
and will not be blocked.

NOTE
Multiple IAC or DAC events will not be counted during a load multiple
word or store multiple word type instruction, and no count will occur if
either is interrupted by a critical input or external input interrupt prior to
completion.

DBCR3 is a e200z759n3 implementation specific register and is shown in Figure 12-7.

Table 12-9 provides field descriptions for Debug Control Register 3.

D
E

V
T

1C
1

D
E

V
T

2C
1

IC
M

P
C

1

IA
C

1C
1

IA
C

2C
1

IA
C

3C
1

IA
C

4C
1

D
A

C
1R

C
1

D
A

C
1W

C
1

D
A

C
2R

C
1

D
A

C
2W

C
1

IR
P

T
C

1

R
E

T
C

1

D
E

V
T

1C
2

D
E

V
T

2C
2

IC
M

P
C

2

IA
C

1C
2

IA
C

2C
2

IA
C

3C
2

IA
C

4C
2

D
A

C
1R

C
2

D
A

C
1W

C
2

D
A

C
2R

C
2

D
A

C
2W

C
2

D
E

V
T

1T
1

D
E

V
T

2T
1

IA
C

1T
1

IA
C

3T
1

D
A

C
1R

T
1

D
A

C
1W

T
1

C
N

T
2T

1

C
O

N
F

IG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 561; Read/Write; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b.

Figure 12-7. DBCR3 register

Table 12-9. DBCR3 field descriptions

Bit(s) Name Description

0 DEVT1C1 External Debug Event 1 Count 1 Enable
0 Counting DEVT1 debug events by Counter 1 is disabled
1 Counting DEVT1 debug events by Counter 1 is enabled

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 671

1 DEVT2C1 External Debug Event 2 Count 1 Enable
0 Counting DEVT2 debug events by Counter 1 is disabled
1 Counting DEVT2 debug events by Counter 1 is enabled

2 ICMPC1 Instruction Complete Debug Event Count 1 Enable
0 Counting ICMP debug events by Counter 1 is disabled
1 Counting ICMP debug events by Counter 1 is enabled
Note: ICMP events are masked by MSRDE=0 when operating in Internal Debug Mode.

3 IAC1C1 Instruction Address Compare 1 Debug Event Count 1 Enable
0 Counting IAC1 debug events by Counter 1 is disabled
1 Counting IAC1 debug events by Counter 1 is enabled

4 IAC2C1 Instruction Address Compare2 Debug Event Count 1 Enable
0 Counting IAC2 debug events by Counter 1 is disabled
1 Counting IAC2 debug events by Counter 1 is enabled

5 IAC3C1 Instruction Address Compare 3 Debug Event Count 1 Enable
0 Counting IAC3 debug events by Counter 1 is disabled
1 Counting IAC3 debug events by Counter 1 is enabled

6 IAC4C1 Instruction Address Compare 4 Debug Event Count 1 Enable
0 Counting IAC4 debug events by Counter 1 is disabled
1 Counting IAC4 debug events by Counter 1 is enabled

7 DAC1RC1 Data Address Compare 1 Read Debug Event Count 1 Enable1

0 Counting DAC1R debug events by Counter 1 is disabled
1 Counting DAC1R debug events by Counter 1 is enabled

8 DAC1WC1 Data Address Compare 1 Write Debug Event Count 1 Enable1

0 Counting DAC1W debug events by Counter 1 is disabled
1 Counting DAC1W debug events by Counter 1 is enabled

9 DAC2RC1 Data Address Compare 2 Read Debug Event Count 1 Enable1

0 Counting DAC2R debug events by Counter 1 is disabled
1 Counting DAC2R debug events by Counter 1 is enabled

10 DAC2WC1 Data Address Compare 2 Write Debug Event Count 1 Enable1

0 Counting DAC2W debug events by Counter 1 is disabled
1 Counting DAC2W debug events by Counter 1 is enabled

11 IRPTC1 Interrupt Taken Debug Event Count 1 Enable
0 Counting IRPT debug events by Counter 1 is disabled
1 Counting IRPT debug events by Counter 1 is enabled

12 RETC1 Return Debug Event Count 1 Enable
0 Counting RET debug events by Counter 1 is disabled
1 Counting RET debug events by Counter 1 is enabled

13 DEVT1C2 External Debug Event 1 Count 2 Enable
0 Counting DEVT1 debug events by Counter 2 is disabled
1 Counting DEVT1 debug events by Counter 2 is enabled

14 DEVT2C2 External Debug Event 2 Count 2 Enable
0 Counting DEVT2 debug events by Counter 2 is disabled
1 Counting DEVT2 debug events by Counter 2 is enabled

Table 12-9. DBCR3 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

672 Freescale Semiconductor

15 ICMPC2 Instruction Complete Debug Event Count 2 Enable
0 Counting ICMP debug events by Counter 2 is disabled
1 Counting ICMP debug events by Counter 2 is enabled
Note: ICMP events are masked by MSRDE=0 when operating in Internal Debug Mode.

16 IAC1C2 Instruction Address Compare 1 Debug Event Count 2 Enable
0 Counting IAC1 debug events by Counter 2 is disabled
1 Counting IAC1 debug events by Counter 2 is enabled

17 IAC2C2 Instruction Address Compare2 Debug Event Count 2 Enable
0 Counting IAC2 debug events by Counter 2 is disabled
1 Counting IAC2 debug events by Counter 2 is enabled

18 IAC3C2 Instruction Address Compare 3 Debug Event Count 2 Enable
0 Counting IAC3 debug events by Counter 2 is disabled
1 Counting IAC3 debug events by Counter 2 is enabled

19 IAC4C2 Instruction Address Compare 4 Debug Event Count 2 Enable
0 Counting IAC4 debug events by Counter 2 is disabled
1 Counting IAC4 debug events by Counter 2 is enabled

20 DAC1RC2 Data Address Compare 1 Read Debug Event Count 2 Enable1

0 Counting DAC1R debug events by Counter 2 is disabled
1 Counting DAC1R debug events by Counter 2 is enabled

21 DAC1WC2 Data Address Compare 1 Write Debug Event Count 2 Enable1

0 Counting DAC1W debug events by Counter 2 is disabled
1 Counting DAC1W debug events by Counter 2 is enabled

22 DAC2RC2 Data Address Compare 2 Read Debug Event Count 2 Enable1

0 Counting DAC2R debug events by Counter 2 is disabled
1 Counting DAC2R debug events by Counter 2 is enabled

23 DAC2WC2 Data Address Compare 2 Write Debug Event Count 2 Enable1

0 Counting DAC2W debug events by Counter 2 is disabled
1 Counting DAC2W debug events by Counter 2 is enabled

24 DEVT1T1 External Debug Event 1 Trigger Counter 1 Enable
0 No effect
1 A DEVT1 debug event will trigger Counter 1 operation

25 DEVT2T1 External Debug Event 2 Trigger Counter 1 Enable
0 No effect
1 A DEVT2 debug event will trigger Counter 1 operation

26 IAC1T1 Instruction Address Compare 1 Trigger Counter 1 Enable
0 No effect
1 An IAC1 debug event will trigger Counter 1 operation

27 IAC3T1 Instruction Address Compare 3 Trigger Counter 1 Enable
0 No effect
1 An IAC3 debug event will trigger Counter 1 operation

28 DAC1RT1 Data Address Compare 1 Read Trigger Counter 1 Enable
0 No effect
1 A DAC1R debug event will trigger Counter 1 operation

Table 12-9. DBCR3 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 673

NOTE
Updates to the DBCR0, DBSR, DBCR3, and DBCNT registers should be
performed carefully if the counters are currently enabled for counting
events. For these cases, it is possible that the instruction that updates the
counters or control over the counters will cause one or more counter events
to occur (DCNT1, DCNT2, CNT1TRG), even if the result of the instruction
is to modify the counter value or control value to a state where counter
events would not be expected to occur. This is due to the pipelined nature of
the counter and control operation. As an example, if a counter was enabled
to count ICMP events, and MSRDE = ‘1’, and the value of the counter is ‘1’
prior to execution of a mtspr instruction that is loading the counter with a
different value, a counter event will be generated following completion of
the mtspr, even though the counter ends up being loaded with a new value.
At the end of the mtspr instruction, a debug event will be posted, but the
counter value will be that of the newly written count value. In addition, no
decrement of the new counter value is performed at the completion of a
mtspr instruction that modifies a counter, regardless of whether a debug
event is generated based on the old counter value. To avoid this, it is
recommended that the DBCNT and DBCR3 values be modified only when
no possibility of a counter related debug event on the mtspr instruction is
possible. Modifying DBCR0 to affect counter event enabling/disabling may
have similar issues, as may modifying the DBSRCNT1TRG bit.

29 DAC1WT1 Data Address Compare 1 Write Trigger Counter 1 Enable
0 No effect
1 A DAC1W debug event will trigger Counter 1 operation

30 CNT2T1 Debug Counter 2 Trigger Counter 1 Enable
0 No effect
1 Counter 2 decrementing to a value of ‘0’ will trigger Counter 1 operation

31 CONFIG Debug Counter Configuration
0 Counter 1 and Counter 2 are independent counters
1 Counter 1 and Counter 2 are concatenated into a single 32-bit counter. The event count

control bits for Counter 1 are used and the event count control bits for Counter 2 are
ignored.

1 If the DACx field in DBCR0 is set to restrict events to only reads or only writes, only those events will be counted if
enabled in DBCR3. In general, DAC events should be disabled in DBCR0.

Table 12-9. DBCR3 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

674 Freescale Semiconductor

As another example, if a counter was enabled to count ICMP events, and
MSRDE = ‘1’, and the value of the counter is ‘1’ prior to execution of a
mtspr instruction that is loading DBCR3 with a different value, a counter
event may be generated following completion of the mtspr, even though
DBCR3 ends up being loaded with a new value that is disabling the
particular event from being counted. At the end of the mtspr instruction, a
debug event will be posted, but the DBCR3 value will reflect the newly
established control, which may indicate that the particular event is not to
cause a counter update. Modifying DBCR0 to affect counter event
enabling/disabling may have similar issues, as may modifying the
DBSRCNT1TRG bit.

12.3.3.5 Debug Control Register 4 (DBCR4)

Debug Control Register 4 is used to extend data address and value compare matching functionality.
DBCR4 is shown in Figure 12-8.

Table 12-10 provides field descriptions for Debug Control Register 4.

0

D
V

C
1C

0

D
V

C
2C

0 DAC1XM DAC2XM 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 563; Read/Write; Reset1 - 0x0

1 DBCR4 is reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If
DBCR0EDM=1, DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned
resources indicated by DBERC0 will be reset by p_reset_b.

Figure 12-8. DBCR4 register

Table 12-10. DBCR4 field descriptions

Bit(s) Name Description

0 — Reserved

1 DVC1C Data Value Compare 1 Control
0 Normal DVC1 operation.
1 Inverted polarity DVC1 operation
DVC1C controls whether DVC1 data value comparisons utilize the normal BookE operation, or
an alternate “inverted compare” operation. In inverted polarity mode, data value compares
perform a not-equal comparison. See details in the DBCR2 register definition

2 — Reserved

3 DVC2C Data Value Compare 2 Control
0 Normal DVC2 operation.
1 Inverted polarity DVC2 operation
DVC2C controls whether DVC2 data value comparisons utilize the normal BookE operation, or
an alternate “inverted compare” operation. In inverted polarity mode, data value compares
perform a not-equal comparison. See details in the DBCR2 register definition

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 675

12.3.3.6 Debug Control Register 5 (DBCR5)

Debug Control Register 5 is used to configure Instruction Address Compare operation for IAC5-8. The
DBCR5 register is shown in Figure 12-9.

4:15 — Reserved

16:19 DAC1XM Data Address Compare 1 Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in DAC1 when
comparing the storage address with the value in DAC1 for exact address compare
(DBCR2[DAC12M] = 00). Ranges up to 4 KB are supported.
1101 - 1111 Reserved
DAC1XM allows for binary power of 2 address range compares for DAC1 without requiring the
use of DAC2.

20:23 DAC2XM Data Address Compare 2 Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in DAC2 when
comparing the storage address with the value in DAC2 for exact address compare
(DBCR2[DAC12M] = 00). Ranges up to 4 KB are supported.
1101 - 1111 Reserved
DAC2XM allows for binary power of 2 address range compares for DAC2 without requiring the
use of DAC1.

24:31 — Reserved

IA
C

5U
S

IA
C

5E
R

IA
C

6U
S

IA
C

6E
R

IA
C

56
M

0

IA
C

7U
S

IA
C

7E
R

IA
C

8U
S

IA
C

8E
R

IA
C

78
M

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 564; Read/Write; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b.

Figure 12-9. DBCR5 Register

Table 12-10. DBCR4 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

676 Freescale Semiconductor

Table 12-7 provides field descriptions for Debug Control Register 5.
Table 12-11. DBCR5 field descriptions

Bit(s) Name Description

0:1 IAC5US Instruction Address Compare 5 User/Supervisor Mode
00 IAC5 debug events not affected by MSRPR
01 Reserved
10 IAC5 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC5 debug events can only occur if MSRPR=1. (User mode)

2:3 IAC5ER Instruction Address Compare 5 Effective/Real Mode
00 IAC5 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC5 debug events are based on effective address and can only occur if MSRIS=0
11 IAC5 debug events are based on effective address and can only occur if MSRIS=1

4:5 IAC6US Instruction Address Compare 6 User/Supervisor Mode
00 IAC6 debug events not affected by MSRPR
01 Reserved
10 IAC6 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC6 debug events can only occur if MSRPR=1. (User mode)

6:7 IAC6ER Instruction Address Compare 6 Effective/Real Mode
00 IAC6 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC6 debug events are based on effective address and can only occur if MSRIS=0
11 IAC6 debug events are based on effective address and can only occur if MSRIS=1

8:9 IAC56M Instruction Address Compare 5/6 Mode
00 Exact address compare. IAC5 debug events can only occur if the address of the instruction

fetch is equal to the value specified in IAC5. IAC6 debug events can only occur if the address
of the instruction fetch is equal to the value specified in IAC6.

01 Address bit match. IAC5 debug events can occur only if the address of the instruction fetch,
ANDed with the contents of IAC6 are equal to the contents of IAC5, also ANDed with the
contents of IAC6. IAC6 debug events do not occur. IAC5US and IAC5ER settings are used.

10 Reserved
11 Reserved

10:15 — Reserved

16:17 IAC7US Instruction Address Compare 7 User/Supervisor Mode
00 IAC7 debug events not affected by MSRPR
01 Reserved
10 IAC7 debug events can only occur if MSRPR=0 (Supervisor mode)
11 IAC7 debug events can only occur if MSRPR=1 (User mode)

18:19 IAC7ER Instruction Address Compare 7 Effective/Real Mode
00 IAC7 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC7 debug events are based on effective address and can only occur if MSRIS=0
11 IAC7 debug events are based on effective address and can only occur if MSRIS=1

20:21 IAC8US Instruction Address Compare 8 User/Supervisor Mode
00 IAC8 debug events not affected by MSRPR
01 Reserved
10 IAC8 debug events can only occur if MSRPR=0 (Supervisor mode).
11 IAC8 debug events can only occur if MSRPR=1. (User mode)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 677

12.3.3.7 Debug Control Register 6 (DBCR6)

Debug Control Register 6 is used to extend instruction address compare matching functionality. DBCR6
is shown in Figure 12-10.

Table 12-12 provides field descriptions for Debug Control Register 6.

22:23 IAC8ER Instruction Address Compare 8 Effective/Real Mode
00 IAC8 debug events are based on effective address
01 Unimplemented in e200z759n3 (Book E real address compare), no match can occur
10 IAC8 debug events are based on effective address and can only occur if MSRIS=0
11 IAC8 debug events are based on effective address and can only occur if MSRIS=1

24:25 IAC78M Instruction Address Compare 7/8 Mode
00 Exact address compare. IAC7 debug events can only occur if the address of the instruction

fetch is equal to the value specified in IAC7. IAC8 debug events can only occur if the address
of the instruction fetch is equal to the value specified in IAC8.

01 Address bit match. IAC7 debug events can occur only if the address of the instruction fetch,
ANDed with the contents of IAC8 are equal to the contents of IAC7, also ANDed with the
contents of IAC8. IAC8 debug events do not occur. IAC7US and IAC7ER settings are used.

10 Reserved
11 Reserved

26:31 — Reserved

IAC1XM IAC2XM IAC3XM IAC4XM IAC5XM IAC6XM IAC7XM IAC8XM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 603; Read/Write; Reset1 - 0x0

1 DBCR6 is reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If
DBCR0EDM=1, DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned
resources indicated by DBERC0 will be reset by p_reset_b.

Figure 12-10. Debug Control Register 6 (DBCR6)

Table 12-12. DBCR6 field descriptions

Bit(s) Name Description

0:3 IAC1XM Instruction Address Compare 1 Extended Mask Control
0000 No additional masking when DBCR1[IAC12M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC1 when comparing
the storage address with the value in IAC1 for exact address compare (DBCR1[IAC12M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC1XM allows for binary power of 2 address range compares for IAC1 without requiring the
use of IAC2.

Table 12-11. DBCR5 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

678 Freescale Semiconductor

4:7 IAC2XM Instruction Address Compare 2 Extended Mask Control
0000 No additional masking when DBCR1[IAC12M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC2 when comparing
the storage address with the value in IAC2 for exact address compare (DBCR1[IAC12M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC2XM allows for binary power of 2 address range compares for IAC2 without requiring the
use of IAC1.

8:11 IAC3XM Instruction Address Compare 3 Extended Mask Control
0000 No additional masking when DBCR1[IAC34M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC3 when comparing
the storage address with the value in IAC3 for exact address compare (DBCR1[IAC34M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved

IAC3XM allows for binary power of 2 address range compares for IAC1 without requiring the
use of IAC2.

12:15 IAC4XM Instruction Address Compare 4 Extended Mask Control
0000 No additional masking when DBCR1[IAC34M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC4 when comparing
the storage address with the value in IAC4 for exact address compare (DBCR1[IAC34M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved

IAC4XM allows for binary power of 2 address range compares for IAC4 without requiring the
use of IAC3.

16:19 IAC5XM Instruction Address Compare 5 Extended Mask Control
0000 No additional masking when DBCR5[IAC56M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC5 when comparing
the storage address with the value in IAC5 for exact address compare (DBCR5[IAC56M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC5XM allows for binary power of 2 address range compares for IAC5 without requiring the
use of IAC6.

20:23 IAC6XM Instruction Address Compare 6 Extended Mask Control
0000 No additional masking when DBCR5[IAC56M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC6 when comparing
the storage address with the value in IAC6 for exact address compare (DBCR5[IAC56M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC6XM allows for binary power of 2 address range compares for IAC6 without requiring the
use of IAC5.

24:27 IAC7XM Instruction Address Compare 7 Extended Mask Control
0000 No additional masking when DBCR5[IAC78M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC7 when comparing
the storage address with the value in IAC7 for exact address compare (DBCR5[IAC78M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC7XM allows for binary power of 2 address range compares for IAC7 without requiring the
use of IAC8.

Table 12-12. DBCR6 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 679

12.3.3.8 Debug Status register (DBSR)

The Debug Status Register (DBSR) contains status on debug events and the most recent processor reset.
The Debug Status Register is set via hardware, and read and cleared via software. Bits in the Debug Status
Register can be cleared using mtspr DBSR,RS. Clearing is done by writing to the Debug Status Register
with a 1 in any bit position that is to be cleared and 0 in all other bit positions. The write data to the Debug
Status Register is not direct data, but a mask. A ‘1’ causes the bit to be cleared, and a ‘0’ has no effect.
Debug Status bits are set by Debug events only while Internal Debug Mode is enabled (DBCR0IDM=1).
When debug interrupts are enabled (MSRDE=1 DBCR0IDM=1 and DBCR0EDM=0, or MSRDE=1,
DBCR0IDM=1 and DBCR0EDM=1 and software is allocated resource(s) via DBERC0), a set bit in DBSR
other than MRR, VLES, or CNT1TRG will cause a debug interrupt to be generated. The debug interrupt
handler is responsible for clearing DBSR bits prior to returning to normal execution. The PowerISA VLE
APU adds the DBSRVLES status bit to indicate debug events occurring due to a PowerISA VLE instruction.
When resource sharing is enabled, (DBCR0EDM=1 and DBERC0IDM=1), only software-owned resources
may be modified by software, and status bits associated with hardware-owned resources will not be set by
hardware in DBSR. The DBSR register is shown in Figure 12-11.

Table 12-13 provides field descriptions for the Debug Status register.

28:31 IAC8XM Instruction Address Compare 8 Extended Mask Control
0000 No additional masking when DBCR5[IAC78M] = 00
0001 - 1100 Exact Match Bit Mask. Number of low order bits masked in IAC8 when comparing
the storage address with the value in IAC8 for exact address compare (DBCR5[IAC78M] = 00).
Ranges up to 4 KB are supported.
1101 - 1111 Reserved
IAC8XM allows for binary power of 2 address range compares for IAC8 without requiring the
use of IAC7.

ID
E

U
D

E

MRR

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4-
8

D
A

C
1R

D
A

C
1W

D
A

C
2R

D
A

C
2W

R
E

T

0

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

V
LE

S

D
A

C
_O

F
S

T

C
N

T
1T

R
G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 304; Read/Write; Reset1 - 0x1000_0000

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b. DBSRMRR is always updated by p_reset_b however.

Figure 12-11. Debug Status Register (DBSR)

Table 12-12. DBCR6 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

680 Freescale Semiconductor

Table 12-13. DBSR field descriptions

Bit(s) Name Description

0 IDE Imprecise Debug Event
Set to 1 if MSRDE=0 and DBCR0IDM=1 and a debug event causes its respective Debug Status
Register bit to be set to 1. It may also be set to ‘1’ if an imprecise debug event occurs due to
a DAC event on a load or store that is terminated with error, or if an ICMP event occurs in
conjunction with a EFPU FP round exception.

1 UDE Unconditional Debug Event
Set to 1 if an Unconditional debug event occurred.

2:3 MRR Most Recent Reset.
00 No reset occurred since these bits were last cleared by software
01 A hard reset occurred since these bits were last cleared by software
10 Reserved
11 Reserved

4 ICMP Instruction Complete Debug Event
Set to 1 if an Instruction Complete debug event occurred.

5 BRT Branch Taken Debug Event
Set to 1 if an Branch Taken debug event occurred.

6 IRPT Interrupt Taken Debug Event
Set to 1 if an Interrupt Taken debug event occurred.

7 TRAP Trap Taken Debug Event
Set to 1 if a Trap Taken debug event occurred.

8 IAC1 Instruction Address Compare 1 Debug Event
Set to 1 if an IAC1 debug event occurred.

9 IAC2 Instruction Address Compare 2 Debug Event
Set to 1 if an IAC2 debug event occurred.

10 IAC3 Instruction Address Compare 3 Debug Event
Set to 1 if an IAC3 debug event occurred.

11 IAC4-8 Instruction Address Compare 4-8 Debug Event
Set to 1 if an IAC4, IAC5, IAC6, IAC7, or IAC8 debug event occurred.

12 DAC1R Data Address Compare 1 Read Debug Event
Set to 1 if a read-type DAC1 debug event occurred while DBCR0DAC1=0b10 or
DBCR0DAC1=0b11

13 DAC1W Data Address Compare 1 Write Debug Event
Set to 1 if a write-type DAC1 debug event occurred while DBCR0DAC1=0b01 or
DBCR0DAC1=0b11

14 DAC2R Data Address Compare 2 Read Debug Event
Set to 1 if a read-type DAC2 debug event occurred while DBCR0DAC2=0b10 or
DBCR0DAC2=0b11

15 DAC2W Data Address Compare 2 Write Debug Event
Set to 1 if a write-type DAC2 debug event occurred while DBCR0DAC2=0b01 or
DBCR0DAC2=0b11

16 RET Return Debug Event
Set to 1 if a Return debug event occurred

17:20 — Reserved

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 681

12.3.4 Debug External Resource Control register (DBERC0)

The Debug External Resource Control register (DBERC0) controls resource allocation when DBCR0EDM
is set to ‘1’. DBERC0 provides a mechanism for the hardware debugger to share certain debug resources
with software. Individual resources are allocated based on the settings of DBERC0 when DBCR0EDM=1.
DBERC0 settings are ignored when DBCR0EDM=0.

Hardware-owned resources that generate debug events update EDBSR0 instead of DBSR and cause entry
into debug mode if the event is not masked in EDBSRMSK0, while software-owned resources that
generate debug events if DBCR0IDM=1 update DBSR, causing debug interrupts to occur if MSRDE=1.
DBERC0 is controlled via the OnCE port hardware, and is read-only to software.

The DBSR status register is always owned by software. Debug status bits in DBSR are set by
software-owned debug events only while Internal Debug Mode is enabled. When debug interrupts are
enabled (MSRDE=1 DBCR0IDM=1 and DBCR0EDM=0, or MSRDE=1, DBCR0IDM=1 and DBCR0EDM=1
and software is allocated resource(s) via DBERC0), a set bit in DBSR by an event that is software-owned
(other than MRR, DAC_OFST, CNT1TRG, or VLES) will cause a debug interrupt to be generated.

21 DEVT1 External Debug Event 1 Debug Event
Set to 1 if a DEVT1 debug event occurred

22 DEVT2 External Debug Event 2 Debug Event
Set to 1 if a DEVT2 debug event occurred

23 DCNT1 Debug Counter 1 Debug Event
Set to 1 if a DCNT1 debug event occurred

24 DCNT2 Debug Counter 2 Debug Event
Set to 1 if a DCNT2 debug event occurred

25 CIRPT Critical Interrupt Taken Debug Event
Set to 1 if a Critical Interrupt Taken debug event occurred.

26 CRET Critical Return Debug Event
Set to 1 if a Critical Return debug event occurred

27 VLES VLE Status
Set to 1 if an ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a
PowerISA VLE Instruction. Undefined for IRPT, CIRPT, DEVT[1,2], DCNT[1,2], and UDE
events

28:30 DAC_OFST Data Address Compare Offset
Indicates offset-1 of saved DSRR0 value from the address of the load or store instruction that
took a DAC Debug exception, unless a simultaneous DTLB or DSI error occurs, in which case
this field is set to 3‘b000 and DBSRIDE is set to 1. Normally set to 3‘b000 by a non-DVC DAC.
A DVC DAC may set this field to any value.

31 CNT1TRG Counter 1 Triggered
Set to 1 if Debug Counter 1 is triggered by a trigger event.

Table 12-13. DBSR field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

682 Freescale Semiconductor

Debug status bits in EDBSR0 are set by hardware-owned debug events only while External Debug Mode
is enabled (DBCR0EDM=1). When DBCR0EDM=1, a set bit in EDBSR0 by an event that is
hardware-owned (other than IDE, DAC_OFST, CNT1TRG, or VLES) will cause entry into debug mode.

If DBCR0EDM=1, DBSR status bits corresponding to hardware-owned debug events are masked from
being set by hardware.

Software-owned resources may be modified by software, but only the corresponding control bits in
DBCR0-6 are affected by execution of a mtspr, thus only a portion of these registers may be affected,
depending on the allocation settings in DBERC0. The debug interrupt handler is still responsible for
clearing DBSR bits for software-owned resources prior to returning to normal execution. Hardware always
has full access to all registers and register fields through the OnCE register access mechanism, and it is up
to the debug firmware to properly implement modifications to these registers with read-modify-write
operations to implement any control sharing with software. Settings in DBERC0 should be considered by
the debug firmware in order to preserve software settings of control and status registers as appropriate
when hardware modifications to the debug registers is performed.

The DBERC0 register is shown in Figure 12-12.

Table 12-13 provides field descriptions for the Debug External Resource Control Register. Note that
DBERC0 controls are disabled when DBCR0EDM=0.

0

ID
M

R
S

T

U
D

E

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4

D
A

C
1

0

D
A

C
2

0

R
E

T

IA
C

5

IA
C

6

IA
C

7

IA
C

8

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

B
K

P
T

D
Q

M

0 F
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 569; Read-only by Software; Reset - Unaffected by p_reset_b, cleared by m_por or while in the test-logic-reset
OnCE controller state

Figure 12-12. DBERC0 register

Table 12-14. DBERC0 field descriptions

Bit(s) Name Description

0 — Reserved

1 IDM Internal Debug Mode control
0 Internal Debug mode may not be enabled by software. DBCR0IDM is owned exclusively by

hardware. mtspr DBCR0-6 or DBCNT is always ignored. No resource sharing occurs,
regardless of the settings of other fields in DBERC0. Hardware exclusively owns all
resources.

1 Internal Debug mode may be enabled by software. DBCR0IDM is owned by software.
DBCR0IDM is software readable/writable.

When DBERC0IDM=1, software writes to hardware-owned bits in DBCR0-6 and DBCNT via
mtspr are ignored.

2 RST Reset Field Control
0 DBCR0RST owned exclusively by hardware debug. No mtspr access by software to

DBCR0RST field.
1 DBCR0RST accessible by software debug. DBCR0RST is software readable/writable.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 683

3 UDE Unconditional Debug Event
0 Event owned by hardware debug.
1 Event owned by software debug.

4 ICMP Instruction Complete Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0ICMP field.
1 Event owned by software debug. DBCR0ICMP is software readable/writable.

5 BRT Branch Taken Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0BRT field.
1 Event owned by software debug. DBCR0BRT is software readable/writable.

6 IRPT Interrupt Taken Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0IRPT field.
1 Event owned by software debug. DBCR0IRPT is software readable/writable.

7 TRAP Trap Taken Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0TRAP field.
1 Event owned by software debug. DBCR0TRAP is software readable/writable.

8 IAC1 Instruction Address Compare 1 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC1 control and status

fields.
1 Event owned by software debug. IAC1 control fields are software readable/writable.

9 IAC2 Instruction Address Compare 2 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC2 control and status

fields.
1 Event owned by software debug. IAC2 control fields are software readable/writable.

10 IAC3 Instruction Address Compare 3 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC3 control and status

fields.
1 Event owned by software debug. IAC3 control fields are software readable/writable.

11 IAC4 Instruction Address Compare 4 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC4 control and status

fields.
1 Event owned by software debug. IAC4 control fields are software readable/writable.

12 DAC1 Data Address Compare 1 Debug Event
0 Event owned by hardware debug. No mtspr access by software to DAC1 control and status

fields.
1 Event owned by software debug. DAC1 control fields are software readable/writable.

13 — Reserved

14 DAC2 Data Address Compare 2 Debug Event
0 Event owned by hardware debug. No mtspr access by software to DAC2 control and status

fields.
1 Event owned by software debug. DAC2 control fields are software readable/writable.

15 — Reserved

16 RET Return Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0RET field.
1 Event owned by software debug. DBCR0RET is software readable/writable.

Table 12-14. DBERC0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

684 Freescale Semiconductor

17 IAC5 Instruction Address Compare 5 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC5 control and status

fields.
1 Event owned by software debug. IAC5 control fields are software readable/writable.

18 IAC6 Instruction Address Compare 6 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC6 control and status

fields.
1 Event owned by software debug. IAC6 control fields are software readable/writable.

19 IAC7 Instruction Address Compare 7 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC7 control and status

fields.
1 Event owned by software debug. IAC7 control fields are software readable/writable.

20 IAC8 Instruction Address Compare 8 Debug Event
0 Event owned by hardware debug. No mtspr access by software to IAC8 control and status

fields.
1 Event owned by software debug. IAC8 control are software readable/writable.

21 DEVT1 External Debug Event Input 1 Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0DEVT1 field.
1 Event owned by software debug. DBCR0DEVT1 is software readable/writable.

22 DEVT2 External Debug Event Input 2 Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0DEVT2 field.
1 Event owned by software debug. DBCR0DEVT2 is software readable/writable.

23 DCNT1 Debug Counter 1 Debug Event
0 Event owned by hardware debug. No mtspr access by software to Counter1 control and

status fields.
1 Event owned by software debug. Counter1 control and status fields are software

readable/writable.

24 DCNT2 Debug Counter 2 Debug Event
0 Event owned by hardware debug.No mtspr access by software to Counter2 control and

status fields.
1 Event owned by software debug. Counter2 control and status fields are software

readable/writable.

25 CIRPT Critical Interrupt Taken Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0CIRPT field.
1 Event owned by software debug. DBCR0CIRPT is software readable/writable.

26 CRET Critical Return Debug Event
0 Event owned by hardware debug. No mtspr access by software to DBCR0CRET field.
1 Event owned by software debug. DBCR0CRET is software readable/writable.

27 BKPT Breakpoint Instruction Debug Control
0 Breakpoint owned by hardware debug. Execution of a bkpt instruction (all 0’s opcode)

results in entry into debug mode.
1 Breakpoint owned by software debug. Execution of a bkpt instruction (all 0’s opcode) results

in illegal instruction exception.

Table 12-14. DBERC0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 685

Table 12-15 shows which resources are controlled by DBERC0 settings.

28 DQM Data Acquisition Messaging Registers
0 DEVENTDQTAG and DDAM register are exclusively owned by hardware debug. No mtspr

access by software to DEVENTDQTAG field or DDAM register. Attempted access by
software is ignored.

1 DEVENTDQTAG and DDAM register are owned by software. Software has read/write access
to DEVENTDQTAG field and DDAM register.

29:30 — Reserved

31 FT Freeze Timer Debug Control
0 DBCR0FT owned by hardware debug. No access by software.
1 DBCR0FT owned by software debug. DBCR0FT is software readable/writable.

Table 12-15. DBERC0 resource control

D
B

C
R

0 E
D

M

D
B

E
R

C
0 I

D
M

D
B

E
R

C
0 R

S
T

D
B

E
R

C
0 U

D
E

D
B

E
R

C
0 I

C
M

P

D
B

E
R

C
0 B

R
T

D
B

E
R

C
0 I

R
P

T

D
B

E
R

C
0 T

R
A

P

D
B

E
R

C
0 I

A
C

1

D
B

E
R

C
0 I

A
C

2

D
B

E
R

C
0 I

A
C

3

D
B

E
R

C
0 I

A
C

4

D
B

E
R

C
0 I

A
C

5

D
B

E
R

C
0 I

A
C

6

D
B

E
R

C
0 I

A
C

7

D
B

E
R

C
0 I

A
C

8

D
B

E
R

C
0 D

A
C

1

D
B

E
R

C
0 D

A
C

2

D
B

E
R

C
0 R

E
T

D
B

E
R

C
0 D

E
V

T
1

D
B

E
R

C
0 D

E
V

T
2

D
B

E
R

C
0 D

C
N

T
1

D
B

E
R

C
0 D

C
N

T
2

D
B

E
R

C
0 C

IR
P

T

D
B

E
R

C
0 C

R
E

T

D
B

E
R

C
0 B

K
P

T

D
B

E
R

C
0 D

Q
M

D
B

E
R

C
0 F

T Software
accessible
via mtspr,
affected

by p_reset_b

0 — All debug registers

1 1 — DBCR0IDM

1 1 1 — DBCR0RST

1 1 — 1 — DBCR0UDE

1 1 — — 1 — DBCR0ICMP

1 1 — — — 1 — DBCR0BRT

1 1 — — — — 1 — DBCR0IRPT

1 1 — — — — — 1 — DBCR0TRAP

1 1 — — — — — — 1 — — — — — — — — — — — — — — — — — — — IAC1,
DBCR0IAC1,
DBCR1IAC1US,IAC1ER,
DBCR6IAC1XM

1 1 — — — — — — — 1 — — — — — — — — — — — — — — — — — — IAC2,
DBCR0IAC2,
DBCR1IAC2US,IAC2ER,
DBCR6IAC2XM

1 1 — — — — — — 1 1 — — — — — — — — — — — — — — — — — — DBCR1IAC12M

1 1 — — — — — — — — 1 — — — — — — — — — — — — — — — — — IAC3,
DBCR0IAC3,
DBCR1IAC3US,IAC3ER,
DBCR6IAC3XM

Table 12-14. DBERC0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

686 Freescale Semiconductor

1 1 — — — — — — — — — 1 — — — — — — — — — — — — — — — — IAC4,
DBCR0IAC4,
DBCR1IAC4US,IAC4ER,
DBCR6IAC4XM

1 1 — — — — — — — — 1 1 — — — — — — — — — — — — — — — — DBCR1IAC34M

1 1 — — — — — — — — — — 1 — — — — — — — — — — — — — — — IAC5,
DBCR0IAC5,
DBCR5IAC5US,IAC5ER,
DBCR6IAC5XM

1 1 — — — — — — — — — — — 1 — — — — — — — — — — — — — — IAC6,
DBCR0IAC6,
DBCR5IAC6US,IAC6ER,
DBCR6IAC6XM

1 1 — — — — — — — — — — 1 1 — — — — — — — — — — — — — — DBCR5IAC56M

1 1 — — — — — — — — — — — — 1 — — — — — — — — — — — — — IAC7,
DBCR0IAC7,
DBCR5IAC7US,IAC7ER,
DBCR6IAC7XM

1 1 — — — — — — — — — — — — — 1 — — — — — — — — — — — — IAC8,
DBCR0IAC8,
DBCR5IAC8US,IAC8ER,
DBCR6IAC8XM

1 1 — — — — — — — — — — — — 1 1 — — — — — — — — — — — — DBCR5IAC78M

1 1 — — — — — — — — — — — — — — 1 — — — — — — — — — — — DAC1, DVC1
DBCR0DAC1,
DBCR2DAC1US,DAC1ER,
DBCR2DVC1M,DVC1BE
DBCR4DVC1C,DAC1XM

1 1 — — — — — — — — — — — — — — — 1 — — — — — — — — — — DAC2, DVC2
DBCR0DAC2,
DBCR2DAC2US,DAC2ER,
DBCR2DVC2M,DVC2BE
DBCR4DVC2C,DAC2XM

1 1 — — — — — — — — — — — — — — 1 1 — — — — — — — — — — DBCR2DAC12M

1 1 — — — — — — 1 — — — — — — — 1 — — — — — — — — — — — DBCR2DAC1LNK

1 1 — — — — — — — — 1 — — — — — — 1 — — — — — — — — — — DBCR2DAC2LNK

1 1 — — — — — — — — — — — — — — — — 1 — — — — — — — — — DBCR0RET

1 1 — — — — — — — — — — — — — — — — — 1 — — — — — — — — DBCR0DEVT1

1 1 — — — — — — — — — — — — — — — — — — 1 — — — — — — — DBCR0DEVT2

Table 12-15. DBERC0 resource control (continued)
D

B
C

R
0 E

D
M

D
B

E
R

C
0 I

D
M

D
B

E
R

C
0 R

S
T

D
B

E
R

C
0 U

D
E

D
B

E
R

C
0 I

C
M

P

D
B

E
R

C
0 B

R
T

D
B

E
R

C
0 I

R
P

T

D
B

E
R

C
0 T

R
A

P

D
B

E
R

C
0 I

A
C

1

D
B

E
R

C
0 I

A
C

2

D
B

E
R

C
0 I

A
C

3

D
B

E
R

C
0 I

A
C

4

D
B

E
R

C
0 I

A
C

5

D
B

E
R

C
0 I

A
C

6

D
B

E
R

C
0 I

A
C

7

D
B

E
R

C
0 I

A
C

8

D
B

E
R

C
0 D

A
C

1

D
B

E
R

C
0 D

A
C

2

D
B

E
R

C
0 R

E
T

D
B

E
R

C
0 D

E
V

T
1

D
B

E
R

C
0 D

E
V

T
2

D
B

E
R

C
0 D

C
N

T
1

D
B

E
R

C
0 D

C
N

T
2

D
B

E
R

C
0 C

IR
P

T

D
B

E
R

C
0 C

R
E

T

D
B

E
R

C
0 B

K
P

T

D
B

E
R

C
0 D

Q
M

D
B

E
R

C
0 F

T Software
accessible
via mtspr,
affected

by p_reset_b

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 687

DBERC0 also controls which bits or fields in DBCR0-6 are reset by assertion of p_reset_b when
DBCR0EDM=1. Only software-owned bits or fields as shown in Table 12-15 are affected in this case,
except that DBCR0RST and DBSRMRR are updated by assertion of p_reset_b regardless of the value of
DBCR0EDM or DBERC0.

1 1 — — — — — — — — — — — — — — — — — — — 1 — — — — — — DBCR0DCNT1,
DBCR3[DEVT1C1,

DEVT2C1, ICMPC1,

IAC1C1, IAC2C1,

IAC3C1, IAC4C1,

DAC1RC1, DAC1WC1,

DAC2RC1, DAC2WC1,

IRPTC1, RETC1,

DEVT1T1, DEVT2T1,

IAC1T1, IAC3T1,

DAC1RT1, DAC1WT1,

CNT2T1]1,
DBCNTCNT1

1 1 — 1 — — — — — DBCR0DCNT2,
DBCR3[DEVT1C2,

DEVT2C2, ICMPC2,

IAC1C2, IAC2C2,

IAC3C2, IAC4C2,

DAC1RC2, DAC1WC2,

DAC2RC2, DAC2WC2]2,
DBCNTCNT2

1 1 — — — — — — — — — — — — — — — — — — — 1 1 — — — — — DBCR3CONFIG

1 1 — 1 — — — — DBCR0CIRPT

1 1 — 1 — — — DBCR0CRET

1 1 — 1 — —

1 –
3

— 1 — DEVENTDQTAG, DDAM

1 1 — 1 DBCR0FT

1 Note that software is given write access to all counter 1 control events and triggers regardless of whether software
owns these events. It is considered a programming error to enable counter or trigger events in DBCR3 that are not
“owned” by software, and operational results of the counter(s) are undefined if programmed.

2 Note that software is given write access to all counter 2 control events regardless of whether software owns these
events. It is considered a programming error to enable counter events in DBCR3 that are not “owned” by software,
and operational results of the counter(s) are undefined if programmed.

3 Note: IDM not required to be set to enable software access.

Table 12-15. DBERC0 resource control (continued)
D

B
C

R
0 E

D
M

D
B

E
R

C
0 I

D
M

D
B

E
R

C
0 R

S
T

D
B

E
R

C
0 U

D
E

D
B

E
R

C
0 I

C
M

P

D
B

E
R

C
0 B

R
T

D
B

E
R

C
0 I

R
P

T

D
B

E
R

C
0 T

R
A

P

D
B

E
R

C
0 I

A
C

1

D
B

E
R

C
0 I

A
C

2

D
B

E
R

C
0 I

A
C

3

D
B

E
R

C
0 I

A
C

4

D
B

E
R

C
0 I

A
C

5

D
B

E
R

C
0 I

A
C

6

D
B

E
R

C
0 I

A
C

7

D
B

E
R

C
0 I

A
C

8

D
B

E
R

C
0 D

A
C

1

D
B

E
R

C
0 D

A
C

2

D
B

E
R

C
0 R

E
T

D
B

E
R

C
0 D

E
V

T
1

D
B

E
R

C
0 D

E
V

T
2

D
B

E
R

C
0 D

C
N

T
1

D
B

E
R

C
0 D

C
N

T
2

D
B

E
R

C
0 C

IR
P

T

D
B

E
R

C
0 C

R
E

T

D
B

E
R

C
0 B

K
P

T

D
B

E
R

C
0 D

Q
M

D
B

E
R

C
0 F

T Software
accessible
via mtspr,
affected

by p_reset_b

e200z759n3 Core Reference Manual, Rev. 2

688 Freescale Semiconductor

12.3.5 Debug Event Select register (DEVENT)

The Debug Event Select register (DEVENT) allows instrumented software to internally generate signals
when a mtspr instruction is executed and this register is accessed. The values written to this register
determine which of the p_devnt_out[0:7] processor output signals are asserted upon access. Writing a ‘1’
to any of these bit positions will cause a one clock pulse to be generated on the corresponding output. For
p_devnt_out[0:3], a corresponding jd_watchpt[x] output is asserted as well to indicate a watchpoint has
occurred. These signals may be used for internal core debug resources as well as for SoC level
cross-triggering. See the SoC User’s Manual for more information on SoC use cases.

The DEVENTDEVNT register field value is undefined on a read; it may or may not remain set to the last
value written. Since it is unconditionally shared by hardware debug and software, software should not rely
on any value remaining.

The upper 8 bits of the DEVENT register also provide the DQTAG used to identify channels within Data
Acquisition Messages. See Section 13.13.1, Data Acquisition ID Tag field, for more detail on the DQTAG.

The DEVENT register is shown in Figure 12-13.

Table 12-16 provides field descriptions for the Debug Event register.

DQTAG 0 DEVNT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 975; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1,
DBERC0 masks off hardware-owned resources from reset by p_reset_b and only software-owned resources
indicated by DBERC0 will be reset by p_reset_b. Note that DEVNT field is shared by hardware and software but is
always reset by p_reset_b.

Figure 12-13. Debug Event Select register (DEVENT)

Table 12-16. DEVENT field descriptions

Bit(s) Name Description

0:7 DQTAG Data Acquisition Message IDTAG channel identifier (supplied to Nexus 3)

8:23 — Reserved, should be cleared.

24:31 DEVNT Debug Event Signals
00000000 No signal is asserted
xxxxxxx1 p_devnt_out[0] and jd_watchpt[12] are asserted for one clock
xxxxxx1x p_devnt_out[1] and jd_watchpt[13] are asserted for one clock
xxxxx1xx p_devnt_out[2] and jd_watchpt[20] are asserted for one clock
xxxx1xxx p_devnt_out[3] and jd_watchpt[21] are asserted for one clock
xxx1xxxx p_devnt_out[4] is asserted for one clock
xx1xxxxx p_devnt_out[5] is asserted for one clock
x1xxxxxx p_devnt_out[6] is asserted for one clock
1xxxxxxx p_devnt_out[7] is asserted for one clock

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 689

12.3.6 Debug Data Acquisition Message register (DDAM)

The Debug Data Acquisition Message register (DDAM) allows instrumented software to generate
real-time Data Acquisition Messages (as defined by Nexus 3) via a mtspr instruction to this register. See
Section 13.13, Data Acquisition messaging, for details.

The DDAM register is shown in Figure 12-14.

Table 12-17 provides field descriptions for the Debug Data Acquisition Message register.

12.4 External debug support
External debug support is supplied through the OnCE controller serial interface, which allows access to
internal CPU registers and other system state while the CPU is halted in debug mode. All debug resources
including DBCR0–6, DBSR, IAC1–8, DAC1–2, DVC1–2, and DBCNT are accessible through the serial
OnCE interface in external debug mode. Setting the EDBCR0EDM/DBCR0EDM bit to ‘1’ through the
OnCE interface enables external debug mode, and unless otherwise permitted by the settings in DBERC0,
disables software updates to the debug control registers. When [E]DBCR0EDM is set, debug events
enabled to set respective status bits will also cause the CPU to enter Debug Mode if the event is not masked
in EDBSRMSK0, as opposed to generating Debug Interrupts, unless the specific events are allocated to
software via the settings in DBERC0. In Debug Mode, the CPU is halted at a recoverable boundary, and
an external Debug Control Module may control CPU operation through the On-Chip Emulation logic
(OnCE).

Note that the descriptions of events in the subsections of Section 12.2, Software debug events and
exceptions, refer to setting DBSR status bits, however, when resources are owned by hardware, the events
for those resources set the respective status bits in EDBSR0 instead of DBSR.

DDAM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 576; Reset1 - 0x0

1 Reset by processor reset p_reset_b if DBCR0EDM=0, as well as unconditionally by m_por. If DBCR0EDM=1, DBERC0 masks off
hardware-owned resources from reset by p_reset_b and only software-owned resources indicated by DBERC0 will be reset by
p_reset_b.

Figure 12-14. Debug Data Acquisition Message register (DDAM)

Table 12-17. DDAM field descriptions

Bit(s) Name Description

0:31 DDAM Value to be transmitted in a Data Acquisition Message (DQM) (supplied to Nexus 3 with
strobe)

e200z759n3 Core Reference Manual, Rev. 2

690 Freescale Semiconductor

NOTE
On the initial setting of [E]DBCR0EDM to ‘1’, other bits in DBCR0 will
remain unchanged. After [E]DBCR0EDM has been set, all debug register
resources may be subsequently controlled through the OnCE interface. The
CPU should be placed into debug mode via the OCRDR control bit prior to
writing EDM to ‘1’. This gives the debugger the opportunity to cleanly write
to the DBCRx registers and the DBSR to clear out any residual state /
control information that could cause unintended operation.

NOTE
It is intended for the CPU to remain in external debug mode
(DBCR0EDM=1) in order to single step or perform other debug mode entry/
reentry via the OCRDR, by performing go+noexit commands, or by
assertion of the jd_de_b signal.

NOTE
DBCR0EDM operation will be blocked if OnCE operation is disabled
(jd_en_once negated) regardless of whether it is set or cleared. This means
that if DBCR0EDM was previously set, and then jd_en_once is negated (this
should not occur), entry into debug mode will be blocked, all events are
blocked, and watchpoints are blocked.

Due to clock domain design, the CPU clock (m_clk) must be active in order to perform writes to debug
registers other than the OnCE Command register (OCMD), the OnCE Control register (OCR), External
Debug Control Register 0 (EDBCR0), External Debug Status register 0 (EDBSR0), External Debug Status
Register Mask 0 (EDBSRMSK0), or the DBCR0EDM bit. Register read data is synchronized back to the
j_tclk clock domain. The OnCE Control register provides the capability of signaling the system level clock
controller that the CPU clock should be activated if not already active.

Updates to the DBCRx, DBSR, and DBCNT registers via the OnCE interface should be performed with
the CPU in debug mode to guarantee proper operation. Due to the various points in the CPU pipeline where
control is sampled and event handshaking is performed, it is possible that modifications to these registers
while the CPU is running may result in early or late entry into debug mode, and may have incorrect status
posted in the DBSR register.

If resource sharing is enabled via DBERC0, updates to the DBERC0, DBCRx, DBCNT, and DBSR
registers must be performed with the CPU in debug mode, since simultaneous updates of register portions
could otherwise be attempted, and such updates are not guaranteed to properly occur. The results of such
an attempt are undefined.

12.4.1 External debug registers

The external debug registers are used for controlling several debug aspects of the core and reporting status
while Zen Z7Zen z445n3Zen z446n3 is in External Debug Mode.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 691

12.4.1.1 External Debug Control Register 0 (EDBCR0)

EDBCR0 is a control register accessible to an external debugger through the OnCE/JTAG port. An
external development tool can write to this register in order to enable external debug mode or to enable
Debugger Notify Halt instructions (dnh, se_dnh).

EDBCR0 is not accessible by software, However, the state of EDBCR0EDM is reflected as a read-only bit
in DBCR0EDM to software. There is only one physical EDM bit implemented; it is reflected in both the
DBCR0 and EDBCR0 registers, and may be written and read using either register by the hardware
debugger. For future compatibility, EDBCR0 updates are preferred.

EDBCR0 is shown in Figure 12-15.

Table 12-18 provides field descriptions for External Debug Control Register 0.

E
D

M

D
N

H
_E

N

DTF 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset1 - 0x0

1 EDBCR0 is affected (reset) by j_trst_b or m_por assertion, and remains reset while in the Test_Logic_Reset state,
but is not affected by p_reset_b.

Figure 12-15. External Debug Control Register 0 (EDBCR0)

Table 12-18. EDBCR0 field descriptions

Bit(s) Name Description

0 EDM External Debug Mode. This bit is also reflected in DBCR0
0 External debug mode disabled. Internal debug events not mapped into external debug

events.
1 External debug mode enabled. Hardware-owned events will not cause the CPU to vector to

interrupt code. Software is not permitted to write to debug registers {DBCRx, DBCNT,
IAC1-8, DAC1-2, DVC1-2} unless permitted by settings in DBERC0.

When external debug mode is enabled, hardware-owned resources in debug registers are not
affected by processor reset p_reset_b. This allows the debugger to set up hardware debug
events that remain active across a processor reset.

1 DNH_EN dnh Instruction Enable
0 Execution of dnh and se_dnh instructions cause illegal instruction exceptions to occur.
1 execution of dnh and se_dnh instructions cause entry into debug mode and a debug halt

occurs, regardless of the value of EDM.

2:3 DFT Debug Freeze Timers Control
00 Timebase, Watchdog timer, and Decrementer are not clocked during a debug session
01 Timebase and Watchdog timer are not clocked during a debug session. Decrementer is

unaffected
10 Decrementer is not clocked during a debug session. Timebase and Watchdog timers are

unaffected
11 No timer freeze during a debug session

4:31 — Reserved

e200z759n3 Core Reference Manual, Rev. 2

692 Freescale Semiconductor

12.4.1.2 External Debug Status Register 0 (EDBSR0)

The External Debug Status Register 0 (EDBSR0) contains status on debug events owned by hardware. The
External Debug Status Register 0 is set via hardware, and read and cleared via OnCE access by the
debugger. Clearing is done by writing to the External Debug Status Register via the OnCE port, with a ‘1’
in any bit position that is to be cleared and ‘0’ in all other bit positions. The write data to EDBSR0 is not
direct data, but a mask. A ‘1’ causes the bit to be cleared, and a ‘0’ has no effect. The EDBSR0 register is
shown in Figure 12-16.

Table 12-19 provides field descriptions for External Debug Status Register 0.

ID
E

U
D

E

D
N

H

0

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4-
8

D
A

C
1R

D
A

C
1W

D
A

C
2R

D
A

C
2W

R
E

T

0

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

V
LE

S

D
A

C
_O

F
S

T

C
N

T
1T

R
G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Read/Write; Reset1 - 0x0000_0000

1 Reset by j_trst_b or m_por assertion, and remains reset while in the Test_Logic_Reset state or while
EDBCR0EDM=0.

Figure 12-16. External Debug Status Register 0 (EDBSR0)

Table 12-19. EDBSR0 field descriptions

Bit(s) Name Description

0 IDE Imprecise Debug Event
Set to 1 if DBCR0EDM=1 and an imprecise debug event occurs for a hardware-owned DAC
event due to a load or store that is terminated with error, or if a hardware-owned ICMP event
occurs in conjunction with a EFPU round exception. This bit will not be set for imprecise
debug events that are masked via settings in EDBSRMSK0.

1 UDE Unconditional Debug Event
Set to 1 if a hardware-owned Unconditional debug event occurred.

2 DNH Debugger Notify Halt Event
Set to 1 if a debugger notify halt instruction was executed and caused a debug halt.

3 — Reserved

4 ICMP Instruction Complete Debug Event
Set to 1 if a hardware-owned Instruction Complete debug event occurred.

5 BRT Branch Taken Debug Event
Set to 1 if a hardware-owned Branch Taken debug event occurred.

6 IRPT Interrupt Taken Debug Event
Set to 1 if a hardware-owned Interrupt Taken debug event occurred.

7 TRAP Trap Taken Debug Event
Set to 1 if a hardware-owned Trap Taken debug event occurred.

8 IAC1 Instruction Address Compare 1 Debug Event
Set to 1 if a hardware-owned IAC1 debug event occurred.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 693

9 IAC2 Instruction Address Compare 2 Debug Event
Set to 1 if a hardware-owned IAC2 debug event occurred.

10 IAC3 Instruction Address Compare 3 Debug Event
Set to 1 if a hardware-owned IAC3 debug event occurred.

11 IAC4-8 Instruction Address Compare 4-8 Debug Event
Set to 1 if a hardware-owned IAC4, IAC5, IAC6, IAC7, or IAC8 debug event occurred.

12 DAC1R Data Address Compare 1 Read Debug Event
Set to 1 if a hardware-owned read-type DAC1 debug event occurred while
DBCR0DAC1=0b10 or DBCR0DAC1=0b11

13 DAC1W Data Address Compare 1 Write Debug Event
Set to 1 if a hardware-owned write-type DAC1 debug event occurred while
DBCR0DAC1=0b01 or DBCR0DAC1=0b11

14 DAC2R Data Address Compare 2 Read Debug Event
Set to 1 if a hardware-owned read-type DAC2 debug event occurred while
DBCR0DAC2=0b10 or DBCR0DAC2=0b11

15 DAC2W Data Address Compare 2 Write Debug Event
Set to 1 if a hardware-owned write-type DAC2 debug event occurred while
DBCR0DAC2=0b01 or DBCR0DAC2=0b11

16 RET Return Debug Event
Set to 1 if a hardware-owned Return debug event occurred

17:20 — Reserved

21 DEVT1 External Debug Event 1 Debug Event
Set to 1 if a hardware-owned DEVT1 debug event occurred

22 DEVT2 External Debug Event 2 Debug Event
Set to 1 if a hardware-owned DEVT2 debug event occurred

23 DCNT1 Debug Counter 1 Debug Event
Set to 1 if a hardware-owned DCNT1 debug event occurred

24 DCNT2 Debug Counter 2 Debug Event
Set to 1 if a hardware-owned DCNT2 debug event occurred

25 CIRPT Critical Interrupt Taken Debug Event
Set to 1 if a hardware-owned Critical Interrupt Taken debug event occurred.

26 CRET Critical Return Debug Event
Set to 1 if a hardware-owned Critical Return debug event occurred

27 VLES VLE Status
Set to 1 if a hardware-owned ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event
occurred on a PowerISA VLE Instruction. Also set for execution of an e_dnh or se_dnh
instruction when enabled by EDBCR0DNH_EN. Undefined for IRPT, CIRPT, DEVT[1,2],
DCNT[1,2], and UDE events

Table 12-19. EDBSR0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

694 Freescale Semiconductor

12.4.1.3 External Debug Status Register Mask 0 (EDBSRMSK0)

The External Debug Status Register Mask 0 (EDBSRMSK0) is used to mask debug events set in EDBSR0
from causing entry into debug halted mode. A ‘1’ stored in any mask bit prevents debug mode entry caused
by the corresponding bit being set in EDBSR0. The mask has no effect on DBSR actions or on the setting
of EDBSR0 status bits by hardware-owned events, except that the IDE bit will not be set by imprecise
hardware-owned debug events that are masked. EDBSRMSK0 may be used to allow debug events owned
by hardware to be configured for watchpoint generation purposes without causing debug mode entry when
the watchpoint occurs. EDBSRMSK0 is read and written via OnCE access by the debugger. No software
access is provided. The EDBSRMSK0 register is shown in Figure 12-17.

Table 12-20 provides field descriptions for External Debug Status Register Mask 0.

28:30 DAC_OFST Data Address Compare Offset
Indicates offset-1 of saved DSRR0 value from the address of the load or store instruction
that took a hardware-owned DAC Debug exception, unless a simultaneous DTLB or DSI
error occurs, in which case this field is set to 3‘b000 and EDBSR0IDE is set to 1. Normally
set to 3‘b000 by a non-DVC DAC. A DVC DAC may set this field to any value.

31 CNT1TRG Counter 1 Triggered
Set to 1 if hardware-owned Debug Counter 1 is triggered by a trigger event.

0

U
D

E

D
N

H

0

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4-
8

D
A

C
1R

D
A

C
1W

D
A

C
2R

D
A

C
2W

R
E

T

0
D

E
V

T
1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Read/Write; Reset1 - 0x0000_0000

1 Reset by j_trst_b or m_por assertion, and remains reset while in the Test_Logic_Reset state or while
EDBCR0EDM=0.

Figure 12-17. xternal Debug Status Register Mask 0 (EDBSRMSK0)

Table 12-20. EDBSRMSK0 field descriptions

Bit(s) Name Description

0 — Reserved

1 UDE Unconditional Debug Event
Set to 1 to mask debug mode entry by EDBSR0UDE

2 DNH Debugger Notify Halt Event
Set to 1 to mask debug mode entry by EDBSR0DNH

3 — Reserved

4 ICMP Instruction Complete Debug Event
Set to 1 to mask debug mode entry by EDBSR0ICMP

Table 12-19. EDBSR0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 695

5 BRT Branch Taken Debug Event
Set to 1 to mask debug mode entry by EDBSR0BRT

6 IRPT Interrupt Taken Debug Event
Set to 1 to mask debug mode entry by EDBSR0IRPT

7 TRAP Trap Taken Debug Event
Set to 1 to mask debug mode entry by EDBSR0TRAP

8 IAC1 Instruction Address Compare 1 Debug Event
Set to 1 to mask debug mode entry by EDBSR0IAC1

9 IAC2 Instruction Address Compare 2 Debug Event
Set to 1 to mask debug mode entry by EDBSR0IAC2

10 IAC3 Instruction Address Compare 3 Debug Event
Set to 1 to mask debug mode entry by EDBSR0IAC3

11 IAC4-8 Instruction Address Compare 4-8 Debug Event
Set to 1 to mask debug mode entry by EDBSR0IAC4-8

12 DAC1R Data Address Compare 1 Read Debug Event
Set to 1 to mask debug mode entry by EDBSR0DAC1R

13 DAC1W Data Address Compare 1 Write Debug Event
Set to 1 to mask debug mode entry by EDBSR0DAC1W

14 DAC2R Data Address Compare 2 Read Debug Event
Set to 1 to mask debug mode entry by EDBSR0DAC2R

15 DAC2W Data Address Compare 2 Write Debug Event
Set to 1 to mask debug mode entry by EDBSR0DAC2W

16 RET Return Debug Event
Set to 1 to mask debug mode entry by EDBSR0RET

17:20 — Reserved

21 DEVT1 External Debug Event 1 Debug Event
Set to 1 to mask debug mode entry by EDBSR0DEVT1

22 DEVT2 External Debug Event 2 Debug Event
Set to 1 to mask debug mode entry by EDBSR0DEVT2

23 DCNT1 Debug Counter 1 Debug Event
Set to 1 to mask debug mode entry by EDBSR0DCNT1

24 DCNT2 Debug Counter 2 Debug Event
Set to 1 to mask debug mode entry by EDBSR0DCNT1

25 CIRPT Critical Interrupt Taken Debug Event
Set to 1 to mask debug mode entry by EDBSR0CIRPT

26 CRET Critical Return Debug Event
Set to 1 to mask debug mode entry by EDBSR0CRET

22:31 — Reserved

Table 12-20. EDBSRMSK0 field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

696 Freescale Semiconductor

12.4.2 OnCE introduction

The e200z759n3 on-chip emulation circuitry (OnCE™/Nexus Class 1 interface) provides a means of
interacting with the e200z759n3 core and integrated system so that a user may examine registers, memory,
or on-chip peripherals facilitating hardware/software development. OnCE operation is controlled via an
industry standard IEEE 1149.1 TAP controller. By using public instructions, the external hardware
debugger can freeze or halt the CPU, read and write internal state, and resume normal execution. The core
does not contain IEEE 1149.1 standard boundary cells on its interface, as it is a building block for further
integration. It does not support the JTAG related boundary scan instruction functionality, although JTAG
public instructions may be decoded and signaled to external logic.

The OnCE logic provides for Nexus Class 1 static debug capability (utilizing the same set of resources
available to software while in internal debug mode), and is present in all e200z759n3-based designs. The
OnCE module also provides support for directly integrating a Nexus class 2 or class 3 Real-Time Debug
unit with the e200z759n3 core for development of real-time systems where traditional static debug is
insufficient. The partitioning between a OnCE module and a connected Nexus module to provide real-time
debug allows for capability and cost trade-offs to be made.

The e200z759n3 core is designed to be a fully integratable module. The OnCE TAP controller and
associated enabling logic are designed to allow concatenation with an existing JTAG controller if present
in the system. Thus, the e200z759n3 can be easily integrated with existing JTAG designs or as a
stand-alone controller.

In order to enable full OnCE operation, the jd_enable_once input signal must be asserted. In some system
integrations, this is automatic, since the input will be tied asserted. Other integrations may require the
execution of the Enable OnCE command via the TAP and appropriate entry of serial data. Exact
requirements will be documented by the integrated product specification. The jd_enable_once input
signal should not change state during a debug session, or undefined activity may occur.

The following figures show the TAP controller state model and the TAP registers implemented by the
OnCE logic.

Figure 12-18. OnCE TAP controller and registers

OnCE mapped Debug registers

Auxiliary data registers

External Data registers

Bypass register

TAP instruction register

TAP
controllerj_trst_b

j_tclk
j_tms TDO

mux logic

j_tdi j_tdo

j_tdo_en

 (OnCE OCMD)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 697

The OnCE controller is implemented as a 16-state FSM, with a one-to-one correspondence to the states
defined for the JTAG TAP controller.

Figure 12-19. OnCE controller stat emachine

Access to processor registers and the contents of memory locations are performed by enabling external
debug mode (setting DBCR0EDM to ‘1’), placing the processor into debug mode, followed by scanning
instructions and data into and out of the CPU Scan Chain (CPUSCR); execution of scanned instructions
by the CPU is used as the method to access required data. Memory locations may be read by scanning a
load instruction into the CPU core, which will reference the desired memory location, executing the load
instruction, and then scanning out the result of the load. Other resources are accessed in a similar manner.

The initial entry by the CPU into the debug state (or mode) from normal, waiting, stopped, or halted states
(all indicated via the OnCE Status Register (OSR), Section 12.4.6.1, e200z759n3 OnCE Status Register

Capture - DR

Shift - DR

Exit1 - DR

Pause - DR

Exit2 - DR

Update - DR

Select - IR
Scan

Capture - IR

Shift - IR

Exit1 - IR

Pause - IR

Exit2 - IR

Update - IR

Select DR-
Scan

Run - Test /
Idle

Test-Logic-
Reset

1

0

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

00

0 0

00

00

0

0

00

0

e200z759n3 Core Reference Manual, Rev. 2

698 Freescale Semiconductor

(OSR)) by assertion of one or more debug requests, begins a debug session. The jd_debug_b output signal
indicates that a debug session is in progress, and the OSR will indicate the CPU is in the debug state.
Instructions may the be single-stepped by scanning new values into the CPUSCR, and performing a OnCE
go+noexit command (See Section 12.4.6.2, e200z759n3 OnCE Command register (OCMD)). The CPU
will then temporarily exit the debug state (but not the debug session) to execute the instruction, and will
then return to the debug state (again indicated via the OnCE Status Register (OSR)). The debug session
remains in force until the final OnCE go+exit command is executed, at which time the CPU will return to
the previous state it was in (unless a new debug request is pending). A scan into the CPUSCR is required
prior to executing each go+exit or go+noexit OnCE command.

12.4.3 JTAG/OnCE pins

The JTAG/OnCE pin interface is used to transfer OnCE instructions and data to the OnCE control block.
Depending on the particular resource being accessed, the CPU may need to be placed in the Debug mode.
For resources outside of the CPU block and contained in the OnCE block, the processor is not disturbed,
and may continue execution. If a processor resource is required, an internal debug request (dbg_dbgrq)
may be asserted to the CPU by the OnCE controller, and causes the CPU to finish the current instruction
being executed, save the instruction pipeline information, enter Debug Mode, and wait for further
commands. Asserting dbg_dbgrq will cause the chip to exit the low power mode enabled by the setting
of MSRWE, as well as temporarily exiting the waiting, stopped or halted power management states.

Table 12-21 details the primary JTAG/OnCE interface signals.

A full description of JTAG pins is provided in Section 14.2.23, JTAG support signals.

12.4.4 OnCE internal interface signals

The following paragraphs describe the OnCE interface signals to other internal blocks associated with the
OnCE controller.

Table 12-21. JTAG/OnCE primary interface signals

Signal Name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en1

1 j_tdo_en is asserted when the TAP controller is in the shift_DR or shift_IR
state.

O Enables TDO output buffer

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 699

12.4.4.1 CPU debug request (dbg_dbgrq)

The dbg_dbgrq signal is asserted by the OnCE control logic to request the CPU to enter the debug state.
It may be asserted for a number of different conditions, and causes the CPU to finish the current instruction
being executed, save the instruction pipeline information, enter the debug mode, and wait for further
commands.

12.4.4.2 CPU debug acknowledge (cpu_dbgack)

The cpu_dbgack signal is asserted by the CPU upon entering the debug state. This signal is used as part
of the handshake mechanism between the OnCE control logic and the rest of the CPU. The CPU core may
enter debug mode either through a software or hardware event.

12.4.4.3 CPU address, attributes

The CPU address and attribute information are used by a Nexus class 2-4 debug unit with information for
real-time address trace information.

12.4.4.4 CPU data

The CPU data buses are used to supply a Nexus class 2-4 debug unit with information for real-time data
trace capability.

12.4.5 OnCE interface signals

The following paragraphs describe additional OnCE interface signals to other external blocks such as a
Nexus Controller and external blocks that may need information pertaining to debug operation.

12.4.5.1 OnCE enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions
and operations to be executed. Assertion of this signal will enable the full OnCE command set, as well as
operation of control signals and OnCE Control register functions. When this signal is disabled, only the
Bypass, ID and Enable_OnCE commands are executed by the OnCE unit, and all other commands default
to a “Bypass” command. The OnCE Status register (OSR) is not visible when OnCE operation is disabled.
In addition, OnCE Control register (OCR) functions are disabled, as is the operation of the jd_de_b input.
Secure systems may choose to leave the jd_en_once signal negated until a security check has been
performed. Other systems should tie this signal asserted to enable full OnCE operation. The
j_en_once_regsel output signal is provided to assist external logic performing security checks. Refer to
Section 14.2.23.15, Enable OnCE register select (j_en_once_regsel), for a description of the
j_en_once_regsel output signal.

The jd_en_once input must only change state during the Test-Logic-Reset, Run-Test/Idle, or Update_DR
TAP states. A new value will take affect after one additional j_tclk cycle of synchronization. In addition,
jd_enable_once input signal must not change state during a debug session, or undefined activity may
occur.

e200z759n3 Core Reference Manual, Rev. 2

700 Freescale Semiconductor

12.4.5.2 OnCE debug request/event (jd_de_b, jd_de_en)

If implemented at the SoC level, a system level bidirectional open drain debug event pin DE_b (not part
of the e200z759n3 interface) provides a fast means of entering the Debug Mode of operation from an
external command controller (when input) as well as a fast means of acknowledging the entering of the
Debug Mode of operation to an external command controller (when output). The assertion of this pin by
a command controller causes the CPU core to finish the current instruction being executed, save the
instruction pipeline information, enter Debug Mode, and wait for commands to be entered. If DE_b was
used to enter the Debug Mode then DE_b must be negated after the OnCE controller responds with an
acknowledge and before sending the first OnCE command. The assertion of this pin by the CPU Core
acknowledges that it has entered the Debug Mode and is waiting for commands to be entered.

To support operation of this system pin, the OnCE logic supplies the jd_de_en output and samples the
jd_de_b input when OnCE is enabled (jd_en_once asserted). Assertion of jd_de_b will cause the OnCE
logic to place the CPU into Debug Mode. Once Debug Mode has been entered, the jd_de_en output will
be asserted for three j_tclk periods to signal an acknowledge. jd_de_en can be used to enable the
open-drain pulldown of the system level DE_b pin.

For systems that do not implement a system level bidirectional open drain debug event pin DE_b, the
jd_de_en and jd_de_b signals may still be used to handshake debug entry.

12.4.5.3 e200z759n3 OnCE debug output (jd_debug_b)

The e200z759n3 OnCE Debug output jd_debug_b is used to indicate to on-chip resources that a debug
session is in progress. Peripherals and other units may use this signal to modify normal operation for the
duration of a debug session, which may involve the CPU executing a sequence of instructions solely for
the purpose of visibility/system control that are not part of the normal instruction stream the CPU would
have executed had it not been placed in debug mode. This signal is asserted the first time the CPU enters
the debug state, and remains asserted until the CPU is released by a write to the e200z759n3 OnCE
Command Register with the GO and EX bits set, and a register specified as either “No Register Selected”
or the CPUSCR. This signal will remain asserted even though the CPU may enter and exit the debug state
for each instruction executed under control of the e200z759n3 OnCE controller. See Section 12.4.6.2 for
more information on the function of the GO and EX bits. This signal is not normally used by the CPU.

12.4.5.4 e200z759n3 CPU clock on input (jd_mclk_on)

The e200z759n3 CPU Clock On input jd_mclk_on is used to indicate that the CPU’s m_clk input is
active. This input signal is expected to be driven by system logic external to the e200z759n3 core, is
synchronized to the j_tclk (scan clock) clock domain, and is presented as a status flag on the j_tdo output
during the Shift_IR state. External firmware may use this signal to ensure proper scan sequences will occur
to access debug resources in the m_clk clock domain.

12.4.5.5 Watchpoint events (jd_watchpt[0:29])

The jd_watchpt[0:29] signals may be asserted by the e200z759n3 OnCE control logic to signal that a
watchpoint condition has occurred. Watchpoints do not cause the CPU to be affected. They are provided
to allow external visibility only. Watchpoint events are conditioned by the settings in the DBCR0, DBCR1,

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 701

and DBCR2 registers, as well as by the DEVENT register, the DTC/DTSA/DTEA registers, and the
Performance Monitor control register settings.

12.4.6 e200z759n3 OnCE controller and serial interface

The OnCE controller contains the OnCE command register, the OnCE decoder, and the status/control
register. Figure 12-20 is a block diagram of the e200z759n3 OnCE controller. In operation, the OnCE
Command register acts as the IR for the e200z759n3 TAP controller, and all other OnCE resources are
treated as data registers (DR) by the TAP controller. The Command register is loaded by serially shifting
in commands during the TAP controller Shift-IR state, and is loaded during the Update-IR state. The
Command register selects a resource to be accessed as a data register (DR) during the TAP controller
Capture-DR, Shift-DR and Update-DR states.

Figure 12-20. e200z759n3 OnCE controller and serial interface

12.4.6.1 e200z759n3 OnCE Status Register (OSR)

Status information regarding the state of the CPU is latched into the OnCE Status Register (OSR)when the
OnCE controller state machine enters the Capture-IR state. When OnCE operation is enabled, this
information is provided on the j_tdo output in serial fashion when the Shift_IR state is entered following
a Capture-IR. Information is shifted out least significant bit first.

Table 12-22 provides field descriptions for the OnCE Status Register.

MCLK ERR 0 RESET HALT STOP DEBUG WAIT 0 1

0 1 2 3 4 5 6 7 8 9

Figure 12-21. OnCE Status Register (OSR)

OnCE Command Register
TDI
TCLK

Status and Control
Registers

TDO

Mode Select

OnCE Decoder

REG WRITEReg Read

.

.

.

.

CPU Control/Status

Update

.

e200z759n3 Core Reference Manual, Rev. 2

702 Freescale Semiconductor

12.4.6.2 e200z759n3 OnCE Command register (OCMD)

The OnCE Command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and serves as the instruction register (IR). It holds the 10-bit commands to be used as input for the
e200z759n3 OnCE Decoder. The OCMD is shown in Figure 12-22. The OCMD is updated when the TAP
controller enters the Update-IR state. It contains fields for controlling access to a resource, as well as
controlling single-step operation and exit from OnCE mode.

Although the OCMD is updated during the Update-IR TAP controller state, the corresponding resource is
accessed in the DR scan sequence of the TAP controller, and as such, the Update-DR state must be
transitioned through in order for an access to occur. In addition, the Update-DR state must also be
transitioned through in order for the single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated with it.

Table 12-22. OSR field descriptions

Bit(s) Name Description

0 MCLK m_clk Status Bit
0 Inactive state
1 Active state
This status bit reflects the logic level on the jd_mclk_on input signal after capture by j_tclk.

1 ERR The ERROR bit is used to indicate that an error condition occurred during attempted
execution of the last single-stepped instruction (GO+NoExit with CPUSCR or No Register
Selected in OCMD), and that the instruction may not have been properly executed. This could
occur if an Interrupt (all classes including External, Critical, machine check, Storage,
Alignment, Program, TLB, etc.) occurred while attempting to perform the instruction single
step. In this case, the CPUSCR will contain information related to the first instruction of the
Interrupt handler, and no portion of the handler will have been executed.

2 — Reserved, set to zero

3 RESET RESET Mode
This bit reflects the inverted logic level on the CPU p_reset_b input after capture by j_tclk.

4 HALT HALT Mode
This bit reflects the logic level on the CPU p_halted output after capture by j_tclk.

5 STOP STOP Mode
This bit reflects the logic level on the CPU p_stopped output after capture by j_tclk.

6 DEBUG Debug Mode
This bit is asserted once the CPU is in debug mode. It is negated once the CPU exits debug
mode (even during a debug session)

7 WAIT Waiting Mode
This bit reflects the logic level on the CPU p_waiting output after capture by j_tclk.

8 0 Reserved, set to 0 for 1149.1 compliance

9 1 Reserved, set to 1 for 1149.1 compliance

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 703

Table 12-23 provides field descriptions for the OnCE Command register.

R/W GO EX RS[0:6]

0 1 2 3 4 5 6 7 8 9

Reset - 10’b1000000010 on assertion of j_trst_b or m_por, or while in the Test_Logic_Reset state

Figure 12-22. OnCE Command register (OCMD)

Table 12-23. OCMD field descriptions

Bit(s) Name Description

0 R/W Read/Write Command Bit
The R/W bit specifies the direction of data transfer. The table below describes the options
defined by the R/W bit.
0 Write the data associated with the command into the register specified by RS[0:6]
1 Read the data contained in the register specified by RS[0:6]
Note: The R/W bit generally ignored for read-only or write-only registers, although the PC

FIFO pointer is only guaranteed to be update when R/W=1. In addition, it is ignored for
all bypass operations. When performing writes, most registers are sampled in the
Capture-DR state into a 32-bit shift register, and subsequently shifted out on j_tdo
during the first 32 clocks of Shift-DR.

1 GO Go
Go Command Bit
0 Inactive (no action taken)
1 Execute instruction in IR
If the GO bit is set, the chip will execute the instruction that resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves the debug mode, executes the
instruction, and if the EX bit is cleared, returns to the debug mode immediately after executing
the instruction. The processor goes on to normal operation if the EX bit is set, and no other
debug request source is asserted. The GO command is executed only if the operation is a
read/write to CPUSCR or a read/write to “No Register Selected”. Otherwise the GO bit is
ignored.The processor will leave the debug mode after the TAP controller Update-DR state is
entered.
On a GO+NoExit operation, returning to debug mode is treated as a debug event, thus
exceptions such as machine checks and interrupts may take priority and prevent execution of
the intended instruction. Debug firmware should mask these exceptions as appropriate. The
OSRERR bit indicates such an occurrence.
Note: Asynchronous interrupts are blocked on a GO+Exit operation until the first instruction to

be executed begins execution. See Section 12.4.9.6, Exiting debug mode and interrupt
blocking.

e200z759n3 Core Reference Manual, Rev. 2

704 Freescale Semiconductor

Table 12-24 indicates the e200z759n3 OnCE register addresses.

2 EX Exit Command Bit
0 Remain in debug mode
1 Leave debug mode
If the EX bit is set, the processor will leave the debug mode and resume normal operation until
another debug request is generated. The Exit command is executed only if the Go command
is issued, and the operation is a read/write to CPUSCR or a read/write to “No Register
Selected”. Otherwise the EX bit is ignored.
The processor will leave the debug mode after the TAP controller Update-DR state is entered.
Note: If the DR bit in the OnCE control register is set or remains set, or if a bit in EDBSR0 is

set and DBCR0EDM=1 (external debug mode is enabled), or if another debug request
source is asserted, then the processor may return to the debug mode without execution
of an instruction, even though the EX bit was set.

Note: Asynchronous interrupts are blocked on a GO+Exit operation until the first instruction to
be executed begins execution. See Section 12.4.9.6, Exiting debug mode and interrupt
blocking.

3:9 RS Register Select
The Register Select bits define which register is source (destination) for the read (write)
operation. Table 12-24 indicates the e200z759n3 OnCE register addresses. Attempted writes
to read-only registers are ignored.

Table 12-24. e200z759n3 OnCE register addressing

RS[0:6] Register Selected

000 0000 Reserved

000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011-–
000 1111

Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 Reserved

001 0100 –
001 1111

Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

Table 12-23. OCMD field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 705

010 0110 Data Value Compare 1 (DVC1)

010 0111 Data Value Compare 2 (DVC2)

010 1000 Instruction Address Compare 5 (IAC5)

010 1001 Instruction Address Compare 6 (IAC6)

010 1010 Instruction Address Compare 7 (IAC7)

010 1011 Instruction Address Compare 8 (IAC8)

010 1100 Debug Counter Register (DBCNT)

010 1101 Debug PCFIFO (PCFIFO)

010 1110 External Debug Control Register 0 (EDBCR0)

010 1111 External Debug Status Register 0 (EDBSR0)

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 Debug Control Register 3 (DBCR3)

011 0101 Debug Control Register 4 (DBCR4)

011 0110 Debug Control Register 5 (DBCR5)

011 0111 Debug Control Register 6 (DBCR6)

011 1000–
011 1011

Reserved (do not access)

011 1100 External Debug Status Register MASK 0 (EDBSRMSK0)

011 1101 Debug Data Acquisition Message Register (DDAM)

011 1110 Debug Event Control (DEVENT)

011 1111 Debug External Resource Control (DBERC0)

100 0000–
110 1110

Reserved (do not access)

110 1111 Reserved for Shared Nexus Control Register Select

111 0000–
111 1001

General Purpose register selects [0:9]

111 1010 Cache Debug Access Control Register (CDACNTL) -(See Section 11.19, Cache
memory access for debug / error handling)

111 1011 Cache Debug Access Data Register (CDADATA) -(See Section 11.19, Cache
memory access for debug / error handling)

111 1100 Nexus3-Access (see Chapter 13, Nexus 3 Module)

111 1101 LSRL Select (see Test Specification)

Table 12-24. e200z759n3 OnCE register addressing (continued)

RS[0:6] Register Selected

e200z759n3 Core Reference Manual, Rev. 2

706 Freescale Semiconductor

The OnCE Decoder receives as input the 10-bit command from the OCMD, and status signals from the
processor, and generates all the strobes required for reading and writing the selected OnCE registers.

Single stepping of instructions is performed by placing the CPU in debug mode, scanning in appropriate
information into the CPUSCR, and setting the Go bit (with the EX bit cleared) with the RS field indicating
either the CPUSCR or No Register Selected. After executing a single instruction, the CPU will re-enter
debug mode and await further commands. During single-stepping, exception conditions may occur if not
properly masked by debug firmware (interrupts, machine checks, bus error conditions, etc.) and may
prevent the desired instruction from being successfully executed. The OSRERR bit is set to indicate this
condition. In these cases, values in the CPUSCR will correspond to the first instruction of the exception
handler.

Additionally, the [E]DBCR0EDM bit is forced to ‘1’ internally while single-stepping to prevent Debug
events from generating Debug interrupts. Also, during a debug session, the DBSR and the DBCNT
registers are frozen from updates due to debug events regardless of [E]DBCR0EDM. They may still be
modified during a debug session via a single-stepped mtspr instruction, or via OnCE access if
[E]DBCR0EDM is set.

12.4.6.3 e200z759n3 OnCE Control Register (OCR)

The e200z759n3 OnCE Control Register is a 32-bit register used to force the e200z759n3 core into debug
mode and to enable / disable sections of the e200z759n3 OnCE control logic. It also provides control over
the MMU during a debug session (see Section 12.6, MMU and cache operation during debug). The control
bits are read/write. These bits are only effective while OnCE is enabled (jd_en_once asserted). The OCR
is shown in Figure 12-23.

Table 12-25 provides field descriptions for the OnCE Control Register.

111 1110 Enable_OnCE1

111 1111 Bypass

1 Causes assertion of the j_en_once_regsel output. Refer to Section 14.2.23.15, Enable OnCE
register select (j_en_once_regsel)

0

I_
D

M
D

IS

0

I_
D

V
LE

I_
D

I

I_
D

M

0

I_
D

E

D
_D

M
D

IS

0

D
_D

W

D
_D

I

D
_D

M

D
_D

G

D
_D

E

0

W
K

U
P

F
D

B

D
R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset - 0xo000_0000 on m_por, j_trst_b, or entering Test_logic_Reset state

Figure 12-23. OnCE Control Register (OCR)

Table 12-24. e200z759n3 OnCE register addressing (continued)

RS[0:6] Register Selected

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 707

Table 12-25. OCR field descriptions

Bit(s) Name Description

0:7 — Reserved

8 I_DMDIS Instruction Side Debug MMU Disable Control Bit (I_DMDIS)
0 MMU not disabled for debug sessions
1 MMU disabled for debug sessions
This bit may be used to control whether the MMU is enabled normally, or whether the MMU is
disabled during a debug session for Instruction Accesses. When enabled, the MMU functions
normally. When disabled, for Instruction Accesses, no address translation is performed (1:1
address mapping), and the TLB VLE, I,M, and E bits are taken from the OCR bits I_VLE, I_DI,
I_DM, and I_DE bits. The W and G bits are assumed ‘0’. The SX and UX access permission
control bits are set to‘1’ to allow full access. When disabled, no TLB miss or TLB exceptions
are generated for Instruction accesses. External access errors can still occur.

9:10 — Reserved

11 I_DVLE Instruction Side Debug TLB ‘VLE’ Attribute Bit (I_DVLE)
This bit is used to provide the ‘VLE’ attribute bit to be used when the MMU is disabled during
a debug session.

12 I_DI Instruction Side Debug TLB ‘I’ Attribute Bit (I_DI)
This bit is used to provide the ‘I’ attribute bit to be used for Instruction accesses when the MMU
is disabled for Instruction accesses during a debug session.

13 I_DM Instruction Side Debug TLB ‘M’ Attribute Bit (I_DM)
This bit is used to provide the ‘M’ attribute bit to be used for Instruction accesses when the
MMU is disabled for Instruction accesses during a debug session.

14 — Reserved

15 I_DE Instruction Side Debug TLB ‘E’ Attribute Bit (I_DE)
This bit is used to provide the ‘E’ attribute bit to be used for Instruction accesses when the
MMU is disabled for Instruction accesses during a debug session.

16 D_DMDIS Data Side Debug MMU Disable Control Bit (D_DMDIS)
0 MMU not disabled for debug sessions
1 MMU disabled for debug sessions
This bit may be used to control whether the MMU is enabled normally, or whether the MMU is
disabled during a debug session for Data Accesses. When enabled, the MMU functions
normally. When disabled, for Data Accesses, no address translation is performed (1:1 address
mapping), and the TLB WIMGE bits are taken from the OCR bits D_DW, D_DI, D_DM, D_DG,
and D_DE bits. The SR, SW, UR, and UW access permission control bits are set to‘1’ to allow
full access. When disabled, no TLB miss or TLB exceptions are generated for Data accesses.
External access errors can still occur.

17:18 — Reserved

19 D_DW Data Side Debug TLB ‘W’ Attribute Bit (D_DW)
This bit is used to provide the ‘W’ attribute bit to be used for Data accesses when the MMU is
disabled for Data accesses during a debug session.

20 D_DI Data Side Debug TLB ‘I’ Attribute Bit (D_DI)
This bit is used to provide the ‘I’ attribute bit to be used for Data accesses when the MMU is
disabled for Data accesses during a debug session.

21 D_DM Data Side Debug TLB ‘M’ Attribute Bit (D_DM)
This bit is used to provide the ‘M’ attribute bit to be used for Data accesses when the MMU is
disabled for Data accesses during a debug session.

e200z759n3 Core Reference Manual, Rev. 2

708 Freescale Semiconductor

12.4.7 Access to debug resources

Resources contained in the e200z759n3 OnCE module that do not require the e200z759n3 processor core
to be halted for access may be accessed while the e200z759n3 core is running, and will not interfere with
processor execution. Accesses to other resources such as the CPUSCR require the e200z759n3 core to be
placed in debug mode to avoid synchronization hazards. Debug firmware may ensure that it is safe to
access these resources by determining the state of the e200z759n3 core prior to access. Note that a scan
operation to update the CPUSCR is required prior to exiting debug mode if debug mode has been entered.

Some cases of write accesses other than accesses to the OnCE Command and Control registers, or the
EDM bit of DBCR0 require the e200z759n3 m_clk to be running for proper operation. The OnCE control
register provides a means of signaling this need to a system level clock control module.

In addition, since the CPU may cause multiple bits of certain registers to change state, reads of certain
registers while the CPU is running (DBSR, DBCNT, etc.) may not have consistent bit settings unless read
twice with the same value indicated. In order to guarantee that the contents are consistent, the CPU should
be placed into debug mode, or multiple reads should be performed until consistent values have been
obtained on consecutive reads.

22 D_DG Data Side Debug TLB ‘G’ Attribute Bit (D_DG)
This bit is used to provide the ‘G’ attribute bit to be used for Data accesses when the MMU is
disabled for Data accesses during a debug session.

23 D_DE Data Side Debug TLB ‘E’ Attribute Bit (D_DE)
This bit is used to provide the ‘E’ attribute bit to be used for Data accesses when the MMU is
disabled for Data accesses during a debug session.

24:28 — Reserved

29 WKUP Wakeup Request Bit (WKUP)
This control bit may be used to force the e200z759n3 p_wakeup output signal to be asserted.
This control function may be used by debug firmware to request that the chip-level clock
controller restore the m_clk input to normal operation regardless of whether the CPU is in a
low power state to ensure that debug resources may be properly accessed by external
hardware through scan sequences.

30 FDB Force Breakpoint Debug Mode Bit (FDB)
This control bit is used to determine whether the processor is operating in breakpoint debug
enable mode or not. The processor may be placed in breakpoint debug enable mode by
setting this bit. In breakpoint debug enable mode, execution of the ‘bkpt’ pseudo- instruction
will cause the processor to enter debug mode, as if the jd_de_b input had been asserted.

This bit is qualified with DBCR0EDM, which must be set for FDB to take effect.
Note that this bit has no effect on dnh or se_dnh instruction operation.

31 DR CPU Debug Request Control Bit
This control bit is used to unconditionally request the CPU to enter the Debug Mode. The CPU
will indicate that Debug Mode has been entered via the data scanned out in the shift-IR state.
0 No Debug Mode request
1 Unconditional Debug Mode request
When the DR bit is set the processor will enter Debug mode at the next instruction boundary.

Table 12-25. OCR field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 709

Table 12-26 provides a list of access requirements for OnCE registers.

Table 12-26. OnCE register access requirements

Register
name

Access Requirements

Notes
Requires

jd_en_once
to be

asserted

Require
s DBCR0
EDM = 1

Requires
m_clk
active

for write
access

Requires
CPU to

be
halted

for read
access

Requires
CPU to

be
halted

for write
access

Enable_OnCE N N N N —

Bypass N N N N N

CPUSCR Y Y Y Y Y

DAC1 Y Y Y N *1

DAC2 Y Y Y N *1

DBCNT Y Y Y N2 *1

DBCR0 Y Y Y N *1 *DBCR0EDM access only requires
jd_en_once asserted

DBCR1-6 Y Y Y N *1

DEVENT Y Y Y N *1

DBERC0 Y N Y N *1

DBSR Y Y Y N2 *1

EDBCR0 Y N N N N

EDBSR0 Y N N N N

EDBSRMSK0 Y N N N N

IAC1-8 Y Y Y N *1

JTAG ID N N — N — Read-only

OCR Y N N N N

OSR Y N — N — Read-only, accessed by scanning out
IR while jd_en_once is asserted

PC FIFO Y N Y N N Updates frozen while OCMD holds
PCFIFO register encoding.

Note: No updates will occur to the
PCFIFO while the OnCE state

machine is in the Test_Logic_Reset
state

Cache Debug
Access Control

(CDACNTL)

Y N Y Y Y CPU must be in debug mode with
clocks running

Cache Debug
Access Data
(CDADATA)

Y N Y Y Y CPU must be in debug mode with
clocks running

e200z759n3 Core Reference Manual, Rev. 2

710 Freescale Semiconductor

12.4.8 Methods of entering debug mode

The OnCE Status Register indicates that the CPU has entered the debug mode via the DEBUG status bit.
The following sections describe how e200z759n3 Debug Mode is entered assuming the OnCE circuitry
has been enabled. e200z759n3 OnCE operation is enabled by the assertion of the jd_en_once input (see
Section 12.4.5.1, OnCE enable (jd_en_once)).

12.4.8.1 External debug request during RESET

Holding the jd_de_b signal asserted during the assertion of p_reset_b, and continuing to hold it asserted
following the negation of p_reset_b causes the e200z759n3 core to enter Debug Mode. After receiving an
acknowledge via the OnCE Status Register DEBUG bit, the external command controller should negate
the jd_de_b signal before sending the first command. Note that in this case the e200z759n3 core does not
execute an instruction before entering Debug Mode, although the first instruction to be executed may be
fetched prior to entering Debug Mode.

In this case, all values in the debug scan chain will be undefined, and the external Debug Control Module
is responsible for proper initialization of the chain before debug mode is exited. In particular, the exception
processing associated with reset, may not be performed when the debug mode is exited, thus, the Debug
controller must initialize the PC, MSR, and IR to the image that the processor would have obtained in
performing reset exception processing, or must cause the appropriate reset to be re-asserted.

12.4.8.2 Debug request during RESET

Asserting a debug request by setting the DR bit in the OCR during the assertion of p_reset_b causes the
chip to enter debug mode. In this case the chip may fetch the first instruction of the reset exception handler,
but does not execute an instruction before entering debug mode. In this case, all values in the debug scan

Nexus3-Access Y N N N N

External GPRs Y N N N N

LSRL Select Y N ? ? ? System Test logic implementation
determines LSRL functionality

1 Writes to these registers while the CPU is running may have unpredictable results due to the pipelined nature of
operation, and the fact that updates are not synchronized to a particular clock, instruction, or bus cycle boundary,
therefore it is strongly recommended to ensure the processor is first placed into debug mode before updates to
these registers are performed.

2 Reads of these registers while the CPU is running may not give data that is self-consistent due to synchronization
across clock domains.

Table 12-26. OnCE register access requirements (continued)

Register
name

Access Requirements

Notes
Requires

jd_en_once
to be

asserted

Require
s DBCR0
EDM = 1

Requires
m_clk
active

for write
access

Requires
CPU to

be
halted

for read
access

Requires
CPU to

be
halted

for write
access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 711

chain will be undefined, and the external Debug Control Module is responsible for proper initialization of
the chain before debug mode is exited. In particular, the exception processing associated with reset may
not be performed when the debug mode is exited, thus, the Debug controller must initialize the PC, MSR,
and IR to the image that the processor would have obtained in performing reset exception processing, or
must cause the appropriate reset to be re-asserted.

12.4.8.3 Debug request during normal activity

Asserting a debug request by setting the DR bit in the OCR during normal chip activity causes the chip to
finish the execution of the current instruction and then enter the debug mode. Note that in this case the chip
completes the execution of the current instruction and stops after the newly fetched instruction enters the
CPU instruction register. This process is the same for any newly fetched instruction including instructions
fetched by the interrupt processing, or those that will be aborted by the interrupt processing.

12.4.8.4 Debug request during Waiting, Halted, or Stopped state

Asserting a debug request by setting the DR bit in the OCR when the chip is in the Waiting state
(p_waiting asserted), Halted state (p_halted asserted) or Stopped state (p_stopped asserted) causes the
CPU to exit the state and enter the debug mode once the CPU clock m_clk has been restored. Note that in
this case, the CPU will negate the p_waiting, p_halted and p_stopped outputs. Once the debug session
has ended, the CPU will return to the state it was in prior to entering debug mode.

To signal the chip-level clock generator to re-enable m_clk, the p_wakeup output will be asserted
whenever the debug block is asserting a debug request to the CPU due to OCRDR being set, or jd_de_b
assertion, and will remain set from then until the debug session ends (jd_debug_b goes from asserted to
negated). In addition, the status of the jd_mclk_on input (after synchronization to the j_tclk clock
domain) may be sampled along with other status bits from the j_tdo output during the Shift_IR TAP
controller state. This status may be used if necessary by external debug firmware to ensure proper scan
sequences occur to registers in the m_clk clock domain.

12.4.8.5 Software request during normal activity

Upon executing a ‘bkpt’ pseudo-instruction (for e200z759n3, defined to be an all 0’s instruction opcode)
when the OCR register’s (FDB) bit is set (debug mode enable control bit is true), and DBCR0EDM=1, the
CPU enters the debug mode after the instruction following the ‘bkpt’ pseudo-instruction has entered the
instruction register.

12.4.8.6 Debug notify halt instructions

The dnh, e_dnh, and se_dnh instructions allow software to transition the core from a running state to a
debug halted state if enabled by EDBCR0DNH_EN, and provide the external debugger with bits reserved in
the instruction itself to pass additional information. Entry into debug mode is not conditioned on
EDBCR0EDM, allowing for debug of software debug handlers as well as other software. For e200z759n3,
when the CPU enters a debug halted state due to a dnh, e_dnh, or se_dnh instruction, the instruction will
be stored in the CPUSCR[IR] portion, and the CPUSCR[PC] value will point to the instruction. The
external debugger should update the CPUSCR prior to exiting the debug halted state to point past the dnh,
e_dnh, or se_dnh instruction.

e200z759n3 Core Reference Manual, Rev. 2

712 Freescale Semiconductor

12.4.9 CPU Status and Control Scan Chain Register (CPUSCR)

A number of on-chip registers store the CPU pipeline status and are configured in a single scan chain for
access by the e200z759n3 OnCE controller. The CPUSCR register contains these processor resources,
which are used to restore the pipeline and resume normal chip activity upon return from the debug mode,
as well as a mechanism for the emulator software to access processor and memory contents. Figure 12-24
shows the block diagram of the pipeline information registers contained in the CPUSCR. Once debug
mode has been entered, it is required to scan in and update this register prior to exiting debug mode.

Figure 12-24. CPU Scan Chain Register (CPUSCR)

12.4.9.1 Instruction Register (IR)

The Instruction Register (IR) provides a mechanism for controlling the debug session by serving as a
means for forcing in selected instructions, and then causing them to be executed in a controlled manner by
the debug control block. The opcode of the next instruction to be executed when entering debug mode is
contained in this register when the scan-out of this chain begins. This value should be saved for later
restoration if continuation of the normal instruction stream is desired.

On scan-in, in preparation for exiting debug mode, this register is filled with an instruction opcode selected
by debug control software. By selecting appropriate instructions and controlling the execution of those
instructions, the results of execution may be used to examine or change memory locations and processor
registers. The debug control module external to the processor core will control execution by providing a

TDO

TDI

TCK

MSR

WBBRhigh

32

32
0 31

0 31

PC

32
0 31

IR

32
0 31

CTL

32
0 31

WBBRlow

32
0 31

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 713

single-step capability. Once the debug session is complete and normal processing is to be resumed, this
register may be loaded with the value originally scanned out.

12.4.9.2 Control State register (CTL)

The Control State register (CTL) is a 32-bit register that stores the value of certain internal CPU state
variables before the debug mode is entered. This register is affected by the operations performed during
the debug session and should normally be restored by the external command controller when returning to
normal mode. In addition to saved internal state variables, two of the bits are used by emulation firmware
to control the debug process. In certain circumstances, emulation firmware must modify the content of this
register as well as the PC and IR values in the CPUSCR before exiting debug mode. These cases are
described below.

*

IR
S

TA
T

13

IR
S

TA
T

12

IR
S

TA
T

11

IR
S

TA
T

10

W
A

IT
IN

G

PCOFST

P
C

IN
V

F
F

R
A

IR
S

TA
T

0

IR
S

TA
T

1

IR
S

TA
T

2

IR
S

TA
T

3

IR
S

TA
T

4

IR
S

TA
T

5

IR
S

TA
T

6

IR
S

TA
T

7

IR
S

TA
T

8

IR
S

TA
T

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 12-25. Control State Register (CTL)

Table 12-27. CTL field descriptions

Bit(s) Name Description

0:10 * Internal State Bits
These control bits represent internal processor state and should be restored to their original
value after a debug session is completed, i.e when a e200z759n3 OnCE command is issued
with the GO and EX bits set and not ignored. When performing instruction execution during a
debug session (see Section 12.4.5.3) that is not part of the normal program execution flow,
these bits should be set to a 0.

11 IRStat13 IR Status Bit 13
This control bit indicates an Instruction Address Compare 8 event status for the IR.
0 No Instruction Address Compare 8 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 8 event occurred on the fetch of this instruction.

12 IRStat12 IR Status Bit 12
This control bit indicates an Instruction Address Compare 7 event status for the IR.
0 No Instruction Address Compare 7 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 7 event occurred on the fetch of this instruction.

13 IRStat11 IR Status Bit 11
This control bit indicates an Instruction Address Compare 6 event status for the IR.
0 No Instruction Address Compare 6 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 6 event occurred on the fetch of this instruction.

14 IRStat10 IR Status Bit 10
This control bit indicates an Instruction Address Compare 5 event status for the IR.
0 No Instruction Address Compare 5 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 5 event occurred on the fetch of this instruction.

e200z759n3 Core Reference Manual, Rev. 2

714 Freescale Semiconductor

15 WAITING WAITING State Status
This bit indicates whether the CPU was in the waiting state prior to entering debug mode. If
set, the CPU was in the waiting state. Upon exiting a debug session, the value of this bit in the
restored CPUSCR will determine whether the CPU re-enters the waiting state on a go+exit.
0 CPU was not in the waiting state when debug mode was entered
1 CPU was in the waiting state when debug mode was entered

16:19 PCOFST PC Offset Field
This field indicates whether the value in the PC portion of the CPUSCR must be adjusted prior
to exiting debug mode. Due to the pipelined nature of the CPU, the PC value must be
backed-up by emulation software in certain circumstances. The PCOFST field specifies the
value to be subtracted from the original value of the PC. This adjusted PC value should be
restored into the PC portion of the CPUSCR just prior to exiting debug mode with a go+exit.
In the event the PCOFST is non-zero, the IR should be loaded with a nop instruction instead
of the original IR value, other wise the original value of IR should be restored. (But see PCINV,
which overrides this field.)
0000 No correction required.
0001 Subtract 0x04 from PC.
0010 Subtract 0x08 from PC.
0011 Subtract 0x0C from PC.
0100 Subtract 0x10 from PC.
0101 Subtract 0x14 from PC.
All other encodings are reserved.

20 PCINV PC and IR Invalid Status Bit
This status bit indicates that the values in the IR and PC portions of the CPUSCR are invalid.
Exiting debug mode with the saved values in the PC and IR will have unpredictable results.
Debug firmware should initialize the PC and IR values in the CPUSCR with desired values
prior to exiting debug mode if this bit was set when debug mode was initially entered.
0 No error condition exists.
1 Error condition exists. PC and IR are corrupted.

21 FFRA Feed Forward RA Operand Bit
This control bit causes the content of the WBBR to be used as the RA operand value (RS for
logical, mtspr, mtdcr, cntlzw, and shift operations, RX for VLE se_ instructions, RT for
e_{logical_op}2i type instructions, RB for evaddiw, evsubifw, and the value to use as the PC
for calculating the LR update value for branch with link type instructions) of the first instruction
to be executed following an update of the CPUSCR. This allows the debug firmware to update
processor registers — initialize the WBBR with the desired value, set the FFRA bit, and
execute a ori Rx,Rx,0 instruction to the desired register.
0 No action.
1 Content of WBBR used as operand value

22 IRSTAT0 IR Status Bit 0
This control bit indicates a TEA status for the IR.
0 No TEA occurred on the fetch of this instruction.
1 TEA occurred on the fetch of this instruction.

23 IRSTAT1 IR Status Bit 1
This control bit indicates a TLB Miss status for the IR.
0 No TLB Miss occurred on the fetch of this instruction.
1 TLB Miss occurred on the fetch of this instruction.

Table 12-27. CTL field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 715

Emulation firmware should modify the content of the CTL, PC, and IR values in the CPUSCR during
execution of debug related instructions as well as just prior to exiting debug with a go+exit command.
During the debug session, the CTL register should be written with the FFRA bit set as appropriate, and all
other bit set to ‘0’, and the IR set to the value of the desired instruction to be executed. IRStat8 will be used
to determine the type of instruction present in the IR.

24 IRSTAT2 IR Status Bit 2
This control bit indicates an Instruction Address Compare 1 event status for the IR.
0 No Instruction Address Compare 1 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 1 event occurred on the fetch of this instruction.

25 IRSTAT3 IR Status Bit 3
This control bit indicates an Instruction Address Compare 2 event status for the IR.
0 No Instruction Address Compare 2 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 2 event occurred on the fetch of this instruction.

26 IRSTAT4 IR Status Bit 4
This control bit indicates an Instruction Address Compare 3 event status for the IR.
0 No Instruction Address Compare 3 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 3 event occurred on the fetch of this instruction.

27 IRSTAT5 IR Status Bit 5
This control bit indicates an Instruction Address Compare 4 event status for the IR.
0 No Instruction Address Compare 4 event occurred on the fetch of this instruction.
1 An Instruction Address Compare 4 event occurred on the fetch of this instruction.

28 IRSTAT6 IR Status Bit 6
This control bit indicates a Parity Error status for the IR.
0 No Parity Error occurred on the fetch of this instruction.
1 Parity Error occurred on the fetch of this instruction.

29 IRSTAT7 IR Status Bit 7
This control bit indicates a Precise External Termination Error status for the IR, or a 2nd half
TLB Miss for the instruction in the IR.
0 No Precise External Termination Error occurred on the fetch of this instruction.
1 If IRSTAT1 = ‘0’, a Precise External Termination Error occurred on the fetch of this

instruction.
If IRSTAT1 = ‘1’, a TLB Miss occurred on the 2nd half of this instruction.

30 IRSTAT8 IR Status Bit 8
This control bit indicates the PowerISA VLE status for the IR.
0 IR contains a BookE instruction.
1 IR contains a PowerISA VLE instruction, aligned in the Most Significant Portion of IR if

16-bit.

31 IRSTAT9 IR Status Bit 9
This control bit indicates the PowerISA VLE Byte-ordering Error status for the IR, or a BookE
misaligned instruction fetch, depending on the state of IRStat8.
0 IR contains an instruction without a byte-ordering error and no Misaligned Instruction Fetch

Exception has occurred (no MIF).
1 If IRSTAT8 = ‘0’, A BookE Misaligned Instruction Fetch Exception has occurred while filling

the IR.
If IRSTAT8 = ‘1’, IR contains an instruction with a byte-ordering error due to mismatched
VLE page attributes, or due to E indicating little-endian for a VLE page.

Table 12-27. CTL field descriptions (continued)

Bit(s) Name Description

e200z759n3 Core Reference Manual, Rev. 2

716 Freescale Semiconductor

Just prior to exiting debug mode with a go+exit, the PCINV status bit that was originally present when
debug mode was first entered should be tested, and if set, the PC and IR initialized for performing whatever
recovery sequence is appropriate for a faulted exception vector fetch. If the PCINV bit is cleared, then the
PCOFST bits should be examined to determine whether the PC value must be adjusted. Due to the
pipelined nature of the CPU, the PC value must be backed-up by emulation software in certain
circumstances. The PCOFST field specifies the value to be subtracted from the original value of the PC.
This adjusted PC value should be restored in to the PC portion of the CPUSCR just prior to exiting debug
mode with a go+exit. In the event the PCOFST is non-zero, the IR should be loaded with a nop instruction
(such as ori r0,r0,0) instead of the original IR value, otherwise the original value of IR should be restored.
Note that when a correction is made to the PC value, it will generally point to the last completed
instruction, although that instruction will not be re-executed. The nop instruction is executed instead, and
instruction fetch and execution will resume at location PC+4. IRStat8 will be used to determine the type
of instruction present in the IR, thus should be cleared in this case. Note that debug events that may occur
on the nop (ICMP) will be generated (and optionally counted) if enabled.

For the CTL register, the internal state bits should be restored to their original value. The IRStatus bits
should be set to ‘0’s if the PC was adjusted. If no PC adjustment was performed, emulation firmware
should determine whether other IRStat flags should be set to ‘0’ to avoid re-entry into debug mode for an
instruction breakpoint request. Upon exiting debug mode with go+exit, if one of these bits is set, debug
mode will be re-entered prior to any further instruction execution.

12.4.9.3 Program Counter register (PC)

The PC is a 32-bit register that stores the value of the program counter that was present when the chip
entered the debug mode. It is affected by the operations performed during the debug mode and must be
restored by the external command controller when the CPU returns to normal mode. PC normally points
to the instruction contained in the IR portion of CPUSCR. If debug firmware wishes to redirect program
flow to an arbitrary location, the PC and IR should be initialized to correspond to the first instruction to be
executed upon resumption of normal processing. Alternatively, the IR may be set to a nop and the PC set
to point to the location prior to the location at which it is desired to redirect flow to. On exiting debug
mode, the nop will be executed, and instruction fetch and execution will resume at PC+4.

12.4.9.4 Write-Back Bus Register (WBBRlow, WBBRhigh)

WBBR is used as a means of passing operand information between the CPU and the external command
controller. Whenever the external command controller needs to read the contents of a register or memory
location, it will force the chip to execute an instruction that brings that information to WBBR. WBBRlow
holds the 32-bit result of most instructions including load data returned for a load or load with update
instruction. For SPE/EFPU instructions that generate 64-bit results, WBBRlow holds the low-order 32 bits
of the result. WBBRhigh holds the updated effective address calculated by a load with update instruction.
For SPE/EFPU instructions that generate 64-bit results, WBBRhigh holds the high-order 32 bits of the
result. It is undefined for other instructions.

As an example, to read the lower 32 bits of processor register r1, an ori r1,r1,0 instruction is executed,
and the result value of the instruction will be latched into WBBRlow. The contents of WBBRlow can then
be delivered serially to the external command controller. To update a processor resource, this register is
initialized with a data value to be written and an ori instruction is executed, which uses this value as a

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 717

substitute data value. The Control State register FFRA bit forces the value of the WBBRlow to be
substituted for the normal RS source value of the ori instruction, thus allowing updates to processor
registers to be performed (refer to Section 12.4.9.2, Control State register (CTL), for more detail on the
CTLFFRA bit).

WBBRlow and WBBRhigh are generally undefined on instructions that do not write back a result, and due
to control issues are not defined on lmw or branch instructions as well.

To read and write the entire 64 bits of a GPR, both WBBRlow and WBBRhigh are used. For reads, an evslwi
rn,rn,0 may be used. For writes, the same instruction may be used, but the CTLFFRA bit must be set as
well. Note that MSRSPE must be set in order for these operations to be performed properly.

12.4.9.5 Machine State Register (MSR)

The MSR is a 32-bit register used to read/write the Machine State Register. Whenever the external
command controller needs to save or modify the contents of the Machine State Register, this register is
used.This register is affected by the operations performed during the debug mode and must be restored by
the external command controller when returning to normal mode.

12.4.9.6 Exiting debug mode and interrupt blocking

When exiting debug mode with a Go+Exit, “asynchronous” interrupts are blocked until the first instruction
to be executed begins execution. This includes External and Critical input, NMI, machine check, timer,
decrementer, and watchdog interrupts. Asynchronous debug interrupts are not blocked however, and the
CPU will re-enter debug mode without executing an instruction following Go+Exit, although it may fetch
an instruction and discard it. Exceptions due to an illegal instruction or error flags set within the CPUSCR
CTL register are not blocked, since they apply to the instruction in the CPUSCR IR.

12.4.10 Instruction Address FIFO buffer (PC FIFO)

To assist debugging and keep track of program flow, a First-In-First-Out (FIFO) buffer stores the addresses
of the last eight instruction change of flow destinations that were fetched. These include exception
vectoring to an exception handler and returns, as well as pipeline refills due to execution of the isync
instruction.

12.4.10.1 PC FIFO

The PC FIFO stores the addresses of the last eight instruction change of flow addresses that were actually
taken. The FIFO is implemented as a circular buffer containing eight 32-bit registers and one 3-bit counter.
All the registers have the same address, but any access to the FIFO address will cause the counter to
increment, making it point to the next FIFO register. The registers are serially available to the external
command controller through the common FIFO address. Figure 12-26 shows the block diagram of the PC
FIFO.

e200z759n3 Core Reference Manual, Rev. 2

718 Freescale Semiconductor

Figure 12-26. OnCE PC FIFO

The FIFO is not affected by the operations performed during a Debug session except for the FIFO pointer
increment when accessing the FIFO. When entering Debug mode, the FIFO counter will be pointing to the
FIFO register containing the address of the oldest of the eight change of flow prefetches. When the OCMD
RS field is loaded with the value corresponding to the PC FIFO (010 1101), the current pointer value is
captured into a temporary register. This temporary value (not the actual FIFO counter) is incremented as
FIFO reads or writes are performed. The first FIFO read will obtain the oldest address and the following
FIFO reads will return the other addresses from the oldest to the newest (the order of execution). Writes
will operate similarly.

Updates to the FIFO by change of flows are frozen whenever the OCMD register contains a command
whose RS[0:6] field points to the PC FIFO (010 1101) to allow firmware to access the contents of the PC

PC FIFO REGISTER 0

TDO
TCK

PC FIFO REGISTER 1

PC FIFO REGISTER 2

PC FIFO REGISTER 3

PC FIFO REGISTER 4

INSTRUCTION FETCH ADDRESS

CIRCULAR
BUFFER
POINTER

PC FIFO SHIFT REGISTER

PC FIFO REGISTER 5

PC FIFO REGISTER 6

PC FIFO REGISTER 7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 719

FIFO without placing the CPU into debug mode. After completing all accesses to the PC FIFO, another
OCMD value that does not select the PC FIFO should be entered to allow the PC FIFO to resume updating.

To ensure FIFO coherence, a complete set of eight accesses of the FIFO should be performed since each
access increments the temporary FIFO pointer, thus making it point to the next location. After eight
accesses, the pointer will point to the same location it pointed to before starting the access procedure. The
temporary counter value captures the actual counter each time the OCMD RS field transitions to the value
corresponding to the PC FIFO (010 1101).

The FIFO pointer is reset to entry 0 when either j_trst_b or m_por are asserted.

12.4.11 Reserved registers (reserved)

The Reserved Registers are used to control various test control logic. These registers are not intended for
customer use. To preclude device and/or system damage, these registers should not be accessed.

12.5 Watchpoint support
e200z759n3 supports the generation and signaling of watchpoints when operating in internal debug mode
(DBCR0IDM=1) or in external debug mode (DBCR0EDM=1). Watchpoints are indicated with a dedicated
set of interface signals. The jd_watchpt[0:29] output signals are used to indicate that a watchpoint has
occurred. Certain watchpoints (DEVNT-based and DTC-based) are not qualified with DBCR0EDM or
DBCR0IDM.

Each debug address compare function (IAC1-8, DAC1-2), and Debug Counter event (DCNT1-2), as well
as other event types are capable of triggering a watchpoint output. The DBCRx control fields are used to
configure watchpoints, regardless of whether events are enabled in DBCR0. Watchpoints may occur
whenever an associated event would have been posted in the Debug Status Register if enabled. No explicit
enable bits are provided for watchpoints; they are always enabled by definition. During a debug session,
events (other than DEVT1 and DEVT2) with a corresponding DBSR bit are blocked from asserting a
watchpoint. The DEVNT-based and DTC-based watchpoints are not blocked during a debug session. If
not desired, for address-based events the base address values for these events may be programmed to an
unused system address. MSRDE has no effect on watchpoint generation.

External logic may monitor the assertion of these signals for debugging purposes. Watchpoints are
signaled in the clock cycle following the occurrence of the actual event. The Nexus3 module also monitors
assertion of these signals for various development control purposes (See Section 13.14, Watchpoint Trace
Messaging).

Table 12-28. Watchpoint output signal assignments

Signal name Type Description

jd_watchpt[0] IAC1 Instruction Address Compare 1 watchpoint
Asserted whenever an IAC1 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[1] IAC2 Instruction Address Compare 2 watchpoint
Asserted whenever an IAC2 compare occurs regardless of being enabled to
set DBSR status

e200z759n3 Core Reference Manual, Rev. 2

720 Freescale Semiconductor

jd_watchpt[2] IAC3 Instruction Address Compare 3 watchpoint
Asserted whenever an IAC3 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[3] IAC4 Instruction Address Compare 4 watchpoint
Asserted whenever an IAC4 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[4] DAC11 Data Address Compare 1 watchpoint
Asserted whenever a DAC1 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[5] DAC21 Data Address Compare 2 watchpoint
Asserted whenever a DAC2 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[6] DCNT1 Debug Counter 1 watchpoint
Asserted whenever Debug Counter 1 decrements to zero regardless of being
enabled to set DBSR status

jd_watchpt[7] DCNT2 Debug Counter 2 watchpoint
Asserted whenever Debug Counter 2 decrements to zero regardless of being
enabled to set DBSR status

jd_watchpt[8] IAC5 Instruction Address Compare 5 watchpoint
Asserted whenever an IAC5 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[9] IAC6 Instruction Address Compare 6 watchpoint
Asserted whenever an IAC6 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[10] DEVT1 Debug Event Input 1 watchpoint
Asserted whenever a DEVT1 debug event occurs regardless of being
enabled to set DBSR status

jd_watchpt[11] DEVT2 Debug Event Input 2 watchpoint
Asserted whenever a DEVT2 debug event occurs regardless of being
enabled to set DBSR status

jd_watchpt[12] DEVNT0 Debug Event Output 0 watchpoint
Asserted whenever a ‘1’ is written to the bit of the DEVNT field of the DEVENT
debug register corresponding to jd_watchpt[12]

jd_watchpt[13] DEVNT1 Debug Event Output 1 watchpoint
Asserted whenever a ‘1’ is written to the bit of the DEVNT field of the DEVENT
debug register corresponding to jd_watchpt[13]

jd_watchpt[14] IAC7 Instruction Address Compare 7 watchpoint
Asserted whenever an IAC7 compare occurs regardless of being enabled to
set DBSR status

jd_watchpt[15] IAC8 Instruction Address Compare 8 watchpoint
Asserted whenever an IAC8 compare occurs regardless of being enabled to
set DBSR status

Table 12-28. Watchpoint output signal assignments (continued)

Signal name Type Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 721

12.6 MMU and cache operation during debug
Normal operation of the MMU may be modified during a ‘debug session’ via the OnCE Control Register
(OCR). A debug session begins when the CPU initially enters debug mode, and ends when a OnCE
command with GO+EXIT is executed, releasing the CPU for normal operation. If desired during a debug
session, the debug firmware may disable the translation process and may substitute default values for the

jd_watchpt[16] IRPT Interrupt watchpoint
Asserted whenever an IRPT debug event occurs regardless of being enabled
to set DBSR status

jd_watchpt[17] RET Return watchpoint
Asserted whenever a RET debug event occurs regardless of being enabled
to set DBSR status

jd_watchpt[18] CIRPT Critical Interrupt watchpoint
Asserted whenever a CIRPT debug event occurs regardless of being enabled
to set DBSR status

jd_watchpt[19] CRET Critical Return watchpoint
Asserted whenever a CRET debug event occurs regardless of being enabled
to set DBSR status

jd_watchpt[20] DEVNT2 Debug Event Output 2 watchpoint
Asserted whenever a ‘1’ is written to the bit of the DEVNT field of the DEVENT
debug register corresponding to jd_watchpt[20]

jd_watchpt[21] DEVNT3 Debug Event Output 3 watchpoint
Asserted whenever a ‘1’ is written to the bit of the DEVNT field of the DEVENT
debug register corresponding to jd_watchpt[21]

jd_watchpt[22] PMEVENT Performance Monitor Event input watchpoint
Asserted whenever p_pm_event transitions from a ‘0’ to a ‘1’

jd_watchpt[23] PMC0 Performance Monitor Counter 0 watchpoint
Asserted whenever PMC0 triggers an event based on PMLCa0PMP

jd_watchpt[24] PMC1 Performance Monitor Counter 1 watchpoint
Asserted whenever PMC1 triggers an event based on PMLCa1PMP

jd_watchpt[25] PMC2 Performance Monitor Counter 2 watchpoint
Asserted whenever PMC2 triggers an event based on PMLCa2PMP

jd_watchpt[26] PMC3 Performance Monitor Counter 3 watchpoint
Asserted whenever PMC3 triggers an event based on PMLCa3PMP

jd_watchpt[27] DTC1 Data Trace Control Range 1 watchpoint
Asserted whenever an access meets the conditions for DTC Range 1

jd_watchpt[28] DTC2 Data Trace Control Range 2 watchpoint
Asserted whenever an access meets the conditions for DTC Range 2

jd_watchpt[29] DTC3 Data Trace Control Range 3 watchpoint
Asserted whenever an access meets the conditions for DTC Range 3

1 If the corresponding event is completely disabled in DBCR0, either load-type or store-type data accesses are
allowed to generate watchpoints, otherwise watchpoints are generated only for the enabled conditions.

Table 12-28. Watchpoint output signal assignments (continued)

Signal name Type Description

e200z759n3 Core Reference Manual, Rev. 2

722 Freescale Semiconductor

Access Protection (UX, UR, UW, SX, SR, SW) bits, and values obtained from the OnCE Control Register
for Page Attribute (VLE, W, I, M, G, E) bits normally provided by a matching TLB entry. In addition, no
address translation is performed, and instead, a 1:1 mapping of effective to real addresses is performed.

When disabled during a debug session, no TLB miss or TLB-related storage interrupt conditions will
occur. If the debugger desires to use the normal translation process, the MMU may be left enabled in the
OnCE OCR, and normal translation (including the possibility of a TLB Miss or storage interrupt) will
remain in effect.

The OCR control bits are used when debug mode is entered. Refer to the bit definitions in the OCR
(Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more detail. When the MMU is
disabled for instruction accesses (OCRI_DMDIS) or for data accesses (OCRD_DMDIS), substituted page
attribute bits will control operation on respective accesses initiated during debug. No address translation
will be performed; instead, a 1:1 mapping between effective and real addresses will be performed for
respective accesses.

12.7 Cache array access during debug
The cache arrays may be read and written during debug mode via the CDACNTL and CDADATA debug
registers. This functionality is described in detail in Section 11.19, Cache memory access for debug / error
handling.

12.8 Basic steps for enabling, using, and exiting external debug mode
The following steps show one possible scenario for a debugger wishing to use the external debug facilities.
This simplified flow is intended to illustrate basic operations, but does not cover all potential methods in
depth.

Enabling external debug mode and initializing debug registers

1. The debugger should ensure that the jd_en_once control signal is asserted in order to enable OnCE
operation.

2. Select the OCR and write a value to it in which OCRDR and OCRWKUP are set to ‘1’. The TAP
controller must step through the proper states as outlined earlier. This step will place the CPU in a
debug state in which it is halted and awaiting single-step commands or a release to normal mode.

3. Scan out the value of the OSR to determine that the CPU clock is running and the CPU has entered
the Debug state. This can be done in conjunction with a Read of the CPUSCR. The OSR is shifted
out during the Shift_IR state. The CPUSCR will be shifted out during the Shift_DR state. The
debugger should save the scanned-out value of CPUSCR for later restoration.

4. Select the DBCR0 register and update it with the DBCR0EDM bit set.

5. Clear the DBSR status bits.

6. Write appropriate values to the DBCR0–6, IAC, DAC, and DBCNT registers. Note that the initial
write to DBCR0 will only affect the EDM bit, so the remaining portion of the register must now be
initialized, keeping the EDM bit set.

At this point the system is ready to commence debug operations. Depending on the desired operation,
different steps must occur.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 723

• Optionally, set the OCRI_DMDIS, D_DMDIS control bits to ensure that no TLB misses will occur
while performing the debug operations.

• Optionally, ensure that the values entered into the MSR portion of the CPUSCR during the
following steps cause interrupt to be disabled (clearing MSREE and MSRCE). This will ensure that
external interrupt sources do not cause single-step errors.

To single-step the CPU:

1. The debugger scans in either a new or a previously saved value of the CPUSCR (with appropriate
modification of the PC and IR, as described in Section 12.4.9.2, Control State register (CTL)), with
a Go+Noexit OnCE Command value.

2. The debugger scans out the OSR with “no-register selected”, Go cleared, and determines that the
PCU has re-entered the Debug state and that no ERR condition occurred.

To return the CPU to normal operation (without disabling external debug mode).

1. The OCRI_DMDIS, D_DMDIS, OCRDR, control bits should be cleared, leaving the OCRWKUP bit set.

2. The debugger restores the CPUSCR with a previously saved value of the CPUSCR (with
appropriate modification of the PC and IR as described in Section 12.4.9.2, Control State register
(CTL)), with a Go+Exit OnCE Command value.

3. The OCRWKUP bit may then be cleared.

To exit External Debug Mode:

1. The debugger should place the CPU in the debug state via the OCRDR with OCRWKUP asserted,
scanning out and saving the CPUSCR.

2. The debugger should write the DBCR0-6 registers as needed, likely clearing every enable except
the DBCR0EDM bit.

3. The debugger should write the DBSR to a cleared state.

4. The debugger should re-write the DBCR0 with all bits including EDM cleared.

5. The debugger should clear the OCRDR bit.

6. The debugger restores the CPUSCR with the previously saved value of the CPUSCR (with
appropriate modification of the PC and IR as described in Section 12.4.9.2, Control State register
(CTL)), with a Go+Exit OnCE Command value.

7. The OCRWKUP bit may then be cleared.

NOTE
These steps are meant by way of examples, and are not meant to be an exact
template for debugger operation.

12.9 Parallel Signature unit
To support applications requiring system integrity checking during operation, the e200z759n3 core
provides a Parallel Signature unit, which is capable of monitoring the internal CPU read and write buses
for data accesses, and accumulating a pair of 32-bit MISR signatures of the values transferred over these
buses for data accesses.

e200z759n3 Core Reference Manual, Rev. 2

724 Freescale Semiconductor

The primitive polynomial used is P(X) = 1 + X10 + X30 + X31 + X32. Values are accumulated based on an
initially programmed “seed” value, and are qualified based on active byte lanes of the CPU internal read
and write buses (p_d_data_in[0:63], p_d_data_out[0:63]) as indicated via the p_d_tsiz[0:2],
p_d_elsize[0:1], and p_d_addr[29:31] signals. Inactive byte lanes use a value of all zeros as input data to
the MISRs. Refer to Table 15-12 for active byte lane information. Note that for read data, the data returned
from the Cache or BIU is used directly from p_d_data_in[0:63] for accumulation. For write cycles
however, the data accumulated is based on the data that is written to the cache or BIU after it has been
properly aligned and permuted according to the endian mode of the access, thus p_d_data_out[0:63] is
not used directly. Instead, the proper memory image is used.

If an external termination error (bus error) occurs on any accumulated read data, the returned read data is
ignored, a value of all zeros is used instead, and the error is logged. External termination errors occurring
on data writes are not logged, even though the data is accumulated, since the data driven by the CPU was
valid.

No data is accumulated for transfer errors signaled due to TLB Error, Cache Parity Error, Byte Ordering
Error, DSI or ISI due to permissions violations, or for Alignment Errors.

No accumulation occurs for cache control operations such as dcba, dcbi, icbi, dcbf, dcbst, dcbt, icbt,
dcbtst, dcbz, dcbtls, dcbtstls, dcblc, or for cache operations initiated via the mtspr L1CSR0 or L1FINV0.

The unit may be independently enabled for data read cycles and data write cycles, allowing for flexible
usage. Software may also control accumulation of software provided values via a pair of update registers.
In addition, a counter is provided for software use to monitor the number of beats of data that have been
compressed.

Updates are performed when the parallel signature registers are initialized, when a qualified internal bus
cycle is terminated, when a software update is performed via a high or low update register, and when the
parallel signature high or low registers are written with a mtdcr instruction.

NOTE
Updates due to qualified bus transfers are suppressed for the duration of a
debug session.

Figure 12-27. Parallel Signature unit operation

The Parallel Signature unit consists of seven registers as described below. Access to these registers is
privileged. No user-mode access is allowed.

+
d q

+
d q

+
d q

+
d q

+
d q

+
d q

+
d q... ...

D0 (D32) D1 (D33) D2 (D34) D3 (D35) D30 (D62) D31 (D63)D10 (D42)

+
d q

D11 (D43)

+
d q

D9 (D41)

(p , p)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 725

NOTE
Proper access of the PSU registers requires that the mfdcr instruction that
reads a PSU register be preceded by either an mbar or an msync instruction.
To ensure that the effects of a mtdcr instruction to one of the PSU registers
has taken effect, the mtdcr should be followed by a context synchronizing
instruction (sc, isync, rfi, rfci, rfdi).

12.9.1 Parallel Signature Control Register (PSCR)

The Parallel Signature Control Register (PSCR) controls operation of the Parallel Signature unit.

.

12.9.2 Parallel Signature Status Register (PSSR)

The Parallel Signature Status Register (PSSR) provides status relative to operation of the Parallel
Signature unit.

0

C
N

T
E

N

0

R
D

E
N

W
R

E
N

IN
IT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 272; Read/Write; Reset - 0x0

Figure 12-28. Parallel Signature Control Register (PSCR)

Table 12-29. PSCR field descriptions

Bits Name Description

0:25 — These bits are reserved

26 CNTEN Counter Enable
0 Counter is disabled.
1 Counter is enabled. Counter is incremented on every accumulated transfer, or on a mtdcr

psulr,Rn instruction.

27:28 — These bits are reserved

29 RDEN Read Enable
0 Processor data read cycles are ignored.
1 Processor data reads cycles are accumulated. For inactive byte lanes, zeros are used for

the data values.

30 WREN Write Enable
0 Processor write cycles are ignored.
1 Processor write cycles are accumulated. For inactive byte lanes, zeros are used for the data

values.

31 INIT This bit may be written with a ‘1’ to set the values in the PSHR, PSLR, and PSCTR registers to
all ‘0’s (0x00000000). This bit always reads as ‘0’.

e200z759n3 Core Reference Manual, Rev. 2

726 Freescale Semiconductor

.

12.9.3 Parallel Signature High Register (PSHR)

The Parallel Signature High Register (PSHR) provides signature information for the high word (bits 0:31)
of the internal read and write buses. It may be written via a mtdcr pshr, Rs instruction (DCR register 274)
to initialize a seed value prior to enabling signature accumulation. The PSCRINIT control bit may also be
used to clear the PSHR. This register is unaffected by system reset, thus should be initialized by software
prior to performing parallel signature operations.

12.9.4 Parallel Signature Low Register (PSLR)

The Parallel Signature Low Register (PSLR) provides signature information for the low word (bits 32:63)
of the internal read and write buses. It may be written via a mtdcr pslr, Rs instruction (DCR register 275)
to initialize a seed value prior to enabling signature accumulation. The PSCRINIT control bit may also be
used to clear the PSLR. This register is unaffected by system reset, thus should be initialized by software
prior to performing parallel signature operations.

0

T
E

R
R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 273; Read/Write; Reset -Unaffected

Figure 12-29. Parallel Signature Status Register (PSSR)

Table 12-30. PSSR field descriptions

Bits Name Description

0:30 — These bits are reserved

31 TERR Transfer Error Status
0 No transfer error has occurred on accumulated read data since this bit was last cleared by

software.
1 A transfer error has occurred on accumulated read data since this bit was last cleared by

software.
This bit indicates whether a transfer error has occurred on accumulated read data, and that the
read data values returned were ignored and zeros are used instead. This bit is not cleared by
hardware; only a software write of ‘1’ to this bit will cause it to be cleared.

High Signature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 274; Read/Write; Reset -Unaffected

Figure 12-30. Parallel Signature High Register (PSHR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 727

12.9.5 Parallel Signature Counter Register (PSCTR)

The Parallel Signature Counter Register (PSCTR) provides count information for signature accumulation.
The counter is incremented on every accumulated transfer, or on a mtdcr psulr,Rn instruction. It may be
written via a mtdcr psctr, Rs instruction (DCR register 276) to initialize a value prior to enabling signature
accumulation. The PSCRINIT control bit may also be used to clear the PSCTR. This register is unaffected
by system reset, thus should be initialized by software prior to performing parallel signature operations.

12.9.6 Parallel Signature Update High Register (PSUHR)

The Parallel Signature Update High Register (PSUHR) provides a means for updating the high signature
value via software. It may be written via a mtdcr psuhr, Rs instruction (DCR register 277) to cause
signature accumulation to occur in the parallel signature high register (PSHR) using the data value written.
This register is write-only; attempted reads return a value of all zeros. Writing to this register does not
cause the PSCTR to increment.

12.9.7 Parallel Signature Update Low Register (PSULR)

The Parallel Signature Update Low Register (PSULR) provides a means for updating the low signature
value via software. It may be written via a mtdcr psulr, Rs instruction (DCR register 278) to cause
signature accumulation to occur in the parallel signature low register (PSLR) using the data value written.
This register is write-only; attempted reads return a value of all zeros. Writing to this register will also
cause the PSCTR to increment.

Low Signature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 275; Read/Write; Reset -Unaffected

Figure 12-31. Parallel Signature Low Register (PSLR)

Counter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 276; Read/Write; Reset -Unaffected

Figure 12-32. Parallel Signature Counter Register (PSCTR)

High Signature Update Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 277; Write-only; Reset -Unaffected

Figure 12-33. Parallel Signature Update High Register (PSUHR)

e200z759n3 Core Reference Manual, Rev. 2

728 Freescale Semiconductor

Low Signature Update Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 278; Write-only; Reset -Unaffected

Figure 12-34. Parallel Signature Update Low Register (PSULR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 729

Chapter 13 Nexus 3 Module
The e200z759n3 Nexus 3 module provides real-time development capabilities for Zen processors in
compliance with the IEEE-ISTO Nexus 5001 standard. This module provides development support
capabilities without requiring the use of address and data pins for internal visibility.

A portion of the pin interface (the JTAG port) is also shared with the OnCE / Nexus 1 unit. The
IEEE-ISTO 5001 standard defines an extensible auxiliary port that is used in conjunction with the JTAG
port in Zen processors.

13.1 Introduction

13.1.1 General description

This chapter defines the auxiliary pin functions, transfer protocols and standard development features of a
Class 3 device in compliance with the IEEE-ISTO Nexus 5001 standard. The development features
supported are Program Trace, Data Trace, Watchpoint Messaging, Ownership Trace, Data Acquisition
Messaging, and Read/Write Access via the JTAG interface. The Nexus 3 module also supports two Class
4 features: Watchpoint Triggering, and Processor Overrun Control.

13.1.2 Terms and definitions

Table 13-1 contains a set of terms and definitions associated with the Nexus 3 module.

Table 13-1. Terms and definitions

Term Description

IEEE-ISTO 5001 Consortium & standard for real-time embedded system design. World wide Web
documentation at http://www.ieee-isto.org/Nexus5001

Auxiliary port Refers to Nexus auxiliary port. Used as auxiliary port to the IEEE 1149.1 JTAG
interface.

Branch Trace Messaging (BTM) Visibility of addresses for taken branches and exceptions, and the number of
sequential instructions executed between each taken branch.

Data Read Message (DRM) External visibility of data reads to memory-mapped resources.

Data Write Message (DWM) External visibility of data writes to memory-mapped resources.

Data Trace Messaging (DTM) External visibility of how data flows through the embedded system. This may
include DRM and/or DWM.

Data Acquisition Messaging
(DQM)

Data Acquisition Messaging (DQM) allows code to be instrumented to export
customized information to the Nexus Auxiliary Output Port.

JTAG compliant Device complying to IEEE 1149.1 JTAG standard

JTAG IR & DR sequence JTAG Instruction Register (IR) scan to load an opcode value for selecting a
development register. The JTAG IR corresponds to the OnCE command register
(OCMD). The selected development register is then accessed via a JTAG Data
Register (DR) scan.

e200z759n3 Core Reference Manual, Rev. 2

730 Freescale Semiconductor

13.1.3 Feature list

The Nexus 3 module is compliant with Class 3 of the IEEE-ISTO 5001-2008 standard, with additional
Class 4 features available. The following features are implemented:

• Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool
to interpolate what transpires between the discontinuities. Thus static code may be traced

• Data Trace via Data Write Messaging (DWM) and Data Read Messaging (DRM). This provides
the capability for the development tool to trace reads and/or writes to selected internal memory
resources

• Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An Ownership Trace
Message (OTM) is transmitted when a new process/task is activated, allowing the development
tool to trace ownership flow

• Run-time access to embedded processor memory map via the JTAG port. This allows for enhanced
download/upload capabilities

• Watchpoint Messaging via the auxiliary pins

• Watchpoint Trigger enable of Program and/or Data Trace Messaging

• Data Acquisition Messaging (DQM) allows code to be instrumented to export customized
information to the Nexus Auxiliary Output Port

• Address Translation Messaging via program correlation messages displays updates to the TLB for
use by the debugger in correlating virtual and physical address information

• Auxiliary interface for higher data input/output

Nexus1 The Zen (OnCE) debug module. This module integrated with each Zen processor
provides all static (core halted) debug functionality. This module is compliant with
Class1 of the IEEE-ISTO 5001 standard.

Ownership Trace Message
(OTM)

Visibility of process/function that is currently executing.

Public messages Messages on the auxiliary pins for accomplishing common visibility and
controllability requirements

SoC “System-on-a-Chip”. SoC signifies all of the modules on a single die. This generally
includes one or more processors with associated peripherals, interfaces & memory
modules.

Standard The phrase “according to the standard” is used to indicate according to the
IEEE-ISTO 5001 standard.

Transfer Code (TCODE) Message header that identifies the number and/or size of packets to be
transferred, and how to interpret each of the packets.

Watchpoint A Data or Instruction Breakpoint or other debug event that does not cause the
processor to halt. Instead, a pin is used to signal that the condition occurred. A
Watchpoint message may also be generated.

Table 13-1. Terms and definitions (continued)

Term Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 731

— Configurable (min/max) Message Data Out pins (nex_mdo[n:0])

— One (1) or two (2) Message Start/End Out pins (nex_mseo_b[1:0])

— One (1) Read/Write Ready pin (nex_rdy_b) pin

— One (1) Watchpoint Event output pin (nex_evto_b)

— Four (4) additional Watchpoint Event output pins (nex_wevto[3:0]) for SoC use

— One (1) Event In pin (nex_evti_b)

— One (1) MCKO (Message Clock Out) pin

• Registers for Program Trace, Data Trace, Ownership Trace and Watchpoint Trigger

• All features controllable and configurable via the JTAG port

NOTE
For multi-Nexus implementations, the configuration of the Message Data
Out pins is controlled by the Port Control Register (at the SoC level). For
single Nexus implementations, this configuration is controlled by
Development Control Register 1 (DC1) within the Nexus 3 module.

In either implementation, Full Port Mode (FPM — maximum number of
MDO pins) or Reduced Port Mode (RPM — minimum number of MDO
pins) are supported. This setting should not be changed while the system is
running.

NOTE
The configuration of the Message Start/End Out pins (1 or 2) is determined
at the SOC integration level. This option will be hard-wired based on SoC
bandwidth requirements.

e200z759n3 Core Reference Manual, Rev. 2

732 Freescale Semiconductor

13.1.4 Functional block diagram

Figure 13-1. Nexus 3 functional block diagram

13.2 Enabling Nexus 3 operation
The Nexus module is enabled by loading a single instruction (NEXUS3-ACCESS) into the JTAG
Instruction Register (IR) (OnCE OCMD register). For the Nexus3 module, the OCMD value is
0b0001111100. Once enabled, the module will be ready to accept control input via the JTAG/OnCE pins.

Enabling the Nexus 3 module automatically enables the generation of Debug Status messages.

The Nexus module is disabled when the JTAG state machine reaches the Test-Logic-Reset state. This state
can be reached by the assertion of the j_trst_b pin or by cycling through the state machine using the j_tms
pin. The Nexus module will also be disabled if a Power-on-Reset (POR) event occurs. If the Nexus 3
module is disabled, no trace output will be provided, and the module will disable (drive inactive) auxiliary

nex_mseo0_b

nex_mcko

Z
en

 V
ir

tu
al

 B
us

A
H

B
 S

ys
te

m
 B

us

Nexus3 Block

Nexus1 Block (w/in Zen CPU)

I/O
 L

og
ic

OnCE Debug

Breakpoint /
Watchpoint

control

D
M

A
 (

R
ea

d/
W

rit
e)

In
st

ru
ct

io
n

S
no

op
D

at
a

S
no

op

nex_mdo(N:0)

j_tdo
j_tdi

j_tms
j_tclk
j_trst_b

nex_evto_b

nex_rdy_b

nex_evti_b

DMA registers

Control/status
 registers

Registers

Message
Queues

Memory
Control

nex_mseo1_b

N+1

nex_aux_req(1:0)

npc_aux_grant
2

Note: The “nex_aux_req[1:0]”, “npc_aux_grant” & “nex_aux_busy” signals are used for inter-module

nex_aux_busy

communication in a multi-Nexus environment. They are not pins on the SoC.

ext_multi_nex_sel

nex_ext_src_id[3:0]

nex_wevto[3:0]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 733

port output pins (nex_mdo[n:0], nex_mseo[1:0], nex_mcko). Nexus registers will not be available for
reads or writes.

NOTE
Please refer to the “Nexus 3 Integration Guide” for details on IEEE-ISTO
5001 compliance with respect to output pins and multiple Nexus module
configurations.

13.3 TCODEs supported
The Nexus 3 pins allow for flexible transfer operations via Public messages. A TCODE defines the transfer
format, the number and/or size of the packets to be transferred, and the purpose of each packet. The
IEEE-ISTO 5001-2008 standard defines a set of public messages and allocates additional TCODEs for
vendor-specific features outside the scope of the public messages. The Nexus 3 block supports the
TCODEs shown in Table 13-2.

Table 13-2. Supported TCODEs

Message
name

Min.
field
size
(bits)

Max.
field
size
(bits)

Field name
Field
type

Field description

Debug Status 6 6 TCODE fixed TCODE number = 0

4 4 SRC fixed Source processor identifier

8 8 STATUS fixed Debug Status Register (DS[31:24])

Ownership
Trace

Message

6 6 TCODE fixed TCODE number = 2

4 4 SRC fixed Source processor identifier

1 12 PROCESS variable Task/Process ID tag

Program
Trace - Direct

Branch
Message

6 6 TCODE fixed TCODE number = 3

4 4 SRC fixed Source processor identifier

1 8 ICNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

Program
Trace -
Indirect
Branch

Message

6 6 TCODE fixed TCODE number = 4

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 ICNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 U-ADDR variable Unique part of target address for taken
branches/exceptions

e200z759n3 Core Reference Manual, Rev. 2

734 Freescale Semiconductor

Data Trace -
Data Write
Message

6 6 TCODE fixed TCODE number = 5

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed Data size (Refer to Table 13-7)

1 32 U-ADDR variable Unique portion of the data write address

1 64 DATA variable Data write value(s) (see Data Trace section for details)

Data Trace -
Data Read
Message

6 6 TCODE fixed TCODE number = 6

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed Data size (Refer to Table 13-7)

1 32 U-ADDR variable Unique portion of the data read address

1 64 DATA variable Data read value(s) (see Data Trace section for details)

Data
Acquisition
Message

6 6 TCODE fixed TCODE number = 7

4 4 SRC fixed Source processor identifier

8 8 DQTAG fixed Identification tag taken from DEVENTDQTAG register field

1 32 DQDATA variable Exported data taken from DDAM register

Error
Message

6 6 TCODE fixed TCODE number = 8

4 4 SRC fixed Source processor identifier

4 4 ETYPE fixed Error type

8 8 ECODE fixed Error code

Program
Trace - Direct

Branch
Message w/

Sync

6 6 TCODE fixed TCODE number = 11

4 4 SRC fixed Source processor identifier

1 8 ICNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 F-ADDR variable Full target address (leading zeros truncated)

Table 13-2. Supported TCODEs (continued)

Message
name

Min.
field
size
(bits)

Max.
field
size
(bits)

Field name
Field
type

Field description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 735

Program
Trace -
Indirect
Branch

Message w/
Sync

6 6 TCODE fixed TCODE number = 12

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 ICNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 F-ADDR variable Full target address (leading zeros truncated)

Data Trace -
Data Write

Message w/
Sync

6 6 TCODE fixed TCODE number = 13

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed Data size (Refer to Table 13-7)

1 32 F-ADDR variable Full access address (leading zeros truncated)

1 64 DATA variable Data write value(s) (see Data Trace section for details)

Data Trace -
Data Read

Message w/
Sync

6 6 TCODE fixed TCODE number = 14

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (DS) indicator

4 4 DSZ fixed Data size (Refer to Table 13-7)

1 32 F-ADDR variable Full access address (leading zeros truncated)

1 64 DATA variable Data read value(s) (see Data Trace section for details)

Watchpoint
Message

6 6 TCODE fixed TCODE number = 15

4 4 SRC fixed Source processor identifier

1 32 WPHIT variable Field indicating watchpoint source(s) (leading zeros
truncated)

Resource
Full Message

6 6 TCODE fixed TCODE number = 27

4 4 SRC fixed Source processor identifier

4 4 RCODE fixed Resource code (Refer to Table 13-5) - indicates which
resource is the cause of this message

1 32 RDATA variable Branch / predicate instruction history (see Section 13.11.4,
Resource Full Messages)

Table 13-2. Supported TCODEs (continued)

Message
name

Min.
field
size
(bits)

Max.
field
size
(bits)

Field name
Field
type

Field description

e200z759n3 Core Reference Manual, Rev. 2

736 Freescale Semiconductor

Program
Trace -
Indirect
Branch
History

Message

6 6 TCODE fixed TCODE number = 28 (see Note below)

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 I-CNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 U-ADDR variable Unique part of target address for taken
branches/exceptions

1 32 HIST variable Branch / predicate instruction history (see Section 13.11.1,
Branch Trace messaging types)

Program
Trace -
Indirect
Branch
History

Message w/
Sync

6 6 TCODE fixed TCODE number = 29 (see Note below)

4 4 SRC fixed Source processor identifier

1 1 MAP fixed Address Space (IS) indicator

1 8 I-CNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 F-ADDR variable Full target address (leading zero (0) truncated)

1 32 HIST variable Branch / predicate instruction history (see Section 13.11.1,
Branch Trace messaging types)

Table 13-2. Supported TCODEs (continued)

Message
name

Min.
field
size
(bits)

Max.
field
size
(bits)

Field name
Field
type

Field description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 737

NOTE
Program Trace can be implemented using either Branch History/Predicate
Instruction messages, or traditional Direct/Indirect Branch messages. The
user can select between the two types of Program Trace. The advantages for
each are discussed in Section 13.11.1, Branch Trace messaging types. If the
Branch History method is selected, the shaded TCODES above will not be
messaged out.

Table 13-3 shows the error code encodings used when reporting an error via the Nexus 3 Error message.

Program
Trace -

Program
Correlation
Message

6 6 TCODE fixed TCODE number = 33

4 4 SRC fixed Source processor identifier

4 4 EVCODE fixed Event correlated w/ program flow (Refer to Table 13-6)

2 2 CDF fixed # fields of information in CDATA.
00 Reserved
01 One field (CDATA1) (reserved)
10 Two fields (CDATA1 + CDATA2)
11 Three fields (CDATA1 + CDATA2 + CDATA3)

1 8 I-CNT variable # sequential instructions completed since last predicate
instruction, transmitted instruction count, or taken change
of flow

1 32 CDATA1 variable Correlation data field 1 - [branch / predicate instruction
history or TLB info part1] (see Section 13.11.5, Program
Correlation Messages (PCM))

0 32 CDATA2 variable Correlation data field 2- PID/IS info or TLB info (F-ADDR_V
for virtual address or tlbivax EA) (see Section 13.11.5,
Program Correlation Messages (PCM))

0 32 CDATA3 variable Correlation data field 3 - TLB info -ADDR_P for physical
address (see Section 13.11.5, Program Correlation
Messages (PCM))

Table 13-3. Error code encoding (TCODE = 8)

Error code Description

xxxxxxx1 Watchpoint Trace Message(s) Lost

xxxxxx1x Data Trace Message(s) Lost

xxxxx1xx Program Trace Message(s) Lost

xxxx1xxx Ownership Trace Message(s) Lost

xxx1xxxx Status Message(s) Lost (Debug Status messages, etc.)

xx1xxxxx Data Acquisition Message(s) Lost

Table 13-2. Supported TCODEs (continued)

Message
name

Min.
field
size
(bits)

Max.
field
size
(bits)

Field name
Field
type

Field description

e200z759n3 Core Reference Manual, Rev. 2

738 Freescale Semiconductor

Table 13-4 shows the error type encodings used when reporting an error via the Nexus 3 Error message.

Table 13-5 shows the encodings used for resource codes for certain messages.

Table 13-6 shows the event code encodings used for certain messages.

x1xxxxxx Reserved

1xxxxxxx Reserved

Table 13-4. Error type encoding (TCODE = 8)

Error type Description

0000 Message Queue Overrun caused one or more messages to be lost

0001 Contention with higher priority messages caused one or more messages to be lost

0010 Reserved

0011 Read/write access error

0100 Reserved

0101 Invalid access opcode (Nexus Register unimplemented)

0110 - 1111 Reserved

Table 13-5. RCODE values (TCODE = 27)

Resource code Description

0000 Program Trace Instruction counter reached 255 and was reset.

0001 Program Trace, Branch / Predicate Instruction History full. This type of packet is
terminated by a stop bit set to 1 after the last history bit.

Table 13-6. Event code encoding (TCODE = 33)

Event code Description

0000 Entry into Debug Mode

0001 Entry into Low Power Mode (CPU only)

0010-0011 Reserved for future functionality

0100 Disabling Program Trace

0101 New process ID value is established in PID0 via mtspr PID0, or new value for
MSRIS is established via a mtmsr instruction

0110-1000 Reserved for future functionality

1001 Begin masking of program trace messages due to MSRPMM=0 and
DC4PTMARK=1

1010 Branch and link occurrence (direct branch function call)

Table 13-3. Error code encoding (TCODE = 8) (continued)

Error code Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 739

Table 13-7 shows the data trace size encodings used for certain messages.

13.4 Nexus 3 programmer’s model
This section describes the Nexus 3 programmers model. Nexus 3 registers are accessed using the
JTAG/OnCE port in compliance with IEEE 1149.1. See Section 13.5, Nexus 3 register access via
JTAG/OnCE for details on Nexus 3 register access.

NOTE
Nexus 3 registers and output signals are numbered using bit 0 as the least
significant bit. This bit ordering is consistent with the ordering defined by
the IEEE-ISTO 5001 standard.

Table 13-8 details the register map for the Nexus 3 module.

1011 New Address Translation established in the TLB via tlbwe

1100 Address Translation entries invalidated in the TLB via tlbivax

1101 Reserved for future functionality

1110 End of BookE tracing (trace disable or entry into a VLE page from a non-VLE
page)1

1111 End of VLE tracing (trace disabled or entry into a non-VLE page from a VLE
page)1

1 If Event Code 1010 is not masked, a PCM for this Event will not be generated if the event is due to a
branch and link.

Table 13-7. Data trace size encodings (TCODE = 5,6,13,14)

DTM size encoding Transfer size

0000 0 - no data

0001 Byte

0010 Halfword (2 bytes)

0011 Three bytes

0100 Word (4 bytes)

0101 Five bytes

0110 Six bytes

0111 Seven bytes

1000 Doubleword (8 bytes)

1001-1111 Reserved

Table 13-6. Event code encoding (TCODE = 33) (continued)

Event code Description

e200z759n3 Core Reference Manual, Rev. 2

740 Freescale Semiconductor

Table 13-8. Nexus 3 register map

Nexus register
Nexus access

opcode
Read/
write

Read
address

Write
address

Client Select Control (CSC)1 0x1 R 0x02 —

Port Configuration Register (PCR)1 PCR_INDEX2 R/W — —

Development Control 1 (DC1) 0x2 R/W 0x04 0x05

Development Control 2 (DC2) 0x3 R/W 0x06 0x07

Development Control 3 (DC3) 0x4 R/W 0x08 0x09

Development Control 4 (DC4) 0x5 R/W 0x0A 0x0B

Read/Write Access Control/Status (RWCS) 0x7 R/W 0x0E 0x0F

Read/Write Access Address (RWA) 0x9 R/W 0x12 0x13

Read/Write Access Data (RWD) 0xA R/W 0x14 0x15

Watchpoint Trigger (WT) 0xB R/W 0x16 0x17

Reserved 0xC R/W 0x18 0x19

Data Trace Control (DTC) 0xD R/W 0x1A 0x1B

Data Trace Start Address 1 (DTSA1) 0xE R/W 0x1C 0x1D

Data Trace Start Address 2 (DTSA2) 0xF R/W 0x1E 0x1F

Data Trace Start Address 3 (DTSA3) 0x10 R/W 0x20 0x21

Data Trace Start Address 4 (DTSA4) 0x11 R/W 0x22 0x23

Data Trace End Address 1 (DTEA1) 0x12 R/W 0x24 0x25

Data Trace End Address 2 (DTEA2) 0x13 R/W 0x26 0x27

Data Trace End Address 3 (DTEA3) 0x14 R/W 0x28 0x29

Data Trace End Address 4 (DTEA4) 0x15 R/W 0x2A 0x2B

Reserved 0x16 0x2F — 0x28 0x5E 0x29 5F

Development Status (DS) 0x30 R 0x60 -

Reserved 0x31 R/W 0x62 0x63

Overrun Control (OVCR) 0x32 R/W 0x64 0x65

Watchpoint Mask (WMSK) 0x33 R/W 0x66 0x67

Reserved 0x34 — 0x68 0x69

Program Trace Start Trigger Control (PTSTC) 0x35 R/W 0x6A 0x6B

Program Trace End Trigger Control (PTETC) 0x36 R/W 0x6C 0x6D

Data Trace Start Trigger Control (DTSTC) 0x37 R/W 0x6E 0x6F

Data Trace End Trigger Control (DTETC) 0x38 R/W 0x70 0x71

Reserved 0x39 0x3F — 0x72 0x7E 0x73 7F

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 741

13.4.1 Client Select Control register (CSC)

The Client Select Control register (CSC) determines which Nexus client is under development. This
register is present at the top-level SOC Nexus 3 controller to select one of multiple on-chip Nexus 3 units.

13.4.2 Port Configuration Register (PCR) — reference only

The Port Configuration Register (PCR) controls the basic port functions for all Nexus modules in a
multi-Nexus environment. This includes clock control and auxiliary port width. All bits in this register are
writable only once after system reset.

Figure 13-3. Port Configuration Register (PCR)

1 The CSC and PCR registers are shown in this table as part of the Nexus programmer’s model. They are only
present at the top level SoC Nexus controller in a multi-Nexus implementation, not in the Nexus 3 module. The
SoC’s CSC Register is readable through Nexus, but the PCR is shown for reference only here.

2 The “PCR_INDEX” is a parameter determined by the SoC. Refer to the “Zen Nexus 3 Integration Guide” for more
information on how this parameter is implemented for each Nexus module.

Reserved CS

7 6 5 4 3 2 1 0

Nexus Reg# - 0x1; Read-only; Reset - 0x0

Figure 13-2. Client Select Control register (CSC)

Table 13-9. CSC field descriptions

Field Description

CSC[7:4] RES - Reserved for future Nexus Clients (read as 0)

CSC[3:0] Client Select Control

0xX - Nexus client (SoC level)

O
P

C

0

M
C

K
_E

N

MCK_DIV 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - PCR_INDEX; Read/Write; Reset - 0x0

e200z759n3 Core Reference Manual, Rev. 2

742 Freescale Semiconductor

NOTE
The CSC and PCR Registers exist in a separate module at the SoC level in
a multi-Nexus environment. If the Zen Nexus 3 module is the only Nexus
module, these registers are not implemented and the Zen Nexus 3 defined
Development Control Register 1 (DC1) is used to control the SoC-level
Nexus port functionality.

13.4.3 Nexus Development Control Register 1 (DC1)

Nexus Development Control Register 1 is used to control the basic development features of the Nexus 3
module. Development Control Register 1 is shown in Figure 13-4 and its fields are described in
Table 13-11.

Table 13-10. PCR field descriptions

Bit Name Description

31 OPC Output Port Mode Control (SoC Level)
0 Reduced Port Mode configuration (min# nex_mdo[n:0] pins defined by SOC)
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined by SOC)

30 — Reserved for future functionality

29 MCK_EN MCKO Clock Enable (SoC Level)
0 nex_mcko is disabled
1 nex_mcko is enabled

28:26 MCK_DIV MCKO Clock Divide Ratio (see note below) (SoC Level)
000nex_mcko is 1x processor clock freq.

001 nex_mcko is 1/2x processor clock freq.
010 Reserved (default to 1/2x processor clock freq.)
011 nex_mcko is 1/4x processor clock freq.
100–110 Reserved (default to 1/2x processor clock freq.)
111 nex_mcko is 1/8x processor clock freq.

25:0 — Reserved for future functionality

O
P

C

M
C

K
_D

IV

0

P
T

M 0

P
O

T
D

TSEN EOC EIC 0 TM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x2; Read/Write; Reset - 0x0

Figure 13-4. Development Control Register 1 (DC1)

Table 13-11. DC1 field descriptions

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 743

NOTE
The Output Port Mode Control bit (OPC) and MCKO Clock Divide Ratio
bits (MCK_DIV) MUST ONLY be modified during system reset or debug
mode to insure correct output port and output clock functionality. It is also
recommended that all other bits of the DC1 also only be modified in one of
these two modes.

31 OPC Output Port Mode Control
0 Reduced Port Mode configuration (min# nex_mdo[n:0] pins defined
1 Full Port Mode configuration (max# nex_mdo[n:0] pins defined

30:29 MCK_DIV MCKO Clock Divide Ratio (see note below)
00 nex_mcko is 1x processor clock freq.
01 nex_mcko is 1/2x processor clock freq.
10 nex_mcko is 1/4x processor clock freq.
11 nex_mcko is 1/8x processor clock freq.

28 — Reserved for future functionality

27 PTM PTM - Program Trace Method
0 Program Trace uses traditional branch messages
1 Program Trace uses Branch History messages

26:15 — Reserved for future functionality

14 POTD Periodic Ownership Trace Disable
0 Periodic Ownership Trace message events are enabled
1 Periodic Ownership Trace message events are disabled

13:12 TSEN Timestamp Enable - (not implemented, write to 00)
00 Timestamp is disabled

11:10 EOC EVTO Control
00 nex_evto_b upon occurrence of Watchpoints (configured in DC2 and DC3)
01 nex_evto_b upon entry into Debug Mode
1x Reserved

9:8 EIC EVTI Control
00 nex_evti_b is used for synchronization (Program Trace/ Data Trace)
01 nex_evti_b is used for Debug request
1x Reserved

7:6 — Reserved for future functionality

5:0 TM Trace Mode1

000000 All Trace Disabled
xxxxx1 Ownership Trace enabled
xxxx1x Data Trace enabled
xxx1xx Program Trace enabled
xx1xxx Watchpoint Trace enabled
x1xxxx Reserved
1xxxxx Data Acquisition Trace enabled

1 This field may be updated by hardware in response to watchpoint triggering. Writes to this field take
precedence over hardware updates in the event of a collision. Refer to Section 13.4.7, Watchpoint Trigger
registers (WT, PTSTC, PTETC, DTSTC, DTETC) for more information on watchpoint triggering.

Table 13-11. DC1 field descriptions (continued)

e200z759n3 Core Reference Manual, Rev. 2

744 Freescale Semiconductor

13.4.4 Nexus Development Control Registers 2 and 3 (DC2, DC3)

Nexus Development Control Registers 2 and 3 are used to control output signaling on the Nexus 3 module.
A table of watchpoints can be found in Table 12-28.

Development Control Register 2 is shown in Figure 13-5 and its fields are described in Table 13-12.

WEVTO[3]C WEVTO[2]C WEVTO[1]C WEVTO[0]C EWC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x3; Read/Write; Reset - 0x0

Figure 13-5. Development Control Register 2 (DC2)

Table 13-12. DC2 field descriptions

Bits Name Description

31:28 WEVTO[3]C Watchpoint Event Out 3 Configuration
0000 No Watchpoints #0-14 trigger nex_wevto[3]
0001 Watchpoint #0 triggers nex_wevto[3]
0010 Watchpoint #1 triggers nex_wevto[3]
0011 Watchpoint #2 triggers nex_wevto[3]
0100 Watchpoint #3 triggers nex_wevto[3]
0101 Watchpoint #4 triggers nex_wevto[3]
0110 Watchpoint #5 triggers nex_wevto[3]
0111 Watchpoint #6 triggers nex_wevto[3]
1000 Watchpoint #7 triggers nex_wevto[3]
1001 Watchpoint #8 triggers nex_wevto[3]
1010 Watchpoint #9 triggers nex_wevto[3]
1011 Watchpoint #10 triggers nex_wevto[3]
1100 Watchpoint #11 triggers nex_wevto[3]
1101 Watchpoint #12 triggers nex_wevto[3]
1110 Watchpoint #13 triggers nex_wevto[3]
1111 Watchpoint #14 triggers nex_wevto[3]

27:24 WEVTO[2]C Watchpoint Event Out 2 Configuration
0000 No Watchpoints #0-14 trigger nex_wevto[2]
0001 Watchpoint #0 triggers nex_wevto[2]
0010 Watchpoint #1 triggers nex_wevto[2]
0011 Watchpoint #2 triggers nex_wevto[2]
0100 Watchpoint #3 triggers nex_wevto[2]
0101 Watchpoint #4 triggers nex_wevto[2]
0110 Watchpoint #5 triggers nex_wevto[2]
0111 Watchpoint #6 triggers nex_wevto[2]
1000 Watchpoint #7 triggers nex_wevto[2]
1001 Watchpoint #8 triggers nex_wevto[2]
1010 Watchpoint #9 triggers nex_wevto[2]
1011 Watchpoint #10 triggers nex_wevto[2]
1100 Watchpoint #11 triggers nex_wevto[2]
1101 Watchpoint #12 triggers nex_wevto[2]
1110 Watchpoint #13 triggers nex_wevto[2]
1111 Watchpoint #14 triggers nex_wevto[2]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 745

23:20 WEVTO[1]C Watchpoint Event Out 1 Configuration
0000 No Watchpoints #0-14 trigger nex_wevto[1]
0001 Watchpoint #0 triggers nex_wevto[1]
0010 Watchpoint #1 triggers nex_wevto[1]
0011 Watchpoint #2 triggers nex_wevto[1]
0100 Watchpoint #3 triggers nex_wevto[1]
0101 Watchpoint #4 triggers nex_wevto[1]
0110 Watchpoint #5 triggers nex_wevto[1]
0111 Watchpoint #6 triggers nex_wevto[1]
1000 Watchpoint #7 triggers nex_wevto[1]
1001 Watchpoint #8 triggers nex_wevto[1]
1010 Watchpoint #9 triggers nex_wevto[1]
1011 Watchpoint #10 triggers nex_wevto[1]
1100 Watchpoint #11 triggers nex_wevto[1]
1101 Watchpoint #12 triggers nex_wevto[1]
1110 Watchpoint #13 triggers nex_wevto[1]
1111 Watchpoint #14 triggers nex_wevto[1]

19:16 WEVTO[0]C Watchpoint Event Out 0 Configuration
0000 No Watchpoints #0-14 trigger nex_wevto[0]
0001 Watchpoint #0 triggers nex_wevto[0]
0010 Watchpoint #1 triggers nex_wevto[0]
0011 Watchpoint #2 triggers nex_wevto[0]
0100 Watchpoint #3 triggers nex_wevto[0]
0101 Watchpoint #4 triggers nex_wevto[0]
0110 Watchpoint #5 triggers nex_wevto[0]
0111 Watchpoint #6 triggers nex_wevto[0]
1000 Watchpoint #7 triggers nex_wevto[0]
1001 Watchpoint #8 triggers nex_wevto[0]
1010 Watchpoint #9 triggers nex_wevto[0]
1011 Watchpoint #10 triggers nex_wevto[0]
1100 Watchpoint #11 triggers nex_wevto[0]
1101 Watchpoint #12 triggers nex_wevto[0]
1110 Watchpoint #13 triggers nex_wevto[0]
1111 Watchpoint #14 triggers nex_wevto[0]

15:0 EWC EVTO Watchpoint Configuration1

0000000000000000 No Watchpoints #0-15 trigger nex_evto_b
xxxxxxxxxxxxxxx1 Watchpoint #0 triggers nex_evto_b
xxxxxxxxxxxxxx1x Watchpoint #1 triggers nex_evto_b
xxxxxxxxxxxxx1xx Watchpoint #2 triggers nex_evto_b
xxxxxxxxxxxx1xxx Watchpoint #3 triggers nex_evto_b
xxxxxxxxxxx1xxxx Watchpoint #4 triggers nex_evto_b
xxxxxxxxxx1xxxxx Watchpoint #5 triggers nex_evto_b
xxxxxxxxx1xxxxxx Watchpoint #6 triggers nex_evto_b
xxxxxxxx1xxxxxxx Watchpoint #7 triggers nex_evto_b
xxxxxxx1xxxxxxxx Watchpoint #8 triggers nex_evto_b
xxxxxx1xxxxxxxxx Watchpoint #9 triggers nex_evto_b
xxxxx1xxxxxxxxxx Watchpoint #10 triggers nex_evto_b
xxxx1xxxxxxxxxxx Watchpoint #11 triggers nex_evto_b
xxx1xxxxxxxxxxxx Watchpoint #12 triggers nex_evto_b
xx1xxxxxxxxxxxxx Watchpoint #13 triggers nex_evto_b
x1xxxxxxxxxxxxxx Watchpoint #14 triggers nex_evto_b
1xxxxxxxxxxxxxxx Watchpoint #15 triggers nex_evto_b

Table 13-12. DC2 field descriptions (continued)

e200z759n3 Core Reference Manual, Rev. 2

746 Freescale Semiconductor

Development Control Register 3 (DC3) is shown in Figure 13-6 and its fields are described in Table 13-13.

1 The EOC bits in DC1 must be programmed to trigger EVTO on Watchpoint occurrence for the EWC bits to have any
effect.

WEVTO[3]C WEVTO[2]C WEVTO[1]C WEVTO[0]C 0 EWC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x4; Read/Write; Reset - 0x0

Figure 13-6. Development Control Register 3 (DC3)

Table 13-13. DC3 field descriptions

Bits Name Description

31:28 WEVTO[3]C Watchpoint Event Out 3 Configuration
0000 No Watchpoints #15-#26 trigger nex_wevto[3]
0001 Watchpoint #15 triggers nex_wevto[3]
0010 Watchpoint #16 triggers nex_wevto[3]
0011 Watchpoint #17 triggers nex_wevto[3]
0100 Watchpoint #18 triggers nex_wevto[3]
0101 Watchpoint #19 triggers nex_wevto[3]
0110 Watchpoint #20 triggers nex_wevto[3]
0111 Watchpoint #21 triggers nex_wevto[3]
1000 Watchpoint #22 triggers nex_wevto[3]
1001 Watchpoint #23 triggers nex_wevto[3]
1010 Watchpoint #24 triggers nex_wevto[3]
1011 Watchpoint #25 triggers nex_wevto[3]
1100 Watchpoint #26 triggers nex_wevto[3]
1101 – 1111 Reserved

27:24 WEVTO[2]C Watchpoint Event Out 2 Configuration
0000 No Watchpoints #15-#26 trigger nex_wevto[2]
0001 Watchpoint #15 triggers nex_wevto[2]
0010 Watchpoint #16 triggers nex_wevto[2]
0011 Watchpoint #17 triggers nex_wevto[2]
0100 Watchpoint #18 triggers nex_wevto[2]
0101 Watchpoint #19 triggers nex_wevto[2]
0110 Watchpoint #20 triggers nex_wevto[2]
0111 Watchpoint #21 triggers nex_wevto[2]
1000 Watchpoint #22 triggers nex_wevto[2]
1001 Watchpoint #23 triggers nex_wevto[2]
1010 Watchpoint #24 triggers nex_wevto[2]
1011 Watchpoint #25 triggers nex_wevto[2]
1100 Watchpoint #26 triggers nex_wevto[2]
1101 -– 1111 Reserved

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 747

23:20 WEVTO[1]C Watchpoint Event Out 1 Configuration
0000 No Watchpoints #15-#26 trigger nex_wevto[1]
0001 Watchpoint #15 triggers nex_wevto[1]
0010 Watchpoint #16 triggers nex_wevto[1]
0011 Watchpoint #17 triggers nex_wevto[1]
0100 Watchpoint #18 triggers nex_wevto[1]
0101 Watchpoint #19 triggers nex_wevto[1]
0110 Watchpoint #20 triggers nex_wevto[1]
0111 Watchpoint #21 triggers nex_wevto[1]
1000 Watchpoint #22 triggers nex_wevto[1]
1001 Watchpoint #23 triggers nex_wevto[1]
1010 Watchpoint #24 triggers nex_wevto[1]
1011 Watchpoint #25 triggers nex_wevto[1]
1100 Watchpoint #26 triggers nex_wevto[1]
1101 Watchpoint #27 triggers nex_wevto[1]
1110 Watchpoint #28 triggers nex_wevto[1]
1111 Watchpoint #29 triggers nex_wevto[1]

19:16 WEVTO[0]C Watchpoint Event Out 0 Configuration
0000 No Watchpoints #15-#26 trigger nex_wevto[0]
0001 Watchpoint #15 triggers nex_wevto[0]
0010 Watchpoint #16 triggers nex_wevto[0]
0011 Watchpoint #17 triggers nex_wevto[0]
0100 Watchpoint #18 triggers nex_wevto[0]
0101 Watchpoint #19 triggers nex_wevto[0]
0110 Watchpoint #20 triggers nex_wevto[0]
0111 Watchpoint #21 triggers nex_wevto[0]
1000 Watchpoint #22 triggers nex_wevto[0]
1001 Watchpoint #23 triggers nex_wevto[0]
1010 Watchpoint #24 triggers nex_wevto[0]
1011 Watchpoint #25 triggers nex_wevto[0]
1100 Watchpoint #26 triggers nex_wevto[0]
1101 Watchpoint #27 triggers nex_wevto[0]
1110 Watchpoint #28 triggers nex_wevto[0]
1111 Watchpoint #29 triggers nex_wevto[0]

15:14 — Reserved for watchpoint expansion

13:0 EWC EVTO Watchpoint Configuration1

00000000000000 No Watchpoints #16-#29 trigger nex_evto_b
xxxxxxxxxxxxx1 Watchpoint #16 triggers nex_evto_b
xxxxxxxxxxxx1x Watchpoint #17 triggers nex_evto_b
xxxxxxxxxxx1xx Watchpoint #18 triggers nex_evto_b
xxxxxxxxxx1xxx Watchpoint #19 triggers nex_evto_b
xxxxxxxxx1xxxx Watchpoint #20 triggers nex_evto_b
xxxxxxxx1xxxxx Watchpoint #21 triggers nex_evto_b
xxxxxxx1xxxxxx Watchpoint #22 triggers nex_evto_b
xxxxxx1xxxxxxx Watchpoint #23 triggers nex_evto_b
xxxxx1xxxxxxxx Watchpoint #24 triggers nex_evto_b
xxxx1xxxxxxxxx Watchpoint #25 triggers nex_evto_b
xxx1xxxxxxxxxx Watchpoint #26 triggers nex_evto_b
xx1xxxxxxxxxxx Watchpoint #27 triggers nex_evto_b
x1xxxxxxxxxxxx Watchpoint #28 triggers nex_evto_b
1xxxxxxxxxxxxx Watchpoint #29 triggers nex_evto_b

1 The EOC bits in DC1 must be programmed to trigger EVTO on Watchpoint occurrence for the EWC bits to have
any effect.

Table 13-13. DC3 field descriptions (continued)

e200z759n3 Core Reference Manual, Rev. 2

748 Freescale Semiconductor

13.4.5 Nexus Development Control Register 4 (DC4)

Nexus Development Control Register 4 is used to control mark selection for Program and Data Trace
Messaging, as well as masking of events that initiate Program Correlation messages on the Nexus 3
module.

Development Control Register 4 is shown in Figure 13-7 and its fields are described in Table 13-14.

P
T

M
A

R
K

D
T

M
A

R
K

0 EVCDM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x5; Read/Write; Reset - 0x0

Figure 13-7. Development Control Register 4 (DC4)

Table 13-14. DC4 field descriptions

Bits Name Description

31 PTMARK Program Trace Mark
0 Ignore MSRPMM for masking program trace messages
1 Mask program trace messages when MSRPMM=‘0’, unmask program trace messages

when MSRPMM=‘1’

30 DTMARK Data Trace Mark
0 Ignore MSRPMM for masking data trace messages
1 Mask data trace messages when MSRPMM=‘0’, unmask data trace messages when

MSRPMM=‘1’

29:16 — Reserved

15:0 EVCDM Event Code (EVCODE) Mask1

0000000000000000 No EVCODEs masked for Program Correlation messages
xxxxxxxxxxxxxx1 EVCODE #0 is masked for Program Correlation messages
xxxxxxxxxxxxxx1x EVCODE #1 is masked for Program Correlation messages
xxxxxxxxxxxxx1xx EVCODE #2 is masked for Program Correlation messages
xxxxxxxxxxxx1xxx EVCODE #3 is masked for Program Correlation messages
xxxxxxxxxxx1xxxx EVCODE #4 is masked for Program Correlation messages
xxxxxxxxxx1xxxxx EVCODE #5 is masked for Program Correlation messages
xxxxxxxxx1xxxxxx EVCODE #6 is masked for Program Correlation messages
xxxxxxxx1xxxxxxx EVCODE #7 is masked for Program Correlation messages
xxxxxxx1xxxxxxxx EVCODE #8 is masked for Program Correlation messages
xxxxxx1xxxxxxxxx EVCODE #9 is masked for Program Correlation messages
xxxxx1xxxxxxxxxx EVCODE #10 is masked for Program Correlation messages
xxxx1xxxxxxxxxxx EVCODE #11 is masked for Program Correlation messages
xxx1xxxxxxxxxxxx EVCODE #12 is masked for Program Correlation messages
xx1xxxxxxxxxxxxx EVCODE #13 is masked for Program Correlation messages
x1xxxxxxxxxxxxxx EVCODE #14 is masked for Program Correlation messages
1xxxxxxxxxxxxxxx EVCODE #15 is masked for Program Correlation messages

1 Refer to Table 13-6 for implemented EVCODEs

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 749

13.4.6 Development Status register (DS)

The Development Status Register is used to report system debug status. When Debug mode is entered or
exited, or an SoC or Zen defined Low Power Mode is entered (see Note below), a Debug Status message
is transmitted with DS[31:24]. The external tool can read this register at any time.

13.4.7 Watchpoint Trigger registers (WT, PTSTC, PTETC, DTSTC, DTETC)

The Watchpoint Trigger Registers allows the watchpoints defined within the Zen Nexus1 logic to trigger
actions. These watchpoints can control Program and/or Data Trace enable and disable. The control bits can
be used to produce a related “window” for triggering trace messages.Watchpoint trigger register WT is
used to control triggering by a single selected watchpoint. The Program Trace Start Trigger Control
(PTSTC), Program Trace End Trigger Control (PTETC), Data Trace Start Trigger Control (DTSTC), and
Data Trace End Trigger Control (DTETC) are used for extended trigger controls for the respective
function. If multiple watchpoints are desired for triggering, or a watchpoint beyond watchpoint #13 is
required, then one or more of the extended watchpoint trigger registers may be used. A field encoding of
4’b1111 in one of the WT register fields enables the corresponding extended trigger register. For all other
WT field encodings, the corresponding extended trigger register is disabled and the contents are ignored.

When a start trigger is detected, the designated trace features become enabled, and the corresponding
enable bits of the DC1 register are set. Whenever a stop trigger is detected, the designated trace features
become disabled, and the corresponding enable bits of the DC1 register are cleared. If the same trigger
condition is used for both start and stop triggering, then the designated trace features will toggle between

D
B

G

LPS LPC 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x4; Read-only; Reset - 0x0

Figure 13-8. Development Status (DS) register

Table 13-15. DS field descriptions

Bits Name Description

31 DBG Zen CPU Debug Mode Status
0 CPU not in Debug mode
1 CPU in Debug mode (jd_debug_b signal asserted)

30:28 LPS Zen System Low Power Mode Status
000 Normal (Run) mode
xx1 DOZE mode (p_doze signal asserted)
x1x NAP mode (p_nap signal asserted)
1xx SLEEP mode (p_sleep signal asserted)

27:26 LPC Zen CPU Low Power Mode Status
00 Normal (Run) mode
01 CPU in Halted state (p_halted signal asserted)
10 CPU in Stopped state (p_stopped signal asserted)
11 CPU in Waiting state (p_waiting signal asserted)

25:0 — Reserved for future functionality (read as 0)

e200z759n3 Core Reference Manual, Rev. 2

750 Freescale Semiconductor

being enabled and disabled at each occurrence of the trigger condition. Similarly, if start and stop triggers
for a trace feature occur simultaneously, then the designated trace feature will toggle between enabled and
disabled depending on the enable state at the time of the trigger events. For example, if tracing is enabled,
and a start and stop trigger occur simultaneously, then tracing will be disabled. Direct writes of the DC1
register take precedence over any trace feature enable state that is derived from watchpoint triggering. A
table of watchpoints can be found in Table 12-28.

Table 13-16 details the Watchpoint Trigger register fields.

For extended Program Trace start trigger control, the PTSTC register is used.

PTS PTE DTS DTE 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0xB; Read/Write; Reset - 0x0

Figure 13-9. Watchpoint Trigger (WT) register

Table 13-16. WT field descriptions

Bits Name Description

31:28 PTS Program Trace Start Control
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1

. . .
1110 Use Watchpoint #13
1111 Use control settings in the PTSTC register

27:24 PTE Program Trace End Control
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1

. . .
1110 Use Watchpoint #13
1111 Use control settings in the PTETC register

23:20 DTS Data Trace Start Control
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1

. . .
1110 Use Watchpoint #13
1111 Use control settings in the DTSTC register

19:16 DTE Data Trace End Control
0000 Trigger disabled
0001 Use Watchpoint #0
0010 Use Watchpoint #1

. . .
1110 Use Watchpoint #13
1111 Use control settings in the DTETC register

15:0 — Reserved for future functionality (read as 0)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 751

Table 13-17 details the PTSTC register fields.

For extended Program Trace end trigger control, the PTETC register is used.

0 PTST

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x35; Read/Write; Reset - 0x0

Figure 13-10. Program Trace Start Trigger Control (PTSTC) register

Table 13-17. PTSTC field descriptions

Bits Name Description

31:30 — Reserved for future functionality (read as 0)

29:0 PTST Program Trace Start Trigger Control
000000000000000000000000000000 Trigger disabled
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Use Watchpoint #0
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Use Watchpoint #1
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Use Watchpoint #2
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Use Watchpoint #3
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Use Watchpoint #4
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Use Watchpoint #5
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Use Watchpoint #6
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Use Watchpoint #7
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Use Watchpoint #8
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Use Watchpoint #9
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Use Watchpoint #10
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Use Watchpoint #11
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Use Watchpoint #12
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Use Watchpoint #13
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Use Watchpoint #14
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Use Watchpoint #15
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Use Watchpoint #16
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Use Watchpoint #17
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Use Watchpoint #18
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Use Watchpoint #19
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Use Watchpoint #20
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Use Watchpoint #21
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #22
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #23
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #24
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #25
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #26
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #27
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #28
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #29

e200z759n3 Core Reference Manual, Rev. 2

752 Freescale Semiconductor

Table 13-18 details the PTETC register fields.

For extended Data Trace start trigger control, the DTSTC register is used.

0 PTET

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x36; Read/Write; Reset - 0x0

Figure 13-11. Program Trace End Trigger Control (PTETC) register

Table 13-18. PTETC field descriptions

Bits Name Description

31:30 — Reserved for future functionality (read as 0)

29:0 PTET Program Trace End Trigger Control
000000000000000000000000000000 Trigger disabled
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Use Watchpoint #0
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Use Watchpoint #1
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Use Watchpoint #2
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Use Watchpoint #3
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Use Watchpoint #4
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Use Watchpoint #5
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Use Watchpoint #6
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Use Watchpoint #7
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Use Watchpoint #8
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Use Watchpoint #9
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Use Watchpoint #10
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Use Watchpoint #11
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Use Watchpoint #12
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Use Watchpoint #13
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Use Watchpoint #14
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Use Watchpoint #15
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Use Watchpoint #16
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Use Watchpoint #17
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Use Watchpoint #18
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Use Watchpoint #19
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Use Watchpoint #20
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Use Watchpoint #21
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #22
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #23
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #24
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #25
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #26
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #27
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #28
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #29

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 753

Table 13-19 details the DTSTC register fields.

For extended Data Trace end trigger control, the DTETC register is used.

0 DTST

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x37; Read/Write; Reset - 0x0

Figure 13-12. Data Trace Start Trigger Control (DTSTC) register

Table 13-19. DTSTC field descriptions

Bits Name Description

31:30 — Reserved for future functionality (read as 0)

29:0 DTST Data Trace Start Trigger Control
000000000000000000000000000000 Trigger disabled
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Use Watchpoint #0
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Use Watchpoint #1
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Use Watchpoint #2
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Use Watchpoint #3
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Use Watchpoint #4
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Use Watchpoint #5
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Use Watchpoint #6
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Use Watchpoint #7
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Use Watchpoint #8
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Use Watchpoint #9
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Use Watchpoint #10
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Use Watchpoint #11
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Use Watchpoint #12
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Use Watchpoint #13
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Use Watchpoint #14
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Use Watchpoint #15
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Use Watchpoint #16
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Use Watchpoint #17
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Use Watchpoint #18
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Use Watchpoint #19
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Use Watchpoint #20
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Use Watchpoint #21
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #22
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #23
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #24
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #25
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #26
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #27
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #28
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #29

e200z759n3 Core Reference Manual, Rev. 2

754 Freescale Semiconductor

Table 13-20 details the DTETC register fields.

13.4.8 Nexus Watchpoint Mask register (WMSK)

The Nexus Watchpoint Mask register (WMSK) controls which watchpoint events are enabled to produce
Watchpoint Trace Messages (DC1TM must also be programmed to generate Watchpoint Trace Messages).

0 DTET

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 038; Read/Write; Reset - 0x0

Figure 13-13. Data Trace End Trigger Control (DTETC) Register

Table 13-20. DTETC field descriptions

Bits Name Description

31:30 — Reserved for future functionality (read as 0)

29:0 DTET Data Trace End Trigger Control
000000000000000000000000000000 Trigger disabled
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Use Watchpoint #0
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Use Watchpoint #1
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Use Watchpoint #2
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Use Watchpoint #3
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Use Watchpoint #4
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Use Watchpoint #5
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Use Watchpoint #6
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Use Watchpoint #7
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Use Watchpoint #8
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Use Watchpoint #9
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Use Watchpoint #10
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Use Watchpoint #11
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Use Watchpoint #12
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Use Watchpoint #13
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Use Watchpoint #14
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Use Watchpoint #15
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Use Watchpoint #16
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Use Watchpoint #17
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Use Watchpoint #18
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Use Watchpoint #19
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Use Watchpoint #20
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Use Watchpoint #21
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #22
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #23
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #24
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #25
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #26
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #27
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #28
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Use Watchpoint #29

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 755

Table 13-21 details the Watchpoint Trigger register fields.

13.4.9 Nexus Overrun Control Register (OVCR)

The Nexus Overrun Control register controls Nexus behavior as the internal message queues fill up.
Response options include suppressing selected message types, or stalling processor instruction execution.

0 WEM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x33; Read/Write; Reset - 0x0

Figure 13-14. Watchpoint Mask register (WMSK)

Table 13-21. WMSK field descriptions

Bits Name Description

31:30 — Reserved for future functionality (read as 0)

29:0 WEM Watchpoint Enable for Messaging
00000000000000000000000000000 No Watchpoints enabled for Watchpoint Trace Messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Watchpoint #0 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Watchpoint #1 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Watchpoint #2 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Watchpoint #3 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Watchpoint #4 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Watchpoint #5 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Watchpoint #6 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Watchpoint #7 enabled for WTM
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Watchpoint #8 enabled for WTM
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Watchpoint #9 enabled for WTM
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Watchpoint #10 enabled for WTM
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Watchpoint #11 enabled for WTM
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Watchpoint #12 enabled for WTM
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Watchpoint #13 enabled for WTM
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Watchpoint #14 enabled for WTM
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Watchpoint #15 enabled for WTM
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Watchpoint #16 enabled for WTM
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Watchpoint #17 enabled for WTM
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Watchpoint #18 enabled for WTM
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Watchpoint #19 enabled for WTM
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Watchpoint #20 enabled for WTM
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Watchpoint #21 enabled for WTM
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Watchpoint #22 enabled for WTM
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Watchpoint #23 enabled for WTM
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #24 enabled for WTM
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #25 enabled for WTM
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #26 enabled for WTM
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #27 enabled for WTM
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #28 enabled for WTM
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #29 enabled for WTM

e200z759n3 Core Reference Manual, Rev. 2

756 Freescale Semiconductor

13.4.10 Data Trace Control Register (DTC)

The Data Trace Control Register controls whether DTM messages are restricted to reads, writes, or both
for a user programmable address range. There are four Data Trace channels controlled by the DTC for the
Nexus 3 module. Channels can be programmed to trace data accesses or instruction accesses, but not
independently.

0

S
P

T
H

O
LD

0 SPEN 0

S
T

T
H

O
LD

0

S
T

E
N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x32; Read/Write; Reset - 0x0

Figure 13-15. Nexus Overrun Control Register (OVCR)

Figure 13-16. OVCR field descriptions

Bits Name Description

31:30 — Reserved, should be cleared

29:28 SPTHOLD Suppression Threshold
00 Suppression threshold is when message queues are 1/4 full
01 Suppression threshold is when message queues are 1/2 full
10 Suppression threshold is when message queues are 3/4 full
11 Reserved

27:22 — Reserved, should be cleared

21:16 SPEN Suppression Enable
000000 Suppression is disabled
xxxxx1 Ownership Trace message suppression is enabled
xxxx1x Data Trace message suppression is enabled
xxx1xx Program Trace message suppression is enabled
xx1xxx Watchpoint Trace message suppression is enabled
x1xxxx Reserved
1xxxxx Data Acquisition message suppression is enabled

15:14 — Reserved, should be cleared

13:12 STTHOLD Stall Threshold
00 Stall threshold is when message queues are 1/4 full
01 Stall threshold is when message queues are 1/2 full
10 Stall threshold is when message queues are 3/4 full
11 Reserved

11:1 — Reserved, should be cleared

0 STEN Stall Enable
0 Stalling is disabled
1 Stalling is enabled

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 757

Figure 13-17. Data Trace Control Register (DTC)

Table 13-22 details the Data Trace Control register fields.

RWT1 RWT2 RWT3 RWT4 0

R
C

1

R
C

2

R
C

3

R
C

4

D
I 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0xD; Read/Write; Reset - 0x0

Table 13-22. DTC field descriptions

Bits Name Description

31:30 RWT1 Read/Write Trace 1
00 No trace enabled
x1 Enable Data Read Trace
1x Enable Data Write Trace

29:28 RWT2 Read/Write Trace 2
00 No trace enabled
x1 Enable Data Read Trace
1x - Enable Data Write Trace

27:26 RWT3 Read/Write Trace 3
00 No trace enabled
x1 Enable Data Read Trace
1x Enable Data Write Trace

25:24 RWT4 Read/Write Trace 4
00 No trace enabled
x1 Enable Data Read Trace
1x Enable Data Write Trace

23:8 — Reserved for future functionality (read as 0)

7 RC1 Range Control 1
0 Condition trace on address within range
1 Condition trace on address outside of range

6 RC2 Range Control 2
0 Condition trace on address within range
1 Condition trace on address outside of range

5 RC3 Range Control 3
0 Condition trace on address within range
1 Condition trace on address outside of range

4 RC4 Range Control 4
0 Condition trace on address within range
1 Condition trace on address outside of range

3 DI Data Access / Instruction Access Trace
0 Condition trace on data accesses
1 Condition trace on instruction accesses

2:0 — Reserved for future functionality (read as 0)

e200z759n3 Core Reference Manual, Rev. 2

758 Freescale Semiconductor

13.4.11 Data Trace Start Address Registers (DTSA1–4)

The Data Trace Start Address Registers define the start addresses for each trace channel.

.

..

13.4.12 Data Trace End Address registers (DTEA1–4)

The Data Trace End Address Registers define the end addresses for each trace channel.

Data Trace Start Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0xE; Read/Write; Reset - 0x0

Figure 13-18. Data Trace Start Address 1 (DTSA1) register

Data Trace Start Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0xF; Read/Write; Reset - 0x0

Figure 13-19. Data Trace Start Address 2 (DTSA2) register

Data Trace Start Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x10; Read/Write; Reset - 0x0

Figure 13-20. Data Trace Start Address 3 (DTSA3) register

Data Trace Start Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x11; Read/Write; Reset - 0x0

Figure 13-21. Data Trace Start Address 4 (DTSA4) register

Data Trace End Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x12; Read/Write; Reset - 0x0

Figure 13-22. Data Trace End Address 1 (DTEA1) register

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 759

.

.

.

Table 13-23 illustrates the range that will be selected for Data Trace for various cases of DTSA being less
than, greater than, or equal to DTEA.

NOTE
DTSA must be less than DTEA in order to guarantee correct Data
Write/Read Traces. Data Trace ranges are inclusive of the DTSA and DTEA
addresses for Range Control settings indicating “within range”, and are
exclusive of the DTSA and DTEA addresses for Range Control settings
indicating “outside of range”.

Accesses that meet the range and access type qualifiers will cause assertion of a watchpoint output for
Ranges 1, 2, and 3. There are three dedicated watchpoint outputs, one for each DTSA/DTEA sets 1, 2, and
3. Range 4 does not provide a watchpoint output. Note that when DTCDI=1, all instruction fetches and
prefetches (including discarded prefetches) are monitored, and thus theses range watchpoints differ from

Data Trace End Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x13; Read/Write; Reset - 0x0

Figure 13-23. Data Trace End Address 2 (DTEA2) register

Data Trace End Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x14; Read/Write; Reset - 0x0

Figure 13-24. Data Trace End Address 3 (DTEA3) register

Data Trace End Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x15; Read/Write; Reset - 0x0

Figure 13-25. Data Trace End Address 4 (DTEA4) register

Table 13-23. Data trace address range options

Programmed values Range control bit value Range selected

DTSA < DTEA 0 DTSA DTEA

DTSA < DTEA 1 DTSA DTEA

DTSA > DTEA N/A Invalid range — no trace

DTSA = DTEA N/A Invalid range— no trace

e200z759n3 Core Reference Manual, Rev. 2

760 Freescale Semiconductor

the IACx watchpoint outputs, which are not asserted for instructions that are not executed (i.e. when the
instruction prefetch is discarded).

13.4.13 Read/Write Access Control/Status register (RWCS)

The Read Write Access Control/Status register (RWCS) provides control for Read/Write Access.
Read/Write access provides DMA-like access to memory-mapped resources on the AHB System bus
either while the processor is halted, or during runtime. Control is provided over access type, size, count,
and certain bus attributes. RWCS also provides Read/Write Access Status information per Table 13-25.

A
C

R
W SZ MAP PR ATTR 0 CNT

E
R

R

D
V

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x7; Read/Write1; Reset - 0x0

1 ERR and DV are read-only

Figure 13-26. Read/Write Access Control/Status register (RWCS)

Table 13-24. RWCS field descriptions

Bits Name Description

RWCS[31] AC Access Control
0 End access
1 Start access

RWCS[30]
RW Read/Write Select

0 Read access
1 Write access

RWCS[29:27] SZ Word Size
000 8-bit (byte)
001 16-bit (half-word)
010 32-bit (word)
011 64-bit (doubleword, requires two passes through RWD)
100-111 Reserved (default to word)

RWCS[26:24] MAP MAP Select
000 Primary memory map
001-111 Reserved

RWCS[23:22] PR1 Read/Write Access Priority
00 Reserved (default to highest priority)
01 Reserved (default to highest priority)
10 Reserved (default to highest priority)
11 Highest access priority

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 761

13.4.14 Read/Write Access Data (RWD)

The Read/Write Access Data Register (RWD) provides the data to/from system bus memory-mapped
locations when initiating a read or a write access.

Read/Write accesses to the AHB require that the debug firmware properly retrieve/place the data in the
RWD. Table 13-26 shows the proper placement of data into the RWD. Note that doubleword transfers
require two passes through RWD.

RWCS[21:18] ATTR Access Attributes
0xxx p_d_gbl driven to 0 for accesses
1xxx p_d_gbl driven to 1 for accesses
x0xx p_d_hprot[4] driven to 0 for accesses
x1xx p_d_hprot[4] driven to 1 for accesses
xx0x p_d_hprot[3] driven to 0 for accesses
xx1x p_d_hprot[3] driven to 1 for accesses
xxx0 p_d_hprot[2] driven to 0 for accesses
xxx1 p_d_hprot[2] driven to 1 for accesses

RWCS[17:16] — Reserved for future functionality

RWCS[15:2] CNT Access Control Count
hhhh - Number of accesses of word size SZ

RWCS[1] ERR2 Read/Write Access Error (see Table 13-25)

RWCS[0] DV2 Read/Write Access Data Valid (see Table 13-25)

1 The priority functionality is not currently implemented
2 ERR and DV are read-only

Table 13-25. Read/write access status bit encoding

Read action Write action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1

Read/Write Data

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0xA; Read/Write; Reset - 0x0

Figure 13-27. Read/Write Access Data register (RWD)

Table 13-24. RWCS field descriptions (continued)

Bits Name Description

e200z759n3 Core Reference Manual, Rev. 2

762 Freescale Semiconductor

Table 13-27 shows the mapping of RWD bytes to byte lanes of the AHB read and write data buses.

Table 13-26. RWD data placement for transfers

Transfer Size
and byte offset

RWA(2:0) RWCS[SZ]
RWD

31:24 23:16 15:8 7:0

Byte x x x 0 0 0 — — — X

Half x x 0 0 0 1 — — X X

Word x 0 0 0 1 0 X X X X

Doubleword

First RWD pass (low order data)

Second RWD pass (high order data)

0 0 0 0 1 1

X

X

X

X

X

X

X

X

Table Notes:
“X” indicates byte lanes with valid data
“—” indicates byte lanes that contain unused data.

Table 13-27. RWD byte lane mapping

Transfer Size
and byte offset

RWA(2:0)
RWD

31:24 23:16 15:8 7:0

Byte @000 0 0 0 — — — AHB[7:0]

Byte @001 0 0 1 — — — AHB[15:8]

Byte @010 0 1 0 — — — AHB[23:16]

Byte @011 0 1 1 — — — AHB[31:24]

Byte @100 1 0 0 — — — AHB[39:32]

Byte @101 1 0 1 — — — AHB[47:40]

Byte @110 1 1 0 — — — AHB[55:48]

Byte @111 1 1 1 — — — AHB[63:56]

Half @000 0 0 0 — — AHB[15:8] AHB[7:0]

Half @010 0 1 0 — — AHB[31:24] AHB[23:16]

Half @100 1 0 0 — — AHB[47:40] AHB[39:32]

Half @110 1 1 0 — — AHB[63:56] AHB[55:48]

Word @000 0 0 0 AHB[31:24] AHB[23:16] AHB[15:8] AHB[7:0]

Word @100 1 0 0 AHB[63:56] AHB[55:48] AHB[47:40] AHB[39:32]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 763

13.4.15 Read/Write Access Address register (RWA)

The Read/Write Access Address register (RWA) provides the system bus address to be accessed when
initiating a read or a write access.

13.5 Nexus 3 register access via JTAG/OnCE
Access to Nexus 3 register resources is enabled by loading a single instruction (“NEXUS3-ACCESS”) into
the JTAG Instruction Register (IR) (OnCE OCMD register). For the Nexus 3 block, the OCMD value is
0b0001111100.

Once the “NEXUS3-ACCESS” instruction has been loaded, the JTAG/OnCE port allows tool/target
communications with all Nexus 3 registers according to the register map in Table 13-8.

Reading/writing of a Nexus 3 register then requires two (2) passes through the Data-Scan (DR) path of the
JTAG state machine (see Section 13.21, IEEE 1149.1 (JTAG) RD/WR sequences).

1. The first pass through the DR selects the Nexus 3 register to be accessed by providing an index (see
Table 13-8), and the direction (read/write). This is achieved by loading an 8-bit value into the JTAG
Data Register (DR). This register has the following format:

Figure 13-29. Data Register (DR) format

Doubleword @000

first RWD pass

second RWD pass

0 0 0

AHB[31:24]

AHB[63:56]

AHB[23:16]

AHB[55:48]

AHB[15:8]

AHB[47:40]

AHB[7:0]

AHB[39:32]

Table Notes:
“—” indicates byte lanes that contain unused data.

Read/Write Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nexus Reg# - 0x9; Read/Write; Reset - 0x0

Figure 13-28. Read/Write Access Address register (RWA)

Table 13-27. RWD byte lane mapping

Transfer Size
and byte offset

RWA(2:0)
RWD

31:24 23:16 15:8 7:0

R/WNexus Register Index

(1 bit) (7bits)

RESET Value: 0x00

e200z759n3 Core Reference Manual, Rev. 2

764 Freescale Semiconductor

2. The second pass through the DR then shifts the data in or out of the JTAG port, LSB first.

a) During a read access, data is latched from the selected Nexus register when the JTAG state
machine passes through the “Capture-DR” state.

b) During a write access, data is latched into the selected Nexus register when the JTAG state
machine passes through the “Update-DR” state.

13.6 Nexus message fields
Nexus messages are comprised of fields. Each field contains a distinct piece of information within a
message, and each message contains multiple fields. Messages are transferred in packets over the
Auxiliary Output protocol. A packet is a collection of fields. A packet may contain any number of fixed
length fields, but may contain at most one variable length field. The variable length field must be the last
field in a packet. The following sub-sections describe a subset of the message field types.

13.6.1 TCODE field

The TCODE field is a 6-bit fixed length field that identifies the type of message and its format. The field
encodings are assigned by IEEE-ISTO 5001.

13.6.2 Source ID field (SRC)

Each Nexus module in a device is identified by a unique Client Source Identification Number. The number
assigned to each Nexus module is determined by the SoC integrator, and is provided on the
nex3_ext_src_id[0:3] input signals. Multi-threaded processors may assign additional source ID
information to indicate which thread a message is associated with. The e200z759n3 Nexus 3 module
implements a 4-bit fixed length Source ID field consisting of a Client Source ID.

13.6.3 Relative address field (U-ADDR)

The non-sync forms of the Program and Data Trace messages include addresses that are relative to the
address that was transmitted in the previous Program or Data Trace message respectively. The relative
address format is compliant with IEEE-ISTO 5001 and is designed to reduce the number of bits transmitted
for address fields.

The relative address is generated by XORing the new address with the previous, and then using only the
results up to the most significant ‘1’. To recreate the original address, the relative address is XORed with
the previously decoded address.

Table 13-28. Nexus register index values

Nexus register index Selected from values in Table 13-8

Read/Write (R/W): 0 Read
1 Write

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 765

The relative address of a Program Trace message is calculated with respect to the previous Program Trace
message, regardless of any address information that may have been sent in any other trace messages in the
interim between the two Program Trace messages.

The relative address of a Data Trace message is calculated with respect to the previous Data Trace
message, regardless of any address information that may have been sent in any other trace messages in the
interim between the two Data Trace messages.

Previous Address (A1) =0x0003FC01, New Address (A2) = 0x0003F365

Figure 13-30. Relative address generation and re-creation

13.6.4 Full address field (F-ADDR)

Program Trace synchronization messages provide the full address associated with the trace event (leading
zeroes may be truncated) with the intent of providing a reference point for development tools to operate
from when reconstructing relative addresses. Synchronization messages are generated at significant mode
switches and are also generated periodically to ensure that development tools are guaranteed to have a
reference address given a sufficiently large sample of trace messages.

13.6.5 Address space indication field (MAP)

Data trace messages and indirect-type program trace messages provide the address space status (DS or IS
value) in the address space (MAP) field. For Data Trace, the MAP field indicates the DS space (MSRDS
value) used for the data access. For Program Trace, the MAP field is used to indicate the future space used
for instruction execution (new value of MSRIS). A change in instruction address space will only occur on
reset, on an exception, or via a mtmsr, rfi, rfci, rfdi, or rfmci instruction. A potential change in address
space via an exception or via an rfi, rfci, rfdi, or rfmci instruction will cause a program trace indirect
branch message to be generated indicating the new address space (IS) value, along with ICNT and HIST
information for instructions executed up to the change (including the rfi, rfci, rfdi, or rfmci). A change in

Message Generation:

A1 = 0000 0000 0000 0011 1111 1100 0000 0001
A2 = 0000 0000 0000 0011 1111 0011 0110 0101

A1 Ý A2 = 0000 0000 0000 0000 0000 1111 0110 0100

Address Message (M1) = 1111 0110 0100

Address Re-creation:

A1 Ý M1 = A2
A1 = 0000 0000 0000 0011 1111 1100 0000 0001
M1 = 0000 0000 0000 0000 0000 1111 0110 0100

A2 = 0000 0000 0000 0011 1111 0011 0110 0101

e200z759n3 Core Reference Manual, Rev. 2

766 Freescale Semiconductor

address space via a mtmsr instruction will cause a program correlation message to be generated indicating
the new address space (IS) value, along with ICNT and HIST information for instructions executed prior
to the change (including the mtmsr).

13.7 Nexus message queues
The Nexus 3 module implements internal message queues capable of storing up to three messages per
cycle into a small initial queue, which then fills a larger queue at up to two messages per cycle. Messages
that enter the queues are transmitted in the order in which they are received.

If more than three messages attempt to enter the queue in the same cycle, the highest priority messages are
stored and the remaining message(s) will be dropped due to a collision. Collision events are expected to
be rare.

The Overrun Control register (OVCR) controls the Nexus behavior as the message queue fills. The Nexus
block may be programmed to:

• Allow the queue to overflow, drain the contents, queue an overrun error message and resume
tracing.

• Stall the processor when the queue utilization reaches the selected threshold.

• Suppress selected message types when the queue utilization reaches the selected threshold.

13.7.1 Message queue overrun

In this mode, the message queue will stop accepting messages when an overrun condition is detected. The
contents of the queues will be allowed to drain until empty. Incoming messages are discarded until the
queue is emptied. Once empty, an overrun error message is enqueued that contains information about the
types of messages that were discarded due to the overrun condition.

13.7.2 CPU stall

In this mode, processor instruction issue is stalled when the queue utilization reaches the selected
threshold. The processor is stalled long enough drop one threshold level below the level that triggered the
stall. For example, if stalling the processor is triggered at 1/4 full, the stall will stay in effect until the queue
utilization drops to empty. There may be significant skid from the time that the stall request is made until
the processor is able to stop completing instructions. This skid should be taken into consideration when
programming the threshold. Refer to Section 13.4.9, Nexus Overrun Control Register (OVCR), for
complete programming options.

13.7.3 Message suppression

In this mode, the message queue will disable selected message types when the queue utilization reaches
the selected threshold. This allows lower bandwidth tracing to continue and possibly avoid an overrun
condition. If an overrun condition occurs despite this message suppression, the queue will respond
according to the behavior described in Section 13.7.1, Message queue overrun. Once triggered, message
suppression will remain in effect until queue utilization drops to the threshold below the level selected to
trigger suppression.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 767

13.7.4 Nexus message priority

Nexus messages may be lost due to contention with other message types under the following
circumstances:

• More than three messages are generated in the same cycle

Table 13-29 lists the various message types and their relative priority from highest to lowest.

Up to three message requests can be queued into the message buffer in a given cycle. If more than three
message requests exist in a given cycle, the three highest priority message classes are queued into the
message buffer. The remaining messages that did not successfully queue into the message buffer in that
cycle will generate subsequent responses as detailed in Table 13-29.

The CPU is capable of completing two instructions per cycle. If multiple trace messages need to be queued
at the same time, they will be queued with the following priority: Instruction 0 (oldest instruction)
(WPM DQM PCMPIDMSG OTM BTM DTM) Instruction1 (newer instruction)
(WPM DQM OTM BTM DTM). Up to three messages may be simultaneously queued. Note
that for the cycle following a dropped PTM, non-periodic OTM, or DQM message, only two other
messages may be queued in addition to the dropped error message.

Watchpoint messages from instructions that complete at the same time or events that occur during the same
cycle will be combined.

Table 13-29. Message type priority and message dropped responses

Message type Message Priority Message dropped response

Error Error 0 (highest) N/A1

WP
(Watchpoint Trace)

WPM
(Watchpoint Message)

1 N/A1

DQ
(Data Acquisition)

DQM
(Data Acquisition Message)

2 DQM Error Message

Program Trace
(PID MSG)

PCM — PID or mtmsr IS update
(Program Correlation Message)

2 OTM Error Message

OT
(Ownership)

OTM - PID update
(Ownership Trace Message)

2 OTM Error Message2

Program Trace BTM
(Branch Trace Message)

2 BTM Error Message,
Sync upgrade next BTM

RFM
(Resource Full for Instruction

counter or history buffer)

3 BTM Error Message
Sync upgrade next BTM

DS
(Debug Status Message)

4 Sync upgrade next BTM

PCM
(Program Correlation Message)

5 BTM Error Message
Sync upgrade next BTM

e200z759n3 Core Reference Manual, Rev. 2

768 Freescale Semiconductor

13.7.5 Data Acquisition Message (DQM) priority loss response

If a Data Acquisition Message (DQM) loses arbitration due to contention with higher priority messages,
an error message will be generated to indicate that a DQM has been lost due to contention.

13.7.6 Ownership Trace Message (OTM) priority loss response

If an Ownership Trace message (OTM) due to software updates to the Process ID state loses arbitration
due to contention with higher priority messages other than a program correlation message with EVCODE
= 0101 (PID or MSRIS update), an error message will be generated to indicate that a OTM has been lost
due to contention. If the pending OTM is a periodic update, the event is dropped without generating an
error message.

13.7.7 Program Trace Message (PTM) priority loss response

If a Program Trace message (PTM) loses arbitration due to contention with higher priority messages, and
the discarded PTM is a Program Correlation message, a Resource Full message for instruction count or
history buffer, or a Branch Trace message, then an Error message is generated to indicate that branch trace
information has been lost, and the next Branch Trace message will be upgraded to a sync-type message.

If the discarded PTM is a Program Correlation message with PID information (EVCODE=0101), the Error
message will indicate a dropped OTM and a dropped Program Trace (Error code = xxxx11xx).

13.7.8 Data Trace Message (DTM) priority loss response

If a Data Trace message (DTM) loses arbitration due to contention with higher priority messages, the DTM
event is discarded, and the next DTM is upgraded to a sync-type message.

13.8 Debug Status messages
Debug Status messages report low power mode and debug status. Debug Status messages are enabled
when Nexus 3 is enabled. Entering/exiting Debug mode as well as entering, exiting, or changing low
power mode(s) will trigger a Debug Status message, indicating the value of the most significant byte in the
Development Status register. Debug status information is sent out in the following format:

DT
(Data Trace)

DTM
(Data Trace Message)

6 Sync upgrade next DTM

OT
(Ownership)

OTM — Periodic update
(Ownership Trace Message)

7 (lowest) none

1 Error and Watchpoint messages are not dropped due to collisions, due to their priority.
2 Message will always be dropped if program trace is enabled, and program correlation messages for PID0 /mtmsr

IS messages are not masked (Event Code = 0101). No error message is sent for this case since the PID value is
contained in the higher priority message.

Table 13-29. Message type priority and message dropped responses (continued)

Message type Message Priority Message dropped response

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 769

Figure 13-31. Debug Status message format

13.9 Error messages
Error messages are enabled whenever the debug logic is enabled. There are two conditions that will
produce an error message, each receiving a separate error type designation:

• A message is discarded due to contention with other (higher priority) message types. These errors
will have an Error Type value of 1.

• The message queue overruns. After the queue is drained, an error message is enqueued with an
error code that indicates what types of messages were discarded during the interim. These errors
will have an Error Type value of 0.

NOTE
The OVCR Register can be used in order to alleviate potential overrun
situations.

Error information is messaged out in the following format (also see Table 13-3 and Table 13-4):

Figure 13-32. Error message format

13.10 Ownership trace
This section details the ownership trace features of the Nexus 3 module.

13.10.1 Overview

Ownership trace provides a macroscopic view, such as task flow reconstruction, when debugging software
written in a high level (or object-oriented) language. It offers the highest level of abstraction for tracking
operating system software execution. This is especially useful when the developer is not interested in
debugging at lower levels.

13.10.2 Ownership Trace Messaging (OTM)

Ownership trace information is messaged via the auxiliary port using an Ownership Trace Message
(OTM). Zen processors contain a Power Architecture BookE defined “Process ID” register within the
CPU. It is updated by the operating system software to provide task/process ID information. The contents
of this register are replicated on the pins of the processor and connected to Nexus. The Process ID register
value can be accessed using the mfspr/mtspr instructions.

TCODE (000000)DS[31:24]

(8 bits) (6 bits)

Src. Proc.

(4 bits)

Fixed length = 18 bits

Error Code Src. Proc.

(4 bits)

TCODE (001000)

(6 bits)

Fixed length = 20 bits

(6 bits)

Error Type

(4 bits)

e200z759n3 Core Reference Manual, Rev. 2

770 Freescale Semiconductor

NOTE
The CPU includes a Process ID register (PID0), thus the Nexus UBA
functionality is not implemented.

There are two conditions that will cause an Ownership Trace Message when Ownership Trace is enabled:

• When new information is updated in the PID0 register by the Zen processor, the data is latched
within Nexus, and is messaged out via the auxiliary port, allowing development tools to trace
ownership flow. However, if Program Trace is enabled, and program correlation messages for
PID0 /mtmsr IS messages are not masked (Event Code = 0101), then an OTM will not be
generated for an update to the PID0 register, since the program correlation message will provide
this PID0 update information.

• Periodically, at least once every 256 messages, the most recent state of the PID0 register is
messaged out. The resulting Ownership Trace message will indicate in the PID Index sub-field that
PID0 status is being reported and the most recent value of the PID0 register will be conveyed in
the Process ID value sub-field. These periodic Ownership Trace message events can be disabled
by setting DC1POTD.

Ownership trace information is messaged out in the following format:

Figure 13-33. Ownership Trace Message (OTM) format

13.11 Program trace
This section details the program trace mechanism supported by Nexus3 for the e200z759n3 processor.
Program trace is implemented via Branch Trace Messaging (BTM) as per the IEEE-ISTO 5001 standard
definition. Branch Trace Messaging for Zen processors is accomplished by snooping the Zen virtual
address bus (between the CPU and MMU), attribute signals, and CPU Status (p_mode[0:3],
p_pstat_pipe{0,1}[0:5]).

13.11.1 Branch Trace messaging types

Traditional Branch Trace messaging facilitates program trace by providing the following types of
information:

• Messaging for taken direct branches includes how many sequential instructions were executed
since the last taken branch or exception, including the taken direct branch. Branch instructions are
included in the count of sequential instructions.

• Messaging for taken indirect branches and exceptions includes how many sequential instructions
were executed since the last taken branch or exception and the unique portion of the branch target
address or exception vector address. Branch instructions are included in the count of sequential
instructions. For taken indirect branches that trigger generation of a message, the branch is also

PID IndexProcess ID Src. Proc.

(4 bits)

TCODE (000010)

(6 bits)

Variable length = 15–22 bits

(1-8 bits) (4 bits)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 771

included in the count. Messaging for taken indirect branches and exceptions also include the newly
established value of the MSRIS bit in the MAP field if the indirect branch message is due to an
exception or rfi, rfci, rfdi, or rfmci class instruction. For all other indirect branches, the MAP field
will reflect the current value of MSRIS.

Branch History messaging facilitates program trace by providing the following information.

• Messaging for taken indirect branches and exceptions includes a) how many sequential instructions
(I-CNT) were executed since the last predicate instruction, taken/not taken direct branch,
taken/not-taken indirect branch, or exception, b) the unique portion of the branch target address or
exception vector address, and c) a branch/predicate instruction history field. Each bit in the history
field represents a direct branch or predicated instruction where a value of one (1) indicates taken,
and a value of zero (0) indicates not taken. Certain instructions (evsel) generate a pair of predicate
bits that are both reported as consecutive bits in the history field. Not-taken indirect branches will
generate a history bit with a value of zero (0). Instructions that generate history bits are not included
in instruction counts. For taken indirect branches that trigger generation of this message type, the
branch is included in the count, but not in the history field. Messaging for taken indirect branches
and exceptions also include the newly established value of the MSRIS bit in the MAP field if the
indirect branch message is due to an exception or rfi, rfci, rfdi, or rfmci class instruction. For all
other indirect branches, the MAP field will reflect the current value of MSRIS.

13.11.1.1 Zen Indirect Branch message instructions

Table 13-30 shows the types of instructions and events that cause Indirect Branch messages or Branch
History messages to be encoded.

13.11.1.2 Zen Direct Branch Message instructions

Table 13-31 shows the types of instructions that cause Direct Branch Messages or will toggle a bit in the
instruction history buffer to be messaged out in a Resource Full Message or Branch History Message.

Table 13-30. Indirect Branch message sources

Source of Indirect Branch Message Instructions / detail

Taken branch relative to a register value bcctr, bcctrl, bclr, bclrl, se_bctr, se_bctrl, se_blr,
se_blrl

System Call / Trap exceptions taken sc, se_sc, tw, twi

Return from interrupts / exceptions rfi, rfci, rfdi, se_rfi, se_rfci, se_rfdi

Exit from reset with Program Trace Enabled Indirect branch with Sync, target address is initial
instruction, count=1

Table 13-31. Direct Branch message sources

Source of Direct Branch Message Instructions

Taken direct branch instructions
Instruction Synchronize

b, ba, bl, bla, bc, bca, bcl, bcla, se_b. se_bc, se_bl,
e_b, e_bc, e_bl, e_bcl, isync, se_isync

e200z759n3 Core Reference Manual, Rev. 2

772 Freescale Semiconductor

13.11.1.3 BTM using Branch History Messages

Traditional BTM Messaging can accurately track the number of sequential instructions between branches,
but cannot accurately indicate which instructions were conditionally executed, and which were not.

Branch History Messaging solves this problem by providing a predicated instruction history field in each
Indirect Branch Message. Each bit in the history represents a predicated instruction or direct branch, or a
not-taken indirect branch. A value of one (1) indicates the conditional instruction was executed or the
direct branch was taken. A value of zero (0) indicates the conditional instruction was not executed or the
branch was not taken. Certain instructions (evsel) generate a pair of predicate bits that are both reported as
consecutive bits in the history field.

Branch History Messages solve predicated instruction tracking and save bandwidth since only indirect
branches cause messages to be queued.

13.11.1.4 BTM using Traditional Program Trace messages

Based on the PTM bit in the DC1 Register, Program Tracing can utilize either Branch History Messages
(PTM=1) or traditional Direct/Indirect Branch Messages (PTM=0).

Branch History will save bandwidth and keep consistency between methods of Program Trace, yet may
lose temporal order between BTM messages and other types of messages. Since direct branches are not
messaged, but are instead included in the history field of the Indirect Branch History Message, other types
of messages may enter the FIFO between Branch History Messages. The development tool cannot
determine the ordering of “events” that occurred with respect to direct branches simply by the order in
which messages are sent out.

Traditional BTM messages maintain their temporal ordering because each event that can cause a message
to be queued will enter the FIFO in the order it occurred and will be messaged out maintaining that order.

13.11.2 BTM Message formats

The Nexus 3 block supports three types of traditional BTM messages — Direct, Indirect, and
Synchronization messages. It supports two types of branch history BTM Messages — Indirect Branch
History, and Indirect Branch History with Synchronization Messages.

13.11.2.1 Indirect Branch Messages (history)

Indirect branches include all taken branches whose destination is determined at run time, interrupts, and
exceptions. If DC1PTM is set to ‘1’, indirect branch information is messaged out in the following format:

Figure 13-34. Indirect Branch Message (History) format

TCODE (011100)

(6 bits) (1-8 bits) (4 bits)

Max length = 83 bits; Min length = 14 bits

Source
Proc.Sequence Count

(1 bit)

Inst
SpaceRelative Address

(1-32 bits)(1-32 bits)

Branch History

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 773

13.11.2.2 Indirect Branch Messages (traditional)

If DC1PTM is cleared to ‘0’, indirect branch information is messaged out in the following format:

Figure 13-35. Indirect Branch Message format

13.11.2.3 Direct Branch Messages (traditional)

Direct branches (conditional or unconditional) are all taken branches whose destination is fixed in the
instruction opcode. Direct branch information is messaged out in the following format:

Figure 13-36. Direct Branch Message format

NOTE
When DC1PTM is set, Direct Branch Messages will not be transmitted. Instead, each
direct branch, not-taken indirect branch, or predicated instruction will be recorded
in the history buffer.

13.11.3 Program Trace message fields

The following subsections describe specific fields used for Program Trace messages.

13.11.3.1 Sequential Instruction Count field (ICNT)

Most of the program trace messages include an instruction count field. For traditional Branch Messages,
ICNT represents the number of sequential instructions including non-taken branches since the last
Direct/Indirect Branch Messages. Branch instructions that trigger message generation are included in the
ICNT.

For Branch History messages, ICNT represents the number of instructions executed since the last
taken/non-taken direct branch, predicate instruction, last taken/not-taken indirect branch, or exception.
Branch instructions that trigger message generation are included in the ICNT. Instructions that generate
history bits are not included in the ICNT.

The sequential instruction counter overflows after its value reaches 255 and is reset to 0. In addition, the
next BTM message (corresponding to the 256th or later instruction) will be converted to a synchronization
type message.

The instruction counter is reset every time the instruction count is transmitted in a message or whenever
there is a branch/predicate history event, as well as on exiting from debug mode.

TCODE (000100)

(6 bits) (1-8 bits) (4 bits)

Max length = 51 bits; Min length = 13 bits

Source
Proc.Sequence Count

(1 bit)

Inst
SpaceRelative Address

(1-32 bits)

TCODE (000011)Sequence Count

(6 bits) (1-8 bits)

Src. Proc.

(4 bits)

Max length = 18 bits; Min length = 11bits

e200z759n3 Core Reference Manual, Rev. 2

774 Freescale Semiconductor

13.11.3.2 Branch/Predicate Instruction History (HIST)

If DC1PTM is set, BTM messaging will use the Branch History format. The branch history (HIST) field in
these messages provides a history of branch execution used for reconstructing the program flow. The
branch/predicate history buffer stores information about branch and predicate instruction execution. The
buffer is implemented as a left-shifting register. The buffer is preloaded with a one (1), which acts as a stop
bit (the most significant 1 in the history field is a termination bit for the field). The pre-loaded bit itself is
not part of the history, but is transmitted with the packet.

A value of one (1) is shifted into the history buffer for each taken direct branch (program counter relative
branch) or predicate instruction whose condition evaluates to true. A value of zero (0) is shifted into the
history buffer for each not-taken branch (including indirect branch instructions) or predicate instruction
whose condition evaluates to false. For the evsel instruction, two bits are shifted in, corresponding to the
low element (shifted in first) and the high element (shifted in second) conditions.

This history buffer information is transmitted as part of an Indirect Branch with History message, as part
of a Program Correlation message, or as part of a Resource Full message if the history buffer becomes full.
The history buffer is reset every time the history information is transmitted in a message, as well as on
exiting from debug mode.

13.11.3.3 Execution mode indication

In order for a development tool to properly interpret instruction count and history information, it must be
aware of the execution mode context of that information. VLE instructions will be interpreted differently
from non-VLE instructions.

Program trace messages provide the execution mode status in the least significant bit of the reconstructed
address field. A value of ‘0’ indicates that preceding instruction count and history information should be
interpreted in a non-VLE context. A value of ‘1’ indicates that the preceding instruction count and history
information should be interpreted in a VLE context. Note that when a branch results in an execution mode
switch, the program trace message resulting from that branch will indicate the previous execution state.
The new state will not be signaled until the next program trace message.

In some cases, a Program Correlation Message is generated to indicate execution mode status. Refer to
Section 13.11.5, Program Correlation Messages (PCM), for more information on these cases.

Table 13-32. Branch/predicate history events

Branch/predicate history event History bit(s) Relevant instructions

Not taken register indirect branches 0 bcctr, bcctrl, bclr, bclrl

Not taken direct branches 0 b, ba, bc, bca, bla, bcla, bl, bcl

Taken direct branches 1 b, ba, bc, bca, bla, bcla, bl, bcl1

1 If the EVCODE for direct branch function calls is not masked in DC4, taken bl and bcl instructions will
generate program correlation messages and will not be logged in the history buffer.

evsel instruction 00,01,10, or 11 evsel

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 775

13.11.4 Resource Full Messages

The Resource Full Message is used in conjunction with Branch Trace and Branch History Messages. The
Resource Full Message is generated when either the internal branch/predicate history buffer is full, or if
the BTM Instruction sequence counter (I-CNT) overflows. If synchronization is needed at the time this
message is generated, the synchronization is delayed until the next Branch Trace Message that is not a
Resource Full Message.

For history buffer overflow, the Resource Full Message transmits a Resource Code (RCODE) of 0b0001
and the current contents of the history buffer, including the stop bit, are transmitted in the Resource Data
(RDATA) field. This history information can be concatenated by the development tool with the
branch/predicate history information from subsequent messages to obtain the complete branch/predicate
history between indirect changes of flow.

For instruction counter overflow, the Resource Full Message transmits an RCODE of 0b0000 and a value
of 0xFF is transmitted in the RDATA field, indicating that 255 sequential instructions have been executed
since the last change of flow or, if program trace is in history mode, since the last instruction that recorded
history information.

Figure 13-37. Resource Full Message format

Table 13-33 shows the RCODE encodings and RDATA information used for Resource Full messages.

13.11.5 Program Correlation Messages (PCM)

Program Correlation Messages (PCMs) are used to correlate events to the program flow that may or may
not be associated with the instruction stream. The following events will result in a PCM when program
trace is enabled:

• When the CPU enters debug mode, a PCM is generated. The instruction count and history
information provided by the PCM can be used to determine the last sequence of instructions
executed prior to debug mode entry.

• When the CPU first enters a low power mode in which instructions are no longer executed, a PCM
is generated. The instruction count and history information provided by the PCM can be used to
determine the last sequence of instructions executed prior to low power mode entry.

Table 13-33. RCODE encoding

RCODE Description RDATA field

0000 Program Trace Instruction counter
reached 255 and was reset.

0xFF

0001 Program Trace, Branch / Predicate
Instruction History full.

Branch HIstory.
This type of packet is terminated by a stop
bit set to 1 after the last history bit.

TCODE (011011)RCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 46 bits; Min length = 15 bits

(1-32 bits)

RDATA

e200z759n3 Core Reference Manual, Rev. 2

776 Freescale Semiconductor

• Whenever program trace is disabled by any means, a PCM is generated. The instruction count and
history information provided by the PCM can be used to determine the last sequence of instructions
executed prior to disabling program trace. A second PCM is generated on this event if there has
been an execution mode switch into or out of a sequence of VLE instructions. This VLE state
information allows the development tool to interpret any preceding instruction count or history
information in the proper context.

• When a “Branch and Link” instruction executes (direct branch function call - bl/bcl/bla/bcla-type
instructions)

• Whenever the CPU crosses a page boundary that results in an execution mode switch into or out
of a sequence of VLE instructions, a PCM is generated. The PCM effectively breaks up any
running instruction count and history information between the two modes of operation so that the
instruction count and history information can be processed by the development tool in the proper
context.

• When using program trace in history mode, when a direct branch results in an execution mode
switch into or out of a sequence of VLE instructions, a PCM is generated. The PCM effectively
breaks up any running history information between the two modes of operation so that the history
information can be processed by the development tool in the proper context.

• When program trace becomes masked due to MSRPMM=‘0’ and DC4PTMARK=‘1’.

• When a new address translation is established in the TLB via a tlbwe instruction.

• When address translation(s) are invalidated in the TLB via a tlbivax instruction.

• When a new instruction address space setting (IS) is established in the MSR via a mtmsr
instruction.

• When an update to the process ID register (PID0) is made via a mtspr PID0.

Refer to Table 13-6 for the event codes that are supported in this implementation. Event code masking is
available via the EVCDM field of the DC4 register to allow for control over generation of Program
Correlation messages for each event type.

Program Correlation is messaged out in the following formats:
\

Figure 13-38. Program Correlation Message formats (1 of 4)

TCODE (100001)EVCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 56 bits; Min length = 18 bits

(1-32 bits)

Branch History CDF*

(2 bits)

Sequence Count

(1-8 bits)

* - CDF=01,
EVCODE = Any but 0101, 1100

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 777

Figure 13-39. Program Correlation Message formats (2 of 4)

Figure 13-40. Program Correlation Message formats (3 of 4)

Figure 13-41. Program Correlation Message formats (4 of 4)

13.11.5.1 Program Correlation Message generation for TLB update with new
address translation

When a new address translation is established in the TLB, a Program Correlation message is generated
containing the information regarding the new TLB entry using EVCODE = 1011. A PCM with current
history and instruction count will also be generated using EVCODE = 1011 (unless collapsed with a
different EVCODE) and sent just prior to sending the PCM containing the newly established address
translation. The messages are provided so that the address translation information can be processed by the
development tool in the proper program flow.

TCODE (100001)EVCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 88 bits; Min length = 19 bits

(1-32 bits)

Branch History

CDF*

(2 bits)

Sequence Count

(1-8 bits)

* - CDF=10,
**- EVCODE = 1100

(1-32 bits)

tlbivax EA

(CDATA 1)(CDATA 2)

TCODE (100001)EVCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 98 bits; Min length = 28 bits

CDF*

(2 bits)

Page Size (TSIZE)TID

(5 bits) (1-8 bits)

TS

(1 bit)

Virtual F-ADDR

(1-32 bits)

Physical F-ADDR

(1-32 bits)

* - CDF=11

**- EVCODE=1011

(CDATA 3) (CDATA 2) (CDATA1)

Sequence Count

(1-8 bits)

(0 for this case)

IPROT

(1 bit)

V

(1 bit)

TCODE (100001)EVCODE

(6 bits) (4 bits)

Src. Proc.

(4 bits)

Max length = 65 bits; Min length = 20 bits

CDF*

(2 bits)

PID

(1-8 bits)

IS

(1 bit)

Branch History

(1-32 bits)

* - CDF=10

**- EVCODE=0101

(CDATA 1)(CDATA 2)

Sequence Count

(1-8 bits)

e200z759n3 Core Reference Manual, Rev. 2

778 Freescale Semiconductor

13.11.5.2 Program Correlation Message generation for TLB invalidate (tlbivax)
operations

When a tlbivax is executed to invalidate one or more entries in the TLB, a Program Correlation message
is generated containing the information regarding the tlbivax EA used for invalidation using
EVCODE = 1100. The current history and instruction count (which includes the tlbivax instruction) is
also included in the message. The messages are provided so that the address translation information can
be processed by the development tool in the proper program flow.

13.11.5.3 Program Correlation Message generation for PID updates or MSRIS
updates

When a (potentially) new value is established in the PID via a mtspr PID0, a Program Correlation message
is generated containing the information regarding the new PID0 value. This PCM also contains the current
history and instruction count, and the current value of MSRIS. The message is provided so that address
translation information can be processed by the development tool in the proper program flow. The mtspr
PID0 is included in the instruction count information. Note that Ownership Trace Messages (other than
the periodic OTM) are redundant with the information provided, and may be disabled to avoid unnecessary
message bandwidth or collisions.

When a new value is established in MSRIS via a mtmsr instruction, a Program Correlation message is
generated containing the information regarding the new MSRIS value. This PCM also contains the current
history and instruction count, and the current value of PID0. The message is provided so that address
translation information can be processed by the development tool in the proper program flow. The mtmsr
instruction is included in the instruction count information.

13.11.6 Program trace overflow error messages

An error message occurs when a new message cannot be queued due to the message queue being full. The
FIFO will discard incoming messages until it has completely emptied the queue. Once emptied, an error
message will be queued. The error encoding will indicate which type(s) of messages attempted to be
queued while the FIFO was being emptied.

13.11.7 Program trace synchronization messages

By default, program trace messages will perform XOR compression on the branch target address to
produce the address field for the message. This compression is consistent with the specification in
IEEE-ISTO 5001.

Under some conditions an uncompressed address is sent to provide development tools with a baseline
reference address. A Program Trace Direct/Indirect Branch with Sync Message is messaged via the
auxiliary port (provided Program Trace is enabled) for the following conditions (see Table 13-34):

• Initial Program Trace Message upon the first direct/indirect branch after exit from system reset or
whenever program trace is enabled.

• Upon direct/indirect branch after returning from a CPU Low Power state.

• Upon direct/indirect branch after returning from Debug mode.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 779

• Upon direct/indirect branch after occurrence of queue overrun (can be caused by any trace
message), provided Program Trace is enabled.

• Upon direct/indirect branch after the periodic program trace counter has expired indicating 255
without-sync Program Trace Messages have occurred since the last with-sync message occurred.

• Upon direct/indirect branch after assertion of the Event In (nex_evti_b) pin if the EIC bits within
the DC1 Register have enabled this feature.

• Upon direct/indirect branch after the sequential instruction counter has expired indicating 255
instructions have occurred since the last change of flow.

• Upon direct/indirect branch after a BTM Message was lost due to a collision while attempting to
enter the message queue.

• Upon the first direct/indirect branch message after an execution mode switch into or out of a
sequence of VLE instructions.

• When program trace becomes unmasked due to MSRPMM ‘1’ with DC4PTMARK=‘1’.

Note that the ICNT and History information for the first message will not be meaningful for some of these
cases, since the temporary masking of program trace may result in ambiguous values. Subsequent w/sync
messages will not have this issue.

The format for Program Trace Direct/Indirect Branch with Sync Messages is as follows:

Figure 13-42. Direct/indirect branch with sync message format

The format for Program Trace Indirect Branch History with Sync. Messages is as follows:

Figure 13-43. Indirect branch history w/ Sync. Message Format

Exception conditions that result in Program Trace Synchronization are summarized in Table 13-34.

Table 13-34. Program Trace exception summary

Exception condition Exception Handling

System Reset Negation At the negation of JTAG reset (j_trst_b), queue pointers, counters, state machines,
and registers within the Nexus 3 module are reset. Upon exiting system reset, if
Program Trace is already enabled), a Program Trace Message is sent as an Indirect
Branch w/ Sync. Message.

Program Trace Enabled The first Program Trace Message (after Program Trace has been enabled) is a
synchronization message.

TCODE (001011 or 001100)

(6 bits) (1-8 bits)

Full Target Address

(1-32 bits) (4 bits)

Max length = 51 bits; Min length = 13 bits

Source
Proc.Sequence Count

(1 bit)

Inst
Space

Sequence

(1-8 bits)

Full Target Address

(1-32 bits)

Max length = 83 bits; Min length = 14 bits

(1-32 bits)

Branch History Count TCODE (011101)

(6 bits) (4 bits)

Source
Proc.

(1 bit)

Inst
Space

e200z759n3 Core Reference Manual, Rev. 2

780 Freescale Semiconductor

13.11.8 Enabling Program Trace

Program Trace Messaging can be enabled in one of two ways:

• Setting the TM field of the DC1 Register to enable Program Trace

• Using the PTS field of the WT Register to enable Program Trace on Watchpoint hits (Zen
watchpoints are configured within the CPU)

• Filtering of Program Trace messages may be performed using the MSRPMM bit and the setting of
DC4PTMARK

Exit from Low Power/Debug Upon exit from a Low Power mode or Debug mode the next direct/indirect branch
will be converted to a Direct/Indirect Branch with Sync. Message.

Queue Overrun An error message occurs when a new message cannot be queued due to the
message queue being full. The FIFO will discard messages until it has completely
emptied the queue. Once emptied, an error message will be queued. The error
encoding will indicate which type(s) of messages attempted to be queued while the
FIFO was being emptied. The next BTM message in the queue will be a
Direct/Indirect Branch w/ Sync. Message.

Periodic Program Trace Sync. A forced synchronization occurs periodically after 255 non-sync Program Trace
Messages have been queued. A Direct/Indirect Branch w/ Sync. Message is
queued. The periodic program trace message counter then resets.

Event In If the Nexus module is enabled, a nex_evti_b assertion initiates a Direct/Indirect
Branch w/ Sync. Message upon the next direct/indirect branch (if Program Trace is
enabled and the EIC bits of the DC1 Register have enabled this feature).

Sequential Instruction Count
Overflow

After the sequential instruction counter reaches its maximum count (up to 255
sequential instructions may be executed), a forced synchronization occurs. The
sequential counter then resets. A Program Trace Direct/Indirect Branch w/
Sync.Message is queued upon execution of the next branch. A Resource Full
Message is Queued on the overflow event.
If a branch instruction is the 255th instruction to occur, and causes a Program Trace
message to be queued, then no Resource Full Message is queued, and the w/Sync
message will be queued for the next Program Trace Direct/Indirect Branch
Message.

Collision Priority All Messages have the following priority: Instruction 0
(WPM DQM PCMPIDMSG- > OTM BTM DTM) Instruction1
(WPM DQM OTM BTM DTM), where instruction0 is the oldest
instruction. A BTM Message from Instruction1 that attempts to enter the queue at
the same time as three higher priority messages from either instruction will be lost.
An Error Message will be sent indicating the BTM was lost. The following
direct/indirect branch will queue a Direct/Indirect Branch w/ Sync. Message. The
count value within this message will reflect the number of sequential instructions
executed after the last successful BTM Message was generated. This count will
include the branch that did not generate a message due to the collision.

Execution Mode Switch Whenever the CPU switches execution mode into or out of a sequence of VLE
instructions, the next branch trace message will be a Direct/Indirect Branch w/ Sync
Message.

Table 13-34. Program Trace exception summary (continued)

Exception condition Exception Handling

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 781

13.11.9 Program Trace timing diagrams (2 MDO / 1 MSEO configuration)

Figure 13-44. Program Trace — Indirect Branch Message (traditional)

Figure 13-45. Program Trace — Indirect Branch Message (history)

Figure 13-46. Program Trace — Direct Branch (traditional) and error messages

Figure 13-47. Program Trace — Indirect Branch w/ sync. message

00 01 00 00 00 10 00 00 10 01 01 10 10

TCODE = 4
source processor = 0000, IS=1
of sequential instructions = 128
relative address = 8'ha5

00

MCKO

MSEO_B

MDO[1:0]

00 11 01 00 00 01 01 01 10 10 01 01 10

TCODE = 28
source processor = 0000, IS=1
of sequential instructions = 0
relative address = 8'ha5
branch history = 8'b10100101 (w/ stop)

10 00

MCKO

MSEO_B

MDO[1:0]

Direct Branch Error

11 00 00 00 00 11 00 00 10 00 00 00 01

DBM:
TCODE = 3
source processor = 0000
of sequential instructions = 3

Error:
TCODE = 8
source processor = 0000
error code = 1 (queue overrun - BTM only)

00 00

MCKO

MSEO_B

MDO[1:0]

00 11 00 00 00 11 10 11 00 11 10 10 11

TCODE = 12
source processor = 0000, IS = 1,
of sequential instructions = 1
full target address = 32'hdeadface

11 01 11 10 10 10 11 01 11 00

MCKO

MSEO_B

MDO[1:0]

e200z759n3 Core Reference Manual, Rev. 2

782 Freescale Semiconductor

13.12 Data Trace
This section deals with the Data Trace mechanism supported by the Nexus 3 module. Data Trace is
implemented via Data Write Messaging (DWM) and Data Read Messaging (DRM), as per the IEEE-ISTO
5001 standard.

13.12.1 Data Trace Messaging (DTM)

Data Trace Messaging for Zen is accomplished by snooping the Zen address and internal data buses, and
storing the information for qualifying accesses (based on enabled features and matching target addresses).
The Nexus 3 module traces all data access that meet the selected range and attributes.

NOTE
Data Trace is only performed on the Zen internal data buses. This allows for
data visibility for Zen processors that incorporate a data cache. Only Zen
CPU initiated accesses will be traced. No DMA accesses to the AHB system
bus will be traced.

Data Trace Messaging can be enabled in one of two ways.

• Setting the TM field of the DC1 Register to enable Data Trace.

• Using the DTS field of the WT Register to enable Data Trace on Watchpoint hits (Zen watchpoints
are configured within the Nexus1 module).

13.12.2 DTM Message formats

The Nexus 3 block supports five types of DTM Messages — Data Write, Data Read, Data Write
Synchronization, Data Read Synchronization, and Error Messages.

13.12.2.1 Data Write Messages

The Data Write Message contains the data write value and the address of the write access, relative to the
previous Data Trace Message. Data Write Message information is messaged out in the following format:

Figure 13-48. Data Write Message Format

13.12.2.2 Data Read Messages

The Data Read Message contains the data read value and the address of the read access, relative to the
previous Data Trace Message. Data Read Message information is messaged out in the following format:

Data Value(s)*

(1-64 bits) (6 bits)

TCODE (000101)

(1-32 bits)

Src. Proc

(4 bits)

Relative Address

Max length = 111 bits; Min length = 17 bits

Data Size

(4 bits) (1 bit)

Data
Space

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 783

Figure 13-49. Data Read Message format

NOTE
Zen based CPUs are capable of generating two (2) reads or writes per clock
cycle in cases where multiple registers are accessed with a single instruction
(lmw/stmw). These will have a double word pair size encoding (p_tsiz =
0b000). In these cases, the Nexus 3 module will send one (1) Data Trace
Message with the two 32-bit data values as one combined 64-bit value for
each message.

For Zen based CPUs, the doubleword encoding (p_tsiz = 0b000) may also
indicate a doubleword access and will be sent out as a single Data Trace
Message with a single 64-bit data value.

The debug/development tool will need to distinguish the two cases based on
the family of Zen processor.

13.12.2.3 Data Trace Synchronization Messages

A Data Trace Write/Read with Sync. Message is messaged via the auxiliary port (provided Data Trace is
enabled) for the following conditions (see Table 13-35):

• Initial Data Trace Message after exit from system reset or whenever Data Trace is enabled.

• Upon returning from a CPU Low Power state.

• Upon returning from Debug mode.

• After occurrence of queue overrun (can be caused by any trace message), provided Data Trace is
enabled.

• After the periodic data trace counter has expired indicating 255 without-sync Data Trace Messages
have occurred since the last with-sync message occurred.

• Upon assertion of the Event In (nex_evti_b) pin, the first Data Trace Message will be a
synchronization message if the EIC bits of the DC1 Register have enabled this feature.

• Upon Data Trace Write/Read after the previous DTM Message was lost due to an attempted access
to a secure memory location (for SOC’s w/ security).

• Upon Data Trace Write/Read after the previous DTM Message was lost due to a collision entering
the FIFO between the DTM Message and any two of the following: Watchpoint Message,
Ownership Trace Message, or Program Trace Message.

Data Trace Synchronization Messages provide the full address (without leading zeros) and insure that
development tools fully synchronize with Data Trace regularly. Synchronization messages provide a
reference address for subsequent DTMs, in which only the unique portion of the Data Trace address is
transmitted. The format for Data Trace Write/Read with Sync. Messages is as follows:

Data Value(s)*

(1-64 bits) (6 bits)

TCODE (000110)

(1-32 bits)

Src. Proc

(4 bits)

Relative Address

Max length = 111 bits; Min length = 17 bits

Data Size

(1 bit)

Data
Space

e200z759n3 Core Reference Manual, Rev. 2

784 Freescale Semiconductor

Figure 13-50. Data write/read with sync. message format

Exception conditions that result in Data Trace Synchronization are summarized in Table 13-35.

13.12.3 DTM operation

13.12.3.1 Data trace windowing

Data Write/Read Messages are enabled via the RWT field in the Data Trace Control Register (DTC) for
each DTM channel. Data Trace windowing is achieved via the address range defined by the DTEA and

Table 13-35. Data trace exception summary

Exception condition Exception handling

System Reset Negation At the negation of JTAG reset (j_trst_b), queue pointers, counters, state machines,
and registers within the Nexus 3 module are reset. If Data Trace is enabled, the first
Data Trace Message is a Data Write/Read w/ Sync. Message.

Data Trace Enabled The first Data Trace Message (after Data Trace has been enabled) is a
synchronization message.

Exit from Low Power/Debug Upon exit from a Low Power mode or Debug mode the next Data Trace Message will
be converted to a Data Write/Read with Sync. Message.

Queue Overrun An Error Message occurs when a new message cannot be queued due to the
message queue being full. The FIFO will discard messages until it has completely
emptied the queue. Once emptied, an Error Message will be queued. The error
encoding will indicate which type(s) of messages attempted to be queued while the
FIFO was being emptied. The next DTM message in the queue will be a Data
Write/Read w/ Sync. Message.

Periodic Data Trace Sync. A forced synchronization occurs periodically after 255 Data Trace Messages have
been queued. A Data Write/Read w/ Sync. Message is queued. The periodic data
trace message counter then resets.

Event In If the Nexus module is enabled, a nex_evti_b assertion initiates a Data Trace
Write/Read w/ Sync. Message upon the next data write/read (if Data Trace is enabled
and the EIC bits of the DC1 Register have enabled this feature).

Attempted Access to Secure
Memory

For SoCs that implement security, any attempted read or write to secure memory
locations will temporarily disable Data Trace & cause the corresponding DTM to be
lost. A subsequent read/write will queue a Data Trace Read/Write w/ Sync. Message.

Collision Priority All Messages have the following priority: Instruction 0
(WPM DQM PCMPIDMSG OTM BTM DTM) Instruction1
(WPM DQM OTM BTM DTM), where instruction0 is the oldest
instruction. A DTM Message that attempts to enter the queue at the same time as
three other higher priority messages will be lost. A subsequent read/write will queue
a Data Trace Read/Write w/ Sync. Message.

Data Value

(1-64 bits) (1-32 bits)

Full Address

Max length = 111 bits; Min length = 17 bits

Data Size

(4 bits)

TCODE (001101 or 001110)

(6 bits) (4 bits)
Source
Proc.

(1 bit)
Data

Space

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 785

DTSA Registers and by the RC field in the DTC register. All Zen-initiated read/write accesses that fall
inside or outside these address ranges, as programmed, are candidates to be traced.

13.12.3.2 Data access / instruction access data tracing

The Nexus3 module is capable of tracing either instruction access data or data access data and can be
configured for either type of data trace by setting the DI1 field within the Data Trace Control Register. This
setting applies to all DTM channels.

13.12.3.3 Data trace filtering

Data Trace filtering is available base on the settings of MSRPMM and DC4DTMARK.

13.12.3.4 Zen bus cycle special cases

Table 13-36. Zen bus cycle cases

Special Case Action

Zen bus cycle aborted Cycle ignored

Zen bus cycle with data error (TEA)1

1 Buffering of stores in the CPU store buffer may generate a DTM prior to the actual memory access, regardless of
an error termination condition from memory.

Data Trace Message discarded

Zen bus cycle completed without error1 Cycle captured & transmitted

Zen (AHB) bus cycle initiated by Nexus 3 Cycle ignored

Zen bus cycle is an instruction fetch Cycle selectively ignored based on DTCDI setting

Zen bus cycle accesses misaligned data (across 64-bit
boundary) - both 1st & 2nd transactions within data trace range

1st & 2nd cycle captured & a single or a pair of
DTM(s) is (are) transmitted (see Note)

Zen bus cycle accesses misaligned data (across 64-bit
boundary) - 1st transaction within data trace range; 2nd
transaction out of data trace range

1st & 2nd cycle captured & a single or a pair of
DTM(s) is (are) transmitted (see Note)

Zen bus cycle accesses misaligned data (across 64-bit
boundary) - 1st transaction within data trace range; 2nd
transaction (regardless of within range or not) receives a bus
error

Data Trace Message discarded

Zen bus cycle accesses misaligned data (across 64-bit
boundary) - 1st transaction out of data trace range; 2nd
transaction within data trace range

1st & 2nd cycle captured & a single or a pair of
DTM(s) is (are) transmitted (see Note)

Zen bus cycle accesses misaligned data (across 64-bit
boundary) - 1st transaction out of data trace range; 2nd
transaction within range, receives a bus error

Data Trace Message discarded

e200z759n3 Core Reference Manual, Rev. 2

786 Freescale Semiconductor

NOTE
For misaligned accesses (crossing 64-bit boundary), the access is broken
into two accesses by the CPU. If either access is within the data trace range,
a single DTM will be sent with a size encoding indicating the size of the
original access (i.e. word), and the address indicating the original
misaligned accesses, unless the misaligned access wraps over the end of a
circular buffer when using the SPE2 specialized load or store with modify,
mode=1000 (circular addressing). In this case, since the two portions of the
misaligned access are not contiguous, two DTMs will be sent, one for each
portion. The size encodings and the addresses of the DTMs will indicate the
accessed bytes of data.

NOTE
A store to the cache’s store buffer within the data trace range may initiate a
DTM message prior to completion of the actual memory access.

13.12.4 Data Trace Timing Diagrams(8 MDO / 2 MSEO configuration)

Figure 13-51. Data Trace — Data Write Message

Figure 13-52. Data Trace — Data Read w/ Sync Message

13.13 Data Acquisition messaging
This section details the Data Acquisition mechanisms supported by the e200z759n3 Nexus 3 module. Data
Acquisition Trace is implemented using Data Acquisition Trace Messages in accordance with IEEE-ISTO

1001010000000101 01010010 11101111

11 00 00 01 00

TCODE = 5
source processor = 0000, DS=1
data size = 0010 (halfword)
relative address = 8'ha5
write data = 16'hbeef

11

10111110

MCKO

MSEO_B[1:0]

MDO[7:0]

0000100000001110 01100111 01000101

11 00

TCODE = 14,
source processor = 0000, DS=0
data size = 0001 (byte)
full access address = 32'h01468ace
write data = 8'h5c

10100011

01

00000000

11

01011100

MCKO

MSEO_B[1:0]

MDO[7:0]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 787

5001 definitions. The control mechanism to export the data is different from the recommendations of the
standard, however.

Data Acquisition Trace provides a convenient and flexible mechanism for the debugger to observe the
architectural state of the machine through software instrumentation.

13.13.1 Data Acquisition ID Tag field

The DQTAG Tag field (DQTAG) is a 8-bit value specifying control or attribute information for the data
included in the Data Acquisition Message. DQTAG is sampled from DEVENTDQTAG when a write to
DDAM is performed via mtspr operations. The usage of the DQTAG is left to the discretion of the
development tool to be used in whatever manner is deemed appropriate for the application.

13.13.2 Data Acquisition Data field

The Data Acquisition Data field (DQDATA) is the data captured from the DDAM write operation via
mtspr operations. Leading zeros are omitted from the message.

13.13.3 Data Acquisition Trace event

For DQM, a dedicated SPR has been allocated (DDAM). It is expected that the general use case is to
instrument the software and use mtspr operations to generate Data Acquisition Messages.

There is no explicit error response for failed accesses as a result of contention between an internal and
external debugger. Software may be blocked or given ownership of DDAM and the DQTAG field of the
DEVENT register via control in DBERC0 while in External Debug Mode. Hardware always has access to
these registers. Refer to Section 12.3.4, Debug External Resource Control register (DBERC0), for more
detail on DBERC0.

Reads from the Data Acquisition channel do not generate a Data Acquisition event and will return zeroes
for the read data.

.

Figure 13-53. Data Acquisition Message format

13.14 Watchpoint Trace Messaging
Enabling Watchpoint Messaging is done by setting the Watchpoint Trace Enable bit in the DC1 Register.
Setting the individual Watchpoint sources is supported through the Zen Nexus1 module and the
Performance Monitor unit. The Zen Nexus1 module is capable of setting multiple types of watchpoints.
Please refer to the Debug chapter for details on Watchpoint initialization.

When watchpoints occur due to one or more asserted watchpoint event signals and Watchpoint Trace
Messaging is enabled, a Watchpoint Trace message will be sent to the message queue to be messaged out.
This message includes the watchpoint number indicating which watchpoint(s) caused the message. If more

TCODE (000111)DQTAG

(6 bits) (8 bits)

Src. Proc.

(4 bits)

Max length = 50 bits; Min length = 19 bits

(1-32 bits)

DQDATA

e200z759n3 Core Reference Manual, Rev. 2

788 Freescale Semiconductor

than one enabled watchpoint occurs in a single cycle, only one Watchpoint Trace message is generated and
multiple bits of the watchpoint hit field will be set. The settings of the WMSKWEM field control which
watchpoints are enabled to generate watchpoint trace messages.

The occurrence of any of the Zen defined watchpoints can also be programmed to assert the Event Out
(nex_evto_b) pin for one (1) period of the output clock (nex_mcko) based on settings in the DC2 and DC3
registers. See Table 13-39 for details on nex_evto_b.

Watchpoint information is messaged out in the following format:

Figure 13-54. Watchpoint Message format

The Watchpoint Source message field will contain a ‘1’ for each asserted watchpoint. Leading zeros are
truncated.

Src. Proc.

(4 bits)

TCODE (001111)

(6 bits)

Watchpoint Source

(1-30 bits)

Variable length = 11-40 bits

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 789

13.14.1 Watchpoint Timing Diagram (2 MDO / 1 MSEO configuration)

Figure 13-55. Watchpoint Message and Watchpoint Error Message

Table 13-37. Watchpoint source encoding

Watchpoint source (1-30 bits) Watchpoint description

00000000000000000000000000000 No Watchpoints enabled for Watchpoint Trace Messaging
xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1 Watchpoint #0 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxxxx1x Watchpoint #1 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxxx1xx Watchpoint #2 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxxx1xxx Watchpoint #3 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxxx1xxxx Watchpoint #4 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxxx1xxxxx Watchpoint #5 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxxx1xxxxxx Watchpoint #6 enabled for WTM
xxxxxxxxxxxxxxxxxxxxxx1xxxxxxx Watchpoint #7 enabled for WTM
xxxxxxxxxxxxxxxxxxxxx1xxxxxxxx Watchpoint #8 enabled for WTM
xxxxxxxxxxxxxxxxxxxx1xxxxxxxxx Watchpoint #9 enabled for WTM
xxxxxxxxxxxxxxxxxxx1xxxxxxxxxx Watchpoint #10 enabled for WTM
xxxxxxxxxxxxxxxxxx1xxxxxxxxxxx Watchpoint #11 enabled for WTM
xxxxxxxxxxxxxxxxx1xxxxxxxxxxxx Watchpoint #12 enabled for WTM
xxxxxxxxxxxxxxxx1xxxxxxxxxxxxx Watchpoint #13 enabled for WTM
xxxxxxxxxxxxxxx1xxxxxxxxxxxxxx Watchpoint #14 enabled for WTM
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxx Watchpoint #15 enabled for WTM
xxxxxxxxxxxxx1xxxxxxxxxxxxxxxx Watchpoint #16 enabled for WTM
xxxxxxxxxxxx1xxxxxxxxxxxxxxxxx Watchpoint #17 enabled for WTM
xxxxxxxxxxx1xxxxxxxxxxxxxxxxxx Watchpoint #18 enabled for WTM
xxxxxxxxxx1xxxxxxxxxxxxxxxxxxx Watchpoint #19 enabled for WTM
xxxxxxxxx1xxxxxxxxxxxxxxxxxxxx Watchpoint #20 enabled for WTM
xxxxxxxx1xxxxxxxxxxxxxxxxxxxxx Watchpoint #21 enabled for WTM
xxxxxxx1xxxxxxxxxxxxxxxxxxxxxx Watchpoint #22 enabled for WTM
xxxxxx1xxxxxxxxxxxxxxxxxxxxxxx Watchpoint #23 enabled for WTM
xxxxx1xxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #24 enabled for WTM
xxxx1xxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #25 enabled for WTM
xxx1xxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #26 enabled for WTM
xx1xxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #27 enabled for WTM
x1xxxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #28 enabled for WTM
1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Watchpoint #29 enabled for WTM

Watchpoint

11 11 00 00 00 10 00

WPM:
TCODE = 15
source processor = 00
watchpoint # = 2

p_mcko

p_mseo_b

p_mdo[1:0]

e200z759n3 Core Reference Manual, Rev. 2

790 Freescale Semiconductor

13.15 Nexus 3 read/write access to memory-mapped resources
The Read/Write access feature allows access to memory-mapped resources via the JTAG/OnCE port. The
Read/Write mechanism supports single as well as block reads and writes to Zen AHB resources.

The Nexus 3 module is capable of accessing resources on the Zen system bus (AHB). Memory-mapped
registers and other non-cached memory can be accessed via the standard memory map settings.

All accesses are setup and initiated by the Read/Write Access Control/Status Register (RWCS), as well as
the Read/Write Access Address (RWA) and Read/Write Access Data Registers (RWD). Nexus 3 read/write
accesses are run as privileged data non-cacheable, non-global accesses by default, and drive the
p_d_hprot[5:0] bus access attributes to 6‘b000011 and the p_d_gbl access attribute to 0 accordingly. The
RWCSATTR field is provided to allow a portion of these default values to be modified when performing
read or write accesses using the Nexus 3 Read/Write access mechanism.

Using the Read/Write Access Registers (RWCS/RWA/RWD), memory mapped Zen AHB resources can
be accessed through Nexus 3. The following subsections describe the steps required to access
memory-mapped resources.

NOTE
Read/Write Access can only access memory mapped resources when
system reset is de-asserted and clocks are running.

Misaligned accesses are NOT supported in the zen Nexus3 module.

13.15.1 Single write Access
1. Initialize the Read/Write Access Address Register (RWA) through the access method outlined in

Section 13.5, Nexus 3 register access via JTAG/OnCE. Configure as follows:

a) Write Address 32h’xxxxxxxx (write address)

2. Initialize the Read/Write Access Control/Status Register (RWCS) through the access method
outlined in Section 13.5, Nexus 3 register access via JTAG/OnCE. Configure the bits as follows:

a) Access Control (AC) 1b’1 (to indicate start access)

b) Map Select (MAP) 3b’000 (primary memory map)

c) Access Priority (PR) 2b’00 (lowest priority)

d) Read/Write (RW) 1b’1 (write access)

e) Word Size (SZ) 3b’0xx (32-bit, 16-bit, 8-bit)

f) Access Count (CNT) 14h’0000 or 14h’0001(single access)

NOTE
Access Count (CNT) of 14’h0000 or 14’h0001 will perform a single access.

3. Initialize the Read/Write Access Data Register (RWD) through the access method outlined in
Section 13.5, Nexus 3 register access via JTAG/OnCE. Configure as follows:

a) Write Data 32h’xxxxxxxx (write data)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 791

4. The Nexus block will then arbitrate for the AHB system bus and transfer the data value from the
data buffer RWD Register to the memory mapped address in the Read/Write Access Address
Register (RWA). When the access has completed without error (ERR=1’b0), Nexus asserts the
nex_rdy_b pin (see Table 13-39 for detail on nex_rdy_b) and clears the DV bit in the RWCS
Register. This indicates that the device is ready for the next access.

NOTE
Only the nex_rdy_b pin as well as the DV and ERR bits within the RWCS
provide Read/Write Access status to the external development tool.

13.15.2 Block write access
1. For a block write access, follow Steps 1, 2, and 3 outlined in Section 13.15.1, Single write Access,

to initialize the registers, but using a value greater than one (14’h0001) for the CNT field in the
RWCS Register.

2. The Nexus block will then arbitrate for the AHB system bus and transfer the first data value from
the RWD Register to the memory mapped address in the Read/Write Access Address Register
(RWA). When the transfer has completed without error (ERR=1’b0), the address from the RWA
Register is incremented to the next word size (specified in the SZ field) and the number from the
CNT field is decremented. Nexus will then assert the nex_rdy_b pin. This indicates that the device
is ready for the next access.

3. Repeat Step 3 in Section 13.15.1, Single write Access, until the internal CNT value is zero (0).
When this occurs, the DV bit within the RWCS will be cleared to indicate the end of the block write
access.

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block write access. The original values can be
read by the external development tool at any time.

13.15.3 Single read access
1. Initialize the Read/Write Access Address Register (RWA) through the access method outlined in

Section 13.5, Nexus 3 register access via JTAG/OnCE. Configure as follows:

a) Read Address 32h’xxxxxxxx (read address)

2. Initialize the Read/Write Access Control/Status Register (RWCS) through the access method
outlined in Section 13.5, Nexus 3 register access via JTAG/OnCE. Configure the bits as follows:

a) Access Control (AC) 1b’1 (to indicate start access)

b) Map Select (MAP) 3b’000 (primary memory map)

c) Access Priority (PR) 2b’00 (lowest priority)

d) Read/Write (RW) 1b’0 (read access)

e) Word Size (SZ) 3b’0xx (32-bit, 16-bit, 8-bit)

f) Access Count (CNT) 14h’0000 or 14h’0001(single access)

e200z759n3 Core Reference Manual, Rev. 2

792 Freescale Semiconductor

NOTE
Access Count (CNT) of 14’h0000 or 14’h0001 will perform a single access.

3. The Nexus block will then arbitrate for the AHB system bus and the read data will be transferred
from the AHB to the RWD Register. When the transfer is completed without error (ERR=1’b0),
Nexus asserts the nex_rdy_b pin (see Table 13-39 for detail on nex_rdy_b) and sets the DV bit in
the RWCS Register. This indicates that the device is ready for the next access.

4. The data can then be read from the Read/Write Access Data Register (RWD) through the access
method outlined in Section 13.5, Nexus 3 register access via JTAG/OnCE.

NOTE
Only the nex_rdy_b pin as well as the DV and ERR bits within the RWCS
provide Read/Write Access status to the external development tool.

13.15.4 Block read access
1. For a block read access, follow Steps 1 and 2 outlined in Section 13.15.3, Single read access, to

initialize the registers, but using a value greater than one (14’h0001) for the CNT field in the
RWCS Register.

2. The Nexus block will then arbitrate for the AHB system bus and the read data will be transferred
from the AHB to the RWD Register. When the transfer has completed without error (ERR=1’b0),
the address from the RWA Register is incremented to the next word size (specified in the SZ field)
and the number from the CNT field is decremented. Nexus will then assert the nex_rdy_b pin. This
indicates that the device is ready for the next access.

3. The data can then be read from the Read/Write Access Data Register (RWD) through the access
method outlined in Section 13.5, Nexus 3 register access via JTAG/OnCE.

4. Repeat Steps 3 and 4 in Section 13.15.3, Single read access, until the CNT value is zero (0). When
this occurs, the DV bit within the RWCS is set to indicate the end of the block read access.

NOTE
The data values must be shifted out 32-bits at a time LSB first (i.e.
doubleword read = two word reads from the RWD).

NOTE
The actual RWA value as well as the CNT field within the RWCS are not
changed when executing a block read access. The original values can be
read by the external development tool at any time.

13.15.5 Error handling

The Nexus 3 module handles various error conditions as follows:

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 793

13.15.5.1 AHB read/write error

All address and data errors that occur on read/write accesses to the Zen AHB system bus will return a
transfer error encoding on the p_hresp[1:0] signals. If this occurs:

1. The access is terminated without re-trying (AC bit is cleared)

2. The ERR bit in the RWCS Register is set

3. The Error Message is sent (TCODE = 8) indicating Read/Write Error

13.15.5.2 Access termination

The following cases are defined for sequences of the Read/Write protocol that differ from those described
in the above sections.

1. If the AC bit in the RWCS Register is set to start Read/Write accesses and invalid values are loaded
into the RWD and/or RWA, then an AHB access error may occur. This is handled as described
above.

2. If a block access is in progress (all cycles not completed), and the RWCS Register is written, then
the original block access is terminated at the boundary of the nearest completed access.

a) If the RWCS is written with the AC bit set, the next Read/Write access will begin and the RWD
can be written to/ read from.

b) If the RWCS is written with the AC bit cleared, the Read/Write access is terminated at the
nearest completed access. This method can be used to break (early terminate) block accesses.

13.15.6 Read/write access error message

The Read/Write Access Error Message is sent out when an AHB system bus access error (read or write)
has occurred.

Error information is messaged out in the following format:

Figure 13-56. Error message format

13.16 Nexus 3 pin interface
This section details information regarding the Nexus 3 pins and pin protocol.

The Nexus 3 pin interface provides the function of transmitting messages from the messages queues to the
external tools. It is also responsible for handshaking with the message queues.

13.16.1 Pins implemented

The Nexus 3 module implements an auxiliary port consisting of one (1) nex_evti_b and one (1)
nex_mseo_b or two (2) nex_mseo_b[1:0]. It also implements a configurable number of nex_mdo[n:0]

TCODE (001000)Error Code (00011)

(6 bits) (5 bits)

Src. Proc.

(4 bits)

Fixed length = 15 bits

e200z759n3 Core Reference Manual, Rev. 2

794 Freescale Semiconductor

pins, (1) nex_rdy_b pin, (1) nex_evto_b pin, (4) nex_wevto[3:0] pins, and one (1) clock output pin
(nex_mcko), as well as additional configuration pins described in Table 13-39. The output pins are
synchronized to the Nexus 3 output clock (nex_mcko).

All Nexus 3 input functionality is controlled through the JTAG/OnCE port in compliance with IEEE
1149.1 (see Section 13.5, Nexus 3 register access via JTAG/OnCE, for details). The JTAG pins are
incorporated as I/O to the Zen processor, and are further described in Section 12.4.3, JTAG/OnCE pins.

The auxiliary pins are used to send and receive messages and are described in Table 13-39.

Table 13-38. JTAG pins for Nexus 3

JTAG pins Input/ output Description of JTAG pins (included in Zen Nexus 1)

j_tdo O The Test Data Output (j_tdo) pin is the serial output for test instructions and data. j_tdo
is three-stateable and is actively driven in the “Shift-IR” and “Shift-DR” controller states.
j_tdo changes on the falling edge of j_tclk.

j_tdi I The Test Data Input (j_tdi) pin receives serial test instruction and data. TDI is sampled
on the rising edge of j_tclk.

j_tms I The Test Mode Select (j_tms) input pin is used to sequence the OnCE controller state
machine. j_tms is sampled on the rising edge of j_tclk.

j_tclk I The Test Clock (j_tclk) input pin is used to synchronize the test logic, and control
register access through the JTAG/OnCE port.

j_trst_b I The Test Reset (j_trst_b) input pin is used to asynchronously initialize the JTAG/OnCE
controller.

Table 13-39. Nexus 3 auxiliary pins

Auxiliary pins Input/ output Description of auxiliary pins

nex_mcko O Message Clock Out (nex_mcko) is a free running output clock to development
tools for timing of nex_mdo[n:0] & nex_mseo_b[1:0] pin functions. nex_mcko
is programmable through the DC1 Register.

nex_mdo[n:0] O Message Data Out (nex_mdo[n:0]) are output pins used for OTM, BTM, and
DTM. External latching of nex_mdo[n:0] shall occur on the rising edge of the
Nexus3 clock (nex_mcko).

nex_mseo_b[1:0] O Message Start/End Out (nex_mseo_b[1:0]) are output pins that indicate when
a message on the nex_mdo[n:0] pins has started, when a variable length
packet has ended, and when the message has ended. External latching of
nex_mseo_b[1:0] shall occur on the rising edge of the Nexus3 clock
(nex_mcko). One or two pin MSEO functionality is determined at integration
time per SOC implementation

nex_rdy_b O Ready (nex_rdy_b) is an output pin used to indicate to the external tool that the
Nexus block is ready for the next Read/Write Access. If Nexus is enabled, this
signal is asserted upon successful (without error) completion of an AHB system
bus transfer (Nexus read or write) & is held asserted until the JTAG/OnCE state
machine reaches the “Capture_DR” state. Upon exit from system reset or if
Nexus is disabled, nex_rdy_b remains de-asserted

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 795

The Nexus auxiliary port arbitration pins are used when the Nexus 3 module is implemented in a
multi-Nexus SoC that shares a single auxiliary output port. The arbitration is controlled by an SoC level
Nexus Port Control module (NPC). Refer to Section 13.18, Auxiliary port arbitration, for detail on Nexus
port arbitration.

nex_evto_b O Event Out (nex_evto_b)is an output that, when asserted, indicates one of two
events has occurred based on the EOC bits in the DC1 Register. nex_evto_b
is held asserted for one (1) cycle of nex_mcko:
1) one (or more) watchpoints has occurred (from Nexus1) & EOC = 2’b00
2) debug mode was entered (jd_debug_b asserted from Nexus1) & EOC =
2’b01

nex_evti_b I Event In (nex_evti_b) is an input that, when asserted, will initiate one of two
events based on the EIC bits in the DC1 Register (if the Nexus module is
enabled at reset):
1) Program Trace & Data Trace synchronization messages (provided Program
Trace & Data Trace are enabled & EIC = 2’b00).
2) Debug request to Zen Nexus1 module (provided EIC = 2’b01 and this feature
is implemented).

nex_wevto[3:0] O Watchpoint Event Out 3:0 (nex_wevto[3:0]) are outputs that, when asserted,
indicate one or more watchpoint events has occurred based on the settings in
the DC2 and DC3 registers. nex_wevto[3:0] is held asserted for one (1) cycle
of nex_mcko.

nex_ext_src_id[0:3
]

I nex_ext_src_id[0:3] is used to provide the SRC field value used in each
message. These pins are tied to a predetermined value at SoC integration time

Table 13-40. Nexus port arbitration signals

Nexus
port arbitration pins

Input/ output Description of arbitration pins

nex_aux_req[1:0] O Nexus Auxiliary Request (nex_aux_req[1:0]) output signals indicate to an
SoC level Nexus arbiter a request for access to the shared Nexus auxiliary
port in a multi-Nexus implementation. The priority encodings are
determined by how many messages are currently in the message queues
(see Table 13-42).

nex_aux_busy O Nexus Auxiliary Busy (nex_aux_busy) is an output signal to an SoC level
Nexus arbiter indicating that the Nexus 3 module is currently transmitting
its message after being granted the Nexus auxiliary port.

npc_aux_grant I Nexus Auxiliary Grant (npc_aux_grant) is an input from the SoC level
Nexus Port Controller (NPC) that the auxiliary port has been granted to
the Nexus 3 module to transmit its message.

ext_multi_nex_sel I Multi-Nexus Select (ext_multi_nex_sel) is a static signal indicating that
the Nexus 3 module is implemented within a multi-Nexus environment. If
set, port control and arbitration is controlled by the SoC level arbitration
module (NPC).

Table 13-39. Nexus 3 auxiliary pins (continued)

Auxiliary pins Input/ output Description of auxiliary pins

e200z759n3 Core Reference Manual, Rev. 2

796 Freescale Semiconductor

13.16.2 Pin protocol

The protocol for the Zen processor transmitting messages via the auxiliary pins is accomplished with the
MSEO pin function outlined in Table 13-41. Both single and dual pin cases are shown.

nex_mseo_b[1:0] is used to signal the end of variable-length packets, and not fixed length packets.
nex_mseo_b[1:0] is sampled on the rising edge of the Nexus 3 clock (nex_mcko).

Figure 13-57 illustrates the state diagram for single pin MSEO transfers.

Figure 13-57. Single pin MSEO transfers

Table 13-41. MSEO pin(s) protocol

nex_mseo_b function Single nex_mseo_b data (serial) Dual nex_mseo_b[1:0] data

Start of message 1-1-0 11-00

End of message 0-1-1-(more 1’s) 00 (or 01)-11-(more 1’s)

End of variable length packet 0-1-0 00-01

Message transmission 0’s 00’s

Idle (no message) 1’s 11’s

Idle

Start

Message

Normal

Transfer

End

Message

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=1

nex_mseo_b=1

nex_mseo_b=0

nex_mseo_b=0

nex_mseo_b=0nex_mseo_b=1

MDO: Invalid

MDO: Invalid

Not Allowed

End

Packet

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 797

Note that the “End Message” state does not contain valid data on the nex_mdo[n:0] pins. Also, It is not
possible to have two consecutive “End Packet” messages. This implies the minimum packet size for a
variable length packet is 2x the number of nex_mdo[n:0] pins. This ensures that a false end of message
state is not entered by emitting two consecutive ‘1’s on the nex_mseo_b pin before the actual end of
message.

Figure 13-58 illustrates the state diagram for dual pin MSEO transfers.

Figure 13-58. Dual pin MSEO transfers

The dual pin MSEO option is more robust that the single pin option. Termination of the current message
may immediately be followed by the start of the next message on the consecutive clocks. An extra clock
to end the message is not necessary as with the one MSEO pin option. The dual pin option also allows for
consecutive “End Packet” states. This can be an advantage when small, variable sized packets are
transferred.

NOTE
The “End Message” state may also indicate the end of a variable-length
packet as well as the end of the message when using the dual pin option.

Idle

Normal

Transfer

End

Message

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=00

nex_mseo_b[1:0]=11

MDO: Invalid

nex_mseo_b[1:0]=01

End

Packet

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=11

nex_mseo_b[1:0]=10

Start

Message

nex_mseo_b[1:0]=10

ne
x_

m
se

o_
b[

1:
0]

=1
0

nex_mseo_b[1:0]=01

nex_mseo_b[1:0]=01

e200z759n3 Core Reference Manual, Rev. 2

798 Freescale Semiconductor

13.17 Rules for output messages
Zen based Class 3-compliant embedded processors must provide messages via the auxiliary port in a
consistent manner as described below:

• A variable-sized packet within a message must end on a port boundary.

• A variable-sized packet may start within a port boundary only when following a fixed length
packet. (If two variable-sized packets end and start on the same clock, it is impossible to know
which bit is from the last packet and which bit is from the next packet.)

• Whenever a variable-length packet is sized such that it does not end on a port boundary, it is
necessary to extend and zero fill the remaining bits after the highest-order bit so that it can end on
a port boundary.

For example, if the nex_mdo[n:0] port is 2 bits wide, and the unique portion of an indirect address
TCODE is 5 bits, then the remaining 1 bit of nex_mdo[n:0] must be packed with a 0.

13.18 Auxiliary port arbitration
In a multi-Nexus environment, the Nexus 3 module must arbitrate for the shared Nexus port at the SoC
level.The request scheme is implemented as a 2-bit request with various levels of priority. The priority
levels are defined in Table 13-42 below. The Nexus 3 module will receive a 1-bit grant signal
(npc_aux_grant) from the SoC level arbiter. When a grant is received, the Nexus 3 module will begin
transmitting its message following the protocol outlined in Section 13.16.2, Pin protocol. The Nexus 3
module will maintain control of the port, by asserting the nex_aux_busy signal, until the MSEO state
machine reaches the “End Message” state.

13.19 Examples
The following are examples of Program Trace and Data Trace Messages.

Table 13-43 illustrates an example Indirect Branch Message with 2 MDO / 1MSEO configuration.
Table 13-44 illustrates the same example with an 8 MDO / 2 MSEO configuration.

Note that T0 and S0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• MAP = Address Space Value (IS)

Table 13-42. MDO request encodings

Request Level
MDO Request Encoding

(nex_aux_req[1:0])
Condition of Queue

No Request 00 No message to send

Low Priority 01 Message queue less than 1/2 full

— 10 Reserved

High Priority 11 Message queue 1/2 full or more

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 799

• Ix = Number of instructions (variable)

• Ax = Unique portion of the address (variable)

Note that during clock 13, the nex_mdo[n:0] pins are ignored in the single MSEO case.

Table 13-45 & Table 13-46 illustrate examples of Direct Branch Messages: one with 2 MDO / 1 MSEO,
and one with 8 MDO / 2 MSEO.

Table 13-43. Indirect branch message example (2 MDO / 1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last message)

1 T1 T0 0 Start Message

2 T3 T2 0 Normal Transfer

3 T5 T4 0 Normal Transfer

4 S1 S0 0 Normal Transfer

5 S3 S2 0 Normal Transfer

6 I0 MAP 0 Normal Transfer

7 I2 I1 0 Normal Transfer

8 I4 I3 1 End Packet

9 A1 A0 0 Normal Transfer

10 A3 A2 0 Normal Transfer

11 A5 A4 0 Normal Transfer

12 A7 A6 1 End Packet

13 0 0 1 End Message

14 T1 T0 0 Start Message

Table 13-44. Indirect branch message example (8 MDO / 2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of
last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 I4 I3 I2 I1 I0 M
A
P

S3 S2 0 1
End Packet

3 A7 A6 A5 A4 A3 A2 A1 A0 1 1 End
Packet/End
Message

4 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

e200z759n3 Core Reference Manual, Rev. 2

800 Freescale Semiconductor

Note that T0 and I0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• Ix = Number of Instructions (variable)

Table 13-47 illustrates an example Data Write Message with 8 MDO / 1 MSEO configuration, and
Table 13-48 illustrates the same DWM with 8 MDO / 2 MSEO configuration.

Note that T0, A0, D0 are the least significant bits where:

• Tx = TCODE number (fixed)

• Sx = Source processor (fixed)

• MAP = Address Space Value (DS)

• Zx = Data size (fixed)

• Ax = Unique portion of the address (variable)

• Dx = Write data (variable— 8-, 16-, or 32-bit)

Table 13-45. Direct branch message example (2 MDO / 1 MSEO)

Clock nex_mdo[1:0] nex_mseo_b State

0 X X 1 Idle (or end of last
message)

1 T1 T0 0 Start Message

2 T3 T2 0 Normal Transfer

3 T5 T4 0 Normal Transfer

4 S1 S0 0 Normal Transfer

5 S3 S2 0 Normal Transfer

6 I1 I0 1 End Packet

7 0 0 1 End Message

Table 13-46. Direct branch message example (8 MDO / 2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of
last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 0 0 0 0 I1 I0 S3 S2 1 1 End
Packet/End
Message

3 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 801

13.20 Electrical characteristics
For all electrical characteristics related to Zen and Nexus 3 operation, please refer to the appropriate “Zen
Integration Guide”.

13.21 IEEE 1149.1 (JTAG) RD/WR sequences
This section contains example JTAG/OnCE sequences used to access resources.

13.21.1 JTAG sequence for accessing internal Nexus registers

Table 13-47. Data Write Message Example (8 MDO / 1 MSEO)

Clock nex_mdo[7:0] nex_mseo_b State

0 X X X X X X X X 1 Idle (or end of
last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 Start Message

2 A0 Z3 Z2 Z1 Z0 DS S3 S2 1 End Packet

3 D7 D6 D5 D4 D3 D2 D1 D0 0 Normal Transfer

4 0 0 0 0 0 0 0 0 1 End Packet

5 0 0 0 0 0 0 0 0 1 End Message

Table 13-48. Data write message example (8 MDO / 2 MSEO)

Clock nex_mdo[7:0] nex_mseo_b[1:0] State

0 X X X X X X X X 1 1 Idle (or end of
last message)

1 S1 S0 T5 T4 T3 T2 T1 T0 0 0 Start Message

2 A0 Z3 Z2 Z1 Z0 DS S3 S2 0 1 End Packet

3 D7 D6 D5 D4 D3 D2 D1 D0 1 1 End Packet/
End Message

Table 13-49. Accessing internal Nexus 3 registers via JTAG/OnCE

Step # TMS pin Description

1 1 IDLE SELECT-DR_SCAN

2 0 SELECT-DR_SCAN CAPTURE-DR (Nexus Command Register value loaded in shifter)

3 0 CAPTURE-DR SHIFT-DR

4 0 (7) TCK clocks issued to shift in direction (rd/wr) bit and first 6 bits of Nexus reg. addr.

5 1 SHIFT-DR EXIT1-DR (7th bit of Nexus reg. shifted in)

6 1 EXIT1-DR UPDATE-DR (Nexus shifter is transferred to Nexus Command Register)

7 1 UPDATE-DR SELECT-DR_SCAN

e200z759n3 Core Reference Manual, Rev. 2

802 Freescale Semiconductor

13.21.2 JTAG sequence for read access of memory-mapped resources

13.21.3 JTAG sequence for write access of memory-mapped resources

8 0 SELECT-DR_SCAN CAPTURE-DR (Register value is transferred to Nexus shifter)

9 0 CAPTURE-DR SHIFT-DR

10 0 (31) TCK clocks issued to transfer register value to TDO pin while shifting in TDI value

11 1 SHIFT-DR EXIT1-DR (MSB of value is shifted in/out of shifter)

12 1 EXIT1-DR UPDATE -DR (if access is write, shifter is transferred to register)

13 0 UPDATE-DR RUN-TEST/IDLE (transfer complete - Nexus controller to Reg. Select state)

Table 13-50. Accessing memory-mapped resources (reads)

Step # TCLK clocks Description

1 13 Nexus command = write to Read/Write Access Address Register (RWA)

2 37 Write RWA (initialize starting read address - data input on TDI)

3 13 Nexus Command = write to Read/Write Control/Status Register (RWCS)

4 37 Write RWCS (initialize read access mode and CNT value - data input on TDI)

5 — Wait for falling edge of nex_rdy_b pin

6 13 Nexus command = read Read/Write Access Data Register (RWD)

7 37 Read RWD (data output on TDO)

8 — If CNT > 0, go back to Step #5

Table 13-51. Accessing memory-mapped resources (writes)

Step # TCLK clocks Description

1 13 Nexus command = write to Read/Write Access Control/Status Register (RWCS)

2 37 Write RWCS (initialize write access mode and CNT value - data input on TDI)

3 13 Nexus command = write to Read/Write Address Register (RWA)

4 37 Write RWA (initialize starting write address - data input on TDI)

5 13 Nexus command = read Read/Write Access Data Register (RWD)

6 37 Write RWD (data output on TDO)

7 — Wait for falling edge of nex_rdy_b pin

8 — If CNT > 0, go back to Step #5

Table 13-49. Accessing internal Nexus 3 registers via JTAG/OnCE (continued)

Step # TMS pin Description

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 803

e200z759n3 Core Reference Manual, Rev. 2

804 Freescale Semiconductor

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 805

Chapter 14 External Core Complex Interfaces
This chapter describes the external interfaces to the e200z759n3 core complex. Signal descriptions as well
as the data transfer protocols are documented in the following subsections.

The external interfaces encompass control and data signals supporting instruction and data transfers,
support for interrupts, including vectored interrupt logic, reset support, power management interface
signals, debug event signals, Time Base control and status information, processor state information, Nexus
1/3 / OnCE / JTAG interface signals, and a Test interface.

The e200z759n3 core complex is being designed to support an interchangeable BIU in order to support
multiple system bus interface definitions. BIU support is planned for several standards including AMBA
AHB 2.v6, AMBA AXI, etc. This chapter will focus on AMBA AHB 2.v6 initially, with additional
sections added for other interfaces. Only a single interface standard will be present in any e200z759n3
instance. The specific module is selected at the synthesis stage.

The memory portion of the Zen core interface is comprised of a pair of 64-bit wide standard AHB 2.v6
system buses, one for instructions and the other for data. The data memory interface supports read and
write transfers of 8, 16, 24, 32, and 64 bits, supports misaligned transfers, supports true big- and
little-endian operating modes, and operates in a pipelined fashion. The instruction memory interface
supports read transfers of 16, 32, and 64 bits, supports misaligned transfers, supports true big- and
little-endian operating modes, and operates in a pipelined fashion.

The memory interface supported by the BIUs is based on the AHB 2.v6 definition. Additional sideband
signals have been added to support additional control functions, and are described in this chapter.

NOTE
The AHB bit and byte ordering reflect a natural little-endian ordering, as
used by the AMBA documentation. The e200z759n3 BIU will
automatically perform the necessary byte lane conversions to support
big-endian transfers. Memories and peripheral devices/interfaces should be
wired according to byte lane addresses defined in Section 14.2.5, Byte lane
specification, and Table 14-10.

Single-beat and misaligned transfers are supported for Cache-Inhibited read and write cycles, and
write-buffer writes. Burst transfers (doubleword aligned) of four doublewords are supported for cache
linefill and copyback operations.

Misaligned accesses are supported with one or more transfers to an interface. If an access is misaligned,
but is contained within an aligned 64-bit doubleword, the core performs a single transfer, and the memory
interface is responsible for delivering (reads) or accepting (writes) the data corresponding to the size and
byte enable signals aligned according to the low order three address bits. If an access is misaligned and
crosses a 64-bit boundary, the BIU will perform a pair of transfers beginning at the effective address for
the first transfer, along with appropriate byte enables, and for the second transfer the address is
incremented to the next 64-bit boundary, and the size and byte enable signals are driven to correspond to
the number of remaining bytes to be transferred.

e200z759n3 Core Reference Manual, Rev. 2

806 Freescale Semiconductor

14.1 Signal index
This section contains an index of the e200z759n3 signals.

The following prefixes are used for e200z759n3 signal mnemonics:

• m denotes master clock and reset signals

• p denotes processor or core-related signals

• j denotes JTAG mode signals

• jd denotes JTAG and Debug mode signals

• ipt denotes Scan and Test Mode signals

• nex denotes Nexus signals

NOTE
The “_b” suffix denotes an active low signal. Signals without the active-low
suffix are active high.

Figure 14-1 and Figure 14-2 groups core bus and control signals by function.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 807

Figure 14-1. Zen signal groups - part 1

Transfer

Transfer Control

Attributes

p_[d,i]_htrans[1:0]
p_[d,i]_hburst[2:0]
p_[d,i]_hbstrb[7:0]

Data Bus

Address Bus p_[d,i]_haddr[31:0]

Zen
CPU

p_[d,i]_hwrite

p_[d,i]_hprot[5:0]

p_[d,i]_hsize[1:0]

p_[d,i]_hunalign

Reservation
Signals

p_rsrv

p_rsrv_clr

p_tbint
p_tbclkTime Base
p_tbdisable

Signals

p_d_hwdata[63:0]
p_[d,i]_hrdata[63:0]

p_cpuid[0:7]

Misc. p_sysvers[0:31]
p_pvrin[16:31]

Signals
Processor

p_[d,i]_hresp[2:0]Transfer
p_[d,i]_hready

Status
Termination/

p_mcp_b Machine Check

Interrupt

p_extint_b

 p_critint_b

p_avec_b

p_voffset[0:15]
p_iack

 Signals

p_ipend

Clock m_clk

p_[d,i]_hmaster[3:0]

MasterID nex_masterid[3:0]
p_masterid[3:0]

Config

p_mcp_out

p_nmi_b

p_doze, p_nap, p_sleep

Power p_wakeup
Management

p_pstat_pipe[0,1,2][0:5]

Processor Status

p_halt, p_stop

p_halted, p_stopped, p_waiting

p_hid1_sysctl[0:7]
HID1 System Control

p_msr_{EE,ME,DE,CE},

p_rfi,p_rfci,p_rfdi,p_rfmci

p_mode[0:3], p_brstat[0:1],

p_reset_b, m_por

Reset- p_rst_vlemode
p_rst_endmode
p_rstbase[0:29]

related
Signals

p_wrs[0:1]
p_dbrstc[0:1]

p_devnt_out[0:7]
Debug Events

p_pmc[0,1,2,3]_ov

Performance p_pmc[0,1,2,3]_qual
Monitor p_pm_event

p_extpid_enExternal
p_extpid[6:7]

Alteration
Translation

p_[d,i]_wayrep[0:1]

p_d_gbl

p_snp_rdy

Cache

p_snp_ack, p_snp_resp[0:4]

Coherency

p_snp_id_out[0:3]

Control
p_snp_req, p_snp_cmd[0:1]

p_sync_req_in

p_sync_req_out

p_snp_addr_in[0:26]

p_snp_id_in[0:3]

Sync Control
p_sync_ack_in

p_sync_ack_out

p_cac_stalled

p_stall_bus_gwrite

p_d_cache_en

p_d_cachedis_op

p_d_htrans_derr

e200z759n3 Core Reference Manual, Rev. 2

808 Freescale Semiconductor

Figure 14-2. Zen signal groups - part 2

Table 14-1 shows e200z759n3 signal function and type, signal definition, and reset value. Signals are
presented in functional groups.

Table 14-1. Interface signal definitions

Signal name Type
Reset
value

Definition

Clock and reset-related signals

m_clk I Global system clock

m_por I Power-on reset

p_reset_b I Processor reset input

p_wrs[0:1] O Processor watchdog reset status outputs

p_dbrstc[0:1] O Processor debug reset control outputs

p_rstbase[0:29] I Reset exception handler base address

* These signals are internal to the core
Notes:

Zen
CPU

Zen Nexus1

Module

dbg_dbgrq*

cpu_dbgack*

OnCE Control* (OnCE/Debug)

Dev
Support

Zen Nexus

Module
nex_mseo_b[1:0]

nex_evti_b

nex_wevto[3:0]

nex_mcko

nex_rdy_b

nex_evto_b

nex_ext_src_id[0:3]

nex_mdo[n:0]

p_devt2
p_devt1

p_ude

Debug
Support

jd_debug_b

JTAG Interface

jd_de_b

Test Interface

jd_de_en

jd_en_once

jd_watchpt[0:29]

jd_mclk_on

j_en_once_regsel

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 809

p_rst_endmode I Reset endian mode select

p_rst_vlemode I Reset VLE mode select, value to be loaded into
TLB entry 0 on reset.

Memory interface signals

p_d_hmaster[3:0],
p_i_hmaster[3:0]

O - Master ID

p_d_haddr[31:0], p_i_haddr[31:0] O - Address buses

p_d_hwrite, p_i_hwrite* O 0 Write signal (always driven low for p_i_hwrite)

p_d_hprot[5:0], p_i_hprot[5:0] O - Protection Codes

p_d_htrans[1:0], p_i_htrans[1:0] O - Transfer Type

p_d_htrans_derr O - Transfer Data Parity error indicator (push errors)

p_d_hburst[2:0], p_i_hburst[2:0] O - Burst Type

p_d_hsize[1:0], p_d_hsize[1:0] O - Transfer Size

p_d_hunalign, p_i_hunalign O - Indicates the current data access is a misaligned
access.

p_d_gbl O - Indicates the current access is marked as a
globally coherent access.

p_d_hbstrb[7:0], p_i_hbstrb[7:0] O 0 Byte strobes

p_d_hrdata[63:0], p_i_hrdata[63:0] I Read data buses

p_d_hwdata[63:0] O - Write data bus

p_d_hready, p_i_hready I Transfer Ready

p_d_hresp[2:0], p_i_hresp[1:0] I Transfer Response

p_d_wayrep[0:1]
p_i_wayrep[0:1]

0 Way replacement
Indicates the cache way being replaced by a burst
read linefill.

p_d_ahb_clken, p_i_ahb_clken I AHB Clock enable

Master ID configuration signals

p_masterid[3:0] I - CPU Master ID configuration

nex_masterid[3:0] I - Nexus Master ID configuration

Sync control interface signals

p_sync_req_in I - Sync Request Input

p_sync_ack_in I - Sync Acknowledge Input

p_sync_req_out O 0 Sync Request Output

p_sync_ack_out O 0 Sync Acknowledge Output

Table 14-1. Interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

810 Freescale Semiconductor

Coherency control interface signals

p_snp_req I - Snoop Request

p_snp_cmd[0:1] I - Snoop Command

p_snp_addr_in[0:31] I - Snoop Address Input (bit 0 is MSB)

p_snp_id_in[0:3] I - Snoop ID Input

p_stall_bus_gwrite I - Stall External Bus Global Writes

p_snp_rdy O 0 Snoop Ready

p_snp_ack O 0 Snoop Acknowledge

p_snp_resp[0:4] O 0 Snoop Response

p_snp_id_out[0:3] O - Snoop ID Output

p_cac_stalled O 0 CPU cache access Stalled

p_d_cache_en O 0 Data cache enabled/disabled state

p_d_cachedis_op O 0 Data cache disable operation in progress

Interrupt interface signals

p_extint_b I External Input interrupt request

p_critint_b I Critical Input interrupt request

p_nmi_b I Non-Maskable Interrupt input request

p_avec_b I Autovector request
Use internal interrupt vector offset

p_voffset[0:15] I Interrupt vector offset for vectored interrupts

p_iack O 0 Interrupt Acknowledge. Indicates an interrupt is
being acknowledge.

p_ipend O 0 Interrupt Pending. Indicates an interrupt is
pending internally.

p_mcp_b I Machine Check input request

External translation alteration signals

p_extpid_en I - External PID enable input

p_extpid[6:7] I - External PID[6:7] input

Time base signals

p_tbint O 0 Time Base Interrupt

p_tbdisable I - Time Base Disable input

p_tbclk I - Time Base Clock input

Table 14-1. Interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 811

Misc. CPU signals

p_cpuid[0:7] I CPU ID input

p_sysvers[0:31] I System Version inputs (for SVR)

p_pvrin[16:31] I Inputs for PVR

p_pid0[0:7] O 0 PID0[24:31] outputs

p_pid0_updt O 0 PID0 update status

p_hid1_sysctl[0:7] O 0 HID1[16:23] outputs

 CPU reservation signals

p_rsrv O 0 Reservation status

p_rsrv_clr I Clear Reservation flag

CPU state signals

p_mode[0:3] O 0 Indicates processor global status

p_pstat_pipe0[0:5],
p_pstat_pipe1[0:5]

O 0 Indicates processor status for each pipe

p_brstat[0:1] O 0 Indicates Branch prediction status

p_msr_EE, p_msr_DE, p_msr_CE,
p_msr_ME

O 0 Reflect the values of these MSR bits

p_rfi, p_rfci, p_rfdi, p_rfmci O 0 Reflect the execution of the corresponding
instruction

p_mcp_out O 0 Indicates a machine check has occurred

p_doze O 0 Indicates low-power doze mode of operation

p_nap O 0 Indicates low-power nap mode of operation

p_sleep O 0 Indicates low-power sleep mode of operation

p_wakeup O 0 Indicates to external clock control module to
enable clocks and exit from low-power mode

p_halt I CPU halt request

p_halted O 0 CPU halted

p_stop I CPU stop request

p_stopped O 0 CPU stopped

p_waiting O 0 CPU waiting

CPU performance monitor signals

p_pm_event I - Performance Monitor Event input

p_pmc0_ov O 0 Performance Monitor Counter 0 OV bit

Table 14-1. Interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

812 Freescale Semiconductor

p_pmc1_ov O 0 Performance Monitor Counter 1 OV bit

p_pmc2_ov O 0 Performance Monitor Counter 2 OV bit

p_pmc3_ov O 0 Performance Monitor Counter 3 OV bit

p_pmc0_qual I Performance Monitor Counter 0 trigger qualifier
input

p_pmc1_qual I Performance Monitor Counter 1 trigger qualifier
input

p_pmc2_qual I Performance Monitor Counter 2 trigger qualifier
input

p_pmc3_qual I Performance Monitor Counter 3 trigger qualifier
input

CPU debug event signals

p_ude I Unconditional Debug Event

p_devt1 I Debug Event 1 input

p_devt2 I Debug Event 2 input

p_devnt_out[0:7] O 0 Debug Event outputs

Debug/emulation support signals (Nexus 1/OnCE)

jd_en_once I Enable full OnCE operation

jd_debug_b O 1 Indicates processor has entered debug session

jd_de_b I Debug request

jd_de_en O 0 Active -high output enable for DE_b open-drain IO
cell

jd_mclk_on I Indicates the system clock controller is actively
toggling m_clk

jd_watchpt[0:29] O 0 Indicate a watchpoint has occurred

Development support signals (Nexus 3)

nex_mcko O Nexus 3 Clock Output

nex_rdy_b O Nexus 3 Ready Output

nex_evto_b O Nexus 3 Event-Out Output

nex_wevto[3:0] O Nexus 3 Watchpoint Event-Out Output

nex_evti_b I Nexus 3 Event-In Input

nex_mdo[n:0] O Nexus 3 Message Data Output

nex_mseo_b[1:0] O Nexus 3 Message Start/End Output

JTAG-related signals

Table 14-1. Interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 813

14.2 Signal descriptions
The following paragraphs provide descriptions of the signals.

j_trst_b I JTAG test reset from pad

j_tclk I JTAG test clock from pad

j_tms I JTAG test mode select from pad

j_tdi I JTAG test data input from pad

j_tdo O 0 JTAG test data out to master controller or pad

j_tdo_en O 0 Enables TDO output buffer

j_tst_log_rst O 0 Indicates Test-Logic-Reset state of JTAG
controller

j_capture_ir O 0 Indicates Capture_IR state of JTAG controller

j_update_ir O 0 Indicates Update_IR state of JTAG controller

j_shift_ir O 0 Indicates Shift_IR state of JTAG controller

j_capture_dr O 0 Indicates parallel test data register load state of
JTAG controller

j_shift_dr O 0 Indicates the TAP controller is in shift DR state

j_update_gp_reg O 0 Updates JTAG controller test data register

j_rti O 0 JTAG controller run-test-idle state

j_key_in I Input for providing data to be shifted out during
Shift_IR state when jd_en_once is negated

j_en_once_regsel O 0 external Enable Once register select

j_nexus_regsel O 0 external Nexus register select

j_lsrl_regsel O 0 external LSRL register select

j_gp_regsel[0:9] O 0 General-purpose external JTAG register select

j_id_sequence[0:1] I JTAG ID Register (2 MSBs of sequence field)

j_id_version[0:3] I JTAG ID Register Version Field

j_serial_data I Serial data from external JTAG registers

Test primary input/output signals

Test Control Interface1 Test Mode determination

Scan Test Interface1 Scan Configuration and Testing

Memory BIST Interface1 Memory BIST Configuration and Testing

1 Please refer to the e200z759n3 Test Guide for information on the Test signals.

Table 14-1. Interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

814 Freescale Semiconductor

14.2.1 e200z759n3 processor clock (m_clk)

The m_clk input is the synchronous clock source for the e200z759n3 processor core.

Since e200z759n3 is designed for static operation, m_clk can be gated off to lower power dissipation (e.g.,
during low-power stopped states).

14.2.2 Reset-related signals

Zen supports several reset input signals for the CPU and JTAG/OnCE control logic: m_por, p_reset_b,
and j_trst_b. The reset domains have been partitioned such that the CPU p_reset_b signal does not affect
JTAG/OnCE logic and j_trst_b does not affect processor logic. It is possible and desirable to access OnCE
registers while the processor is running or in reset. Alternatively, it is also possible and desirable to assert
j_trst_b and clear the JTAG/OnCE logic without affecting the state of the processor.

The synchronization logic between the processor and debug module requires an assertion of either
j_trst_b or m_por during initial processor power-up reset in order to ensure proper operation. If the pin
associated with the j_trst_b input is designed with a pull-up resistor and left floating, then assertion of
m_por is required during the initial power-on processor reset. Similarly, for those systems that do not have
a power-on reset circuit and choose to tie m_por low, it is required to assert j_trst_b during processor
power-up reset. Once a power-up reset has been achieved, the two resets can be asserted independently.

The watchdog reset status output signals p_wrs[0:1] are also provided, which can be conditionally
asserted by watchdog time-outs, and the debug reset control outputs p_dbrstc[0:1] can be asserted by
debug control settings in DBCR0.

A set of input signals (p_rstbase[0:29], p_rst_endmode, p_rst_vlemode) are provided to relocate the
reset exception handler to allow for flexible placement of boot code, and to select the default endian mode
and VLE mode of the CPU out of reset.

These signals are described in detail in the following sub-sections.

14.2.2.1 Power-on reset (m_por)

The m_por signal is the power-on reset input for the e200z759n3 processor. This signal serves the
following purposes:

1. m_por is “ORed” with the j_trst_b function and the resulting signal clears the JTAG TAP
controller and associated registers as well as the OnCE state machine. This is an asynchronous
clear with a short assertion time requirement.

2. m_por is “ORed” with the p_reset_b function and the resulting signal clears certain CPU registers.
This is an asynchronous clear with a short assertion time requirement.

14.2.2.2 Reset (p_reset_b)

The p_reset_b input is the active-low reset input for the e200z759n3 processor. p_reset_b is treated as an
asynchronous input and is sampled by the clock control logic in the e200z759n3 debug module.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 815

14.2.2.3 Watchdog reset status (p_wrs[0:1])

The p_wrs[0:1] outputs are active-high reset output status signals from the e200z759n3 core that reflect
the value of the TSRWRS status field. p_wrs[0:1] are conditionally asserted by the Watchdog Timer
(Section 2.4.8, Timer Control Register (TCR), and Section 2.4.9, Timer Status Register (TSR)).

14.2.2.4 Debug reset control (p_dbrstc[0:1])

The p_dbrstc[0:1] outputs are active-high reset output control signals from the e200z759n3 core that
reflect the value of the DBCR0RST status field. p_dbrstc[0:1] are conditionally asserted by the Debug
control logic (Section 12.3.3.1, Debug Control Register 0 (DBCR0)).

14.2.2.5 Reset base (p_rstbase[0:29])

The p_rstbase[0:29] inputs are provided to allow system integrators to be able to specify/relocate the base
address of the reset exception handler. These inputs are used to form the upper 30 bits of the instruction
access following negation of reset, which is used to fetch the initial instruction of the reset exception
handler. These bits should be driven to a value corresponding to the desired boot memory device in the
system. These inputs must remain stable in a window beginning two clocks prior to the negation of reset
and extending into the cycle in which the reset vector fetch is initiated. These inputs are also used by the
MMU during reset to form a default TLB entry 0 for translation of the reset vector fetch.

The initial instruction fetch will occur to the location [p_rstbase[0:29]] || 2’b00.

14.2.2.6 Reset endian mode (p_rst_endmode)

The p_rst_endmode input is used by the MMU during reset to form the ‘E’ bit of the default TLB entry
0 for translation of the reset vector fetch. A low logic level on this signal will cause the resultant entry ‘E’
bit to set to ‘0’, indicating a big-endian page. A high logic level on this signal will cause the resultant entry
‘E’ bit to set to ‘1’, indicating a little-endian page.

14.2.2.7 Reset VLE Mode (p_rst_vlemode)

The p_rst_vlemode input is used by the MMU during reset to form the ‘VLE’ bit of the default TLB entry
0 for translation of the reset vector fetch. A low logic level on this signal will cause the resultant entry
‘VLE’ bit to set to ‘0’, indicating a BookE page. A high logic level on this signal will cause the resultant
entry ‘VLE’ bit to set to ‘1’, indicating a VLE page.

14.2.2.8 JTAG/OnCE reset (j_trst_b)

The j_trst_b signal (referred to in the IEEE 1149.1 JTAG Specification as the TRST* signal) is an
asynchronous reset with a short assertion time requirement. It is “ORed” with the m_por function and the
resulting signal clears the OnCE TAP controller and associated registers as well as the OnCE state
machine.

e200z759n3 Core Reference Manual, Rev. 2

816 Freescale Semiconductor

14.2.3 Address and data buses

Dual instruction and data interfaces are provided by the e200z759n3. They are described together, with
appropriate differences denoted.

14.2.3.1 Address bus (p_d_haddr[31:0], p_i_haddr[31:0])

These outputs provide the address for a bus transfer. Per the AHB definition, p_[d,i]_haddr[31] is the
MSB and p_[d,i]_haddr[0] is the LSB.

14.2.3.2 Read data bus (p_d_hrdata[63:0], p_i_hrdata[63:0])

These inputs provide data to the e200z759n3 on read transfers. The read data bus can transfer 8, 16, 24,
32, or 64 bits of data per bus transfer. Instruction transfers will not use the 8-bit and 24-bit capability. Per
the AHB definition, p_[d,i]_hrdata[63] is the MSB and p_hrdata[0] is the LSB. Table 14-2 shows the
relationship of byte addresses to read data bus signals.

14.2.3.3 Write data bus (p_d_hwdata[63:0])

These outputs transfer data from the e200z759n3 on write transfers. The write data bus can transfer 8, 16,
24, 32, or 64 bits of data per bus transfer. Per the AHB definition, p_d_hwdata[63] is the MSB and
p_d_hwdata[0] is the LSB. Figure 14-3 shows the relationship of byte addresses to write data bus signals.

Table 14-2. p_hrdata[63:0] byte address mappings

Memory byte address Wired to p_[d,i]_hrdata bits

000 7:0

001 15:8

010 23:16

011 31:24

100 39:32

101 47:40

110 55:48

111 63:56

Table 14-3. p_d_hwdata[63:0] byte address mappings

Memory byte address Wired to p_d_hwdata bits

000 7:0

001 15:8

010 23:16

011 31:24

100 39:32

101 47:40

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 817

14.2.4 Transfer attribute signals

The following paragraphs describe the transfer attribute signals, which provide additional information
about the bus transfer cycle. Transfer attributes are driven with address at the beginning of a bus transfer.

14.2.4.1 Transfer type (p_d_htrans[1:0], p_i_htrans[1:0])

The processor drives these signals to indicate the current transfer type. Table 14-4 shows
p_[d,i]_htrans[1:0] encoding.

If the p_[d,i]_htrans[1:0] encoding is not IDLE or BUSY, a transfer is being requested. e200z759n3 does
not utilize the BUSY encoding, and will not present this type of transfer to a bus slave. Slaves must
terminate IDLE transfers with a zero wait-state OKAY response and ignore the (non-existent) transfer.

14.2.4.2 Write (p_d_hwrite, p_i_hwrite)

This output signal defines the data transfer direction for the current bus cycle. A high (logic one) level
indicates a write cycle, and a low (logic zero) level indicates a read cycle. For p_i_hwrite, the signal is
internally driven low for all instruction AHB transfers.

14.2.4.3 Transfer size (p_d_hsize[1:0], p_i_hsize[1:0])

The p_[d,i]_hsize[1:0] signals indicate the data size for a bus transfer. Table 14-5 shows the definitions of
the p_[d,i]_hsize[1:0] encodings. For misaligned transfers, the transfer size may indicate a size larger than
the requested size to ensure that all asserted byte strobes are contained within the “container” defined by
p_[d,i]_hsize[1:0]. Refer to Table 14-11 and Table 14-12 for p_[d,i]_hsize[1:0] encodings used for
aligned and misaligned transfers.

110 55:48

111 63:56

Table 14-4. p_[d,i]_htrans[1:0] transfer type encoding

p_[d,i]_htrans[1] p_[d,i]_htrans[0] Access type

0 0 IDLE - No data transfer is required.

0 1 BUSY - Master is busy, burst transfer continues. (encoding
not used by Zen Z7).

1 0 NONSEQ - indicates the first transfer of a burst, or a single
transfer. Address and control signals are unrelated to the
previous transfer.

1 1 SEQ - indicates the continuation of a burst. Address and
control signals are related to the previous transfer. Control
signals are the same, Address has been incremented by the
size of the data transferred (optionally wrapped).

Table 14-3. p_d_hwdata[63:0] byte address mappings

Memory byte address Wired to p_d_hwdata bits

e200z759n3 Core Reference Manual, Rev. 2

818 Freescale Semiconductor

14.2.4.4 Burst type (p_d_hburst[2:0], p_i_hburst[2:0])

The p_[d,i]_hburst[2:0] signals indicate the burst type for a bus transfer. Table 14-6 shows the definitions
of the p_[d,i]_hburst[2:0] encodings.

The e200z759n3 will only utilize SINGLE and WRAP4 burst types. In addition, all WRAP4 bursts are of
doubleword size aligned to doubleword boundaries.

14.2.4.5 Protection control (p_d_hprot[5:0], p_i_hprot[5:0])

The e200z759n3 drives the p_[d,i]_hprot[5:0] signals to indicate the type of access for the current bus
cycle. p_[d,i]_hprot[0] indicates instruction/data, p_[d,i]_hprot[1] indicates user/supervisor.
p_[d,i]_hprot[5] indicates whether the access is Exclusive (i.e. for a lbarx, lharx, lwarx, stbcx., sthcx., or stwcx.
instruction). p_[d,i]_hprot[4:2] (Allocate, Cacheable, Bufferable) are used to indicate particular cache
attributes for the access and are driven to default values based on settings in the memory management unit.

Table 14-7 shows the definitions of the p_d_hprot[5:0] signals.

Table 14-5. p_[d,i]_hsize[1:0] transfer size encoding

p_[d,i]_hsize[1:0] Transfer size

00 Byte

01 Halfword (2 bytes)

10 Word (4 bytes)

11 Doubleword (8 bytes)

Table 14-6. p_[d,i]_hburst[2:0] burst type encoding

p_hburst[2:0] Burst type

000 SINGLE — No burst, single beat only

001 INCR — Incrementing burst of unspecified length — Unused

010 WRAP4 — 4-beat wrapping burst

011 INCR4 — 4-beat incrementing burst — Unused

100 WRAP8 — 8-beat wrapping burst — Unused

101 INCR8 — 8-beat incrementing burst — Unused

110 WRAP16 — 16-beat wrapping burst — Unused

111 INCR16— 16-beat incrementing burst — Unused

Table 14-7. p_d_hprot[5:0] protection control encoding

p_hprot[5] p_hprot[4] p_hprot[3] p_hprot[2] p_hprot[1] p_hprot[0] Transfer type

— — — — 0 1 User mode access

— — — — 1 1 Supervisor mode access

— 0 0 0 — 1 Cache-inhibited

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 819

Table 14-8 shows the definitions of the p_i_hprot[5:0] signals.

Note that all signals are provided on both I and D ports, although they will not all change state. (ex.
p_d_hprot0 is always high, etc.).

The e200z759n3 maps the PowerISA 2.06 storage attributes to the AHB data port hprot signals in the
manner described in Table 14-9:

— 0 0 1 — 1 Guarded, not cache-inhibited

— 0 1 0 — 1 Reserved

— 0 1 1 — 1 Reserved

— 1 0 0 — 1 Reserved

— 1 0 1 — 1 Reserved

— 1 1 0 — 1 Cacheable, writethrough

— 1 1 1 — 1 Cacheable, writeback

0 — — — — 1 Not exclusive

1 — — — — 1 Exclusive access

Table 14-8. p_i_hprot[5:0] protection control encoding

p_hprot[5] p_hprot[4] p_hprot[3] p_hprot[2] p_hprot[1] p_hprot[0] Transfer type

0 — — — 0 0 User mode access

0 — — — 1 0 Supervisor mode access

0 0 0 0 — 0 Cache-inhibited

0 0 0 1 — 0 Reserved

0 0 1 0 — 0 Reserved

0 0 1 1 — 0 Reserved

0 1 0 0 — 0 Reserved

0 1 0 1 — 0 Reserved

0 1 1 0 — 0 Cacheable

0 1 1 1 — 0 Reserved

Table 14-9. Mapping of access attributes to p_d_hprot[4:2] protection control

[I] [G] [W]
p_hprot[4

]
p_hprot[3

]
p_hprot[2

]
Transfer type

0 0 0 1 1 1 Cacheable, writeback

0 0 1 1 1 0 Cacheable, writethrough

0 1 — 0 0 1 Guarded, not cache-inhibited

Table 14-7. p_d_hprot[5:0] protection control encoding (continued)

p_hprot[5] p_hprot[4] p_hprot[3] p_hprot[2] p_hprot[1] p_hprot[0] Transfer type

e200z759n3 Core Reference Manual, Rev. 2

820 Freescale Semiconductor

For buffered stores, p_d_hprot[1] is driven with the user/supervisor mode attribute associated with the
store at the time it was buffered.

14.2.4.6 Transfer data error (p_d_htrans_derr)

The p_d_htrans_derr control signal is driven during bus transfers on the data interface to indicate a data
cache data array parity error has occurred for a cache push (copyback) operation, and the data
corresponding to this address is not valid due to a parity error. This signal is driven valid with address and
attribute timing. System logic may monitor this output and perform any desired recovery activity. This
signal will only be asserted during a copyback operation for those beats for which the corresponding data
has a parity error.

14.2.4.7 Globally coherent access — (p_d_gbl)

The p_d_gbl control signal is driven during bus transfers on the data interface to indicate whether the
memory access is marked by the MMU ‘M’ page attribute as globally coherent. This signal is driven valid
with address and attribute timing, and remain valid for all beats of a burst access. This signal reflects the
value of the “M” (memory coherence required) attribute for the page associated with the access, except for
dirty line pushes to memory. For those accesses, it is negated.

14.2.4.8 Cache way replacement (p_d_wayrep[0:1], p_i_wayrep[0:1])

The p_[d,i]_wayrep[0:1] control signals are driven valid during cache line fills to indicate which way of
the cache is being replaced. These signals are driven valid with address and attribute timing, and remain
valid for all beats of the burst read. These signals are undefined on all other transfer types.

14.2.5 Byte lane specification

Read transactions transfer from 1 to 8 bytes of data on the p_[d,i]_hrdata[63:0] bus. The byte lanes
involved in the transfer are determined by the starting byte number specified by the lower address bits in
conjunction with the transfer size and byte strobes. Addressing of the byte lanes is shown big-endian (left
to right) regardless of the endian mode of the e200z759n3 core. The byte of memory corresponding to
address 0 is connected to B0 (p_[d,i]_h{r,w}data[7:0]) and the byte of memory corresponding to address
7 is connected to B7 (p_[d,i]_h{r,w}data[63:56]). The CPU internally permutes read data as required for

1 — — 0 0 0 Cache-inhibited

— — — 0 0 1 Buffered store, page marked guarded

— — — 1 1 0 Buffered store and page marked
writethrough, and non-guarded

— — — 1 1 1 Buffered store and page marked copyback,
and non-guarded

Table 14-9. Mapping of access attributes to p_d_hprot[4:2] protection control (continued)

[I] [G] [W]
p_hprot[4

]
p_hprot[3

]
p_hprot[2

]
Transfer type

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 821

the endian mode of the current access. Misaligned transfers are indicated with the p_[d,i]_hunalign signal
to indicate that byte strobes do not correspond exactly to size and low-order address bits.

14.2.5.1 Unaligned access (p_d_hunalign, p_i_hunalign)

The p_[d,i]_hunalign output signal indicates that the current access is a misaligned access. This signal is
asserted for misaligned data accesses, and for misaligned instruction accesses from VLE pages. Normal
BookE instruction pages are always aligned. The timing of this signal is approximately the same as address
timing. When p_[d,i]_hunalign is asserted, the p_[d,i]_hbstrb[7:0] byte strobe signals will indicate the
selected bytes involved in the current portion of the misaligned access, which may not include all bytes
defined by the size and low-order address signals. Aligned transfers also assert the byte strobes, but in a
manner corresponding to size and low order address bits.

14.2.5.2 Byte strobes (p_d_hbstrb[7:0], p_i_hbstrb[7:0])

The p_[d,i]_hbstrb[7:0] byte strobe signals indicate the selected bytes involved in the current transfer. For
a misaligned access, the current transfer may not include all bytes defined by the size and low-order
address signals. For aligned transfers, the byte strobe signals will correspond to the bytes defined by the
size and low-order address signals. Table 14-3 shows the relationship of byte addresses to the byte strobe
signals.

Table 14-11 lists all of the data transfer permutations. Note that misaligned data requests which cross a
64-bit boundary are broken up into two separate bus transactions, and the address value and the size
encoding for the first transfer is not modified. The table is arranged in a big-endian fashion, but the active
lanes are the same regardless of the endian-mode of the access. The e200z759n3 performs the proper byte
routing internally based on endianness.

Table 14-10. p_[d,i]_hbstrb[7:0] to byte address mappings

Memory byte address Wired to p_h{r,w}data bits Corresponding byte strobe signal

000 7:0 p_[d,i]_hbstrb[0]

001 15:8 p_[d,i]_hbstrb[1]

010 23:16 p_[d,i]_hbstrb[2]

011 31:24 p_[d,i]_hbstrb[3]

100 39:32 p_[d,i]_hbstrb[4]

101 47:40 p_[d,i]_hbstrb[5]

110 55:48 p_[d,i]_hbstrb[6]

111 63:56 p_[d,i]_hbstrb[7]

e200z759n3 Core Reference Manual, Rev. 2

822 Freescale Semiconductor

Table 14-11. Byte strobe assertion for transfers

Program size
and byte offset

A(2:0)
HSIZE[1:0

]

Data bus byte strobes
HUNALIGN

B0 B1 B2 B3 B4 B5 B6 B7

Byte @000 0 0 0 0 0 X — — — — — — — 0

Byte @001 0 0 1 0 0 — X — — — — — — 0

Byte @010 0 1 0 0 0 — — X — — — — — 0

Byte @011 0 1 1 0 0 — — — X — — — — 0

Byte @100 1 0 0 0 0 — — — — X — — — 0

Byte @101 1 0 1 0 0 — — — — — X — — 0

Byte @110 1 1 0 0 0 — — — — — — X — 0

Byte @111 1 1 1 0 0 — — — — — — — X 0

Half @000 0 0 0 0 1 X X — — — — — — 0

Half @001 0 0 1 1 0# — X X — — — — — 1

Half @010 0 1 0 0 1 — — X X — — — — 0

Half @011 0 1 1 1 1# — — — X X — — — 1

Half @100 1 0 0 0 1 — — — — X X — — 0

Half @101 1 0 1 1 0# — — — — — X X — 1

Half @110 1 1 0 0 1 — — — — — — X X 0

Half @111
(2 bus transfers)

1 1 1
0 0 0

0 1*
0 0

—
X

—
—

—
—

—
—

—
—

—
—

—
—

X
—

1
0

Word @000 0 0 0 1 0 X X X X — — — — 0

Word @001 0 0 1 1 1# — X X X X — — — 1

Word @010 0 1 0 1 1# — — X X X X — — 1

Word @011 0 1 1 1 1# — — — X X X X — 1

Word @100 1 0 0 1 0 — — — — X X X X 0

Word @101
(2 bus transfers)

1 0 1
0 0 0

1 0*
0 0

—
X

—
—

—
—

—
—

—
—

X
—

X
—

X
—

1
0

Word @110
(2 bus transfers)

1 1 0
0 0 0

1 0*
0 1

—
X

—
X

—
—

—
—

—
—

—
—

X
—

X
—

1
0

Word @111
(2 bus transfers)

1 1 1
0 0 0

10*
1 0

—
X

—
X

—
X

—
—

—
—

—
—

—
—

X
—

1
1

Doubleword @000 0 0 0 1 1 X X X X X X X X 0

Doubleword @001
(2 bus transfers)

0 0 1
0 0 0

1 1*
0 0

—
X

X
—

X
—

X
—

X
—

X
—

X
—

X
—

1
0

Doubleword @010
(2 bus transfers)

0 1 0
0 0 0

1 1*
0 1

—
X

—
X

X
—

X
—

X
—

X
—

X
—

X
—

1
0

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 823

Table 14-12 shows the final layout in memory for data transferred from a 64-bit GPR containing the bytes
‘A B C D E F G H’ to memory. Misaligned accesses that cross a doubleword boundary are broken into a
pair of accesses by the CPU.

Doubleword @011
(2 bus transfers)

0 1 1
0 0 0

1 1*
1 0#

—
X

—
X

—
X

X
—

X
—

X
—

X
—

X
—

1
1

Doubleword @100
(2 bus transfers)

1 0 0
0 0 0

1 1*
1 0

—
X

—
X

—
X

—
X

X
—

X
—

X
—

X
—

1
0

Doubleword @101
(2 bus transfers)

1 0 1
0 0 0

1 1*
1 1#

—
X

—
X

—
X

—
X

—
X

X
—

X
—

X
—

1
1

Doubleword @110
(2 bus transfers)

1 1 0
0 0 0

1 1*
1 1#

—
X

—
X

—
X

—
X

—
X

—
X

X
—

X
—

1
1

Doubleword @111
(2 bus transfers)

1 1 1
0 0 0

1 1*
1 1#

—
X

—
X

—
X

—
X

—
X

—
X

—
X

X
—

1
1

Table Notes:

“X” indicates byte lanes involved in the transfer; Other lanes will contain driven but unused data.
These misaligned transfers drive size according to the size of the power of two aligned “container”

in which the byte strobes are asserted.
* These misaligned cases drive request size according to the size specified by the load or store

instruction.

Table 14-12. Big- and little-endian memory storage

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

Byte @0000 0 0 0 0 0 0 H — — — — — — — — — — — — — — —

Byte @0001 0 0 0 1 0 0 — H — — — — — — — — — — — — — —

Byte @0010 0 0 1 0 0 0 — — H — — — — — — — — — — — — —

Byte @0011 0 0 1 1 0 0 — — — H — — — — — — — — — — — —

Byte @0100 0 1 0 0 0 0 — — — — H — — — — — — — — — — —

Byte @0101 0 1 0 1 0 0 — — — — — H — — — — — — — — — —

Byte @0110 0 1 1 0 0 0 — — — — — — H — — — — — — — — —

Byte @0111 0 1 1 1 0 0 — — — — — — — H — — — — — — — —

Byte @1000 1 0 0 0 0 0 — — — — — — — — H — — — — — — —

Byte @1001 1 0 0 1 0 0 — — — — — — — — — H — — — — — —

Byte @1010 1 0 1 0 0 0 — — — — — — — — — — H — — — — —

Byte @1011 1 0 1 1 0 0 — — — — — — — — — — — H — — — —

Table 14-11. Byte strobe assertion for transfers (continued)

Program size
and byte offset

A(2:0)
HSIZE[1:0

]

Data bus byte strobes
HUNALIGN

B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

824 Freescale Semiconductor

Byte @1100 1 1 0 0 0 0 — — — — — — — — — — — — H — — —

Byte @1101 1 1 0 1 0 0 — — — — — — — — — — — — — H — —

Byte @1110 1 1 1 0 0 0 — — — — — — — — — — — — — — H —

Byte @1111 1 1 1 1 0 0 — — — — — — — — — — — — — — — H

B. E. Half
@0000

0 0 0 0 0 1 G H — — — — — — — — — — — — — —

B. E. Half
@0001

0 0 0 1 1 0# — G H — — — — — — — — — — — — —

B. E. Half
@0010

0 0 1 0 0 1 — — G H — — — — — — — — — — — —

B. E. Half
@0011

0 0 1 1 1 1# — — — G H — — — — — — — — — — —

B. E. Half
@0100

0 1 0 0 0 1 — — — — G H — — — — — — — — — —

B. E. Half
@0101

0 1 0 1 1 0# — — — — — G H — — — — — — — — —

B. E. Half
@0110

0 1 1 0 0 1 — — — — — — G H — — — — — — — —

B. E. Half
@0111

0 1 1 1 0 1 — — — — — — — G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Half
@1000

1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Half
@1001

1 0 0 1 1 0# — — — — — — — — — G H — — — — —

B. E. Half
@1010

1 0 1 0 0 1 — — — — — — — — — — G H — — — —

B. E. Half
@1011

1 0 1 1 1 1# — — — — — — — — — — — G H — — —

B. E. Half
@1100

1 1 0 0 0 1 — — — — — — — — — — — — G H — —

B. E. Half
@1101

1 1 0 1 1 0# — — — — — — — — — — — — — G H —

B. E. Half
@1110

1 1 1 0 0 1 — — — — — — — — — — — — — — G H

B. E. Half
@1111

1 1 1 1 0 1 — — — — — — — — — — — — — — — G

0 0 0 0
(next

dword)
0 0

H — — — — — — — — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 825

L E. Half
@0000

0 0 0 0 0 1 H G — — — — — — — — — — — — — —

L. E. Half
@0001

0 0 0 1 1 0# — H G — — — — — — — — — — — — —

L. E. Half
@0010

0 0 1 0 0 1 — — H G — — — — — — — — — — — —

L. E. Half
@0011

0 0 1 1 1 1# — — — H G — — — — — — — — — — —

L. E. Half
@0100

0 1 0 0 0 1 — — — — H G — — — — — — — — — —

L. E. Half
@0101

0 1 0 1 1 0# — — — — — H G — — — — — — — — —

L. E. Half
@0110

0 1 1 0 0 1 — — — — — — H G — — — — — — — —

L. E. Half
@0111

0 1 1 1 0 1 — — — — — — — H — — — — — — — —

1 0 0 0 0 0 — — — — — — — — G — — — — — — —

L. E. Half
@1000

1 0 0 0 0 1 — — — — — — — — H G — — — — — —

L. E. Half
@1001

1 0 0 1 1 0# — — — — — — — — — H G — — — — —

L. E. Half
@1010

1 0 1 0 0 1 — — — — — — — — — — H G — — — —

L. E. Half
@1011

1 0 1 1 1 1# — — — — — — — — — — — H G — — —

L. E. Half
@1100

1 1 0 0 0 1 — — — — — — — — — — — — H G — —

L. E. Half
@1101

1 1 0 1 1 0# — — — — — — — — — — — — — H G —

L. E. Half
@1110

1 1 1 0 0 1 — — — — — — — — — — — — — — H G

L. E. Half
@1111

1 1 1 1 0 1 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next

dword)
0 0

G — — — — — — — — — — — — — — —

B. E. Word
@0000

0 0 0 0 1 0 E F G H — — — — — — — — — — — —

B. E. Word
@0001

0 0 0 1 1 1# — E F G H — — — — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

826 Freescale Semiconductor

B. E. Word
@0010

0 0 1 0 1 1# — — E F G H — — — — — — — — — —

B. E. Word
@0011

0 0 1 1 1 1# — — — E F G H — — — — — — — — —

B. E. Word
@0100

0 1 0 0 0 1 0 — — — — E F G H — — — — — — — —

B. E. Word
@0101

0 1 0 1 1 0 — — — — — E F G — — — — — — — —

1 0 0 0 0 0 — — — — — — — — H — — — — — — —

B. E. Word
@0110

0 1 1 0 1 0 — — — — — — E F — — — — — — — —

1 0 0 0 0 1 — — — — — — — — G H — — — — — —

B. E. Word
@0111

0 1 1 1 1 0 — — — — — — — E — — — — — — — —

1 0 0 0 1 0 — — — — — — — — F G H — — — — —

B. E. Word
@1000

1 0 0 0 1 0 — — — — — — — — E F G H — — — —

B. E. Word
@1001

1 0 0 1 1 1# — — — — — — — — — E F G H — — —

B. E. Word
@1010

1 0 1 0 1 1# — — — — — — — — — — E F G H — —

B. E. Word
@1011

1 0 1 1 1 1# — — — — — — — — — — — E F G H —

B. E. Word
@1100

1 1 0 0 1 0 — — — — — — — — — — — — E F G H

B. E. Word
@1101

1 1 0 1 1 0 — — — — — — — — — — — — — E F G

+ 0 0 0 0
(next

dword)
0 0

H — — — — — — — — — — — — — — —

B. E. Word
@1110

1 1 1 0 1 0 — — — — — — — — — — — — — — E F

+ 0 0 0 0
(next

dword)
0 1

G H — — — — — — — — — — — — — —

B. E. Word
@1111

1 1 1 1 1 0 — — — — — — — — — — — — — — — E

+ 0 0 0 0
(next

dword)
1 0

F G H — — — — — — — — — — — — —

L. E. Word
@0000

0 0 0 0 1 0 H G F E — — — — — — — — — — — —

L. E. Word
@0001

0 0 0 1 1 1# — H G F E — — — — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 827

L. E. Word
@0010

0 0 1 0 1 1# — — H G F E — — — — — — — — — —

L. E. Word
@0011

0 0 1 1 1 1# — — — H G F E — — — — — — — — —

L. E. Word
@0100

0 1 0 0 1 0 — — — — H G F E — — — — — — — —

L. E. Word
@0101

0 1 0 1 1 0 — — — — — H G F — — — — — — — —

1 0 0 0 0 0 — — — — — — — — E — — — — — — —

L. E. Word
@0110

0 1 1 0 1 0 — — — — — — H G — — — — — — — —

1 0 0 0 0 1 — — — — — — — — F E — — — — — —

L. E. Word
@0111

0 1 1 1 1 0 — — — — — — — H — — — — — — — —

1 0 0 0 1 0 — — — — — — — — G F E — — — — —

L. E. Word
@1000

1 0 0 0 1 0 — — — — — — — — H G F E — — — —

L. E. Word
@1001

1 0 0 1 1 1# — — — — — — — — — H G F E — — —

L. E. Word
@1010

1 0 1 0 1 1# — — — — — — — — — — H G F E — —

L. E. Word
@1011

1 0 1 1 1 1# — — — — — — — — — — — H G F E —

L. E. Word
@1100

1 1 0 0 1 0 — — — — — — — — — — — — H G F E

L. E. Word
@1101

1 1 0 1 1 0 — — — — — — — — — — — — — H G F

+ 0 0 0 0
(next

dword)

0 0 E — — — — — — — — — — — — — — —

L. E. Word
@1110

1 1 1 0 1 0 — — — — — — — — — — — — — — H G

+ 0 0 0 0
(next

dword)

0 1 F E — — — — — — — — — — — — — —

L. E. Word
@1111

1 1 1 1 1 0 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next

dword)

1 0 G F E — — — — — — — — — — — — —

B.E.
Doubleword

@0000

0 0 0 0 1 1 A B C D E F G H — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

828 Freescale Semiconductor

B. E.
Doubleword

@0001

0 0 0 1 1 1 — A B C D E F G — — — — — — — —

1 0 0 0
(next

dword)
0 0

— — — — — — — — H — — — — — — —

B. E.
Doubleword

@0010

0 0 1 0 1 1 — — A B C D E F — — — — — — — —

1 0 0 0
(next

dword)
0 1

— — — — — — — — G H — — — — — —

B. E.
Doubleword

@0011

0 0 1 1 1 1 — — — A B C D E — — — — — — — —

1 0 0 0
(next

dword)
1 0#

— — — — — — — — F G H — — — — —

B. E.
Doubleword

@0100

0 1 0 0 1 1 — — — — A B C D — — — — — — — —

 1 0 0 0
(next

dword)
1 0

— — — — — — — — E F G H — — — —

B. E.
Doubleword

@0101

0 1 0 1 1 1 — — — — — A B C — — — — — — — —

1 0 0 0
(next

dword)
1 1#

— — — — — — — — D E F G H — — —

B. E.
Doubleword

@0110

0 1 1 0 1 1 — — — — — — A B — — — — — — — —

1 0 0 0
(next

dword)
1 1#

— — — — — — — — C D E F G H — —

B. E.
Doubleword

@0111

0 1 1 1 1 1 — — — — — — — A — — — — — — — —

1 0 0 0
(next

dword)
1 1#

— — — — — — — — B C D E F G H —

B.E.
Doubleword

@1000

1 0 0 0 1 1 — — — — — — — — A B C D E F G H

B. E.
Doubleword

@1001

1 0 0 1 1 1 — — — — — — — — — A B C D E F G

+0 0 0 0
(next

dword)
0 0

H — — — — — — — — — — — — — — —

B. E.
Doubleword

@1010

1 0 1 0 1 1 — — — — — — — — — — A B C D E F

+ 0 0 0 0
(next

dword)
0 1

G H — — — — — — — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 829

B. E.
Doubleword

@1011

1 0 1 1 1 1 — — — — — — — — — — — A B C D E

+ 0 0 0 0
(next

dword)
1 0#

F G H — — — — — — — — — — — — —

B. E.
Doubleword

@1100

1 1 0 0 1 1 — — — — — — — — — — — — A B C D

+ 0 0 0 0
(next

dword)
1 0

E F G H — — — — — — — — — — — —

B. E.
Doubleword

@1101

1 1 0 1 1 1 — — — — — — — — — — — — — A B C

+ 0 0 0 0
(next

dword)
1 1#

D E F G H — — — — — — — — — — —

B. E.
Doubleword

@1110

1 1 1 0 1 1 — — — — — — — — — — — — — — A B

+ 0 0 0 0
(next

dword)
1 1#

C D E F G H — — — — — — — — — —

B. E.
Doubleword

@1111

1 1 1 1 1 1 — — — — — — — — — — — — — — — A

+ 0 0 0 0
(next

dword)
1 1#

B C D E F G H — — — — — — — — —

L.E.
Doubleword

@0000

0 0 0 0 1 1 H G F E D C B A — — — — — — — —

L. E.
Doubleword

@0001

0 0 0 1 1 1 — H G F E D C B — — — — — — — —

 1 0 0 0
(next

dword)
0 0

— — — — — — — — A — — — — — — —

L. E.
Doubleword

@0010

0 0 1 0 1 1 — — H G F E D C — — — — — — — —

 1 0 0 0
(next

dword)
0 1

— — — — — — — — B A — — — — — —

L. E.
Doubleword

@0011

0 0 1 1 1 1 — — — H G F E D — — — — — — — —

 1 0 0 0
(next

dword)
1 0#

— — — — — — — — C B A — — — — —

L. E.
Doubleword

@0100

0 1 0 0 1 1 — — — — H G F E — — — — — — — —

 1 0 0 0
(next

dword)
1 0

— — — — — — — — D C B A — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

830 Freescale Semiconductor

L. E.
Doubleword

@0101

0 1 0 1 1 1 — — — — — H G F — — — — — — — —

 1 0 0 0
(next

dword)
1 1#

— — — — — — — — E D C B A — — —

L. E.
Doubleword

@0110

0 1 1 0 1 1 — — — — — — H G — — — — — — — —

 1 0 0 0
(next

dword)
1 1#

— — — — — — — — F E D C B A — —

L. E.
Doubleword

@0111

0 1 1 1 1 1 — — — — — — — H — — — — — — — —

 1 0 0 0
(next

dword)
1 1#

— — — — — — — — G F E D C B A —

L.E.
Doubleword

@1000

0 0 0 0 1 1 — — — — — — — — H G F E D C B A

L. E.
Doubleword

@1001

1 0 0 1 1 1 — — — — — — — — — H G F E D C B

+ 0 0 0 0
(next

dword)
0 0

A — — — — — — — — — — — — — — —

L. E.
Doubleword

@1010

1 0 1 0 1 1 — — — — — — — — — — H G F E D C

+ 0 0 0 0
(next

dword)
0 1

B A — — — — — — — — — — — — — —

L. E.
Doubleword

@1011

1 0 1 1 1 1 — — — — — — — — — — — H G F E D

+ 0 0 0 0
(next

dword)
1 0#

C B A — — — — — — — — — — — — —

L. E.
Doubleword

@1100

1 1 0 0 1 1 — — — — — — — — — — — — H G F E

+ 0 0 0 0
(next

dword)
1 0

D C B A — — — — — — — — — — — —

L. E.
Doubleword

@1101

1 1 0 1 1 1 — — — — — — — — — — — — — H G F

+ 0 0 0 0
(next

dword)
1 1#

E D C B A — — — — — — — — — — —

L. E.
Doubleword

@1110

1 1 1 0 1 1 — — — — — — — — — — — — — — H G

+ 0 0 0 0
(next

dword)
1 1#

F E D C B A — — — — — — — — — —

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 831

14.2.6 Transfer control signals

The following paragraphs describe the transfer control signals.

14.2.6.1 Transfer ready (p_d_hready, p_i_hready)

The p_[d,i]_hready input signal indicates completion of a requested transfer operation. An external
device asserts p_[d,i]_hready to terminate the transfer. The p_[d,i]_hresp[2:0] signals indicate status of
the transfer.

14.2.6.2 Transfer response (p_d_hresp[2:0], p_i_hresp[1:0])

The p_d_hresp[2:0] and p_i_hresp[1:0] signals indicate status of a terminating transfer on the respective
interfaces. Table 14-13 shows the definitions of the p_d_hresp[2:0] and p_i_hresp[1:0] encodings.

L. E.
Doubleword

@1111

1 1 1 1 1 1 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next

dword)
1 1#

G F E D C B A — — — — — — — — —

Table Notes:
Assumes a 64-bit GPR contains ‘A B C D E F G H’

These misaligned transfers drive size according to the size of the power of two aligned “container” in which the byte
strobes are asserted.

Table 14-13. p_d_hresp[2:0] transfer response encoding

p_d_hresp[2:0] Response type

000 OKAY — transfer terminated normally

001 ERROR — transfer terminated abnormally

010 Reserved (RETRY not supported in AHB—Lite protocol)

011 Reserved (SPLIT not supported in AHB—Lite protocol)

100 XFAIL — Exclusive store failed (stwcx. did not completed successfully)

101 Reserved

110 Reserved

111 Reserved

Table 14-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(3:0)

HSIZE(1:0
)

Even Double Word — 0 0dd Double Word — 1

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

832 Freescale Semiconductor

The ERROR and XFAIL responses are required to be two cycle responses. In this case, the ERROR or
XFAIL responses must be signaled one cycle prior to assertion of p_[d,i]_hready, and must remain
unchanged during the cycle p_[d,i]_hready is asserted.

The XFAIL response will be signaled to the CPU via the p_d_xfail_b internal signal. See
Section 15.2.3.17, Store exclusive failure (p_d_xfail_b).

14.2.6.3 Bus stall global write request (p_stall_bus_gwrite)

The active-high p_stall_bus_gwrite signal is provided to request that new bus activity for global writes
(writes with the “M” page attribute set) be stalled (postponed) for a period of time. When asserted, no new
transfer requests will be generated for global writes following initiation and completion of all currently
requested and outstanding accesses. This signal is provided to allow for control over global write access
initiation to prevent overruns or overflows of external agents that observe or act upon bus transfers, but
are not actually addressed slaves. One particular use of this throttling mechanism is to prevent overflow
of the snoop (coherency) fifo in another CPU, or a trace fifo present in the system.

When asserted, no new global write transaction request will be generated, although a pending transaction
(p_htrans != IDLE) awaiting completion of an outstanding transaction will still be taken and performed
(unless an error response is received for the current outstanding transaction and the pending transaction is
canceled).

14.2.7 AHB clock enable signals

The following paragraphs describe the AHB clock enable signals. These inputs are used to qualify the
processor m_clk edges used for AHB output signal state updates and AHB input signal sampling for the
memory interfaces. This allows for system AHB interfaces that run at sub-multiples of the m_clk
frequency. These signals do not affect non-AHB interface signals.

14.2.7.1 Instruction AHB clock enable (p_i_ahb_clken)

The p_i_ahb_clken input signal is used to qualify the rising edges of m_clk on which the input signals
p_i_hready, p_i_hresp[1:0] and p_i_hrdata[63:0] are sampled. (Note that by definition,
p_i_hrdata[63:0] sampling is also qualified by the recognized assertion of p_i_hready, per the AHB
protocol). When driven low, no sampling of these signals occurs, since m_clk is gated at the sampling
logic. The p_i_ahb_clken input signal is also used to qualify the rising edges of m_clk on which the output
signals p_i_haddr[31:0], p_i_hbstrb[7:0], p_i_hburst[1:0], p_i_hmaster[3:0], p_i_hprot[5:0],
p_i_hsize[1:0], p_i_htrans[1:0], and p_i_hunalign change state (by definition, in conjunction with the

Table 14-14. p_i_hresp[1:0] transfer response encoding

p_i_hresp[1:0] Response type

00 OKAY — transfer terminated normally

01 ERROR — transfer terminated abnormally

10 Reserved (RETRY not supported in AHB-Lite protocol)

11 Reserved (SPLIT not supported in AHB-Lite protocol)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 833

p_i_hready input per the AHB protocol). The p_i_ahb_clken signal should normally be driven (change
state) off the falling edge of m_clk to ensure the proper setup and hold times surrounding the m_clk high
period. It must remain stable throughout the duration of m_clk high. This signal is not internally
synchronized. It should be tied high when operating the data AHB at m_clk frequency. The integration
guide defines the required setup time before m_clk rises and hold time after m_clk falls.

14.2.7.2 Data AHB clock enable (p_d_ahb_clken)

The p_d_ahb_clken input signal is used to qualify the rising edges of m_clk on which the input signals
p_d_hready, p_d_hresp[2:0], and p_d_hrdata[63:0] are sampled. (Note that by definition,
p_d_hrdata[63:0] sampling is also qualified by the recognized assertion of p_d_hready, per the AHB
protocol). When driven low, no sampling of these signals occurs, since m_clk is gated at the sampling
logic. The p_d_ahb_clken input signal is also used to qualify the rising edges of m_clk on which the
output signals p_d_haddr[31:0], p_d_hbstrb[7:0], p_d_hburst[1:0], p_d_hmaster[3:0],
p_d_hprot[5:0], p_d_hsize[1:0], p_d_htrans[1:0], p_d_hunalign, p_d_hwdata[63:0], and p_d_hwrite
change state (by definition, in conjunction with the p_d_hready input per the AHB protocol). The
p_d_ahb_clken signal should normally be driven (change state) off the falling edge of m_clk to ensure
the proper setup and hold times surrounding the m_clk high period. It must remain stable throughout the
duration of m_clk high. This signal is not internally synchronized. It should be tied high when operating
the data AHB at m_clk frequency. The integration guide defines the required setup time before m_clk rises
and hold time after m_clk falls.

14.2.8 Master ID configuration signals

The following paragraphs describe the master ID configuration signals. These inputs are used to drive the
p_[d,i]_hmaster[3:0] outputs when a bus cycle is active.

14.2.8.1 CPU master ID (p_masterid[3:0])

The p_masterid[3:0] input signals configure the master ID for the CPU. These values are driven on the
p_[d,i]_hmaster[3:0] outputs for a CPU-initiated bus cycle.

14.2.8.2 Nexus master ID (nex_masterid[3:0])

The nex_masterid[3:0] input signals configure the master ID for the Nexus 3 unit. These values are driven
on the p_d_hmaster[3:0] outputs for a Nexus 3 initiated bus cycle.

14.2.9 Coherency control signals

The following paragraphs describe the signals that control the Cache Coherency hardware functions.
Examples of operation are provided in Section 14.3.4, Cache coherency interface operation.

14.2.9.1 Snoop ready (p_snp_rdy)

This active-high output signal indicates that the CPU is ready to accept a new snoop request. When
asserted, it indicates that a new snoop cycle may be requested via the p_snp_req input during the

e200z759n3 Core Reference Manual, Rev. 2

834 Freescale Semiconductor

following two clock cycles. When this signal is negated, a new snoop request will not be accepted after
the next clock cycle, even if p_snp_req is asserted. This signal is asserted when the internal snoop queue
contains two or more available entries for a new snoop request if a request is pending, or if three or more
entries are available and no request is pending. The protocol is designed to prevent unnecessary transitions
of the p_snp_rdy signal, as well as to support using p_snp_rdy to affect the p_stall_bus_gwrite input of
another CPU to prevent queue overruns.

14.2.9.2 Snoop request (p_snp_req)

This active-high input signal indicates that the CPU should perform a new snoop request operation. When
asserted, it indicates that a new snoop cycle is being requested based on additional information provided
on the p_snp_cmd[0:1], p_snp_addr[0:26], and p_snp_id_in[0:3] input signals. A new snoop request
will be ignored if the p_snp_rdy signal was negated two clock cycles earlier, even if p_snp_req is
asserted.

14.2.9.3 Snoop command input (p_snp_cmd_in[0:1])

These input signals provide a command indicator for a snoop request. The command value is stored in the
snoop queue along with the snoop address and snoop ID value. Table 14-15 shows the definitions of the
p_snp_cmd[0:1] encodings.

The NULL command is used for testing of interface handshaking and other status gathering purposes. The
NULL command performs a snoop lookup operation, but performs no actual cache tag or status
modifications (even in the presence of tag parity or EDC errors). The INV command causes a snoop
lookup and subsequent invalidation of a matching cache line. The SYNC command causes the snoop
queue to be emptied with highest priority relative to CPU requests.

14.2.9.4 Snoop request ID input (p_snp_id_in[0:3])

These input signals provide an identifier value for a snoop request. The identifier value is stored in the
snoop queue along with the snoop address and snoop command, and is only used by the CPU to be
reflected on the p_snp_id_out[0:3] outputs when a snoop cycle is subsequently acknowledged via the
p_snp_ack output.

Table 14-15. p_snp_cmd[0:1] snoop command encoding

p_snp_cmd[0:1
]

Response type

00 Null — no status bit operation performed, lookup is performed (queue entry
allocated)

01 INV — invalidate matching cache entry (queue entry allocated)

10 SYNC — synchronize snoop queue (queue entry allocated). p_snp_addr[0:26] is
unused.

11 Reserved — do not use

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 835

14.2.9.5 Snoop address input (p_snp_addr_in[0:26])

These input signals provide the address value for a snoop request. The address value is stored in the snoop
queue along with the snoop ID value and snoop command, and is used by the CPU to perform a cache line
lookup when a snoop cycle is subsequently performed to the cache from the queue. The snoop address
signals are used to index the cache and perform a tag compare with the physical cache tags. These inputs
are not translated, thus they reflect the physical addresses of cached memory.

14.2.9.6 Snoop acknowledge (p_snp_ack)

This active high output signal is used to acknowledge that a previous snoop command request has been
performed. When asserted, the signal indicates that the p_snp_id_out[0:3] and p_snp_resp[0:4] outputs
are valid, and reflect the result of a completed snoop command.

14.2.9.7 Snoop request ID output (p_snp_id_out[0:3])

These output signals provide an ID value for a snoop request. The ID value is the value of
p_snp_id_in[0:3] that was stored in the snoop queue along with the snoop address and snoop command
during a previous snoop command request, and are only used by the CPU to be reflected on the
p_snp_id_out[0:3] outputs when a snoop command is subsequently acknowledged via the p_snp_ack
output.

14.2.9.8 Snoop response (p_snp_resp[0:4])

These output signals provide a response indicator for a processed snoop command request. The command
value is stored in the snoop queue along with the snoop address and snoop tag value. Table 14-15 shows
the definitions of the p_snp_resp[0:4] encodings.

Table 14-16. p_snp_resp[0:4] snoop response encoding

p_snp_resp[0:4]1 Response type

000cc NULL — no operation performed or no matching cache entry

001cc Reserved

010cc ERROR — Error in processing a snoop request due to TAG parity error.
For NULL commands, a tag parity error occurred and no hit to a tag without error
occurred. No modification of cache entries, no machine check generated
internally.
For INV commands, possible invalidation of locked line with tag parity error
occurred, or dirty line left valid with tag parity error. Machine check generated
internally.

01100 SYNC — Sync completed, snoop queue synchronized

100cc HIT Clean— matching unlocked cache entry found

101cc HIT Dirty— matching unlocked dirty cache entry found

110cc HIT Locked — matching clean locked cache entry found

111cc HIT Dirty Locked — matching dirty locked cache entry found

e200z759n3 Core Reference Manual, Rev. 2

836 Freescale Semiconductor

14.2.9.9 Cache stalled (p_cac_stalled)

The active-high p_cac_stalled output signal is used to indicate that a CPU access to the data cache is
stalled due to a snoop access to the cache. This signal may be monitored by system logic to determine the
impact of snooping on CPU performance and to adjust the rate of snoops accordingly to minimize or
distribute stall cycles.

14.2.9.10 Data cache enabled (p_d_cache_en)

The active-high p_d_cache_en output signal is used to indicate that the data cache is enabled or disabled.
When disabled, no snoop lookups are performed, and a default Null response is given for snoop requests.
This signal may be monitored by system logic to cancel pending snoop requests, or to manage a directory
ownership or snoop filter by noting when the cache has been disabled and enabled. This signal reflects the
state of the L1CSR0DCE control bit.

14.2.10 Memory synchronization control signals

The following paragraphs describe the signals that comprise the Memory Synchronization control
functions. Examples of operation are shown in Section 14.3.3, Memory synchronization control operation.

14.2.10.1 Synchronization request in (p_sync_req_in)

This active-high input signal indicates that a synchronization operation is being requested by system logic.
Assertion of this signal causes the CPU to empty the snoop queue of all valid entries present at the time
the p_sync_req_in input was asserted. including any valid snoop command request accepted on the same
clock cycle. This is a heavyweight synchronization operation that may affect system performance. This
signal should remain asserted until acknowledged via assertion of the p_sync_ack_out signal, otherwise
proper synchronization of all queues is not guaranteed. This signal is allowed to negate early however, if
an interrupt causes a synchronization operation request to be aborted. Early negation does not guarantee
that synchronization will not be completed as requested however.

This signal is not sampled during the Stopped low power state, thus it will not be acknowledged unless the
Stopped state is exited and the signal is still seen asserted. SoC logic should ensure that no undesired
system delay or deadlock can occur due to this behavior in the stopped state.

14.2.10.2 Synchronization request acknowledge out (p_sync_ack_out)

This active-high output signal indicates that a synchronization operation being requested by system logic
via the p_sync_req_in input has completed. Assertion of this signal occurs after the CPU has emptied the
snoop queue of all valid entries present at the time the p_sync_req_in input was asserted, including any
valid snoop command request accepted on the same clock cycle.

1 cc — Number of collapsed requests
00—No collapsing
01— Two requests combined
10— Three requests combined
11— Four requests combined

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 837

This signal is qualified with the sampled value of p_sync_req_in, and will negate the cycle following
negation of p_sync_req_in. If p_sync_req_in is negated prior to assertion of p_sync_ack_out,
p_sync_ack_out will not be asserted.

During the Stopped state, p_sync_ack_out will remain negated. SoC logic must be aware of this and
handle any synchronization request handshaking required to prevent a deadlock condition when another
CPU attempts to execute a synchronization instruction and handshake a synchronization operation.

14.2.10.3 Synchronization request out (p_sync_req_out)

This active-high output signal indicates that a synchronization operation is being requested by the CPU.
Assertion of this signal occurs during execution of an msync and mbar with MO = 0 or 1 (not for mbar
w/MO=2) instruction by the CPU after it has suspended instruction and data fetches and emptied the store
buffer.

This signal remains asserted until acknowledged via assertion of the p_sync_ack_in signal, unless a
pending interrupt occurs. In this case the synchronization operation will be aborted and restarted at a later
time, and the p_sync_req_output will be negated.

14.2.10.4 Synchronization request acknowledge in (p_sync_ack_in)

This active-high input signal indicates that a synchronization operation being requested by the assertion of
p_sync_req_out by the CPU has completed.

This signal is sampled beginning with the clock cycle following assertion of p_sync_req_out, and will
cause negation of p_sync_req_out the cycle after it is recognized as asserted. This signal should be
negated the cycle after p_sync_req_out negates. This signal is ignored during the clock cycle that
p_sync_req_out is initially asserted.

14.2.11 Interrupt signals

The following paragraphs describe the signals that control the interrupt functions. Interrupt request inputs
p_extint_b and p_critint_b to the core are level sensitive, not edge-triggered, thus the interrupt controller
module must keep the interrupt request as well as the p_voffset or p_avec_b inputs (as appropriate)
asserted until the interrupt is serviced to guarantee that the CPU core recognizes the request. Once a
request is generated, there is no guarantee the CPU will not recognize the interrupt request even if the
request is later removed Interrupt requests must be held stable to avoid spurious responses. The interrupt
inputs p_nmi_b and p_mcp_b are transition sensitive as described in Section 14.2.11.8, Machine check
(p_mcp_b), and Section 14.2.11.3, Non-maskable input interrupt request (p_nmi_b).

14.2.11.1 External input interrupt request (p_extint_b)

This active-low signal provides the External Input interrupt request to the e200z759n3 core. p_extint_b is
masked by the MSR[EE] bit. This signal is not internally synchronized by the e200z759n3 core, thus it
must meet setup and hold time constraints relative to m_clk when the e200z759n3 core clock is running.
This signal is level sensitive and must remain asserted to be guaranteed to be recognized.

e200z759n3 Core Reference Manual, Rev. 2

838 Freescale Semiconductor

14.2.11.2 Critical input interrupt request (p_critint_b)

This active-low signal provides the Critical Input interrupt request to the e200z759n3 core. p_critint_b is
masked by the MSR[CE] bit. This signal is not internally synchronized by the e200z759n3 core, thus it
must meet setup and hold time constraints relative to m_clk when the e200z759n3 core clock is running.
This signal is level sensitive and must remain asserted to be guaranteed to be recognized.

14.2.11.3 Non-maskable input interrupt request (p_nmi_b)

This active-low, transition sensitive signal provides a non-maskable interrupt request to the e200z759n3
core. This signal is not internally synchronized by the e200z759n3 core, thus it must meet setup and hold
time constraints to m_clk when the e200z759n3 core clock is running. The p_nmi_b input is sampled on
two consecutive m_clk periods to detect a transition from the negated to the asserted state. Initiation of
exception processing for the NMI will be internally qualified with this transition. Note that when the core
is halted or stopped without clocks, transitions on this signal will not be immediately detected, but the
p_ipend and p_wakeup signals will be asserted to indicate to system logic that an interrupt is pending and
so the clocks should be started, and the p_halt and p_stop inputs should be negated in order for the
interrupt to be processed.

14.2.11.4 Interrupt pending (p_ipend)

This active-high signal indicates that an asserted p_extint_b, p_critint_b, or p_nmi_b interrupt request
input, or an enabled Timer facility interrupt (Watchdog, Fixed-Interval, or Decrementer) has been
recognized internally by the core and is enabled by the appropriate bit in the MSR (p_nmi_b is never
masked), and is asserted combinationally from the qualified interrupt request inputs as well as when the
MCSRNMI syndrome bit is set. The p_ipend signal can be used to signal other bus masters or a bus arbiter
that an interrupt condition is pending. External power management logic can use this output to control
operation of the core and other logic or may use the p_wakeup signal similarly. Actual handling of the
interrupt request may be delayed due to higher priority exceptions; assertion of p_ipend does not mean
that exception processing for the interrupt has begun. The p_nmi_b input will affect the p_ipend signal
slightly differently; the p_ipend output will assert any time the p_nmi_b input is asserted or whenever the
MCSRNMI syndrome bit is set.

14.2.11.5 Autovector (p_avec_b)

This active-low signal is asserted with either the p_extint_b or p_critint_b interrupt request to request use
of the internal IVOR4 or IVOR0 registers for obtaining an exception vector offset. If this signal is negated
when a p_extint_b or p_critint_b interrupt is requested, an external vector offset is taken from the
p_voffset[0:15] input signals. This signal is level sensitive and must remain asserted to be guaranteed to
be recognized. This signal must be driven to a valid state during each clock cycle that either p_extint_b
or p_critint_b is asserted.

14.2.11.6 Interrupt vector offset (p_voffset[0:15])

These input signals provide a vector offset to be used when exception processing begins for an incoming
interrupt request. These signals are sampled along with the p_extint_b and p_critint_b interrupt request
inputs, and must be driven to a valid value when either of these signals is asserted unless the p_avec_b

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 839

signal is also asserted. If p_avec_b is asserted, these inputs are not used. The p_voffset[0:15] signals
correspond to bits 16:31 of the IVOR registers. p_voffset[0:11] are used in forming the exception handler
address, and p_voffset[12:15] are reserved and should be driven low. The p_voffset[0:15] signals are level
sensitive and must remain asserted to be guaranteed to be recognized correctly. In addition, these signals
must be asserted concurrently with the p_extint_b and p_critint_b inputs when used.

14.2.11.7 Interrupt vector acknowledge (p_iack)

The p_iack output signal provide an interrupt vector acknowledge indicator to allow external interrupt
controllers to be informed when a critical input or external input interrupt is being processed. The p_iack
signal will be asserted after the cycle in which the p_avec_b and p_voffset[0:15] signals are sampled in
preparation for exception processing. See Figure 14-41 and Figure 14-42 for timing diagrams of operation.

14.2.11.8 Machine check (p_mcp_b)

This active-low, transition sensitive signal provides a Machine Check interrupt request to the e200z759n3
core. p_mcp_b is masked by the HID0[EMCP] bit. This signal is not internally synchronized by the
e200z759n3 core, thus it must meet setup and hold time constraints to m_clk when the e200z759n3 core
clock is running. The p_mcp_b input is sampled on two consecutive m_clk periods to detect a transition
from the negated to the asserted state. Note that when the core is halted or stopped without clocks,
transitions on this signal will not be immediately detected, so it must be held asserted until it can be
recognized with the m_clk running.

The p_mcp_b signal is sampled while the e200z759n3 core is in debug mode or is in the waiting, halted,
or stopped power management states if the m_clk is running. See Section 14.2.17.1, Processor waiting
(p_waiting), Section 14.2.17.3, Processor halted (p_halted), and Section 14.2.17.5, Processor stopped
(p_stopped).

14.2.12 External translation alteration signals

The following paragraphs describe the external translation alteration interface signals. A description of
operation is provided in Section 10.11, External translation alterations for realtime systems.

14.2.12.1 External PID enable (p_extpid_en)

The active-high p_extpid_en input signal is used to enable the external translation alteration interface.
Enabling of the dynamic mapping capability is controlled by asserting the p_extpid_en control input. This
input is sampled with the rising edge of the clock, and when asserted, allows for the dynamic remapping
capability to be used.

14.2.12.2 External PID in (p_extpid[6:7])

The active-high p_extpid[6:7] input signals are used to provide the PID[6:7] comparison values for certain
TLB entries. These signals are qualified with the assertion of p_extpid_en.

e200z759n3 Core Reference Manual, Rev. 2

840 Freescale Semiconductor

14.2.13 Timer facility signals

The following sub-sections describe the processor signals associated with the Timer Facilities (Time Base,
Watchdog, Fixed-interval and Decrementer).

14.2.13.1 Timer disable (p_tbdisable)

The active-high p_tbdisable input signal is used to disable the internal Time Base and Decrementer
counters. When this signal is asserted, Time Base and Decrementer updates are frozen. When this signal
is negated, Time Base and Decrementer updates are unaffected. This signal may be used to freeze the state
of the Time Base and Decrementer during low power or debug operation. This signal is not internally
synchronized by the e200z759n3 core, thus it must meet setup and hold time constraints relative to m_clk
when the e200z759n3 core clock is running, as well as to p_tbclk when selected as an alternate clock
source for the Time Base.

14.2.13.2 Timer external clock (p_tbclk)

The active-high p_tbclk input signal is used as an alternate clock source for the Time Base and
Decrementer counters. Selection of this clock is made using the HID0[SEL_TBCLK] control bit (see
Section 2.4.11, Hardware Implementation Dependent Register 0 (HID0)). This clock source must be
synchronous to the m_clk input, and cannot exceed 50% of the m_clk frequency. This signal must be
driven such that it changes state on the falling edge of m_clk.

14.2.13.3 Timer interrupt status (p_tbint)

The active-high p_tbint output signal is used to indicate that an internal timer facility unit is generating
an interrupt request (TSR[WIS]=1 and TCR[WIE]=1 and MSR[CE]=1, or
TSR[DIS]=1 and TCR[DIE]=1 and MSR[EE]=1, or TSR[FIS]=1 and TCR[FIE]=1 and MSR[CE]=1).
This signal may be used to exit low power operation, or for other system purposes.

14.2.14 Processor reservation signals

The following sub-sections describe processor reservation signals associated with the lbarx, lharx, lwarx,

stbcx., sthcx., and stwcx. instructions.

14.2.14.1 CPU reservation status (p_rsrv)

The active-high p_rsrv output signal is used to indicate that a reservation has been established by the
execution of a load and reserve (lbarx, lharx, lwarx) instruction. This signal is set following the successful
completion of a load and reserve instruction. This signal will remain set until the reservation has been
cleared. (Refer to Section 3.5, Memory synchronization and reservation instructions). This signal is
provided as a status indicator for specialized system applications only.

14.2.14.2 CPU reservation clear (p_rsrv_clr)

The active-high p_rsrv_clr input signal is used to clear a reservation that has been previously established.
External reservation management logic may use this signal to implement reservation management policies

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 841

that are outside of the scope of the CPU. (Refer to Section 3.5, Memory synchronization and reservation
instructions). This signal may be asserted independently of any bus transfer.

The p_rsrv_clr input signal is not intended for normal use in managing reservations. It is provided for
specialized system applications. The normal bus protocol is used to manage reservations using external
reservation logic in systems with multiple coherent bus masters, using the transfer type and transfer
response signals. In single coherent master systems, no external logic is required, and the internal
reservation flag is sufficient to support multi-tasking applications.

The p_d_xfail_b signal is provided to indicate success/failure of a stbcx., sthcx., or stwcx. instruction as
part of bus transfer termination using the XFAIL p_d_hresp[2:0] encoding. See Section 15.2.3.17, Store
exclusive failure (p_d_xfail_b), for more detail on p_d_xfail_b.

14.2.15 Miscellaneous processor signals

The following paragraph describes several miscellaneous processor signals.

14.2.15.1 CPU ID (p_cpuid[0:7])

The active-high p_cpuid[0:7] input signals are used to provide an identity for a particular processor. These
inputs are reflected in the Processor ID Register (Section 2.4.2, Processor ID Register (PIR)) following
reset. These inputs are intended to remain in a static condition and are not internally synchronized.

14.2.15.2 PID0 outputs (p_pid0[0:7])

The active-high p_pid0[0:7] output signals are used to provide the current process ID in the Process ID
Register 0 (PID0). These outputs correspond to the low order eight bits of PID0.

14.2.15.3 PID0 update (p_pid0_updt)

The active-high p_pid0_updt signal is used to indicate that the Process ID Register 0 (PID0) is being
updated by a mtspr instruction. This output will assert during the clock cycle the p_pid0[0:7] outputs are
changing.

14.2.15.4 System version (p_sysvers[0:31])

The active-high p_sysvers[0:31] input signals are used to provide a version number for the particular
system incorporating a e200z759n3 CPU. These inputs are reflected in the System Version Register
(Section 2.4.4, System Version Register (SVR)). These inputs are intended to remain in a static condition
and are not internally synchronized.

14.2.15.5 Processor version (p_pvrin[16:31])

The active-high p_pvrin[16:31] input signals are used to provide a portion of the version number for a
particular e200z759n3 CPU. These inputs are reflected in the Processor Version Register (Section 2.4.3,
Processor Version Register (PVR)). These inputs are intended to remain in a static condition and are not
internally synchronized.

e200z759n3 Core Reference Manual, Rev. 2

842 Freescale Semiconductor

14.2.15.6 HID1 system control (p_hid1_sysctl[0:7])

The active-high p_hid1_sysctl[0:7] output signals are used to provide a set of control output signals
external to the CPU via values written to the HID1 special purpose register. These outputs change state
following the rising edge of m_clk, and may need synchronization depending on actual use. See
Section 2.4.12, Hardware Implementation Dependent Register 1 (HID1).

14.2.15.7 Debug event outputs (p_devnt_out[0:7])

The active-high p_devnt_out[0:7] output signals are used to provide a single-clock pulse based on the
values written to the DEVNT field of the DEVENT debug register. These outputs correspond to the low
order eight bits of DEVENT. Note that p_devnt_out[0] corresponds to the low order bit, not the MSB of
the DEVNT field.

14.2.16 Processor state signals

The following sub-sections describe processor internal state signals.

14.2.16.1 Processor mode (p_mode[0:3])

These signals indicate the global processor execution status. The timing is synchronous with m_clk.
Table 14-18 shows p_mode[0:3] encoding.

14.2.16.2 Processor execution pipeline status (p_pstat_pipe0[0:5],
p_pstat_pipe1[0:5])

These signals indicate the internal execution pipeline status. The timing is synchronous with the m_clk,
so the indicated status may not apply to a current bus transfer. Pipe0 corresponds to the oldest instruction
in the pipeline, pipe1 to the next to oldest instruction. Table 14-18 shows p_pstat_pipe{0,1}[0:5]
encodings.

Table 14-17. Processor mode encoding

p_mode[0:3] Internal processor mode

0 0 0 0 Execution stalled

0 0 0 1 Execute exception

0 0 1 0 Instruction squashed

0 0 1 1 Normal processing

0 1 0 0 Processor in Halted state

0 1 0 1 Processor in Stopped state

0 1 1 0 Processor in Debug mode1

1 As reflected on the cpu_dbgack internal state signal

0 1 1 1 Reserved

1 0 0 0 Processor in Waiting state

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 843

14.2.16.3 Branch prediction status (p_brstat[0:1])

These signals indicate the status of a branch prediction prefetch. Branch prediction prefetches are
performed for Branch Target Buffer hits with predict taken status to accelerate branches. The timing is

Table 14-18. Processor execution pipeline status encoding1

1 All encodings that do not appear in the table are reserved

p_pstat_pipe{0,1}[0:5] Processor pipeline status

0 0 0 0 s m Complete instruction2,3

2 Except rfi, rfci, rfdi, rfmci, lmw, stmw, lbarx, lharx, lwarx, stbcx., sthcx., stwcx., isync, isel, se_rfi, se_rfci,
se_rfdi, se_rfmci, e_lmw, e_stmw, se_isel, and Change of Flow Instructions

3 s — instruction size, 0=32-bit, 1=16-bit
m — 0 for BookE page, 1 for VLE page

0 0 0 1 0 0 Complete lmw, stmw, e_lmw, e_stmw, e_lmvgprw, e_stmvgprw, e_lmvsprw,
e_stmvsprw, e_lmv[c,d,mc,]srrw, e_stmv[c,d,mc,]srrw

0 0 0 1 0 1 Complete e_lmw, or e_stmw

0 0 1 0 0 0 Complete isync

0 0 1 0 1 1 Complete se_isync

0 0 1 1 0 m Complete lbarx, lharx, lwarx, stbcx., sthcx., or stwcx.4

4 m — 0 for BookE page, 1 for VLE page

0 1 0 0 0 m Complete evsel with condition false for both elements

0 1 0 1 0 m Complete evsel with condition false for high element and true for low element

0 1 1 0 0 m Complete evsel with condition true for high element and false for low element

0 1 1 1 0 m Complete evsel with condition true for both elements

1 0 0 0 0 0 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as not taken

1 0 0 0 0 1 Complete branch instruction e_bc, e_bcl, e_b, e_bl resolved as not taken

1 0 0 0 1 1 Complete branch instruction se_bc, se_b, se_bl resolved as not taken

1 0 0 1 0 0 Complete branch instruction bc, bcl, bca, bcla, b, bl, ba, bla resolved as taken

1 0 0 1 0 1 Complete branch instruction e_bc, e_bcl, e_b, e_bl resolved as taken

1 0 0 1 1 1 Complete branch instruction se_bc, se_b, se_bl resolved as taken

1 0 1 0 0 0 Complete bclr, bclrl, bcctr, bcctrl resolved as not taken

1 0 1 1 0 0 Complete bclr, bclrl, bcctr, bcctrl resolved as taken

1 0 1 1 1 1 Complete se_blr, se_blrl, se_bctr, se_bctrl (always taken)

1 1 0 0 0 m Complete isel with condition false

1 1 0 1 0 m Complete isel with condition true

1 1 1 0 x x No instruction completed

1 1 1 1 0 0 Complete rfi, rfci, rfdi, or rfmci

1 1 1 1 1 1 Complete se_rfi, se_rfci, se_rfdi, or se_rfmci

e200z759n3 Core Reference Manual, Rev. 2

844 Freescale Semiconductor

synchronous with the m_clk, so the indicated status may not apply to a current bus transfer. Table 14-19
shows p_brstat[0:1] encoding.

14.2.16.4 Processor exception enable MSR values (p_msr_EE, p_msr_CE,
p_msr_DE, p_msr_ME)

These active-high output signals reflect the state of the corresponding MSR[EE,CE,DE,ME] bits. They
may be used by external system logic to determine the set of enabled exceptions. These signals change
state on execution of a mtmsr, rfi, rfci, rfdi, rfmci, se_rfi, se_rfci, se_rfdi, se_rfmci, wrtee, or wrteei
instruction, or during exception processing where one or more bits may be cleared during the exception
processing sequence.

14.2.16.5 Processor return from interrupt (p_rfi, p_rfci, p_rfdi, p_rfmci)

These active-high output signals reflect the state of the processor when executing a return from interrupt
class instruction. The signals are asserted for one clock during the execution of the corresponding rfi, rfci,
rfdi, rfmci, se_rfi, se_rfci, se_rfdi, or se_rfmci instruction. They may be used by external system logic
to determine the execution state of one or more nested or un-nested interrupt exception handlers, and may
be used to provide hardware assist to external interrupt controllers, or priority elevation mechanisms. In
conjunction with the interrupt acknowledge and exception enable outputs, an external state machine may
track the entry and exit status of handlers for various classes and priorities of interrupts.

14.2.16.6 Processor machine check (p_mcp_out)

The active-high p_mcp_out output signal is asserted by the processor when a machine check condition
has caused an “Async Mchk” or “Error Report” type syndrome bit to be set in the Machine Check
Syndrome register. Refer to Section 2.4.7, Machine Check Syndrome Register (MCSR).

14.2.17 Power management control signals

The following signals are provided for power management or other control functions by external control
logic.

14.2.17.1 Processor waiting (p_waiting)

The active-high p_waiting output signal is used to indicate that the processor has entered the Waiting state
(Section 9.1.2, Waiting state).

Table 14-19. Branch prediction status encoding

p_brstat[0:1] Branch prediction status

0 x Default (no branch predicted taken prefetch)

1 0 Branch predicted taken prefetch resolved as not taken

1 1 Branch predicted taken prefetch resolved as taken

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 845

14.2.17.2 Processor halt request (p_halt)

The active-high p_halt input signal is used to request the processor to enter the Halted state (Section 9.1.3,
Halted state).

14.2.17.3 Processor halted (p_halted)

The active-high p_halted output signal is used to indicate that the processor has entered the Halted state
(Section 9.1.3, Halted state).

14.2.17.4 Processor stop request (p_stop)

The active-high p_stop input signal is used to request the processor to enter the Stopped state
(Section 9.1.4, Stopped state).

14.2.17.5 Processor stopped (p_stopped)

The active-high p_stopped output signal is used to indicate that the processor has entered the Stopped state
(Section 9.1.4, Stopped state).

14.2.17.6 Low-power mode signals (p_doze, p_nap, p_sleep)

The active-high p_doze, p_nap, and p_sleep output signals are asserted by the processor to reflect the
settings of the HID0[DOZE], HID0[NAP], and HID0[SLEEP] control bits when the MSR[WE] bit is set.

These outputs may assert for one or more clock cycles. External logic can detect the asserted edge or level
of these signals to determine which low-power mode has been requested and then place the e200z759n3
core and peripherals in a low-power consumption state. The p_wakeup signal can be monitored to
determine when to end the low-power condition.

The e200z759n3 core can be placed in a low-power state by forcing the m_clk input to a quiescent state,
and brought out of low-power state by re-enabling m_clk. The Time Base facilities may be separately
enabled or disabled using combinations of the Timer Facility control signals described in Section 14.2.13,
Timer facility signals.

14.2.17.7 Wakeup (p_wakeup)

The active-high p_wakeup output signal should be used by external logic to remove the e200z759n3 core
and system logic from a low-power state. It also is used to indicate to the system clock controller that the
m_clk input should be re-enabled for debug purposes. This signal is asynchronous to the system clock and
should be synchronized to the system clock domain to avoid hazards.

p_wakeup asserts whenever:

• A valid pending interrupt is detected by the core

• A request to enter debug mode is made by setting the DR bit in the OnCE control register (OCR)
or via the assertion of the jd_de_b or p_ude input signals.

• The processor is in a debug session and the jd_debug_b output is asserted

e200z759n3 Core Reference Manual, Rev. 2

846 Freescale Semiconductor

• A request to enable the m_clk input has been made by setting the WKUP bit in the OnCE control
register

• The p_nmi_b input is asserted or the MCSRNMI syndrome bit is set

p_wakeup (or other system state) should be monitored to determine when to release the processor (and
system if applicable) from a low-power state.

14.2.18 Performance monitor signals

The following interface signals are for the Performance Monitor unit.

14.2.18.1 Performance monitor event (p_pm_event)

The active-high p_pm_event input signal is used to signal a performance monitor counted event. Selection
of this event is described in Section 8.7, Event selection. This signal is not internally synchronized by the
e200z759n3 core, thus it must meet setup and hold time constraints relative to m_clk when the
e200z759n3 core clock is running. This signal is both level and transition sensitive.

14.2.18.2 Performance monitor counter 0 overflow state (p_pmc0_ov)

The active-high p_pmc0_ov output signal is used to reflect the state of the performance monitor counter
0 OV bit (PMC0OV) described in Section 8.3.9, Performance Monitor Counter registers (PMC0–PMC3).

14.2.18.3 Performance monitor counter 1 overflow state (p_pmc1_ov)

The active-high p_pmc1_ov output signal is used to reflect the state of the performance monitor counter
1 OV bit (PMC1OV) described in Section 8.3.9, Performance Monitor Counter registers (PMC0–PMC3).

14.2.18.4 Performance monitor counter 2 overflow state (p_pmc2_ov)

The active-high p_pmc2_ov output signal is used to reflect the state of the performance monitor counter
2 OV bit (PMC2OV) described in Section 8.3.9, Performance Monitor Counter registers (PMC0–PMC3).

14.2.18.5 Performance monitor counter 3 overflow state (p_pmc3_ov)

The active-high p_pmc3_ov output signal is used to reflect the state of the performance monitor counter
3 OV bit (PMC3OV) described in Section 8.3.9, Performance Monitor Counter registers (PMC0–PMC3).

14.2.18.6 Performance monitor counter 3 qualifier inputs (p_pmc[0,1,2,3]_qual)

The active-high p_pmc[0,1,2,3]_qual input signals are used to provided additional triggering control
means for the respective performance monitor counters. Triggering control is described in Section 8.3.7,
Performance Monitor Local Control B Registers (PMLCb0–PMLCb3).

14.2.19 Debug event input signals

The following interface signals are provided to signal debug events to the e200z759n3 core.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 847

14.2.19.1 Unconditional debug event (p_ude)

The active-high p_ude input signal is used to request an unconditional debug event. This event is
described in detail in Section 12.2.13, Unconditional debug event. This signal is not internally
synchronized by the e200z759n3 core, thus it must meet setup and hold time constraints relative to m_clk
when the e200z759n3 core clock is running. This signal is level sensitive and must be held asserted until
acknowledged by software, or, when external debug mode is enabled, by assertion of the jd_debug_b
output to be guaranteed to be recognized. In addition, only a transition from the negated state to the
asserted state of the p_ude signal will cause an event to occur. The level on this signal is used however to
cause assertion of the p_wakeup output.

14.2.19.2 External debug event 1 (p_devt1)

The active-high p_devt1 input signal is used to request an external debug event. This event is described
in detail in Section 12.2.12, External debug event. This signal is not internally synchronized by the
e200z759n3 core, thus it must meet setup and hold time constraints relative to m_clk when the
e200z759n3 core clock is running. If the e200z759n3 core clock is disabled, this signal will not be
recognized. In addition, only a transition from the negated state to the asserted state of the p_devt1 signal
will cause an event to occur. It is intended to signal e200z759n3-related events that are generated while
the CPU is active.

14.2.19.3 External debug event 2 (p_devt2)

The active-high p_devt2 input signal is used to request an external debug event. This event is described
in detail in Section 12.2.12, External debug event. This signal is not internally synchronized by the
e200z759n3 core, thus it must meet setup and hold time constraints relative to m_clk when the
e200z759n3 core clock is running. If the e200z759n3 core clock is disabled, this signal will not be
recognized. In addition, only a transition from the negated state to the asserted state of the p_devt2 signal
will cause an event to occur. It is intended to signal e200z759n3-related events that are generated while
the CPU is active.

14.2.20 Debug event output signals (p_devnt_out[0:7])

The active-high p_devnt_out[0:7] output signals are used to provide a single-clock pulse based on the
values written to the DEVNT field of the DEVENT debug register. These outputs correspond to the low
order eight bits of DEVENT. Note that p_devnt_out[0] corresponds to the low order bit, not the MSB of
the DEVNT field.

14.2.21 Debug/emulation (Nexus 1/ OnCE) support signals

The following interface signals are provided to assist in implementing an On-Chip Emulation capability
with a controller external to the e200z759n3 core.

e200z759n3 Core Reference Manual, Rev. 2

848 Freescale Semiconductor

14.2.21.1 OnCE enable (jd_en_once)

The OnCE enable signal jd_en_once is used to enable the OnCE controller to allow certain instructions
and operations to be executed. Assertion of this signal will enable the full OnCE command set, as well as
operation of control signals and OnCE Control register functions. When this signal is disabled, only the
Bypass, ID and Enable_OnCE commands are executed by the OnCE unit, and all other commands default
to a “Bypass” command. The OnCE Status register (OSR) is not visible when OnCE operation is disabled.
In addition, OnCE Control register (OCR) functions are disabled, as is the operation of the jd_de_b input.
Secure systems may choose to leave this signal negated until a security check has been performed. Other
systems should tie this signal asserted to enable full OnCE operation. The j_en_once_regsel and j_key_in
signals are provided to assist external logic performing security checks. Refer to Section 14.2.23.15,
Enable OnCE register select (j_en_once_regsel), for a description of the j_en_once_regsel output signal,
and to Section 14.2.23.19, Key data in (j_key_in), for a description of the j_key_in input signal.

The jd_en_once input must only change state during the Test-Logic-Reset, Run-Test/Idle, or Update_DR
TAP states. A new value will take affect after one additional j_tclk cycle of synchronization.

14.2.21.2 Debug session (jd_debug_b)

The jd_debug_b active-low output signal is asserted when the processor first enters into debug mode. It
remains asserted for the duration of a debug session.

NOTE
A debug session includes single-step operations (Go+NoExit OnCE
commands). That is, jd_debug_b remains asserted during OnCE
single-step executions.

This signal is provided to allow system resources to be aware that access is occurring for debug purposes,
thus allowing certain resource side effects to be frozen or otherwise controlled. Examples might include
FIFO state change control, control of side-effects of register or memory accesses, etc. Refer to
Section 12.4.5.3, e200z759n3 OnCE debug output (jd_debug_b), for additional information on this signal.

14.2.21.3 Debug request (jd_de_b)

This signal is the debug mode request input. This signal is not internally synchronized by the e200z759n3
core, thus it must meet setup and hold time constraints relative to j_tclk. To be recognized, it must be held

Table 14-20. e200z759n3 debug / emulation support signals

Signal Type Description

jd_en_once I Enable full OnCE operation

jd_debug_b O Debug Session indicator

jd_de_b I Debug request

jd_de_en O DE_b active high output enable

jd_mclk_on I CPU clock is active indicator

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 849

asserted for a minimum of two j_tclk periods, and the jd_en_once input must be in the asserted state.
jd_de_b is synchronized to m_clk in the debug module before being sent to the processor (two clocks).

This signal is normally the input from the top-level DE_b open-drain bidirectional I/O cell. Refer to
Section 12.4.5.2, OnCE debug request/event (jd_de_b, jd_de_en), for additional information on this
signal.

14.2.21.4 DE_b active high output enable (jd_de_en)

This output signal is an active-high enable for the top-level DE_b open-drain bidirectional I/O cell. This
signal is asserted for three j_tclk periods upon processor entry into debug mode. Refer to Section 12.4.5.2,
OnCE debug request/event (jd_de_b, jd_de_en), for additional information on this signal.

14.2.21.5 Processor clock on (jd_mclk_on)

This active-high input signal is driven by system level clock control logic to indicate that the processor’s
m_clk input is active. This signal is synchronized to j_tclk and provided as a status bit in the OnCE Status
register.

14.2.21.6 Watchpoint events (jd_watchpt[0:29])

The jd_watchpt[0:29] active-high output signals are used to indicate that a watchpoint has occurred. Each
debug address compare function (IAC1-8, DAC1-2), and Debug Counter event (DCNT1-2) is capable of
triggering a watchpoint output, and in addition DEVNT-, DTC-based, and Performance Monitor
watchpoints are supported. Refer to Section 12.5, Watchpoint support, for the signal assignments of each
watchpoint source.

14.2.22 Development support (Nexus 3) signals

The following interface signals are provided to assist in implementing a real-time development tool
capability with a controller external to the e200z759n3 core.

Table 14-21. e200z759n3 development support (Nexus) signals

Signal Type Description

nex_mcko O Nexus clock output

nex_rdy_b O Nexus ready output

nex_evto_b O Nexus event-out output

nex_wevto[3:0] O Nexus event-out output

nex_evti_b I Nexus event-in input

nex_mdo[n:0] O Nexus message data output

nex_mseo_b[1:0] O Nexus message start/end output

nex_ext_src_id[0:3] I Nexus SRC ID input

e200z759n3 Core Reference Manual, Rev. 2

850 Freescale Semiconductor

14.2.23 JTAG support signals

Table 14-22 details the primary JTAG interface signals. These signals are usually connected directly to
device pins (except for j_tdo, which needs tri-state and edge support logic). However, this may not be the
case when JTAG TAP controllers are concatenated together.

14.2.23.1 JTAG/OnCE serial input (j_tdi)

Data and commands are provided to the OnCE controller through the j_tdi pin. Data is latched on the rising
edge of the j_tclk serial clock. Data is shifted into the OnCE serial port least significant bit (LSB) first.

14.2.23.2 JTAG/OnCE serial clock (j_tclk)

The j_tclk pin supplies the serial clock to the OnCE control block. The serial clock provides pulses
required to shift data and commands into and out of the OnCE serial port. (Data is clocked into the OnCE
on the rising edge and is clocked out of the OnCE serial port on the rising edge.) The debug serial clock
frequency must be no greater than 50% of the processor clock frequency.

14.2.23.3 JTAG/OnCE serial output (j_tdo)

Serial data is read from the OnCE block through the j_tdo pin. Data is always shifted out the OnCE serial
port least significant bit (LSB) first. When data is clocked out of the OnCE serial port, j_tdo changes on
the rising edge of j_tclk. The j_tdo output signal is always driven.

An external system-level TDO pin may be tri-stateable and should be actively driven in the shift-IR and
shift-DR controller states. The j_tdo_en signal is supplied to indicate when an external TDO pin should
be enabled and is asserted during the shift-IR and shift-DR controller states. In addition, for IEEE1149
compliance, the system level pin should change state on the falling edge of TCLK.

14.2.23.4 JTAG/OnCE test mode select (j_tms)

The j_tms input is used to cycle through states in the OnCE Debug Controller. Toggling the j_tms pin
while clocking with j_tclk controls transitions through the TAP state controller.

Table 14-22. JTAG primary interface signals

Signal name Type Description

j_trst_b I JTAG test reset

j_tclk I JTAG test clock

j_tms I JTAG test mode select

j_tdi I JTAG test data input

j_tdo O Test data out to master controller or pad

j_tdo_en1

1 j_tdo_en is asserted when the TAP controller is in the shift_dr or shift_ir state.

O Enables TDO output buffer

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 851

14.2.23.5 JTAG/OnCE test reset (j_trst_b)

The j_trst_b input is used to externally reset the OnCE controller by placing it in the Test-Logic-Reset
state.

Table 14-23 details additional signals that may be used to support external JTAG data registers using the
e200z759n3 TAP controller.

14.2.23.6 Test-Logic-Reset (j_tst_log_rst)

This signal indicates the TAP controller is in the Test-Logic-Reset state.

14.2.23.7 Run-Test/Idle (j_rti)

This signal indicates the TAP controller is in the Run-Test/Idle state.

14.2.23.8 Capture IR (j_capture_ir)

This signal indicates the TAP controller is in the Capture_IR state.

14.2.23.9 Shift IR (j_shift_ir)

This signal indicates the TAP controller is in the Shift_IR state.

Table 14-23. JTAG signals used to support external registers

Signal Name Type Description

j_tst_log_rst O Indicates the TAP controller is in the Test-Logic-Reset state

j_rti O JTAG controller run-test/idle state

j_capture_ir O Indicates the TAP controller is in the capture IR state

j_shift_ir O Indicates the TAP controller is in shift IR state

j_update_ir O Indicates the TAP controller is in update IR state

j_capture_dr O Indicates the TAP controller is in the capture DR state

j_shift_dr O Indicates the TAP controller is in shift DR state

j_update_gp_reg O Updates JTAG controller general-purpose data register

j_gp_regsel[0:9] O General-purpose external JTAG register select

j_en_once_regsel O External enable OnCE register select

j_key_in I Serial data from external key logic

j_nexus_regsel O External Nexus register select

j_lsrl_regsel O External LSRL register select

j_serial_data I Serial data from external JTAG register(s)

e200z759n3 Core Reference Manual, Rev. 2

852 Freescale Semiconductor

14.2.23.10 Update IR (j_update_ir)

This signal indicates the TAP controller is in the Update_IR state.

14.2.23.11 Capture DR (j_capture_dr)

This signal indicates the TAP controller is in the Capture_DR state.

14.2.23.12 Shift DR (j_shift_dr)

This signal indicates the TAP controller is in the Shift_DR state.

14.2.23.13 Update DR w/write (j_update_gp_reg)

This signal indicates the TAP controller is in the Update_DR state and that the R/W bit in the OnCE
Command register is low (write command). The j_gp_regsel[0:9] signals should be monitored to see
which register, if any, needs to be updated.

14.2.23.14 Register select (j_gp_regsel)

The outputs shown in Table 14-24 are a decode of the REGSEL[0:6] field in the OnCE Command Register
(OCMD). They are used to specify which external general purpose JTAG register to access via the
e200z759n3 TAP controller.

14.2.23.15 Enable OnCE register select (j_en_once_regsel)

The j_en_once_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicates an external Enable_OnCE register is selected (0b1111110 encoding) for access
via the e200z759n3 TAP controller. This control signal may be used by external security logic to assist in
controlling the jd_enable_once input signal. The external Enable_OnCE register should be muxed onto
the j_serial_data input (Refer to Section 14.2.23.18, Serial data (j_serial_data)). During the Shift_DR
state, j_serial_data is supplied to the j_tdo output.

Table 14-24. JTAG general purpose register select decoding

Signal name Type Description

j_gp_regsel[0] O REGSEL[0:6]=7’h70

j_gp_regsel[1] O REGSEL[0:6]=7’h71

j_gp_regsel[2] O REGSEL[0:6]=7’h72

j_gp_regsel[3] O REGSEL[0:6]=7’h73

j_gp_regsel[4] O REGSEL[0:6]=7’h74

j_gp_regsel[5] O REGSEL[0:6]=7’h75

j_gp_regsel[6] O REGSEL[0:6]=7’h76

j_gp_regsel[7] O REGSEL[0:6]=7’h77

j_gp_regsel[8] O REGSEL[0:6]=7’h78

j_gp_regsel[9] O REGSEL[0:6]=7’h79

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 853

14.2.23.16 External Nexus register select (j_nexus_regsel)

The j_nexus_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicates an external Nexus register is selected (0b1111100 encoding) for access via the
e200z759n3 TAP controller.

14.2.23.17 External LSRL register select (j_lsrl_regsel)

The j_lsrl_regsel output is asserted when a decode of the REGSEL[0:6] field in the OnCE Command
Register (OCMD) indicates an external LSRL register is selected (0b1111101 encoding) for access via the
e200z759n3 TAP controller.

14.2.23.18 Serial data (j_serial_data)

This input signal receives serial data from external JTAG registers. All external registers share this one
serial output back to the core, therefore it must be muxed using the j_gp_regsel[0:9], j_lsrl_regsel, and
j_en_once_regsel signals. The data is internally routed to j_tdo.

Figure 14-3 shows one example of how an external JTAG register set (2) could be designed using the
inputs and outputs provided and by the JTAG primary inputs themselves. The main components are a clock
generation unit, a JTAG shifter (load, shift, hold, clr), the registers (load, hold, clr), and an input mux to
the shifter for the serial output back to the e200z759n3 core.The shifter and the registers may be as wide
as the application warrants [0:x]. The length determines the number of states the TAP controller is held in
Shift_DR (x+1).

e200z759n3 Core Reference Manual, Rev. 2

854 Freescale Semiconductor

Figure 14-3. Example external JTAG register design

14.2.23.19 Key data in (j_key_in)

This input signal receives serial data from logic to indicate a key or other value to be scanned out in the
Shift_IR state when the current value in the IR is the Enable_OnCE instruction. This input is provided to
assist in implementing security logic outside of the e200z759n3 that conditionally asserts jd_en_once.
During the Shift_IR state, when jd_en_once is negated, this input is sampled on the rising edge of j_tclk,
and after a two clock delay the data is internally routed to j_tdo. This allows provision of a key value via
the j_tdo output following a transition from Capture_IR to Shift_IR. The key value is provided via the
j_key_in input.

14.2.24 JTAG ID signals

Table 14-25 shows the JTAG ID register unique to Freescale as specified by the IEEE 1149.1 JTAG
Specification. Note that bit 31 is the MSB of this register.

Shifter

D

Data

Q

REG0
Q

D REG1
Q

j_gp_regsel[1:0] S

D

01

reg0_dat

reg1_dat

clk_reg02

clk_reg13

2. clk_reg0 = j_tclk & j_update_gp_reg & j_gp_regsel[0]
3. clk_reg1 = j_tclk & j_update_gp_reg & j_gp_regsel[1]

SI

SO
j_serial_data

j_tdi

clk_shfter1

1. clk_shfter = j_tclk & (j_shift_dr | j_capture_dr)

CLK
GEN

j_tclk

j_gp_regsel[1:0]

j_shift_dr

j_update_gp_reg

SHIFT
LOAD

j_capture_dr

j_shift_dr
j_capture_dr

j_trst_b

NOTES:

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 855

The e200z759n3 core shifts out a “1” as the first bit on j_tdo if the Shift_DR state is entered directly from
the test-logic-reset state. This is per the JTAG specification and informs any JTAG controller that an ID
register exists on the part. The e200z759n3 JTAG ID register is accessed by writing the OCMD (OnCE
Command Register) with the value 7’h02 in the REGSEL[0:6] field.

The JTAG ID bit, manufacturer ID field, and design center number are fixed by the JTAG Consortium
and/or Freescale. The version numbers and the two most significant bits (MSBs) of the sequence number
are variable and brought out to external ports. The lower eight bits of the sequence number are variable
and strapped internally to track variations in processor deliverables.

Table 14-26 shows the inputs to the JTAG ID register that are input ports on the e200z759n3 core. These
bits are provided for a customer to track revisions of a device using the e200z759n3 core.

14.2.24.1 JTAG ID sequence (j_id_sequence[0:1])

The j_id_sequence[0:1] inputs correspond to the two MSBs of the 10-bit sequence number in the JTAG
ID register. These inputs are normally static. They are provided for the customer for further component
variation identification.

14.2.24.2 JTAG ID sequence (j_id_sequence[2:9])

The j_id_sequence[2:9] field is internally strapped to track variations in processor and module
deliverables. Each e200z759n3 deliverable has a unique sequence number. Additionally, each revision of
these modules can be identified by unique sequence numbers.

14.2.24.3 JTAG ID version (j_id_version[0:3])

The j_id_version[0:3] inputs correspond to the 4-bit version number in the JTAG ID register. These inputs
are normally static. They are provided to the customer for strapping in order to facilitate easy identification
of component variants.

Table 14-25. JTAG register ID fields

Bit field Type Description Value

[31:28] Variable Version number Variable

[27:22] Fixed Design center number (ZEN) 6’b011111

[21:12] Variable Sequence number Variable

[11:1] Fixed Freescale manufacturer ID 11’b00000001110

0 Fixed JTAG ID register identification bit 1’b1

Table 14-26. JTAG ID register inputs

Signal name Type Description

j_id_sequence[0:1] I JTAG ID register (2 MSBs of sequence field)

j_id_version[0:3] I JTAG ID register version field

e200z759n3 Core Reference Manual, Rev. 2

856 Freescale Semiconductor

14.2.25 Test signals

Please refer to the e200z759n3 Test Guide for information on Test signals.

14.3 Timing diagrams

14.3.1 AHB clock enable and the internal HCLK

The CPU generates an internal HCLK to control AHB signal input sampling and output transitions based
on the internal m_clk and the p_[i,d]_ahb_clken signals. The following diagrams show the relationships
of these signals and the resulting HCLK. Note that since no AHB signals are sampled or change state on
the falling edge of HCLK, the duty cycle is not an issue.

Figure 14-4 shows an example of a free-running half-speed HCLK relative to m_clk.

Figure 14-4. AHB clock enable operation — 1

Figure 14-5 shows an example of a free-running 1/3 speed HCLK relative to m_clk.

Figure 14-5. AHB clock enable operation — 2

Figure 14-6 shows an example of a non-periodic HCLK, used for power reduction, relative to m_clk.

Figure 14-6. AHB clock enable operation —3

14.3.2 Processor instruction/data transfers

Transfer of data between the core and peripherals involves the address bus, data busses, and control and
attribute signals. The address and data buses are parallel, non-multiplexed buses, supporting byte,

1 2 3 4 5

m_clk

p_[d,i]_ahb_clken

internal HCLK

1 2 3 4 5 6 7

m_clk

p_[i,d]_ahb_clken

internal HCLK

1 2 3 4 5 6 7 8 9

m_clk

p_[i,d]_ahb_clken

internal HCLK

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 857

halfword, three byte, word, and doubleword transfers. All bus input and output signals are sampled and
driven with respect to the rising edge of the m_clk signal. The core moves data on the bus by issuing
control signals and using a handshake protocol to ensure correct data movement.

The memory interface operates in a pipelined fashion to allow additional access time for memory and
peripherals. AHB transfers consist of an address phase that lasts only a single cycle, followed by the data
phase, which may last for one or more cycles depending on the state of the p_hready signal.

Read transfers consist of a request cycle, where address and attributes are driven along with a transfer
request, and one or more memory access cycles to perform accesses and return data to the CPU for
alignment, sign or zero extension, and forwarding.

Write transfers consist of a request cycle, where address and attributes are driven along with a transfer
request, and one or more data drive cycles where write data is driven and external devices accept write data
for the access.

Access requests are generated in an overlapped fashion in order to support sustained single cycle transfers.
Up to two access requests may be in progress at any one cycle, one access outstanding and a second in the
pending request phase.

Access requests are assumed to be accepted as long as there are no accesses in progress, or if an access in
progress is terminated during the same cycle a new request is active (p_hready asserted). Once an access
has been accepted, the BIU is free to change the current request at any time, even if part of a burst transfer.

The local memory control logic is responsible for proper pipelining and latching of all interface signals to
initiate memory accesses.

The system hardware can use the p_hresp[2:0] signals to signal that the current bus cycle has an error
when a fault is detected, using the ERROR response encoding. ERROR assertion requires a two cycle
response. In the first cycle of the response, the p_hresp[2:0] signals are driven to indicate ERROR and
p_hready must be negated. During the following cycle, the ERROR response must continue to be driven,
and p_hready must be asserted. When the core recognizes a bus error condition for an access at the end
of the first cycle of the two cycle error response, a subsequent pending access request may be removed by
the BIU driving the p_htrans[2:0] signals to the IDLE state in the second cycle of the two cycle error
response. Not all pending requests will be removed however.

When a bus cycle is terminated with a bus error, the core can enter storage error exception processing
immediately following the bus cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the instruction memory unit before it
is ready to execute them. If a bus error occurs on an instruction fetch, the core does not take the exception
until it attempts to use the instruction. Should an intervening instruction cause a branch, or should a task
switch occur, the storage error exception for the unused access does not occur. A bus error termination for
any write access or read access that reference data specifically requested by the execution unit causes the
core to begin exception processing.

NOTE
In the following diagrams showing AHB operations, note that the HCLK
signal is that of the AHB bus, i.e. m_clk qualified by p_[i,d]_ahb_clken

e200z759n3 Core Reference Manual, Rev. 2

858 Freescale Semiconductor

14.3.2.1 Basic read transfer cycles

During a read transfer, the core receives data from a memory or peripheral device. Figure 14-7 illustrates
functional timing for basic read transfers. Clock-by-clock descriptions of activity in Figure 14-7 follows:

Figure 14-7. Basic read transfers

Clock 1 (C1)

The first read transfer starts in clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer
type (p_htrans[1:0]) attributes identify the specific access type. The transfer size attributes (p_hsize[1:0])
indicates the size of the transfer. The byte strobes (p_hbstrb[7:0]) are driven to indicate active byte lanes.
The write (p_hwrite) signal is driven low for a read cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being
requested. Since the bus is currently idle, (0 transfers outstanding), the first read request to addrx is
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle
cycle.

Clock 2 (C2):

During C2, the addrx memory access takes place using the address and attribute values that were driven
during C1 to enable reading of one or more bytes of memory. Read data from the slave device is provided
on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle is
completing and drives an OKAY response.

Another read transfer request is made during C2 to addry (p_htrans = NONSEQ), and since the access to
addrx is completing, it is considered taken at the end of C2.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

Single cycle reads, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 859

Clock 3 (C3):

During C3, the addry memory access takes place using the address and attribute values that were driven
during C2 to enable reading of one or more bytes of memory. Read data from the slave device for addry is
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle
is completing and drives an OKAY response.

Another read transfer request is made during C3 to addrz (p_htrans = NONSEQ), and since the access to
addry is completing, it is considered taken at the end of C3.

Clock 4 (C4):

During C4, the addrz memory access takes place using the address and attribute values that were driven
during C3 to enable reading of one or more bytes of memory. Read data from the slave device for addrz is
provided on the p_hrdata inputs. The slave device responds by asserting p_hready to indicate the cycle
is completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htrans indicates IDLE. The address and attribute signals
are thus undefined.

14.3.2.2 Read transfer with wait state

Figure 14-8 shows an example of wait state operation. Signal p_hready for the first request (addrx) is not
asserted during C2, so a wait state is inserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry, which is not taken in C2, since
the previous transaction is still outstanding. The address and transfer attributes remain driven in cycle C3
and are taken at the end of C3 since the previous access is completing. Data for addrx and a ready/OKAY
response is driven back by the slave device. In cycle C4, a request for addrz is made. The request for access
to addrz is taken at the end of C4, and during C5, the data and a ready/OKAY response is provided by the
slave device. In cycle C5, no further accesses are requested.

e200z759n3 Core Reference Manual, Rev. 2

860 Freescale Semiconductor

Figure 14-8. Read transfer with wait state

14.3.2.3 Basic write transfer cycles

During a write transfer, the core provides write data to a memory or peripheral device. Figure 14-9
illustrates functional timing for basic write transfers. Clock-by-clock descriptions of activity in
Figure 14-9 follows:

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

Read with wait-state, single cycle reads, full pipelining
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 861

Figure 14-9. Basic write transfers

Clock 1 (C1)

The first write transfer starts in clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The burst type (p_hburst[2:0]), protection control (p_hprot[5:0]), and transfer
type (p_htrans[1:0]) attributes identify the specific access type. The transfer size attributes (p_hsize[1:0])
indicates the size of the transfer. The byte strobes (p_hbstrb[7:0]) are driven to indicate active byte lanes.
The write (p_hwrite) signal is driven high for a write cycle.

The core asserts transfer request (p_htrans= NONSEQ) during C1 to indicate that a transfer is being
requested. Since the bus is currently idle, (0 transfers outstanding), the first write request to addrx is
considered taken at the end of C1. The default slave drives an ready/OKAY response for the current idle
cycle.

Clock 2 (C2):

During C2, the write data for the access is driven, and the addrx memory access takes place using the
address and attribute values that were driven during C1 to enable writing of one or more bytes of memory.
The slave device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY
response.

Another write transfer request is made during C2 to addry (p_htrans = NONSEQ), and since the access to
addrx is completing, it is considered taken at the end of C2.

Clock 3 (C3):

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay

Single cycle writes, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

862 Freescale Semiconductor

During C3, write data for addry is driven, and the addry memory access takes place using the address and
attribute values that were driven during C2 to enable writing of one or more bytes of memory. The slave
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

Another write transfer request is made during C3 to addrz (p_htrans = NONSEQ), and since the access to
addry is completing, it is considered taken at the end of C3.

Clock 4 (C4):

During C4, write data for addrz is driven, and the addrz memory access takes place using the address and
attribute values that were driven during C3 to enable writing of one or more bytes of memory. The slave
device responds by asserting p_hready to indicate the cycle is completing and drives an OKAY response.

The CPU has no more outstanding requests, so p_htrans indicates IDLE. The address and attribute signals
are thus undefined.

14.3.2.4 Write transfer with wait states

Figure 14-10 shows an example of write wait state operation. Signal p_hready for the first request (addrx)
is not asserted during C2, so a wait state is inserted until p_hready is recognized (during C3).

Meanwhile, a subsequent request has been generated by the CPU for addry, which is not taken in C2, since
the previous transaction is still outstanding. The address, transfer attributes, and write data remain driven
in cycle C3 and are taken at the end of C3 since a ready/OKAY response is driven back by the slave device
for the previous access. In cycle C4, a request for addrz is made. The request for access to addrz is taken
at the end of C4, and during C5, a ready/OKAY response is provided by the slave device. In cycle C5, no
further accesses are requested.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 863

Figure 14-10. Write transfer with wait state

14.3.2.5 Read and write transfers

Figure 14-11 shows a sequence of read and write cycles.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y data z

okay okay okay okay okay

Write with wait-state, single cycle writes, full pipelining
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

864 Freescale Semiconductor

Figure 14-11. Single-cycle read and write transfers — 1

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second read request (addry) is taken at the end of C2 since a ready/OKAY response is asserted during
C2 for the first read access (addrx). During C3, a request is generated for a write to addry, which is taken
at the end of C3 since the second access is terminating.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken, and a ready/OKAY
response is signaled to complete the write cycle to addrz.

Figure 14-12 shows another sequence of read and write cycles. This example shows an interleaved write
access between two reads.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay okay okay okay

Single cycle reads, single cycle write, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 865

Figure 14-12. Single-cycle read and write transfers — 2

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The first write request (addry) is taken at the end of C2 since the first access is terminating (addrx).

Data for the addry write cycle is driven in C3, the cycle after the access is taken. Also during C3, a request
is generated for a read to addrz, which is taken at the end of C3 since the write access is terminating.

During C4, the addry write access is terminated, and no further access is requested.

Figure 14-13 shows another sequence of read and write cycles. In this example, reads incur a single wait
state.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data z

data y

okay okay okay okay

Single cycle read, write, read - full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

866 Freescale Semiconductor

Figure 14-13. Multi-cycle read and write transfers — 1

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second read request (addry) is not taken at the end of cycle C2 since no ready response is signaled and
only one access can be outstanding (addrx). It is taken at the end of C3 once the first read request has
signaled a ready/OKAY response.

The first write request (addrz) is not taken during C4 since a ready response is not asserted during C4 for
the second read access (addry). During C5, the request for a write to addrz is taken since the second access
is terminating.

Data for the addrz write cycle is driven in C6, the cycle after the access is taken.

During C6, the addrz write access is terminated and the addrw write request is taken.

During C7, data for the addrw write access is driven, and a ready/OKAY response is asserted to complete
the write cycle to addrw.

Figure 14-14 shows another sequence of read and write cycles. In this example, reads incur a single wait
state.

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data y

data z data w

okay okay okay okay okay okay okay

Reads with wait-state, single cycle writes, full pipelining
1 2 3 4 5 6 7 8

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 867

Figure 14-14. Multi-cycle read and write transfers — 2

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The first write request (addry) is not taken at the end of cycle C2 since no ready response is signaled and
only one access can be outstanding (addrx). It is taken at the end of C3 once the first read request has
signaled a ready/OKAY response.

Data for the addry write cycle is driven in C4, the cycle after the access is taken.

The second read request (addrz) is taken during C4 since the addry write is terminating.

A second write request (addrw) is not taken at the end of C5 since the second read access is not terminating,
thus it continues to drive the address and attributes into cycle C6.

During C6, the addrz read access is terminated and the addrw write access is taken.

In cycle C7, data for the addrw write access is driven. During C7, a ready/OKAY response is asserted to
complete the write cycle to addrw. No further accesses are requested, so p_htrans signals IDLE.

14.3.2.6 Misaligned accesses

Figure 14-15 illustrates functional timing for a misaligned read transfer. The read to addrx is misaligned
across a 64-bit boundary.

nonseq nonseq nonseq nonseq idle

addr x addr y addr z addr w

single single single single

data x data z

data y data w

okay okay okay okay okay okay okay

Read with wait-state, single cycle write, read with wait-state, single cycle write, full pipelining
1 2 3 4 5 6 7 8

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

868 Freescale Semiconductor

Figure 14-15. Misaligned read transfer

The first portion of the misaligned read transfer starts in C1. During C1, the core places valid values on
the address bus and transfer attributes. The p_hwrite signal is driven low for a read cycle. The transfer
size attributes (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size
value driven corresponds to the size of the entire misaligned data item. p_hunalign is driven high to
indicate that the access is misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes
for the read, which may not correspond to size and low-order address outputs. p_htrans is driven to
NONSEQ.

During C2, the addrx memory access takes place using the address and attribute values that were driven
during C1 to enable reading of one or more bytes of memory.

The second portion of the misaligned read transfer request is made during C2 to addrx+ (which will be
aligned to the next higher 64-bit boundary), and since the first portion of the misaligned access is
completing, it is taken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven is
the size of the remaining bytes of data in the misaligned read, rounded up (for the 3-byte case) to the next
higher power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a
misaligned transfer, the p_hunalign signal is driven high for the 3-byte case (low for all others). The next
read access is requested in C3 and p_htrans indicates NONSEQ. p_hunalign is negated, since this access
is aligned.

Figure 14-16 illustrates functional timing for a misaligned write transfer. The write to addrx is misaligned
across a 64-bit boundary.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

Misaligned read, read, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 869

Figure 14-16. Misaligned write transfer

The first portion of the misaligned write transfer starts in C1. During C1, the core places valid values on
the address bus and transfer attributes. The p_hwrite signal is driven high for a write cycle. The transfer
size attribute (p_hsize) indicate the size of the transfer. Even though the transfer is misaligned, the size
value driven corresponds to the size of the entire misaligned data item. p_hunalign is driven high to
indicate that the access is misaligned. The p_hbstrb outputs are asserted to indicate the active byte lanes
for the write, which may not correspond to size and low-order address outputs. p_htrans is driven to
NONSEQ.

During C2, data for addrx is driven, and the addrx memory access takes place using the address and
attribute values that were driven during C1 to enable writing of one or more bytes of memory.

The second portion of the misaligned write transfer request is made during C2 to addrx+ (which will be
aligned to the next higher 64-bit boundary), and since the first portion of the misaligned access is
completing, it is taken at the end of C2. The p_htrans signals indicate NONSEQ. The size value driven is
the size of the remaining bytes of data in the misaligned write, rounded up (for the 3-byte case) to the next
higher power-of-2. The p_hbstrb signals indicate the active byte lanes. For the second portion of a
misaligned transfer, the p_hunalign signal is driven high for the 3-byte case (low for all others).

The next write access is requested in C3 and p_htrans indicates NONSEQ. p_hunalign is negated, since
this access is aligned.

An example of a misaligned write cycle followed by an aligned read cycle is shown in Figure 14-17. It is
similar to the previous example in Figure 14-16.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data x data x+ data y

okay okay okay okay

Misaligned write, write, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

870 Freescale Semiconductor

Figure 14-17. Misaligned write, single-cycle read transfer

14.3.2.7 Burst accesses

Figure 14-18 illustrates functional timing for a burst read transfer.

nonseq nonseq nonseq idle

addr x addr x+ addr y

single single single

 **

data y

data x data x+

okay okay okay okay

Misaligned write, single cycle read, full pipelining
1 2 3 4 5

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 871

Figure 14-18. Burst read transfer

The p_hburst signals will indicate WRAP4 for all burst transfers. The p_hunalign signal will be negated.
p_hsize will indicate 64-bits, and all eight p_hbstrb signals will be asserted. The burst address will be
aligned to a 64-bit boundary and will wrap around modulo four doublewords. Note that in this example
the p_htrans signal indicates IDLE after the last portion of the burst has been taken, but this is not always
the case.

NOTE
Bursts may be followed immediately by any type of transfer. No idle cycle
is required.

Figure 14-19 illustrates functional timing for a burst read with wait-state transfer.

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay

Burst Read
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

872 Freescale Semiconductor

Figure 14-19. Burst read with wait-state transfer

The first cycle of the burst incurs a single wait-state.

Figure 14-20 illustrates functional timing for a burst write transfer.

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

Burst Read with wait-state
1 2 3 4 5 6 7

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 873

Figure 14-20. Burst write transfer

Figure 14-19 illustrates functional timing for a burst write with wait-state transfer.

Figure 14-21. Burst write with wait-state transfer

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay

Burst Write
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

nonseq seq seq seq idle

addr x addr x+8 addr x+16 addr x+24

wrap4

data x data x+8 data x+16 data x+24

okay okay okay okay okay okay

Burst Write with wait-state
1 2 3 4 5 6 7

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

874 Freescale Semiconductor

The first cycle of the burst incurs a single wait-state. Data for the second beat of the burst is valid the cycle
after the second beat is taken.

14.3.2.8 Error termination operation

The p_hresp[2:0] inputs are used to signal an error termination for an access in progress. The ERROR
encoding is used in conjunction with the assertion of p_hready to terminate a cycle with error. Error
termination is a two-cycle termination; the first cycle consists of signaling the ERROR response on
p_hresp[2:0] while holding p_hready negated, and during the second cycle, asserting p_hready while
continuing to drive the ERROR response on p_hresp[2:0]. This two cycle termination allows the BIU to
retract a pending access if it desires to do so. p_htrans may be driven to IDLE during the second cycle of
the two-cycle error response, or may change to any other value, and a new access unrelated to the pending
access may be requested. The cycle that may have been previously pending while waiting for a response
that terminates with error may be changed. It is not required to remain unchanged when an error response
is received.

Figure 14-22 shows an example of error termination.

Figure 14-22. Read and write transfers, instruction read error termination

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle. It is an instruction
prefetch.

The second read request (addry) is not taken at the end of C2 since the first access is still outstanding (no
p_hready assertion). An error response is signaled by the addressed slave for addrx by driving ERROR
onto the p_hresp[2:0] inputs. This is the first cycle of the two cycle error response protocol.

nonseq nonseq nonseq idle

addr x addr y addr z

single single single

data x data y

data z

okay error error okay okay

Instruction read with error, data read, write, full pipelining
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 875

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding remains driven
on p_hresp[2:0], terminating the access. The read data bus is undefined.

In this example of error termination, the CPU continues to request an access to addry. It is taken at the end
of C3. During C4, read data is supplied for the addry read, and the access is terminated normally during C4.

Also during C4, a request is generated for a write to addrz, which is taken at the end of C4 since the second
access is terminating.

Data for the addrz write cycle is driven in C5, the cycle after the access is taken.

During C5, a ready/OKAY response is signaled to complete the write cycle to addrz.

In this example of error termination, a subsequent access remained requested. This does not always occur
when certain types of transfers are terminated with error. The following figures outline cases where an
error termination for a given cycle causes a pending request to be aborted prior to initiation.

Figure 14-23 shows another example of error termination.

Figure 14-23. Data read error termination

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle. It is a data read.

The second request (write to addry) is not taken at the end of C2 since the first access is still outstanding
(no p_hready assertion). An error response is signaled by the addressed slave for addrx by driving ERROR
onto the p_hresp[2:0] inputs. This is the first cycle of the two cycle error response protocol.

p_hready is asserted during C3 for the first read access (addrx) while the ERROR encoding remains driven
on p_hresp[2:0], terminating the access. The read data bus is undefined.

nonseq nonseq idle nonseq idle

addr x addr y addr z

single single single

data x data z

okay error error okay okay

Data read with error, data write retracted, inst. read, full pipelining
1 2 3 4 5 6

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

876 Freescale Semiconductor

In this example of error termination, the CPU retracts the requested access to addry by driving the
p_htrans signals to the IDLE state during the second cycle of the two-cycle error response.

A different access to addrz is requested during C4 and is taken at the end of C4. During C5, read data is
supplied for the addrz read, and the access is terminated normally.

In this example of error termination, a subsequent access was aborted.

Figure 14-24 shows another example of error termination, this time on the initial portion of a misaligned
write.

Figure 14-24. Misaligned write error termination, burst substituted

The first portion of the misaligned write request is terminated with error. The second portion is aborted by
the CPU during the second cycle of the two cycle error response, and a subsequent burst read access to
addrw becomes pending instead.

Figure 14-25 shows another example of error termination, this time on the initial portion of a burst read.
The aborted burst is followed by a burst write.

nonseq nonseq idle nonseq seq seq seq idle

addr x addr x+ addr w addr w+8 addr w+16 addr w+24

single single wrap 4

**

data w w+8 w+16 w +24

data x

okay error error okay okay okay okay okay

misaligned write with error, data write retracted, burst read substituted, full pipelining
1 2 3 4 5 6 7 8

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 877

Figure 14-25. Burst read error termination, burst write substituted

The first portion of the burst read request is terminated with error. The second portion is aborted by the
CPU during the second cycle of the two cycle error response, and a subsequent burst write access to addry
becomes pending instead.

14.3.3 Memory synchronization control operation

The memory synchronization signaling interface is provided to allow for synchronization operations
initiated by execution of an msync or mbar (MO=0,1) to be signaled external to the CPU and to allow for
handshaking of completion of the operations by other logic within the SoC. The interface provides a means
for signaling that a synchronization operation should be performed, as well as controlling of the abort of
an operation if a pending interrupt is detected by the CPU performing the synchronization instruction. This
allows for minimization of interrupt latency while waiting for completion of the necessary operations
required for performing the synchronization. Such an aborted operation will be reattempted once the
interrupt handler has completed and the synchronization instruction is re-executed. In general, the
synchronization operations involved flushing any pending stores from the CPU executing the msync or
mbar to their final destinations (performing of pending store operations), which requires (at a minimum)
flushing the store buffers of the initiating CPU, and flushing any pending snoop invalidation operations
that were required by the operations performed by the initiating CPU prior to execution of the msync or
mbar instruction. This may involve flushing of various store buffers and snoop queues interposed between
elements of the coherency domain in the SoC, including coherency manager structures and other queues.
The signals comprising the Memory Synchronization control interface are described in Section 14.2.10,
Memory synchronization control signals. The following diagrams show examples of basic operation of the
interface.

nonseq seq idle nonseq seq seq seq idle

addr x addr x+8 addr y addr y+8 addr y+16 addr y+24

wrap4 wrap4

data x

data y y+8 y+16 y+24

okay error error okay okay okay okay okay

Burst Read with error termination, Burst write
1 2 3 4 5 6 7 8

hclk

p_htrans

p_addr,p_hprot

p_hsize,

p_hbstrb, etc

p_hburst

p_hunalign

p_hwrite

p_hrdata

p_hwdata

p_hready

p_hresp

e200z759n3 Core Reference Manual, Rev. 2

878 Freescale Semiconductor

Figure 14-26 illustrates functional timing for an example memory synchronization operation. In the
example shown, there are two CPUs in the system. In cycles 1 and 2, CPU0 decodes an msync instruction,
suspends any further operand transfers, and flushes the internal push and store buffers to ensure the results
of all previous store instructions have been made visible. After this activity completes, CPU0 asserts the
p_sync_req_out output to signal to the SoC that a memory synchronization operation is to be performed.
In the example, there are no intermediate buffers or queues in the SoC needing to be flushed, so the
memory synchronization request input p_sync_req_in of CPU1 is asserted in cycle N, without additional
delay that would be need if such queues and buffers existed and needed to be flushed in order for CPU1 to
see any previously initiated memory operations performed. In cycle N+1, CPU1 begins flushing its
internal snoop queue to process all pending snoop operations present at the time of the receipt of the
p_sync_req_in. Following the processing of all of the snoop commands pending up to the point of the
memory sync request, in cycle M, CPU1 responds by asserting its p_sync_ack_out output signal, which
in this example is driven back to CPU0’s p_sync_ack_in input in cycle M, which results in completion of
the memory synchronization operation in cycle M+1. CPU0 negates the p_sync_req_out signal in cycle
M+1, thus negating CPU1’s p_sync_req_in signal. In response, in cycle M+2, CPU1 negates
p_sync_ack_out. Note that in this simple example, the corresponding inputs and outputs of CPU0 and
CPU1 are tied together, however in many systems, this handshaking sequence will be controlled by
intermediary logic such as a cache coherency manager responsible for the correct directing of
synchronization operations to the proper participants.

Figure 14-26. Memory sync operation — basic operation

Figure 14-27 illustrates functional timing for an example memory synchronization operation that is
interrupted by a pending interrupt request. In cycles 1 and 2, CPU0 decodes an msync instruction,
suspends any further operand transfers, and flushes the internal push and store buffers to ensure the results
of all previous store instructions have been made visible. After this activity completes, CPU0 asserts the
p_sync_req_out output in cycle N to signal to the SoC that a memory synchronization operation is to be
performed. In cycle N however, an interrupt becomes pending in CPU0. In cycle N+1, CPU1 begins
flushing its internal snoop queue to process all pending snoop operations present at the time of the receipt
of the p_sync_req_in, however, in this cycle, CPU0 negates the p_sync_request_out output prior to
receiving a p_sync_ack_in completion handshake, and aborts the msync instruction. In cycle N+1,
CPU1’s p_sync_req_in signal is negated in response. In subsequent cycles, CPU0 beings interrupt
exception processing, and CPU1 is free to either complete the flushing of the snoop queue, or to abort it

decode msync stop fetching execute msync, wait for sync_ack_in complete msync

flush snoop queue

Sync Port Operation - Normal Case

1 N

flush buffs

N+2N+1 M M+1 M+2
m_clk

CPU0 activity

p_sync_req_out

p_sync_ack_in

CPU1 activity

p_sync_req_in

p_sync_ack_out

ignored until cycle after
sync_req_out asserted

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 879

and resume normal operation. After CPU0 completes the interrupt handler, it will re-initiate the msync
operation (not shown).

Figure 14-27. Memory sync operation — interruption operation

Figure 14-28 illustrates functional timing for another example memory synchronization operation. In this
example, the snoop queue of CPU1 is empty, and the handshake completes earlier. This example is
intended to show that there is no minimum time requirement between the assertion of p_sync_req_in, and
the corresponding assertion of p_sync_ack_out, although not every implementation will respond this
quickly.

Figure 14-28. Memory sync operation — snoop queue empty

Figure 14-29 illustrates functional timing for another example memory synchronization operation. In this
example, there are back-to-back sync instructions executed by CPU0. This example is intended to show
that the p_sync_req_out output will transition for each individual synchronization request operation, with
a minimum of one clock of negation interval between operation requests, and that because of the protocol

decode msync stop fetching execute msync, interrupted begin exception processing

begin snoop queue flush resume operation

Sync Port Operation - Interrupt Case

1 N

flush buffs

N+2N+1 N+3 N+4 N+5
m_clk

CPU0 activity

p_ipend

p_sync_req_out

p_sync_ack_in

CPU1 activity

p_sync_req_in

p_sync_ack_out

ignored until cycle after
sync_req_out asserted

ignored until cycle after
sync_req_out asserted

decode msync stop fetching execute msync, wait for sync_ack_in complete msync

check queue status

Sync Port Operation - Snoop Queue Empty

1 N

flush buffs

N+2N+1 N+3
m_clk

CPU0 activity

p_sync_req_out

p_sync_ack_in

CPU1 activity

p_sync_req_in

p_sync_ack_out

e200z759n3 Core Reference Manual, Rev. 2

880 Freescale Semiconductor

on p_sync_ack_out assertion, p_sync_req_in must also negate and then reassert in order to request a
second synchronization operation.

Figure 14-29. Memory sync operation — 2nd msync back-to-back

14.3.4 Cache coherency interface operation

The cache coherency signaling interface is provided to support hardware cache coherency operations by
the e200z759n3.

Figure 14-30 illustrates functional timing for a set of basic snoop request operations. Snoop requests are
presented in cycles 1, 2, and 3, and enter the snoop queue. As requests are processed, they are
acknowledged. In this example, the snoops miss in the cache and require only a single cache access slot
for lookup. The exact cycle the requests are acknowledged may vary, and are not directly related to the
cycle the requests occur.

Figure 14-30. Basic cache coherency interface operation — misses

Figure 14-31 illustrates functional timing for a snoop hit with invalidate. The exact cycle the requests are
acknowledged may vary, and are not directly related to the cycle the requests occur.

ignored until cycle after
sync_req_out asserted

decode msync stop fetching execute msync, wait for sync_ack_in complete msyncnext msync

flush snoop queue

Sync Port Operation - 2nd msync

1 N

flush buffs

N+2N+1 M M+1 M+2

m_clk

CPU0 activity

p_sync_req_out

p_sync_ack_in

CPU1 activity

p_sync_req_in

p_sync_ack_out

snpaddr a snpaddr b snpaddr c

x y z

CPU snpaddr a CPU snpaddr b snpaddr c

X Y Z

snp a resp snp b resp snp c resp

Snoop interface operation - misses in cache

1 2 3 4 5 6 7 8

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 881

Figure 14-31. Basic cache coherency interface operation — hit

Figure 14-32 illustrates another example of timing for a snoop request. This example shows the starvation
control for a snoop that sits in the snoop queue until the snoop starvation counter expires, due to blockage
by a continuous stream of CPU requests.

Figure 14-32. Cache coherency interface operation — snoop starvation timeout

Figure 14-33 illustrates operation of the p_snp_rdy output and snoop request acceptance. In this example,
p_snp_rdy is initially asserted, but in cycle 1 is negated due to the snoop queue filling. A snoop request
for snpaddr ‘a’ is asserted in cycle 1. This request is taken and entered into the snoop queue at the end of
cycle 1. In cycle 2, p_snp_rdy is still negated, and a snoop request for snpaddr ‘b’ is presented. This
request is also accepted and loaded into the snoop queue at the end of cycle 2, to allow for systems to use
p_snp_rdy from one CPU as a control qualifier to drive the p_stall_bus_gwrite input control of another
CPU. Following this, in cycle 3 another snoop request is presented for snpaddr ‘c’. This request is not
accepted, and must remain pending until the cycle after p_snp_rdy re-asserts to be recognized. In cycle 5,
p_snp_rdy is reasserted, indicating that the snoop queue can begin to store additional requests starting in
the next cycle. Due to the protocol on p_snp_rdy, a minimum of two snoop queue entries must be
available before p_snp_rdy can be re-asserted. Since a snoop request was pending at the end of cycle 4

snpaddr a snpaddr b

INV INV

x y

CPU snpaddr a CPU snpaddr a - INV snpaddr b

X Y

snp a resp snp b resp

Snoop interface operation - hit in cache

1 2 3 4 5 6 7 8

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

snpaddr a

x

CPU snpaddr a CPU

X

snp a resp

Snoop interface operation - snoop starvation counter timeout

1 2 9 10 11 12 13

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

882 Freescale Semiconductor

(p_snp_req was asserted), the p_snp_rdy output will re-assert for one cycle once two free queue entries
are available. The request for snpaddr ‘c’ will be queued at the end of cycle 6. In cycle 6, p_snp_rdy is
again negated, due to limited available snoop queue entries. This negation occurs in cycle 6 since
p_snp_rdy was asserted during cycle 5 with only two free entries in the queue. When no pending snoop
request is presented (p_snp_req is negated), p_snp_rdy will not be re-asserted until three queue entries
are available. This is so that the p_snp_rdy signal does not alternate between asserted and negated, which
must happen when only two queue entries are available. The re-assertion of p_snp_rdy in cycle 5 allows
the pending request for snpaddr ‘c’ to be accepted at the end of cycle 6. A new snoop request to snpaddr
‘d’ is made in cycle 7, and is accepted even though p_snp_rdy was negated in cycle 6, according to the
p_snp_rdy protocol. A subsequent snoop request to snpaddr ‘e’ presented in cycle 8 must remain pending
to be accepted until p_snp_rdy re-asserts after two free queue entries are once again available. Note that
in cycles 5 and 6, earlier snoop requests to snpaddr ‘m’ and ‘n’ are processed, and the completion of these
requests are signaled in cycles 7 and 8.

Figure 14-33. Cache coherency interface operation — p_snp_rdy operation

Figure 14-34 illustrates another example of operation of the p_snp_rdy output and snoop request
acceptance. In this example, p_snp_rdy is initially asserted, but in cycle 1 is negated due to the snoop
queue filling. A snoop request for snpaddr ‘a’ is asserted in cycle 1. This request is taken and entered into
the snoop queue at the end of cycle 1. In cycle 2, p_snp_rdy is still negated, and a snoop request for
snpaddr ‘b’ is presented. This request is also accepted and loaded into the snoop queue at the end of cycle
2, to allow for systems to use p_snp_rdy from one CPU as a control qualifier to drive the
p_stall_bus_gwrite input control of another CPU. Following this, in cycle 3 another snoop request is
presented for snpaddr ‘c’. This request is not accepted, and must remain pending until the cycle after
p_snp_rdy re-asserts to be recognized. In cycle 5, p_snp_rdy is reasserted, indicating that the snoop
queue can begin to store additional requests starting in the next cycle. Due to the protocol on p_snp_rdy,
a minimum of two snoop queue entries must be available before p_snp_rdy can be re-asserted. Since a
snoop request was pending at the end of cycle 4 (p_snp_req was asserted), the p_snp_rdy output will
re-assert for one cycle once two free queue entries are available. In this example however, the request for
snpaddr ‘c’ will not be queued at the end of cycle 6, since the request is no longer present. In cycle 6,
p_snp_rdy negates, since three queue entries have not yet become available. In cycle 7, p_snp_rdy can
be re-asserted indicating at least three queue entries are available, and in cycle 8, a new snoop request is
presented and accepted for snpaddr ‘x’. Note that in cycles 6 and 7, earlier snoop requests to snpaddr ‘m’

snpaddr a snpaddr b snpaddr c snpaddr d snpaddr e

x y z w t

snpaddr m snpaddr n snpaddr p

M N

snp m resp snp n resp

Snoop interface operation - p_snp_rdy operation

1 2 3 4 5 6 7 8 9

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 883

and ‘n’ are processed, freeing up the needed queue entries for the re-assertion of p_snp_rdy, and the
completion of these requests are signaled in cycles 8 and 9.

Figure 14-34. Cache coherency interface operation — p_snp_rdy operation, p_snp_req negation prior to
acceptance

Figure 14-35 illustrates another example of operation of the p_snp_rdy output and snoop request
acceptance. In this example, p_snp_rdy is initially asserted, but in cycle 1 is negated due to the snoop
queue filling. A snoop request for snpaddr ‘a’ is asserted in cycle 1. This request is taken and entered into
the snoop queue at the end of cycle 1. In cycle 2, p_snp_rdy is still negated, and a snoop request for
snpaddr ‘b’ is presented. This request is also accepted and loaded into the snoop queue at the end of cycle
2, to allow for systems to use p_snp_rdy from one CPU as a control qualifier to drive the
p_stall_bus_gwrite input control of another CPU. Following this, in cycle 3 another snoop request is
presented for snpaddr ‘c’. This request is not accepted, and must remain pending until the cycle after
p_snp_rdy re-asserts to be recognized. In cycle 5, p_snp_rdy is reasserted, indicating that the snoop
queue can begin to store additional requests starting in the next cycle. Due to the protocol on p_snp_rdy,
a minimum of two snoop queue entries must be available before p_snp_rdy can be re-asserted. Since a
snoop request was pending at the end of cycle 4 (p_snp_req was asserted), the p_snp_rdy output will
re-assert for one cycle once two free queue entries are available. In this example however, the request for
snpaddr ‘c’ will not be queued at the end of cycle 6, since the request is no longer present. In cycle 6,
p_snp_rdy negates, since three queue entries have not yet become available. In cycle 8, a new snoop
request is presented and accepted for snpaddr ‘x’. Note that since the p_snp_rdy output was asserted in
cycle 5, a snoop request present in ether or both of cycles 6 and 7 will be accepted as per the protocol.

snpaddr a snpaddr b snpaddr c snpaddr x

x y z

snpaddr m snpaddr n

M N

snp m resp snp n resp

Snoop interface operation - p_snp_rdy operation, p_snp_req negates

1 2 3 4 5 6 7 8 9

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

884 Freescale Semiconductor

Figure 14-35. p_snp_rdy operation, p_snp_req negation prior to acceptance, reasserted later in ready
window

14.3.4.1 Stop mode entry/exit and snoop ready signaling

When a request is made to enter stop mode via the assertion of p_stop, the p_snp_rdy output will be
negated. While the core complex is in the Stopped (power-down) state, bus snooping is disabled, and the
p_snp_rdy output is held negated. Snoop requests will be processed around the assertion of the stop mode
entry request (assertion of p_stop) per the normal protocol associated with p_snp_rdy negation, including
acceptance of a snoop request during a small interval around p_snp_rdy negation, thus additional snoop
operations may need to occur prior to entering the stopped state. All snoop queue entries will be processed
prior to the assertion of p_stopped.

Figure 14-36 illustrates an example of operation of the p_snp_rdy output when entering the Stopped state
and snoop request acceptance. In cycle 1, p_stop is asserted, indicating a request to enter the stopped state.
In cycle 2 the p_snp_rdy signal negates due to the stop request. Snoop requests for snpaddr ‘a’ and ‘b’ are
taken in cycles 2 and 3 according to the p_snp_rdy protocol, although the system logic should typically
stop generating new requests based on the p_stop input assertion. The request for snpaddr ‘c’ is not taken
in cycle 4, again based on the snoop ready protocol. In cycle(s) 5, the snoop control logic continues to
process any previously queued snoop requests, and in cycle N, and N+1, the final snoop responses for
snoops A and B occur. Following the snoop responses for these final queued snoop requests, p_stopped
asserts in cycle N+2. No further snoop requests will be accepted while the CPU is stopped.

snpaddr a snpaddr b snpaddr c snpaddr x

x y z

snpaddr m

Snoop interface operation - p_snp_rdy operation, p_snp_req negates,

reasserts after p_snp_rdy negation, taken

1 2 3 4 5 6 7 8 9

m_clk

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_cmd[0:1]

p_snp_id_in[0:3]

cache acc

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 885

Figure 14-36. Stop mode entry, p_snp_rdy operation

Figure 14-37 illustrates an example of operation of the p_snp_rdy output when exiting the Stopped state
and snoop request acceptance. In cycle 1, p_stop is negated, indicating a request to exit the stopped state.
In cycle 2, the p_stopped output signal negates due to the negated stop request. Also in cycle 2, the
p_snp_rdy output is asserted, indicating that snoop requests will begin to be accepted on the next clock
cycle. Snoop requests for snpaddr ‘a’ and ‘b’ are taken in cycles 3 and 4 according to the p_snp_rdy
protocol. In cycle N and N+1, the snoop responses for snoops A and B occur.

Figure 14-37. Stop mode exit, p_snp_rdy operation

14.3.5 Power management

The following diagram shows the relationship of the wakeup control signal p_wakeup to the relevant
input signals.

snpaddr a snpaddr b snpaddr c

A B

snp a resp snp b resp

Snoop interface operation - stop mode entry operation

1 2 3 4 5 N N+1 N+2

m_clk

p_stop

p_stopped

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

snpaddr a snpaddr b

A B

snp a resp snp b resp

Snoop interface operation - stop mode exit operation

1 2 3 4 5 N N+1

m_clk

p_stop

p_stopped

p_snp_rdy

p_snp_addr

p_snp_req

p_snp_ack

p_snp_id_out[0:3]

p_snp_resp[0:4]

e200z759n3 Core Reference Manual, Rev. 2

886 Freescale Semiconductor

Figure 14-38. Wakeup control signal (p_wakeup)

14.3.6 Interrupt Interface

The following diagram shows the relationship of the interrupt input signals to the CPU clock. The
p_avec_b, p_extint_b, p_critint_b and p_voffset[0:15] inputs as well as the p_nmi_b input must meet
setup and hold timing relative to the rising edge of the m_clk. In addition, during each clock cycle in which
either of the interrupt request inputs p_extint_b or p_critint_b are asserted, p_avec_b and
p_voffset[0:15] are required to be in a valid state for the highest priority non-masked interrupt being
requested.

Figure 14-39. Interrupt interface input signals

Figure 14-40 shows the relationship of the interrupt pending signal to the interrupt request inputs. Note
that p_ipend is asserted combinationally from the p_extint_b, p_critint_b, and p_nmi_b inputs, and the
MCSRNMI syndrome bit.

Figure 14-40. Interrupt pending operation

m_clk

p_extint_b

_wakeup

p_critint_b
jd_de_b,
p_ude,
OCR[WKUP]

p_extint_b

p_voffset[0:15]

p_critint_b
p_avec_b

m_clk

p_nmi_b

m_clk

p_extint_b

p_ipend

p_critint_b

Exception vector fetch
p_nmi_b

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 887

Figure 14-41 shows the relationship of the interrupt acknowledge signal to the interrupt request inputs and
exception vector fetching.

Figure 14-41. Interrupt acknowledge operation — 1

In this example, an external input interrupt is requested in cycle 1. The p_voffset[0:15] inputs are driven
with the vector offset for ‘A’, and p_avec_b is negated, indicating vectoring is desired. For this example,
the bus is idle at the time of assertion. The CPU may sample a requested interrupt as early as the cycle it
is initially requested, and does so in this example. The interrupt request and the vector offset and
autovector input are sampled at the end of cycle 1. In cycle 3, the interrupt is acknowledged by the
assertion of the p_iack output, indicating that the values present on interrupt inputs at the beginning of
cycle 2 have been internally latched and committed to for servicing. Note that the interrupt vector lines
have changed to a value of ‘B’ during cycle 2, and the p_critint_b input has been asserted by the interrupt
controller. The vector number / autovector signals must be consistent with the higher priority critical input
request, thus must change at the same time the state of the interrupt request inputs change. Since the p_iack
output asserts in cycle 3, it is indicating that the values present at the rise of cycle 2 (vector ‘A’) have been
committed to. During cycle 4, the CPU begins instruction fetching of the handler for vector ‘A’. The new
request for a subsequent critical interrupt ‘B’ was not received in time to be acted upon first. It will be

vec A vec B

A handler A +8 A +16

idle 1 outst. 2 outst.

1st

int A handlrA hand + 8

int A hand addrint A hand + 8

1 2 3 4 5 6

m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

inst pair

e200z759n3 Core Reference Manual, Rev. 2

888 Freescale Semiconductor

acknowledged after the fetch for the external input interrupt handler has been completed and has entered
decode.

Note that the time between assertion of an interrupt request input and the acknowledgment of an interrupt
may be multiple cycles, and the interrupt inputs may change during that interval. The CPU will assert the
p_iack output to indicate the cycle at which an interrupt is committed to. In the following example, since
the CPU was unable to acknowledge the external input interrupt during cycle 2 due to internal or external
execution conditions, the critical input request was sampled. This case is shown in Figure 14-42.

Figure 14-42. Interrupt acknowledge operation — 2

14.3.7 Time base interface

The following figure shows the required relationships of the Time Base inputs. The electrical values
associated with these timings may be found in the Zen Integration Guide.

vec A vec B

B B +8 B+16

idle 1 outst. 2 outst.

1st

int B int B int B

int B int B int B

1 2 3 4 5 6 7
m_clk

p_critint_b

p_extint_b

p_voffset[0:15]

sample point

p_iack

p_avec_b

p_treq_b

p_addr

attributes

p_r/w

p_tbusy_b

p_data_in

p_ta_b

mmu access

cache access

cache miss

hand + 8

hand + 8 hand+16

hand+16handlr

hand addr

 inst pair

handler

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 889

Figure 14-43. Time base input timing

14.3.8 JTAG test interface

The following figures show the relationships of the various JTAG related signals to the j_tclk input. The
electrical values associated with these timings may be found in the Zen Integration Guide.

Figure 14-44. Test clock input timing

Figure 14-45. j_trst_b timing

t_tbdis_su2

t_tbdis_su

t_tbdis_holdt_tbclk_su

t_tbclk_hold

m_clk

p_tbclk

p_tbdisable

j_tclk

TEST_CLK_INPUT_TIM_01

VIL

VIH

tCW tCW

tCrf tCrf

j_tclk

j_trst_b

JTRSTB_TIM_01

tTSCL

tTAT

e200z759n3 Core Reference Manual, Rev. 2

890 Freescale Semiconductor

Figure 14-46. Test access port timing

Input Data Valid

Output Data Valid

Output Data Valid

j_tclk

j_tdi

j_tdo

j_tdo

j_tdo

j_tms

VIL VIH

tDST tDHT

tCLTDV

tCLEV

tCLTDV

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 891

Chapter 15 Internal Core Interfaces
This chapter describes several interfaces internal to the e200z759n3. Signal descriptions as well as the data
transfer protocols are documented in the following sub-sections. The information is provided to assist in
understanding operation of various internal interfaces. These interfaces are not visible outside of the core
complex. Refer to Chapter 14, External Core Complex Interfaces, for external interfaces and protocols.

NOTE
These interface signals are not visible to the end user and do not require any
user interaction. They are documented for informational purposes only.

The primary Zen internal interfaces comprises control and data signals supporting instruction and data
transfers, support for accessing SPRs external to the CPU (but internal to the e200z759n3), and an
interface to support the Embedded Floating-point (EFPU) APU.

The memory portions of the Zen core interface are utilized by the instruction and data caches and the
Memory Management Unit (MMU). The data memory interface supports read and write transfers of 8, 16,
24, 32, and 64 bits, supports misaligned transfers, supports true big- and little-endian operating modes, and
operates in a highly pipelined fashion. The instruction memory interface supports read and write transfers
of 16, 32, and 64 bits, supports true big- and little-endian operating modes, and operates in a highly
pipelined fashion.To achieve high frequency of operation, the processor pipeline has been designed to
provide maximal access time for memory devices. In doing so, up to three accesses may be in some stage
of progress at any one time on each interface, and a specific protocol is required for supporting maximal
throughput. In particular, the Cache memory controller is responsible for ensuring that all accesses are
issued and complete in-order, reporting completion and/or exceptions at the time the CPU expects, and
handling the issues of aborting accesses that are in the memory pipeline to ensure a precise exception and
in-order execution model. This control is assisted by the CPU, but some aspects are the sole responsibility
of the Cache memory control logic.

Misaligned accesses are supported with one or more transfers to the core interface. If an access is
misaligned, but is contained within an aligned 64-bit doubleword, the core performs a single transfer, and
the data cache interface is responsible for delivering (reads) or accepting (writes) the data corresponding
to the size signals aligned according to the low order three address bits. If an access is misaligned and
crosses a 64-bit boundary, the e200z759n3 load/store unit will perform a pair of transfers beginning at the
effective address, requesting the original data size (either halfword or word) for the first transfer, and for
the second transfer the address is incremented to the next 64-bit boundary, and the size signals are driven
to indicate the number of remaining bytes to be transferred.

15.1 Signal index
This section contains an index of internal e200z759n3 signals.

The following prefixes are used for e200z759n3 signal mnemonics:

• m denotes master clock and reset signals

• p denotes processor or core-related signals

• p_d_ denotes data interface related signals

• p_i_ denotes instruction interface related signals

e200z759n3 Core Reference Manual, Rev. 2

892 Freescale Semiconductor

• j denotes JTAG mode signals

• jd denotes JTAG and Debug mode signals

• ipt denotes Scan and Test Mode signals

NOTE
The “_b” suffix denotes an active low signal. Signals without the active-low
suffix are active high.

Figure 15-1 groups core bus and control signals by function.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 893

Figure 15-1. Zen internal signal groups

Transfer

Transfer Control

Attributes

p_[d,i]_treq_b

p_[d,i]_tbusy_b

p_[d,i]_abort_b

Transfer Cycle
Termination/
Status

External SPR
Control

p_spr_in[0:31]

p_spr_out[0:31]

Address Bus

p_d_alignerr_b, p_d_xfail_b

p_[d,i]_addr[0:31]

Zen

p_fpdec_b

p_fpexec_b

p_fpop[0:3]

p_opa[0:31]

p_opb[0:31]

p_fpabort_b

p_fpu_clken

fp_fpu_present

fp_wbvalid_b
fp_excp_data

fp_excp_rnd

EFPU
Interface

p_[d,i]_rdbigend_b
Miscellaneous
Processor / Cache / MMU
Interface Signals

CPU

fp_result[0:31]

p_[d,i]_seq_b

p_rd_spr

p_wr_spr

p_sprnum[0:9]

p_[d,i]_err_kill

p_d_tc[0:1], p_i_tc[0:4]

p_d_ttype[0:5]

p_[d,i]_tsiz[0:2]

p_d_misal_b

OnCE/Debug

Module

dbg_dbgrq*

cpu_dbgack*

OnCE Control*

p_d_rw_b,p_d_elsiz[0:1]

 Cache/MMU

p_[d,i]_tmiss_b, p_[d,i]_boerr_b

p_[d,i]_cache_enabled

p_d_wrbigend_b

p_pid0[0:7]

p_[d,i]_cmbusy

p_pid0_updt

Control/Status

p_d_bdt

p_[d,i]_set_cul

fp_excp_poss

fp_fcmp[0:3]

p_[d,i]_tag_perr_b, p_[d,i]_data_perr_b

p_d_cp_perr

p_d_bus_wrerr

p_ucl_dsi

p_[d,i]_dmdis
p_[d,i]_dbg_[i,e,pe]
p_[d,i]_dbg_[w,m,g]

p_rd_vle

Data Bus

p_[d,i]_data_in[0:63]

p_[d,i]_ta_b, p_[d,i]_tea_b, p_[d,i]_xte_b,

p_d_data_out[0:63]

p_d_ta_g

p_[d,i]_ta_addr[0:31]

p_[d,i]_ta_ci

p_d_push_addr[0:31]

p_d_bus_wrerr_addr[0:31]

p_[d,i]_lf_addr[0:31]

p_[d,i]_lf_status[0:3]

e200z759n3 Core Reference Manual, Rev. 2

894 Freescale Semiconductor

Table 15-1 shows e200z759n3 signal function and type, signal definition, and reset value. Signals are
presented in functional groups.

Table 15-1. Internal interface signal definitions

Signal name Type
Reset
value

Definition

Memory interface signals

p_[d,i]_addr[0:31] O — Address bus

p_d_rw_b O 1 Read/write

p_i_tc[0:4], p_d_tc[0:1] O — Transfer Code

p_d_ttype[0:5] O — Transfer Type

p_[d,i]_tsiz[0:2] O — Transfer Size

p_elsiz[0:1] O — Element Size

p_d_seq_b O 1 Indicates the current access is in sequential address
order from the last access. For sequential data
fetches.

p_i_seq_b O 1 Indicates the current instruction access is in
sequential address order from the last instruction
access. For sequential instruction fetches.

p_d_misal_b O 1 Indicates the current data access is the first portion of
a misaligned access.

p_d_bdt O 0 Indicates the current data access is part of a lmw or
stmw transfer sequence.

p_[d,i]_treq_b O 1 Transfer Request
Indicates a request for a bus cycle.

p_[d,i]_tbusy[0:1]_b O 1 Transfer Busy
p_tbusy[0]_b Indicates a bus cycle is in progress.
p_tbusy[1]_b Indicates that two accesses have been
pipelined and a bus cycle is in progress.

p_[d,i]_abort_b O 1 Aborts a requested access.

p_[d,i]_data_in[0:63] I Input data bus

p_d_data_out[0:63] O — Output data bus

p_[d,i]_halt_zlb I Stall additional access requests

p_[d,i]_ta_b I Transfer Acknowledge

p_[d,i]_tea_b I Transfer Error

p_[d,i]_tmiss_b I Translation Miss

p_[d,i]_boerr_b I Byte Ordering Error

p_d_alignerr_b I Alignment Error

p_[d,i]_tag_perr_b I Cache Tag Parity Error

p_[d,i]_data_perr_b I Cache Data Parity Error

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 895

p_[d,i]_xte_b I External Termination Error (machine check)

p_d_xfail_b I Store Exclusive Failure

p_[d,i]_ta_addr[0:31] I Physical address associated with ta_b/tea_b

p_d_ta_g I Guarded attribute of the access associated with
ta_b/tea_b

p_d_ta_ci I Cache-inhibited attribute of the access associated
with ta_b/tea_b

p_rd_vle I Indicates VLE or BookE mode for inst accesses.

p_[d,i]_rdbigend_b I Selects Little or Big Endian mode for read accesses.

p_d_wrbigend_b I Selects Little or Big Endian mode for write accesses.

 SPR interface signals

p_sprnum[0:9] O — Global SPR address bus

p_spr_out[0:31] O — Global SPR write bus

p_spr_in[0:31] I Global SPR read bus

p_rd_spr O 0 SPR read control

p_wr_spr O 0 SPR write control

Misc. CPU Signals

p_pid0[0:7] O 0 PID0[24:31] outputs

p_pid0_updt O 0 PID0 update status

Cache/MMU status signals

p_[i,d]_cache_enabled I Cache is enabled

p_[i,d]_cmbusy I Cache/MMU busy

p_[i,d]_set_cul O Set Cache CUL status

p_[i,d]_ucl_dsi O User mode Cache lock DSI control

p_[i,d]_dmdis O Debug Mode MMU disable

p_[i,d]_dbg_w O Debug Mode ‘W’ attribute

p_[i,d]_dbg_i O Debug Mode ‘I’ attribute

p_[i,d]_dbg_m O Debug Mode ‘M’ attribute

p_[i,d]_dbg_g O Debug Mode ‘G’ attribute

p_[i,d]_dbg_e O Debug Mode ‘E’ attribute

p_[i,d]_lf_status[0:3] I Cache Linefill Status

p_[i,d]_lf_addr[0:31] I Linefill Physical address

Table 15-1. Internal interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

896 Freescale Semiconductor

15.2 Signal descriptions

15.2.1 Address and data buses

15.2.1.1 Data address bus (p_d_addr[0:31])

These outputs provide the address for a data transfer.

p_d_cp_perr I Cache Push Parity Error

p_d_push_addr[0:31] I Address of the push line

p_d_bus_wrerr I Cache Buffered Write or Push Bus Error

p_d_bus_wrerr_addr[0:31] I Bus write error Physical address

EFPU interface signals

p_fpdec_b O 1 Indicates an FPU instruction is being decoded

p_fpexec_b O 1 Indicates an FPU instruction is being executed

p_fpop[0:3] O 0 FPU Opcode

p_fpabort_b O 1 Indicates FPU instruction is to be aborted

p_opa[0:31] O — Operand A to FPU

p_opb[0:31] O — Operand B to FPU

p_fpu_clken O 0 FPU clock enable

fp_result[0:31] I FPU result bus

fp_fpu_present I Indicate the FPU is present

fp_wbvalid_b I Indicates FPU resultant write-back valid

fp_excp_data I FPU result has a data exception

fp_excp_rnd I FPU result has a round exception

fp_excp_poss I FPU exception is possible, must stall subsequent data
access

fp_fcmp[0:3] I FPU compare results

Test primary input/output signals

Test Control Interface1 Test mode determination

Scan Test Interface1 Scan configuration and testing

Memory BIST Interface1 Memory BIST configuration and testing

1 Please refer to the e200z759n3 Test Guide for information on the test signals.

Table 15-1. Internal interface signal definitions (continued)

Signal name Type
Reset
value

Definition

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 897

15.2.1.2 Instruction address bus (p_i_addr[0:31])

These outputs provide the address for an instruction transfer.

15.2.1.3 Data input data bus (p_d_data_in[0:63])

These inputs provide data to the e200z759n3 core on data read transfers. The data input data bus can
transfer 8, 16, 24, 32, or 64 bits of data per bus transfer.

15.2.1.4 Instruction input data bus (p_i_data_in[0:63])

These inputs provide data to the e200z759n3 core for instruction transfers. The instruction input data bus
can transfer 32 or 64 bits of data per bus transfer.

15.2.1.5 Data output data bus (p_d_data_out[0:63])

These outputs transfer data from the e200z759n3 core on data write transfers. The output data bus can
transfer 8, 16, 24, 32, or 64 bits of data per bus transfer.

15.2.2 Transfer attribute signals

The following paragraphs describe the transfer attribute signals, which provide additional information
about the bus transfer cycle. Transfer attributes are driven with address at the beginning of a bus transfer.

15.2.2.1 Read/write (p_d_rw_b)

This output signal defines the data transfer direction for the current data bus cycle. A high (logic one) level
indicates a read cycle, and a low (logic zero) level indicates a write cycle.

15.2.2.2 Data transfer code (p_d_tc[0:1])

The e200z759n3 core drives the p_d_tc[0:1] signals to indicate the type of access for the current bus cycle.
pd_tc[0] indicates user/supervisor, and p_d_tc[1] indicates address space 0/1. Table 15-2 shows the
definitions of the p_d_tc[0:1] encodings.

15.2.2.3 Instruction transfer code (p_i_tc[0:4])

The e200z759n3 core drives the p_i_tc[0:4] signals to indicate the type of access for the current bus cycle.
p_i_tc[0] indicates user/supervisor, p_i_tc[1] indicates address space 0/1, p_i_tc[2] indicates exception

Table 15-2. p_d_tc[0:1] transfer code encoding

p_d_tc[0:1] Transfer type

00 User Data Space 0 Access

01 User Data Space 1 Access

10 Supervisor Data Space 0 Access

11 Supervisor Data Space 1 Access

e200z759n3 Core Reference Manual, Rev. 2

898 Freescale Semiconductor

vectoring, p_i_tc[3] indicates change of flow, and p_i_tc[4] indicates a speculative branch target prefetch.
Table 15-3 shows the definitions of the p_i_tc[0:4] encodings.

Table 15-3. p_i_tc[0:4] transfer code encoding

p_i_tc[0:4] Transfer type

00000 Reserved

00001 Reserved

00010 Reserved

00011 Reserved

00100 User Instruction Space 0 Access1

00101 Reserved

00110 User Change of Flow Instruction Space 0 Access2

00111 User Change of Flow Instruction Space 0 Speculative Branch Target Access3

01000 Reserved

01001 Reserved

01010 Reserved

01011 Reserved

01100 User Instruction Space 1 Access1

01101 Reserved

01110 User Change of Flow Instruction Space 1 Access2

01111 User Change of Flow Instruction Space 1 Speculative Branch Target Access3

10000 Reserved

10001 Reserved

10010 Supervisor Exception Vector Instruction Access4

10011 Reserved

10100 Supervisor Instruction Space 0 Access

10101 Reserved

10110 Supervisor Change of Flow Instruction Space 0 Access2

10111 Supervisor Change of Flow Instruction Space 0 Speculative Branch Target Access3

11000 Reserved

11001 Reserved

11010 Reserved

11011 Reserved

11100 Supervisor Instruction Space 1 Access1

11101 Reserved

11110 Supervisor Change of Flow Instruction Space 1 Access2

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 899

15.2.2.4 Data transfer size (p_d_tsiz[0:2])

The p_d_tsiz[0:2] signals indicate the data size for a bus transfer. Table 15-4 shows the definitions of the
p_d_tsiz[0:2] encodings.

15.2.2.5 Element size (p_elsiz[0:1])

The p_elsiz[0:1] signals indicate the size of elements being transferred on certain writes. The element size
may be smaller than the transfer size and further defines how byte ordering should be performed on these
write cycles. Element size is required to distinguish the transfer of a pair of words, pair of halfwords, quad
of bytes, octet of bytes, or a quad of halfwords from a normal word or doubleword transfer. p_elsiz[0:1]
should only be used on writes to little-endian pages of memory, and should be ignored on all other cycles.
For misaligned transfers that cross a 64-bit boundary, p_elsiz[0:1] is driven to the same value for both
portions of the transfer. Table 15-5 shows the definitions of the p_elsiz[0:1] encodings.

11111 Supervisor Change of Flow Instruction Space 1 Speculative Branch Target Access3

1 Except Change of Flow related instruction accesses
2 Change of Flow related instruction access for taken branches
3 Speculative Branch target instruction access
4 Initial Instruction fetch for Interrupt Handler

Table 15-4. Data transfer size encoding

p_d_tsiz[0:2] Transfer size

000 Doubleword [Pair1] (8 Bytes)

1 Doubleword encoding is used for transfers of a pair of 32 bit words (lmw, stmw).

001 Byte

010 Halfword (2 Bytes)

011 Three bytes

100 Word (4 bytes)

101 Five bytes

110 Six bytes

111 Seven bytes

Table 15-5. Element size encoding

p_elsiz[0:1] Element size

00 Word (4bytes), Word Pairs for stmw

01 Byte

Table 15-3. p_i_tc[0:4] transfer code encoding (continued)

p_i_tc[0:4] Transfer type

e200z759n3 Core Reference Manual, Rev. 2

900 Freescale Semiconductor

15.2.2.6 Instruction Transfer Size (p_i_tsiz[0:2])

The p_i_tsiz[0:2] signals indicate the data size for a bus transfer. Table 15-6 shows the definitions of the
p_i_tsiz[0:2] encodings.

15.2.2.7 Data Transfer Type (p_d_ttype[0:5])

These signals indicate the type of transfer for the data bus cycle. Timing of these signals is early relative
to address to allow sufficient control logic timing. Table 15-7 shows the definitions of the p_d_ttype[0:5]
encodings.

10 Halfword (2 Bytes)

11 Doubleword (8 bytes)

Table 15-6. Instruction transfer size encoding

p_i_tsiz[0:2] Transfer size

000 Doubleword (8 bytes)

001 reserved

010 reserved

011 reserved

100 Word (4 bytes)

101 reserved

110 reserved

111 reserved

Table 15-7. Transfer type encoding

p_d_ttype[0:5]1 Transfer Type Instruction

00000e Normal Normal loads / stores

000010 Atomic lbarx, lharx, lwarx, stbcx., sthcx., and
stwcx.

00010e Flush Data Block dcbst

00011e Flush and Invalidate Data Block dcbf

00100e Allocate and Zero Data Block dcbz

001010 Invalidate Data Block dcbi

00110e Invalidate Instruction Block icbi

001110 multiple word load/store lmw, stmw

010000 TLB Invalidate tlbivax

Table 15-5. Element size encoding (continued)

p_elsiz[0:1] Element size

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 901

15.2.2.8 Data sequential access (p_d_seq_b)

This active-low output signal indicates that the current data access is in sequential address order from the
previous data access. The timing of this signal is approximately the same as address timing.

15.2.2.9 Instruction sequential access (p_i_seq_b)

This active-low output signal indicates that the current instruction access is in sequential address order
from the previous instruction access. This signal is driven for sequential instruction fetches only. The
timing of this signal is approximately the same as address timing.

15.2.2.10 Misaligned access (p_d_misal_b)

This active-low output signal indicates that the current data access is the first portion of a misaligned load
or store access that crosses a 64-bit boundary. The timing of this signal is approximately the same as
address timing.

15.2.2.11 Block data transfer (p_d_bdt)

This active-high output signal indicates that the current data access is part of a block data transfer for a
lmw or stmw instruction. The timing of this signal is approximately the same as address timing.

15.2.2.12 Error kill control (p_d_err_kill, p_i_err_kill)

This active-high output signal indicates that the current access, if terminated with error (p_tea_b
assertion), will cause a following pending access to be aborted by assertion of p_abort_b. If an access is
pending or is requested in the cycle that p_tea_b is asserted for a current request for which p_err_kill was

010010 TLB Search tlbsx

010100 TLB Read entry tlbre

010110 TLB Write entry tlbwe

011000 Touch for Instruction icbt

011010 Lock Clear for Instruction icblc

011100 Touch for Instruction and Lock Set icbtls

011110 Lock Clear for Data dcblc

10000e Touch for Data dcbt

10001e Touch for Data Store dcbtst

100100 Touch for Data and Lock Set dcbtls

100110 Touch for Data Store and Lock Set dcbtstls

1 p_ttype[5] ‘e’ is set to set to 0.

Table 15-7. Transfer type encoding (continued)

p_d_ttype[0:5]1 Transfer Type Instruction

e200z759n3 Core Reference Manual, Rev. 2

902 Freescale Semiconductor

initially asserted, the new access will be aborted by assertion of p_abort_b in the cycle following error
assertion for the current access. If no pending or requested access is present in the cycle p_tea_b
terminates an access, this signal has no effect. The timing of this signal is approximately the same as
address timing.

15.2.3 Transfer control signals

The following paragraphs describe the transfer control signals.

15.2.3.1 Halt ZLB (p_d_halt_zlb, p_i_halt_zlb)

These signals are drive to the CPU by the respective cache to indicate that further access requests should
be temporarily halted due to allow the cache to process other operations. This signal may be held asserted
for multiple cycles if a busy condition remains pending.

15.2.3.2 Transfer request (p_d_treq_b, p_i_treq_b)

The e200z759n3 core drives these active-low output signals to indicate that a new access has been
requested. This signal is driven for a single cycle along with address and transfer attribute signals to
request a new cycle, and may be held asserted for multiple cycles if a request remains pending, or if
multiple requests occur.

15.2.3.3 Transfer busy (p_d_tbusy[0:1]_b, p_i_tbusy[0:1]_b)

The processor drives these active-low signals to indicate that one or more accesses are in progress. These
signals are driven for the duration of a cycle, and may be held asserted for multiple transfers. Table 15-8
shows p_[d,i]_tbusy[0:1]_b encoding.

p_[d,i]_tbusy[0]_b is used to indicate that the bus is busy with one or more accesses. p_[d,i]_tbusy[1]_b
indicates that two outstanding accesses exist. A third may be in the request phase, but will not become
outstanding until the first outstanding access is terminated, or the second access is aborted.

15.2.3.4 Transfer abort (p_d_abort_b, p_i_abort_b)

This active-low signal to indicate that a requested access must be aborted. This signal may be driven on
the clock following a valid requested cycle if an outstanding access on which p_err_kill was indicated is

Table 15-8. p_tbusy[0:1]_b encoding

p_[d,i]_tbusy[0]_b p_[d,i]_tbusy[1]_b Access status

0 0 Two accesses in progress. Accesses have been pipelined, Awaiting
termination for both accesses. A third access may be in the request
phase.

0 1 One access in progress. Awaiting termination for one access. A second
access may be in request phase

1 0 Illegal state

1 1 Idle — no access in progress

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 903

terminated with p_tea_b. During the clock cycle that p_[d,i]_abort_b is asserted, another access may be
requested (p_treq_b asserted), but will not be taken. Aborted accesses are terminated with assertion of
p_tea_b.

15.2.3.5 Transfer acknowledge (p_d_ta_b, p_i_ta_b)

This active-low input signal indicates completion of a requested transfer. Assertion of p_[d,i]_ta_b
terminates the transfer. For the e200z759n3 core to accept the transfer as successful, p_[d,i]_tea_b must
remain high while p_[d,i]_ta_b is asserted.

15.2.3.6 Transfer error acknowledge (p_d_tea_b, p_i_tea_b)

This active-low input signal indicates that a transfer error condition has occurred and causes the
e200z759n3 core to immediately terminate the transfer. An external device asserts p_[d,i]_tea_b to
terminate the transfer with error. The p_[d,i]_tea_b signal has higher priority than p_[d,i]_ta_b.

15.2.3.7 Translation miss (p_d_tmiss_b, p_i_tmiss_b)

This active-low input signal indicates a translation miss. The memory management unit asserts
p_[d,i]_tmiss_b to indicate a TLB miss condition for the current transfer. The assertion of
p_[d,i]_tmiss_b must be concurrent with the assertion of p_[d,i]_tea_b to be recognized, as it is sampled
with assertion of p_[d,i]_tea_b.

15.2.3.8 Byte ordering error (p_d_boerr_b, p_i_boerr_b)

This active-low input signal indicates a byte ordering error due to mismatched endianness for a misaligned
access that crosses a page boundary. The memory management unit asserts p_[d,i]_boerr_b to indicate
this condition for the current transfer. The assertion of p_[d,i]_boerr_b must be concurrent with the
assertion of p_[d,i]_tea_b to be recognized, as it is sampled with assertion of p_[d,i]_tea_b. This signal
is ignored if the p_[d,i]_tmiss_b input is asserted.

15.2.3.9 Alignment error (p_d_alignerr_b)

This active-low input signal indicates an Alignment error due to execution of a dcbz instruction to a
location marked as Cache-inhibited, Writethrough Required, or if the cache is operating in writethrough
mode or if a line cannot be allocated on a miss due to locking or way-disabling constraints. Alignment
errors due to a disabled cache are handled by the CPU directly. The data cache asserts p_d_alignerr_b to
indicate this condition for the current transfer. The assertion of p_d_alignerr_b must be concurrent with
the assertion of p_d_tea_b to be recognized, as it is sampled with assertion of p_d_tea_b.

15.2.3.10 Cache tag parity error (p_d_tag_perr_b, p_i_tag_perr_b)

The active-low p_[d,i]_tag_perr_b input signal is used to indicate that a cache parity error has occurred
while accessing the cache for a load, store or instruction fetch. This signal is asserted in a precise fashion
at termination of the cache access. The assertion of p_[d,i]_tag_perr_b must be concurrent with the
assertion of p_[d,i]_tea_b to be recognized, as it is sampled with assertion of p_[d,i]_tea_b. This signal

e200z759n3 Core Reference Manual, Rev. 2

904 Freescale Semiconductor

is used to generate a machine check condition and causes the associated syndrome bit to be set in the
Machine Check Syndrome register (Section 2.4.7, Machine Check Syndrome Register (MCSR)).

15.2.3.11 Cache data parity error (p_d_data_perr_b, p_i_data_perr_b)

The active-low p_[d,i]_data_perr_b input signal is used to indicate that a cache parity error has occurred
while accessing the cache for a load, store or instruction fetch. This signal is asserted in a precise fashion
at termination of the cache access. The assertion of p_[d,i]_data_perr_b must be concurrent with the
assertion of p_[d,i]_tea_b to be recognized, as it is sampled with assertion of p_[d,i]_tea_b. This signal
is used to generate a machine check condition and causes the associated syndrome bit to be set in the
Machine Check Syndrome register (Section 2.4.7, Machine Check Syndrome Register (MCSR)).

15.2.3.12 External termination error (p_d_xte_b, p_i_xte_b)

This active-low input signal indicates a Precise External Termination error occurred. Assertion of
p_[d,i]_xte_b indicates that a precise external error condition for the current data transfer has occurred.
The assertion of p_[d,i]_xte_b must be concurrent with the assertion of p_d_tea_b to be recognized, as it
is sampled with assertion of p_d_tea_b. This signal is asserted to indicate a precise external error
termination on the System bus has occurred, as opposed to a permission violation detected by the MMU.

15.2.3.13 Guarded termination status (p_d_ta_g)

This active-high input signal indicates that the access being terminated was a guarded access. The
p_d_ta_g signal is sampled with assertion of p_d_ta_b or p_d_tea_b.

15.2.3.14 Cache-inhibited termination status (p_d_ta_ci)

This active-high input signal indicates that the access being terminated was a cache-inhibited access. The
p_d_ta_ci signal is sampled with assertion of p_d_ta_b or p_d_tea_b.

15.2.3.15 Access physical address (p_[d,i]_ta_addr[0:31])

This active-high input bus provides the physical address of the access being terminated with p_[d,i]_ta_b
or p_[d,i]_tea_b, and is used for status updates during error conditions. The p_[d,i]_ta_addr[0:31]
signals are sampled with assertion of the corresponding p_[d,i]_ta_b or p_[d,i]_tea_b.

15.2.3.16 Termination error signaling and qualification

The active-low input signals p_tmiss_b, p_alignerr_b, p_boerr_b, p_data_perr_b, p_tag_perr_b, and
p_xte_b are provided to indicate types of errors that have occurred on attempted accesses, and affect
exception vectoring, priority, and status updates. These signals are ignored unless p_tea_b is also asserted.
These signals are mutually exclusive and should not be asserted in conjunction with one another.
Table 15-9 summarizes the meaning of these error termination qualifiers.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 905

15.2.3.17 Store exclusive failure (p_d_xfail_b)

This active-low input signal indicates a failure of the store portion of the stwcx. instruction. An external
agent causes p_d_xfail_b to be asserted to indicate this condition for the current transfer. The assertion of
p_d_xfail_b must be concurrent with the assertion of p_d_ta_b to be recognized, as it is sampled with
assertion of p_d_ta_b. This signal is ignored if the p_d_tea_b input is asserted, since the store has

Table 15-9. Termination error qualifiers1

1 All other combinations not listed in table are invalid.

Priority
(0=

highest) p
_t

ea
_b

p
_a

lig
n

er
r_

b

p
_b

o
er

r_
b

p
_t

m
is

s_
b

p
_t

ag
_p

er
r_

b

p
_d

at
a_

p
er

r_
b

p
_x

te
_b

Access status

0 0 1 1 0 1 1 1 TLB Error has occurred.
Signaled by the MMU to
indicated a TLB miss has
occurred.

1 0 1 1 1 1 1 1 Storage Error has occurred.
Signaled by the MMU to indicate
improper access permissions for
an instruction or data access.

2 0 0 1 1 1 1 1 Alignment Error has occurred.
Signaled by cache to indicate
improper page attributes for a
dcbz.

0 1 0 1 1 1 1 Byte-ordering Error has
occurred. Signaled by the MMU
to indicated mismatched
endianness on access crossing a
page boundary.

3 0 1 1 1 0 1 1 Cache Tag Parity Error has
occurred. Signaled by the Cache
to indicated a tag parity error
occurred on a cache access for a
load, store, or instruction fetch.

4 0 1 1 1 1 0 1 Cache Data Parity Error has
occurred. Signaled by the Cache
to indicated a data parity error
occurred on a cache access for a
load or instruction fetch.

5 0 1 1 1 1 1 0 Precise External Termination
Error has occurred. Signaled by
the BIU to indicated an external
System bus ERROR response
received on a load, unbuffered
store, or instruction fetch.

6 1 x x x x x x No termination error

e200z759n3 Core Reference Manual, Rev. 2

906 Freescale Semiconductor

terminated with error. Assertion of p_d_xfail_b with p_d_ta_b does not cause an exception to occur. It
only indicates to the CPU that the store was not performed due to a loss of reservation (determined by an
external agent). The CPU will update the condition code accordingly, and will clear an outstanding
reservation. p_d_xfail_b may be asserted by reservation logic, or as a result of a system bus transfer with
a failure response that is passed back to the CPU from the BIU. The AMBA XFAIL response will be
signaled back to the CPU using this signal. See Section 3.5, Memory synchronization and reservation
instructions, for additional information regarding reservations. The p_d_xfail_b input is ignored for all
transfers other than a stwcx. store.

15.2.3.18 Read endian mode select (p_d_rdbigend_b, p_i_rdbigend_b)

This control input signal selects the Big Endian or Little Endian byte ordering mode for reads This input
signal controls the byte-ordering operation of memory read transfers. When driven low, big-endian byte
ordering is selected for reads, otherwise little-endian ordering is selected. This signal is required to be valid
very early in the cycle that read data is returned.

15.2.3.19 Write endian mode select (p_d_wrbigend_b)

This control input signal selects the Big Endian or Little Endian byte ordering mode for writes. This signal
is a static input that controls byte-ordering operation of memory write transfers. When driven low,
big-endian byte ordering is selected for writes, otherwise little-endian ordering is selected. This signal
should be tied low.

15.2.3.20 VLE mode select (p_rd_vle)

This control input signal selects BookE or VLE mode for instruction reads. When driven low, BookE mode
is signaled, otherwise VLE is selected. This signal is required to be valid very early in the cycle that
instruction read data is returned.

15.2.4 Byte lane specification

Read transactions transfer from 1 to 8 bytes of data on the p_[d,i]_data_in bus. The byte lanes involved
in the transfer are determined by the starting byte number specified by the lower address bits in conjunction
with the transfer size. Addressing of the byte lanes is always big-endian (left to right) regardless of the
endian mode of the e200z759n3 core. The byte of memory corresponding to address 0 is connected to B0
and the byte of memory corresponding to address 7 is connected to B7. The CPU internally permutes read
data as required for the endian mode of the current access. The endian mode is signaled with the
p_[d,i]_rdbigend_b input signal that is sampled early in the cycle that data is returned.

Table 15-10 lists all of the read data transfer permutations. Note that misaligned data requests that cross a
64-bit boundary are broken up into two separate bus transactions, and the size encoding for the first
transfer is not modified.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 907

Table 15-10. Read data transfer permutations

Program size
and byte offset

A(29:31) TSIZ(0:2)
(0... p_data_in data bus byte lanes ...63)

B0 B1 B2 B3 B4 B5 B6 B7

Byte @000 0 0 0 0 0 1 A — — — — — — —

Byte @001 0 0 1 0 0 1 — A — — — — — —

Byte @010 0 1 0 0 0 1 — — A — — — — —

Byte @011 0 1 1 0 0 1 — — — A — — — —

Byte @100 1 0 0 0 0 1 — — — — A — — —

Byte @101 1 0 1 0 0 1 — — — — — A — —

Byte @110 1 1 0 0 0 1 — — — — — — A —

Byte @111 1 1 1 0 0 1 — — — — — — — A

Half @000 0 0 0 0 1 0 A A — — — — — —

Half @001 0 0 1 0 1 0 — A A — — — — —

Half @010 0 1 0 0 1 0 — — A A — — — —

Half @011 0 1 1 0 1 0 — — — A A — — —

Half @100 1 0 0 0 1 0 — — — — A A — —

Half @101 1 0 1 0 1 0 — — — — — A A —

Half @110 1 1 0 0 1 0 — — — — — — A A

Half @111
(2 bus transfers)

1 1 1
0 0 0

0 1 0*
0 0 1

—
A

—
—

—
—

—
—

—
—

—
—

—
—

A
—

Word @000 0 0 0 1 0 0 A A A A — — — —

Word @001 0 0 1 1 0 0 A A A A — — —

Word @010 0 1 0 1 0 0 — — A A A A — —

Word @011 0 1 1 1 0 0 — — — A A A A —

Word @100 1 0 0 1 0 0 — — — — A A A A

Word @101
(2 bus transfers)

1 0 1
0 0 0

1 0 0*
0 0 1

—
A

—
—

—
—

—
—

—
—

A
—

A
—

A
—

Word @110
(2 bus transfers)

1 1 0
0 0 0

1 0 0*
0 1 0

—
A

—
A

—
—

—
—

—
—

—
—

A
—

A
—

Word @111
(2 bus transfers)

1 1 1
0 0 0

1 0 0*
0 1 1

—
A

—
A

—
A

—
—

—
—

—
—

—
—

A
—

Doubleword @000 0 0 0 0 0 0 A A A A A A A A

Doubleword @001
(2 bus transfers)

0 0 1
0 0 0

0 0 0*
0 0 1

—
A

A
—

A
—

A
—

A
—

A
—

A
—

A
—

Doubleword @010
(2 bus transfers)

0 1 0
0 0 0

0 0 0*
0 1 0

—
A

—
A

A
—

A
—

A
—

A
—

A
—

A
—

e200z759n3 Core Reference Manual, Rev. 2

908 Freescale Semiconductor

For writes, the CPU drives data right justified onto the p_d_data_out bus, in the endian format defined by
the p_d_wrbigend_b input signal, regardless of the byte offset. For misaligned accesses that are broken
into two separate accesses, the p_d_data_out bus is driven with the same data value for both accesses.
The memory controller must determine which bytes are written to which memory locations based on the
endianness of the page(s).

Table 15-11 lists all of the write data transfer permutations. Note that misaligned data requests that cross
a 64-bit boundary are broken up into two separate bus transactions, and the size encoding for the first
transfer is not modified. For these accesses, p_d_data_out remains driven with the same value for both
portions of the misaligned access.

Doubleword @011
(2 bus transfers)

0 1 1
0 0 0

0 0 0*
0 1 1

—
A

—
A

—
A

A
—

A
—

A
—

A
—

A
—

Doubleword @100
(2 bus transfers)

1 0 0
0 0 0

1 0 0*
1 0 0

—
A

—
A

—
A

—
A

A
—

A
—

A
—

A
—

Doubleword @101
(2 bus transfers)

1 0 1
0 0 0

1 0 0*
1 0 1

—
A

—
A

—
A

—
A

—
A

A
—

A
—

A
—

Doubleword @110
(2 bus transfers)

11 0
0 0 0

1 0 0*
1 1 0

—
A

—
A

—
A

—
A

—
A

—
A

A
—

A
—

Doubleword @111
(2 bus transfers)

1 1 1
0 0 0

1 0 0*
1 1 1

—
A

—
A

—
A

—
A

—
A

—
A

—
A

A
—

Table Notes:
“A” indicates byte lanes involved in the transfer; Other lanes will contain driven but unused data.
* These misaligned cases drive request size according to the size specified by the load instruction.

Table 15-11. Write data transfer permutations

Program size
and byte offset

A(29:31) TSIZ(0:2)
(0... p_data_out data bus byte lanes ...63)

B0 B1 B2 B3 B4 B5 B6 B7

Byte @000 0 0 0 0 0 1 — — — — — — — A

Byte @001 0 0 1 0 0 1 — — — — — — — A

Byte @010 0 1 0 0 0 1 — — — — — — — A

Byte @011 0 1 1 0 0 1 — — — — — — — A

Byte @100 1 0 0 0 0 1 — — — — — — — A

Byte @101 1 0 1 0 0 1 — — — — — — — A

Byte @110 1 1 0 0 0 1 — — — — — — — A

Byte @111 1 1 1 0 0 1 — — — — — — — A

Half @000 0 0 0 0 1 0 — — — — — — A A

Table 15-10. Read data transfer permutations (continued)

Program size
and byte offset

A(29:31) TSIZ(0:2)
(0... p_data_in data bus byte lanes ...63)

B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 909

Half @001 0 0 1 0 1 0 — — — — — — A A

Half @010 0 1 0 0 1 0 — — — — — — A A

Half @011 0 1 1 0 1 0 — — — — — — A A

Half @100 1 0 0 0 1 0 — — — — — — A A

Half @101 1 0 1 0 1 0 — — — — — — A A

Half @110 1 1 0 0 1 0 — — — — — — A A

Half @111
(2 bus transfers)

1 1 1
0 0 0

0 1 0*
0 0 1

— — — — — — A A

Word @000 0 0 0 1 0 0 — — — — A A A A

Word @001 0 0 1 1 0 0 — — — — A A A A

Word @010 0 1 0 1 0 0 — — — — A A A A

Word @011 0 1 1 1 0 0 — — — — A A A A

Word @100 1 0 0 1 0 0 — — — — A A A A

Word @101
(2 bus transfers)

1 0 1
0 0 0

1 0 0*
0 0 1

— — — — A A A A

Word @110
(2 bus transfers)

1 1 0
0 0 0

1 0 0*
0 1 0

— — — — A A A A

Word @111
(2 bus transfers)

1 1 1
0 0 0

1 0 0*
0 1 1

— — — — A A A A

Doubleword @000 0 0 0 0 0 0 A A A A A A A A

Doubleword@001
(2 bus transfers)

0 0 1
0 0 0

0 0 0*
0 0 1

A A A A A A A A

Doubleword@010
(2 bus transfers)

0 1 0
0 0 0

0 0 0*
0 1 0

A A A A A A A A

Doubleword@011
(2 bus transfers)

0 1 1
0 0 0

0 0 0*
0 1 1

A A A A A A A A

Doubleword@100
(2 bus transfers)

1 0 0
0 0 0

0 0 0*
1 0 0

A A A A A A A A

Doubleword@101
(2 bus transfers)

1 0 1
0 0 0

0 0 0*
1 0 1

A A A A A A A A

Doubleword@110
(2 bus transfers)

1 1 0
0 0 0

0 0 0*
1 1 0

A A A A A A A A

Table 15-11. Write data transfer permutations (continued)

Program size
and byte offset

A(29:31) TSIZ(0:2)
(0... p_data_out data bus byte lanes ...63)

B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

910 Freescale Semiconductor

Table 15-12 shows the final layout in memory for data transferred from a register containing the bytes ‘A
B C D E F G H’ to memory. Misaligned accesses that cross a doubleword boundary are broken into a pair
of accesses by the CPU. Data is assumed to be ‘A B C D E F G H’ contained in a register, or ‘A B C D E
F G H’, ‘I J K L M N O P’ contained in a pair of registers (lmw, stmw cases). Also shown are the cases
where element size p_elsiz[0:1] is used for the transfers to memory in which element size differs from the
requested transfer size.

Doubleword@111
(2 bus transfers)

1 1 1
0 0 0

0 0 0*
1 1 1

A A A A A A A A

Table Notes:
“A” indicates byte lanes involved in the transfer; Other lanes will contain driven but unused data.
* These misaligned cases drive request size according to the size specified by the store instruction. Write data is
driven identically for both portions of the misaligned write. Byte ordering of driven write data is determined by the
p_d_wrbigend_b control signal.

Table 15-12. Big- and little-endian memory storage

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

Byte @0000 0 0 0 0 0 0 1 — H — — — — — — — — — — — — — — —

Byte @0001 0 0 0 1 0 0 1 — — H — — — — — — — — — — — — — —

Byte @0010 0 0 1 0 0 0 1 — — — H — — — — — — — — — — — — —

Byte @0011 0 0 1 1 0 0 1 — — — — H — — — — — — — — — — — —

Byte @0100 0 1 0 0 0 0 1 — — — — — H — — — — — — — — — — —

Byte @0101 0 1 0 1 0 0 1 — — — — — — H — — — — — — — — — —

Byte @0110 0 1 1 0 0 0 1 — — — — — — — H — — — — — — — — —

Byte @0111 0 1 1 1 0 0 1 — — — — — — — — H — — — — — — — —

Byte @1000 1 0 0 0 0 0 1 — — — — — — — — — H — — — — — — —

Byte @1001 1 0 0 1 0 0 1 — — — — — — — — — — H — — — — — —

Byte @1010 1 0 1 0 0 0 1 — — — — — — — — — — — H — — — — —

Byte @1011 1 0 1 1 0 0 1 — — — — — — — — — — — — H — — — —

Byte @1100 1 1 0 0 0 0 1 — — — — — — — — — — — — — H — — —

Byte @1101 1 1 0 1 0 0 1 — — — — — — — — — — — — — — H — —

Byte @1110 1 1 1 0 0 0 1 — — — — — — — — — — — — — — — H —

Byte @1111 1 1 1 1 0 0 1 — — — — — — — — — — — — — — — — H

Table 15-11. Write data transfer permutations (continued)

Program size
and byte offset

A(29:31) TSIZ(0:2)
(0... p_data_out data bus byte lanes ...63)

B0 B1 B2 B3 B4 B5 B6 B7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 911

B. E. Half
@0000

0 0 0 0 0 1 0 — G H — — — — — — — — — — — — — —

B. E. Half
@0001

0 0 0 1 0 1 0 — — G H — — — — — — — — — — — — —

B. E. Half
@0010

0 0 1 0 0 1 0 — — — G H — — — — — — — — — — — —

B. E. Half
@0011

0 0 1 1 0 1 0 — — — — G H — — — — — — — — — — —

B. E. Half
@0100

0 1 0 0 0 1 0 — — — — — G H — — — — — — — — — —

B. E. Half
@0101

0 1 0 1 0 1 0 — — — — — — G H — — — — — — — — —

B. E. Half
@0110

0 1 1 0 0 1 0 — — — — — — — G H — — — — — — — —

B. E. Half
@0111

0 1 1 1 0 1 0 — — — — — — — — G — — — — — — — —

1 0 0 0 0 0 1 — — — — — — — — — H — — — — — — —

B. E. Half
@1000

1 0 0 0 0 1 0 — — — — — — — — — G H — — — — — —

B. E. Half
@1001

1 0 0 1 0 1 0 — — — — — — — — — — G H — — — — —

B. E. Half
@1010

1 0 1 0 0 1 0 — — — — — — — — — — — G H — — — —

B. E. Half
@1011

1 0 1 1 0 1 0 — — — — — — — — — — — — G H — — —

B. E. Half
@1100

1 1 0 0 0 1 0 — — — — — — — — — — — — — G H — —

B. E. Half
@1101

1 1 0 1 0 1 0 — — — — — — — — — — — — — — G H —

B. E. Half
@1110

1 1 1 0 0 1 0 — — — — — — — — — — — — — — — G H

B. E. Half
@1111

1 1 1 1 0 1 0 — — — — — — — — — — — — — — — — G

0 0 0 0
(next

double-
word)

0 0 1 — H — — — — — — — — — — — — — — —

L E. Half
@0000

0 0 0 0 0 1 0 1x H G — — — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

912 Freescale Semiconductor

L E. Half
@0000

0 0 0 0 0 1 0 0x G H — — — — — — — — — — — — — —

L. E. Half
@0001

0 0 0 1 0 1 0 1x — H G — — — — — — — — — — — — —

L. E. Half
@0001

0 0 0 1 0 1 0 0x — G H — — — — — — — — — — — — —

L. E. Half
@0010

0 0 1 0 0 1 0 1x — — H G — — — — — — — — — — — —

L. E. Half
@0010

0 0 1 0 0 1 0 0x — — G H — — — — — — — — — — — —

L. E. Half
@0011

0 0 1 1 0 1 0 1x — — — H G — — — — — — — — — — —

L. E. Half
@0011

0 0 1 1 0 1 0 0x — — — G H — — — — — — — — — — —

L. E. Half
@0100

0 1 0 0 0 1 0 1x — — — — H G — — — — — — — — — —

L. E. Half
@0100

0 1 0 0 0 1 0 0x — — — — G H — — — — — — — — — —

L. E. Half
@0101

0 1 0 1 0 1 0 1x — — — — — H G — — — — — — — — —

L. E. Half
@0101

0 1 0 1 0 1 0 0x — — — — — G H — — — — — — — — —

L. E. Half
@0110

0 1 1 0 0 1 0 1x — — — — — — H G — — — — — — — —

L. E. Half
@0110

0 1 1 0 0 1 0 0x — — — — — — G H — — — — — — — —

L. E. Half
@0111

0 1 1 1 0 1 0 1x — — — — — — — H — — — — — — — —

1 0 0 0 0 0 1 1x — — — — — — — — G — — — — — — —

L. E. Half
@0111

0 1 1 1 0 1 0 0x — — — — — — — G — — — — — — — —

1 0 0 0 0 0 1 0x — — — — — — — — H — — — — — — —

L. E. Half
@1000

1 0 0 0 0 1 0 1x — — — — — — — — H G — — — — — —

L. E. Half
@1000

1 0 0 0 0 1 0 0x — — — — — — — — G H — — — — — —

L. E. Half
@1001

1 0 0 1 0 1 0 1x — — — — — — — — — H G — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 913

L. E. Half
@1001

1 0 0 1 0 1 0 0x — — — — — — — — — G H — — — — —

L. E. Half
@1010

1 0 1 0 0 1 0 1x — — — — — — — — — — H G — — — —

L. E. Half
@1010

1 0 1 0 0 1 0 0x — — — — — — — — — — G H — — — —

L. E. Half
@1011

1 0 1 1 0 1 0 1x — — — — — — — — — — — H G — — —

L. E. Half
@1011

1 0 1 1 0 1 0 0x — — — — — — — — — — — G H — — —

L. E. Half
@1100

1 1 0 0 0 1 0 1x — — — — — — — — — — — — H G — —

L. E. Half
@1100

1 1 0 0 0 1 0 0x — — — — — — — — — — — — G H — —

L. E. Half
@1101

1 1 0 1 0 1 0 1x — — — — — — — — — — — — — H G —

L. E. Half
@1101

1 1 0 1 0 1 0 0x — — — — — — — — — — — — — G H —

L. E. Half
@1110

1 1 1 0 0 1 0 1x — — — — — — — — — — — — — — H G

L. E. Half
@1110

1 1 1 0 0 1 0 0x — — — — — — — — — — — — — — G H

L. E. Half
@1111

1 1 1 1 0 1 0 1x — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next

double-
word)

0 0 1 1x G — — — — — — — — — — — — — — —

L. E. Half
@1111

1 1 1 1 0 1 0 0x — — — — — — — — — — — — — — — G

+ 0 0 0 0
(next

double-
word)

0 0 1 0x H — — — — — — — — — — — — — — —

B. E. Word
@0000

0 0 0 0 1 0 0 — E F G H — — — — — — — — — — — —

B. E. Word
@0001

0 0 0 1 1 0 0 — — E F G H — — — — — — — — — — —

B. E. Word
@0010

0 0 1 0 1 0 0 — — — E F G H — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

914 Freescale Semiconductor

B. E. Word
@0011

0 0 1 1 1 0 0 — — — — E F G H — — — — — — — — —

B. E. Word
@0100

0 1 0 0 1 0 0 — — — — — E F G H — — — — — — — —

B. E. Word
@0101

0 1 0 1 1 0 0 — — — — — — E F G — — — — — — — —

1 0 0 0 0 0 1 — — — — — — — — — H — — — — — — —

B. E. Word
@0110

0 1 1 0 1 0 0 — — — — — — — E F — — — — — — — —

1 0 0 0 0 1 0 — — — — — — — — — G H — — — — — —

B. E. Word
@0111

0 1 1 1 1 0 0 — — — — — — — — E — — — — — — — —

1 0 0 0 0 1 1 — — — — — — — — — F G H — — — — —

B. E. Word
@1000

1 0 0 0 1 0 0 — — — — — — — — — E F G H — — — —

B. E. Word
@1001

1 0 0 1 1 0 0 — — — — — — — — — — E F G H — — —

B. E. Word
@1010

1 0 1 0 1 0 0 — — — — — — — — — — — E F G H — —

B. E. Word
@1011

1 0 1 1 1 0 0 — — — — — — — — — — — — E F G H —

B. E. Word
@1100

1 1 0 0 1 0 0 — — — — — — — — — — — — — E F G H

B. E. Word
@1101

1 1 0 1 1 0 0 — — — — — — — — — — — — — — E F G

+ 0 0 0 0
(next

double-
word)

0 0 1 — H — — — — — — — — — — — — — — —

B. E. Word
@1110

1 1 1 0 1 0 0 — — — — — — — — — — — — — — — E F

+ 0 0 0 0
(next

double-
word)

0 1 0 — G H — — — — — — — — — — — — — —

B. E. Word
@1111

1 1 1 1 1 0 0 — — — — — — — — — — — — — — — — E

+ 0 0 0 0
(next

double-
word)

0 1 1 — F G H — — — — — — — — — — — — —

L. E. Word
@0000

0 0 0 0 1 0 0 0 0 H G F E — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 915

L. E. Word
@0000

0 0 0 0 1 0 0 0 1 E F G H — — — — — — — — — — — —

L. E. Word
@0000

0 0 0 0 1 0 0 1 x1 F E H G — — — — — — — — — — — —

L. E. Word
@0001

0 0 0 1 1 0 0 0 0 — H G F E — — — — — — — — — — —

L. E. Word
@0001

0 0 0 1 1 0 0 0 1 — E F G H — — — — — — — — — — —

L. E. Word
@0001

0 0 0 1 1 0 0 1 x1 — F E H G — — — — — — — — — — —

L. E. Word
@0010

0 0 1 0 1 0 0 0 0 — — H G F E — — — — — — — — — —

L. E. Word
@0010

0 0 1 0 1 0 0 0 1 — — E F G H — — — — — — — — — —

L. E. Word
@0010

0 0 1 0 1 0 0 1 x1 — — F E H G — — — — — — — — — —

L. E. Word
@0011

0 0 1 1 1 0 0 0 0 — — — H G F E — — — — — — — — —

L. E. Word
@0011

0 0 1 1 1 0 0 0 1 — — — E F G H — — — — — — — — —

L. E. Word
@0011

0 0 1 1 1 0 0 1 x1 — — — F E H G — — — — — — — — —

L. E. Word
@0100

0 1 0 0 1 0 0 0 0 — — — — H G F E — — — — — — — —

L. E. Word
@0100

0 1 0 0 1 0 0 0 1 — — — — E F G H — — — — — — — —

L. E. Word
@0100

0 1 0 0 1 0 0 1 x1 — — — — F E H G — — — — — — — —

L. E. Word
@0101

0 1 0 1 1 0 0 0 0 — — — — — H G F — — — — — — — —

1 0 0 0 0 0 1 0 0 — — — — — — — — E — — — — — — —

L. E. Word
@0101

0 1 0 1 1 0 0 0 1 — — — — — E F G — — — — — — — —

1 0 0 0 0 0 1 0 1 — — — — — — — — H — — — — — — —

L. E. Word
@0101

0 1 0 1 1 0 0 1 x1 — — — — — F E H — — — — — — — —

1 0 0 0 0 0 1 1 x1 — — — — — — — — G — — — — — — —

L. E. Word
@0110

0 1 1 0 1 0 0 0 0 — — — — — — H G — — — — — — — —

1 0 0 0 0 1 0 0 0 — — — — — — — — F E — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

916 Freescale Semiconductor

L. E. Word
@0110

0 1 1 0 1 0 0 0 1 — — — — — — E F — — — — — — — —

1 0 0 0 0 1 0 0 1 — — — — — — — — G H — — — — — —

L. E. Word
@0110

0 1 1 0 1 0 0 1 x1 — — — — — — F E — — — — — — — —

1 0 0 0 0 1 0 1 x1 — — — — — — — — H G — — — — — —

L. E. Word
@0111

0 1 1 1 1 0 0 0 0 — — — — — — — H — — — — — — — —

1 0 0 0 0 1 1 0 0 — — — — — — — — G F E — — — — —

L. E. Word
@0111

0 1 1 1 1 0 0 0 1 — — — — — — — E — — — — — — — —

1 0 0 0 0 1 1 0 1 — — — — — — — — F G H — — — — —

L. E. Word
@0111

0 1 1 1 1 0 0 1 x1 — — — — — — — F — — — — — — — —

1 0 0 0 0 1 1 1 x1 — — — — — — — — E H G — — — — —

L. E. Word
@1000

1 0 0 0 1 0 0 0 0 — — — — — — — — H G F E — — — —

L. E. Word
@1000

1 0 0 0 1 0 0 0 1 — — — — — — — — E F G H — — — —

L. E. Word
@1000

1 0 0 0 1 0 0 1 x1 — — — — — — — — F E H G — — — —

L. E. Word
@1001

1 0 0 1 1 0 0 0 0 — — — — — — — — — H G F E — — —

L. E. Word
@1001

1 0 0 1 1 0 0 0 1 — — — — — — — — — E F G H — — —

L. E. Word
@1001

1 0 0 1 1 0 0 1 x1 — — — — — — — — — F E H G — — —

L. E. Word
@1010

1 0 1 0 1 0 0 0 0 — — — — — — — — — — H G F E — —

L. E. Word
@1010

1 0 1 0 1 0 0 0 1 — — — — — — — — — — E F G H — —

L. E. Word
@1010

1 0 1 0 1 0 0 1 x1 — — — — — — — — — — F E H G — —

L. E. Word
@1011

1 0 1 1 1 0 0 0 0 — — — — — — — — — — — H G F E —

L. E. Word
@1011

1 0 1 1 1 0 0 0 1 — — — — — — — — — — — E F G H —

L. E. Word
@1011

1 0 1 1 1 0 0 1 x1 — — — — — — — — — — — F E H G —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 917

L. E. Word
@1100

1 1 0 0 1 0 0 0 0 — — — — — — — — — — — — H G F E

L. E. Word
@1100

1 1 0 0 1 0 0 0 1 — — — — — — — — — — — — E F G H

L. E. Word
@1100

1 1 0 0 1 0 0 1 x1 — — — — — — — — — — — — F E H G

L. E. Word
@1101

1 1 0 1 1 0 0 0 0 — — — — — — — — — — — — — H G F

+ 0 0 0 0
(next

double-
word)

0 0 1 0 0 E — — — — — — — — — — — — — — —

L. E. Word
@1101

1 1 0 1 1 0 0 0 1 — — — — — — — — — — — — — E F G

+ 0 0 0 0
(next

double-
word)

0 0 1 0 1 H — — — — — — — — — — — — — — —

L. E. Word
@1101

1 1 0 1 1 0 0 1 x1 — — — — — — — — — — — — — F E H

+ 0 0 0 0
(next

double-
word)

0 0 1 1 x1 G — — — — — — — — — — — — — — —

L. E. Word
@1110

1 1 1 0 1 0 0 0 0 — — — — — — — — — — — — — — H G

+ 0 0 0 0
(next

double-
word)

0 1 0 0 0 F E — — — — — — — — — — — — — —

L. E. Word
@1110

1 1 1 0 1 0 0 0 1 — — — — — — — — — — — — — — E F

+ 0 0 0 0
(next

double-
word)

0 1 0 0 1 G H — — — — — — — — — — — — — —

L. E. Word
@1110

1 1 1 0 1 0 0 1 x1 — — — — — — — — — — — — — — F E

+ 0 0 0 0
(next

double-
word)

0 1 0 1 x1 H G — — — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

918 Freescale Semiconductor

L. E. Word
@1111

1 1 1 1 1 0 0 0 0 — — — — — — — — — — — — — — — H

+ 0 0 0 0
(next

double-
word)

0 1 1 0 0 G F E — — — — — — — — — — — — —

L. E. Word
@1111

1 1 1 1 1 0 0 0 1 — — — — — — — — — — — — — — — E

+ 0 0 0 0
(next

double-
word)

0 1 1 0 1 F G H — — — — — — — — — — — — —

L. E. Word
@1111

1 1 1 1 1 0 0 1 x1 — — — — — — — — — — — — — — — F

+ 0 0 0 0
(next

double-
word)

0 1 1 1 x1 E H G — — — — — — — — — — — — —

B.E.
Doubleword

@0000

0 0 0 0 0 0 0 — A B C D E F G H — — — — — — — —

B.E.
Doubleword

@0001

0 0 0 1 0 0 0 — — A B C D E F G — — — — — — — —

1 0 0 0 0 0 1 — — — — — — — — — H — — — — — — —

B.E.
Doubleword

@0010

0 0 1 0 0 0 0 — — — A B C D E F — — — — — — — —

1 0 0 0 0 1 0 — — — — — — — — — G H — — — — — —

B.E.
Doubleword

@0011

0 0 1 1 0 0 0 — — — — A B C D E — — — — — — — —

1 0 0 0 0 1 1 — — — — — — — — — F G H — — — — —

B.E.
Doubleword

@0100

0 1 0 0 0 0 0 — — — — — A B C D — — — — — — — —

1 0 0 0 1 0 0 — — — — — — — — — E F G H — — — —

B.E.
Doubleword

@0101

0 1 0 1 0 0 0 — — — — — — A B C — — — — — — — —

1 0 0 0 1 0 1 — — — — — — — — — D E F G H — — —

B.E.
Doubleword

@0110

0 1 1 0 0 0 0 — — — — — — — A B — — — — — — — —

1 0 0 0 1 1 0 — — — — — — — — — C D E F G H — —

B.E.
Doubleword

@0111

0 1 1 1 0 0 0 — — — — — — — — A — — — — — — — —

1 0 0 0 1 1 1 — — — — — — — — — B C D E F G H —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 919

B.E.
Doubleword

@1000

1 0 0 0 0 0 0 — — — — — — — — — A B C D E F G H

B.E.
Doubleword

@1001

1 0 0 1 0 0 0 — — — — — — — — — — A B C D E F G

+0 0 0 0 0 0 1 — H — — — — — — — — — — — — — — —

B.E.
Doubleword

@1010

1 0 1 0 0 0 0 — — — — — — — — — — — A B C D E F

+0 0 0 0 0 1 0 — G H — — — — — — — — — — — — — —

B.E.
Doubleword

@1011

1 0 1 1 0 0 0 — — — — — — — — — — — — A B C D E

+0 0 0 0 0 1 1 — F G H — — — — — — — — — — — — —

B.E.
Doubleword

@1100

1 1 0 0 0 0 0 — — — — — — — — — — — — — A B C D

+0 0 0 0 1 0 0 — E F G H — — — — — — — — — — — —

B.E.
Doubleword

@1101

1 1 0 1 0 0 0 — — — — — — — — — — — — — — A B C

+0 0 0 0 1 0 1 — D E F G H — — — — — — — — — — —

B.E.
Doubleword

@1110

1 1 1 0 0 0 0 — — — — — — — — — — — — — — — A B

+0 0 0 0 1 1 0 — C D E F G H — — — — — — — — — —

B.E.
Doubleword

@1111

1 1 1 1 0 0 0 — — — — — — — — — — — — — — — — A

+0 0 0 0 1 1 1 — B C D E F G H — — — — — — — — —

B.E.
Doubleword
(word pairs)

@-000

- 0 0 0 0 0 0 — E F G H M N O P — — — — — — — —

B.E.
Doubleword
(word pairs)

@-100

- 1 0 0

+- 0 0 0
(next

double-
word)

0 0 0 — — — — — E F G H — — — — — — — —

1 0 0 — — — — — — — — — M N O P — — — —

L.E.
Doubleword

@0000

0 0 0 0 0 0 0 1 1 H G F E D C B A — — — — — — — —

L.E.
Doubleword

(byte
elements)

@0000

0 0 0 0 0 0 0 0 1 A B C D E F G H — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

920 Freescale Semiconductor

L.E.
Doubleword

(halfword
elements)

@0000

00 0 0 0 0 0 1 01 B A D C F E H G — — — — — — — —

L.E.
Doubleword

(word
elements)

@0000

00 0 0 0 0 0 0 01 D C B A H G F E — — — — — — — —

L.E.
Doubleword

@0001

0 0 0 1

+- 0 0 0
(next

double-
word)

0 0 0 1 1 — H G F E D C B — — — — — — — —

0 0 1 1 1 — — — — — — — — A — — — — — — —

L.E.
Doubleword

(byte
elements)

@0001

0 0 0 1

+- 0 0 0
(next

double-
word)

0 0 0 0 1 — A B C D E F G — — — — — — — —

0 0 1 0 1 — — — — — — — — H — — — — — — —

L.E.
Doubleword

(halfword
elements)

@0001

0 0 0 1

1 0 0 0
(next

double-
word)

0 0 0 1 01 — B A D C F E H — — — — — — — —

0 0 1 1 01 — — — — — — — — G — — — — — — —

L.E.
Doubleword

(word
elements)

@0001

0 0 0 1

1 0 0 0
(next

double-
word)

0 0 0 0 01 — D C B A H G F — — — — — — — —

0 0 1 0 01 — — — — — — — — E — — — — — — —

L.E.
Doubleword

@0010

0 0 1 0

1 0 0 0
(next

double-
word)

0 0 0 1 1 — H G F E D C B — — — — — — — —

0 1 0 1 1 — — — — — — — — A — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 921

L.E.
Doubleword

(byte
elements)

@0010

0 0 1 0

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — A B C D E F — — — — — — — —

0 1 0 0 1 — — — — — — — — G H — — — — — —

L.E.
Doubleword

(halfword
elements)

@0010

0 0 1 0

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — B A D C F E — — — — — — — —

0 1 0 1 01 — — — — — — — — H G — — — — — —

L.E.
Doubleword

(word
elements)

@0010

0 0 1 0

1 0 0 0
(next

double-
word)

0 0 0 0 01 — — D C B A H G — — — — — — — —

0 1 0 0 01 — — — — — — — — F E — — — — — —

L.E.
Doubleword

@0011

0 0 1 1

1 0 0 0
(next

double-
word)

0 0 0 1 1 — — — H G F E D — — — — — — — —

0 1 1 1 1 — — — — — — — — C B A — — — — —

L.E.
Doubleword

(byte
elements)

@0011

0 0 1 1

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — — A B C D E — — — — — — — —

0 1 1 0 1 — — — — — — — — F G H — — — — —

L.E.
Doubleword

(halfword
elements)

@0011

0 0 1 1

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — — B A D C F — — — — — — — —

0 1 1 1 01 — — — — — — — — E H G — — — — —

L.E.
Doubleword

(word
elements)

@0011

0 0 1 1

1 0 0 0
(next

double-
word)

0 0 0 0 01 — — — D C B A H — — — — — — — —

0 1 1 0 01 — — — — — — — — G F E — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

922 Freescale Semiconductor

L.E.
Doubleword

@0100

0 1 0 0

1 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — H G F E — — — — — — — —

1 0 0 1 1 — — — — — — — — D C B A — — — —

L.E.
Doubleword

(byte
elements)

@0100

0 1 0 0

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — A B C D — — — — — — — —

1 0 0 0 1 — — — — — — — — E F G H — — — —

L.E.
Doubleword

(halfword
elements)

@0100

0 1 0 0

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — B A D C — — — — — — — —

1 0 0 1 01 — — — — — — — — F E H G — — — —

L.E.
Doubleword

(word
elements)

@0100

0 1 0 0

1 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — D C B A — — — — — — — —

1 0 0 0 01 — — — — — — — — H G F E — — — —

L.E.
Doubleword

@0101

0 1 0 1

1 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — H G F — — — — — — — —

1 0 1 1 1 — — — — — — — — E D C B A — — —

L.E.
Doubleword

(byte
elements)

@0101

0 1 0 1

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — A B C — — — — — — — —

1 0 1 0 1 — — — — — — — — D E F G H — — —

L.E.
Doubleword

(halfword
elements)

@0101

0 1 0 1

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — B A D — — — — — — — —

1 0 1 1 01 — — — — — — — — C F E H G — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 923

L.E.
Doubleword

(word
elements)

@0101

0 1 0 1

1 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — D C B — — — — — — — —

1 0 1 0 01 — — — — — — — — A H G F E — — —

L.E.
Doubleword

@0110

0 1 1 0

1 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — H G — — — — — — — —

 1 1 0 1 1 — — — — — — — — F E D C B A — —

L.E.
Doubleword

(byte
elements)

@0110

0 1 1 0

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — A B — — — — — — — —

1 1 0 0 1 — — — — — — — — C D E F G H — —

L.E.
Doubleword

(halfword
elements)

@0110

0 1 1 0

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — B A — — — — — — — —

1 1 0 1 01 — — — — — — — — D C F E H G — —

L.E.
Doubleword

(word
elements)

@0110

0 1 1 0

1 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — D C — — — — — — — —

1 1 0 0 01 — — — — — — — — B A H G F E — —

L.E.
Doubleword

@0111

0 1 1 1

1 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — H — — — — — — — —

 1 1 1 1 1 — — — — — — — — G F E D C B A —

L.E.
Doubleword

(byte
elements)

@0111

0 1 1 1

1 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — A — — — — — — — —

1 1 1 0 1 — — — — — — — — B C D E F G H —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

924 Freescale Semiconductor

L.E.
Doubleword

(halfword
elements)

@0111

0 1 1 1

1 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — B — — — — — — — —

1 1 1 1 01 — — — — — — — — A D C F E H G —

L.E.
Doubleword

(word
elements)

@0111

0 1 1 1
1 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — D — — — — — — — —

1 1 1 0 01 — — — — — — — — C B A H G F E —

L.E.
Doubleword

@1000

1 0 0 0 0 0 0 1 1 — — — — — — — — H G F E D C B A

L.E.
Doubleword

(byte
elements)

@1000

1 0 0 0 0 0 0 0 1 — — — — — — — — A B C D E F G H

L.E.
Doubleword

(halfword
elements)

@1000

1 0 0 0 0 0 0 1 01 — — — — — — — — B A D C F E H G

L.E.
Doubleword

(word
elements)

@1000

1 0 0 0 0 0 0 0 01 — — — — — — — — D C B A H G F E

L.E.
Doubleword

@1001

1 0 0 1

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — H G F E D C B

0 0 1 1 1 A — — — — — — — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1001

1 0 0 1

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — A B C D E F G

0 0 1 0 1 H — — — — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 925

L.E.
Doubleword

(halfword
elements)

@1001

1 0 0 1

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — B A D C F E H

0 0 1 1 01 G — — — — — — — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1001

1 0 0 1

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — D C B A H G F

0 0 1 0 01 E — — — — — — — — — — — — — — —

L.E.
Doubleword

@1010

1 0 1 0

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — H G F E D C B

0 1 0 1 1 A — — — — — — — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1010

1 0 1 0

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — A B C D E F

0 1 0 0 1 G H — — — — — — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1010

1 0 1 0

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — B A D C F E

0 1 0 1 01 H G — — — — — — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1010

1 0 1 0

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — — D C B A H G

0 1 0 0 01 F E — — — — — — — — — — — — — —

L.E.
Doubleword

@1011

1 0 1 1

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — — — H G F E D

0 1 1 1 1 C B A — — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

926 Freescale Semiconductor

L.E.
Doubleword

(byte
elements)

@1011

1 0 1 1

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — — A B C D E

0 1 1 0 1 F G H — — — — — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1011

1 0 1 1

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — — B A D C F

0 1 1 1 01 E H G — — — — — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1011

1 0 1 1

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — — — D C B A H

0 1 1 0 01 G F E — — — — — — — — — — — — —

L.E.
Doubleword

@1100

1 1 0 0

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — — — — H G F E

1 0 0 1 1 D C B A — — — — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1100

1 1 0 0

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — — — A B C D

1 0 0 0 1 E F G H — — — — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1100

1 1 0 0

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — — — B A D C

1 0 0 1 01 F E H G — — — — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1100

1 1 0 0

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — — — — D C B A

1 0 0 0 01 H G F E — — — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 927

L.E.
Doubleword

@1101

1 1 0 1

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — — — — — H G F

1 0 1 1 1 E D C B A — — — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1101

1 1 0 1

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — — — — A B C

1 0 1 0 1 D E F G H — — — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1101

1 1 0 1

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — — — — B A D

1 0 1 1 01 C F E H G — — — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1101

1 1 0 1

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — — — — — D C B

1 0 1 0 01 A H G F E — — — — — — — — — — —

L.E.
Doubleword

@1110

1 1 1 0

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — — — — — — H G

 1 1 0 1 1 F E D C B A — — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1110

1 1 1 0

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — — — — — A B

1 1 0 0 1 C D E F G H — — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1110

1 1 1 0

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — — — — — B A

1 1 0 1 01 D C F E H G — — — — — — — — — —

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

928 Freescale Semiconductor

L.E.
Doubleword

(word
elements)

@1110

1 1 1 0

+0 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — — — — — — — — — — — D C

1 1 0 0 01 B A H G F E — — — — — — — — — —

L.E.
Doubleword

@1111

1 1 1 1

+0 0 0 0
(next

double-
word)

0 0 0 1 1 — — — — — — — — — — — — — — — H

 1 1 1 1 1 G F E D C B A — — — — — — — — —

L.E.
Doubleword

(byte
elements)

@1111

1 1 1 1

+0 0 0 0
(next

double-
word)

0 0 0 0 1 — — — — — — — — — — — — — — — A

1 1 1 0 1 B C D E F G H — — — — — — — — —

L.E.
Doubleword

(halfword
elements)

@1111

1 1 1 1

+0 0 0 0
(next

double-
word)

0 0 0 1 01 — — — — — — — — — — — — — — — B

1 1 1 1 01 A D C F E H G — — — — — — — — —

L.E.
Doubleword

(word
elements)

@1111

1 1 1 1
+0 0 0 0

(next
double-
word)

0 0 0 0 01 — — — — — — — — — — — — — — — D

1 1 1 0 01 C B A H G F E — — — — — — — — —

L.E.
Doubleword
(word pairs)

@-000

- 0 0 0 0 0 0 0 01 H G F E P O N M — — — — — — — —

L.E.
Doubleword
(word pairs)

@-100

- 1 0 0

+- 0 0 0
(next

double-
word)

0 0 0 0 01 — — — — H G F E — — — — — — — —

1 0 0 0 01 — — — — — — — — P O N M — — — —

Table Notes:
Assumes a GP Register contains “A B C D E F G H”. Doubleword with word pair assumes a pair of registers
containing ‘A B C D E F G H’, ‘I J K L M N O P’.

All other combinations of ELSIZ[0:1] are illegal and will not occur. ELSIZ ignored on reads, CPU will perform proper
byte ordering.

Table 15-12. Big- and little-endian memory storage (continued)

Program size
and byte

offset
A(28:31)

TSIZ
(0:2)

ELSIZ
(0:1)

(0... data bus byte lanes ...63)
even double word — 0

(0... data bus byte lanes ...63)
0dd double word — 1

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

B0
B
1

B
2

B
3

B
4

B
5

B
6

B
7

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 929

15.2.5 External SPR interface signals

The following paragraph describes interface signals for Special Purpose registers (SPRs) located
externally to the core.

15.2.5.1 SPR number (p_sprnum[0:9])

The p_sprnum[0:9] signals are provided to indicate the particular external SPR that is being accessed.
These signals are only valid during external SPR accesses.

15.2.5.2 SPR read data (p_spr_in[0:31])

The p_spr_in[0:31] input signals provide read data from an external SPR that is being accessed with a
mfspr instruction. These signals are only sampled during external move from SPR accesses.

15.2.5.3 SPR write data (p_spr_out[0:31])

The p_spr_out[0:31] output signals provide data to write to an external SPR that is being accessed with a
mtspr instruction. These signals are only valid during external move to SPR accesses.

15.2.5.4 SPR read control (p_rd_spr)

The p_rd_spr output signal indicates an external SPR read is occurring, the p_sprnum[0:9] outputs are
valid, and that the p_spr_in[0:31] inputs will be sampled at the end of the next clock cycle.

15.2.5.5 SPR write control (p_wr_spr)

The p_wr_spr output signal indicates an external SPR write is occurring, the p_sprnum[0:9] outputs are
valid, and the p_spr_out[0:31] outputs will be driven the next clock cycle.

15.2.6 Miscellaneous processor signals

The following paragraph describes several miscellaneous processor signals.

15.2.6.1 PID0 outputs (p_pid0[0:7])

The active-high p_pid0[0:7] output signals are used to provide the current process ID in the Process ID
Register 0 (PID0). These outputs correspond to the low order eight bits of PID0.

15.2.6.2 PID0 update (p_pid0_updt)

The active-high p_pid0_updt signal is used to indicate that the Process ID Register 0 (PID0) is being
updated by a mtspr instruction. This output will assert during the clock cycle the p_pid0[0:7] outputs are
changing.

1 Elements permuted

e200z759n3 Core Reference Manual, Rev. 2

930 Freescale Semiconductor

15.2.7 Cache/MMU status signals

The following paragraph describes several miscellaneous processor to Cache / MMU status signals.

15.2.7.1 Cache enabled (p_d_cache_enabled, p_i_cache_enabled)

The active-high p_[d,i]_cache_enabled input signal is used to indicate that the Cache is enabled.

15.2.7.2 Cache/MMU busy (p_d_cmbusy, p_i_cmbusy)

The active-high p_[d,i]_cmbusy input signal is used to indicate that the Cache or MMU is busy processing
a translation request or an external bus access such as a cache line transfer or write buffer flush. This signal
is used to handshake operation of mfspr/mtspr instructions that specify a Cache or MMU special purpose
register, as well as Cache and MMU control instructions. Execution of these instructions will be stalled
until all outstanding processor requests have been completed (p_[d,i]_tbusy[0]_b is negated) and Cache
and MMU are idle. The Cache should assume responsibility for proper assertion of this signal.

15.2.7.3 Cache set CUL (p_d_set_cul, p_i_set_cul)

The active-high p_[d,i]_set_cul output signal is used to indicate that the Cache Unable to Lock (CUL)
status bit should be set due to an attempt by the CPU to execute a cache line-locking instruction that was
not allowed.

15.2.7.4 User cache lock DSI control (p_ucl_dsi)

The active-high p_ucl_dsi output signal is used to indicate that the CPU is attempting to execute a cache
line-locking instruction that should not be allowed due to a UCLE exception, and should result in a DSI.
The Cache should return a p_tea_b in response, and should not allow the cache lock/unlock to occur. The
MMU however, attempts translation so that a TLB miss may be detected and be prioritized over the UCLE
DSI.

15.2.7.5 Cache push parity error (p_d_cp_perr)

The active-high p_d_cp_perr input signal is used to indicate that a cache parity error has occurred while
loading dirty data into the push buffer for replacement. This signal is asserted in an imprecise fashion. This
signal is used to generate a machine check condition and causes the associated syndrome bit to be set in
the Machine Check Syndrome register (Section 2.4.7, Machine Check Syndrome Register (MCSR)).

15.2.7.6 Cache push address (p_d_push_addr[0:31])

The p_d_push_addr[0:31] bus is used to provide the physical address of a push that incurs a cache parity
error while loading dirty data into the push buffer for replacement. This bus is sampled with the assertion
of p_d_cp_perr for error reporting purposes.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 931

15.2.7.7 Bus write error (p_d_bus_wrerr)

The active-high p_d_bus_wrerr input signal is used to indicate that a bus error has occurred while
emptying the cache store buffer or push buffer. This signal is asserted in an imprecise fashion This signal
is used to generate a machine check condition and causes the associated syndrome bit to be set in the
Machine Check Syndrome register (Section 2.4.7, Machine Check Syndrome Register (MCSR)).

15.2.7.8 Bus write error address (p_d_bus_wrerr_addr[0:31])

The p_d_bus_wrerr_addr[0:31] bus is used to provide the physical address of a bus write transfer that
incurs a bus write error while emptying the cache store buffer or push buffer. This bus is sampled with the
assertion of p_d_bus_wrerr for error reporting purposes.

15.2.7.9 Cache linefill status (p_d_lf_status[0:3], p_i_lf_status[0:3])

The active-high p_[d,i]_lf_status[0:3] input signals are used to provide linefill status information to the
CPU. Table 15-13 details these signals.

15.2.7.10 Linefill status address (p_d_lf_addr[0:31], p_i_lf_addr[0:31])

The p_[d,i]_lf_addr[0:31] bus is used to provide the physical address of a linefill transfer. This bus is
sampled with the assertion of one of the corresponding p_[d,i]_lf_status[0:3] inputs for error reporting
purposes.

15.2.7.11 Debug mode MMU disable (p_d_dmdis, p_i_dmdis)

The active-high p_[d,i]_dmdis output signal reflects the sampled state of the OnCE Control Register
OCR[D_DMDIS] and OCR[I_DMDIS] bits. It will be negated when the debug session ends. See
Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more information on this function.

15.2.7.12 Debug mode MMU ‘VLE’ attribute (p_dbg_vle)

The active-high p_dbg_vle output signal reflects the sampled state of the OnCE Control Register
OCR[I_DVLE] bit. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more
information on this function.

Table 15-13. p_[d,i]_lf_status[0:3]

Signal Description

lf_status[0] Linefill was terminated by a bus error

lf_status[1] Linefill was initiated by a store-type access

lf_status[2] Linefill was initiated by a touch access

lf_status[3] Linefill was completed without error

e200z759n3 Core Reference Manual, Rev. 2

932 Freescale Semiconductor

15.2.7.13 Debug mode MMU ‘W’ attribute (p_d_dbg_w)

The active-high p_d_dbg_w output signal reflects the sampled state of the OnCE Control Register
OCR[D_DW] bit. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more information
on this function.

15.2.7.14 Debug mode MMU ‘I’ attribute (p_d_dbg_i, p_i_dbg_i)

The active-high p_[d,i]_dbg_i output signal reflects the sampled state of the OnCE Control Register
OCR[D_DI] and OCR[I_DI] bits. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for
more information on this function.

15.2.7.15 Debug mode MMU ‘M’ attribute (p_d_dbg_m, p_i_dbg_m)

The active-high p_[d,i]_dbg_m output signal reflects the sampled state of the OnCE Control Register
OCR[D_DM] and OCR[I_DM] bits. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR),
for more information on this function.

15.2.7.16 Debug mode MMU ‘G’ attribute (p_d_dbg_g)

The active-high p_d_dbg_g output signal reflects the sampled state of the OnCE Control Register
OCR[D_DG] bit. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more information
on this function.

15.2.7.17 Debug mode MMU ‘E’ attribute (p_d_dbg_e, p_i_dbg_e)

The active-high p_[d,i]_dbg_e output signal reflects the state of the OnCE Control Register OCR[D_DE]
and OCR[I_DE] bits. See Section 12.4.6.3, e200z759n3 OnCE Control Register (OCR), for more
information on this function.

15.2.8 EFPU interface signals

Please refer to the EFPU Interface Specification for information on the EFPU interface signals.

15.2.9 Test signals

Please refer to the e200z759n3 Test Guide for information on Test signals.

15.3 Timing diagrams

15.3.1 Processor instruction/data transfers

Transfer of data between the core and memory involves the address bus, data busses, and control and
attribute signals. The address and data buses are parallel, non-multiplexed buses, supporting byte,
halfword, three byte, word, and doubleword transfers. All bus input and output signals are sampled and

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 933

driven with respect to the rising edge of the m_clk signal. The core moves data on the bus by issuing
control signals and using a handshake protocol to ensure correct data movement.

Separate memory interface ports are provided for instruction (Instruction Port) and data (Data Port)
accesses. The instruction memory interface supports aligned read transfers of 32 and 64 bits, supports true
big- and little-endian operating modes, and operates in a highly pipelined fashion. The data memory
interface supports read and write transfers of 8, 16, 24, 32, and 64 bits, supports misaligned transfers,
supports true big- and little-endian operating modes, and operates in a pipelined fashion.

The memory interfaces operate in a pipelined fashion to allow additional access time for memory and
peripherals. Accesses that are initiated in a given clock cycle complete two cycles later when running with
no wait states.

Read transfers consist of a request cycle, where address and attributes are driven along with a transfer
request, a MMU access cycle during which protection checks and address translation occurs, one or more
memory access cycles to perform accesses (first cycle in parallel with MMU lookup, subsequent cycles if
wait states are involved), and a data return cycle during which the requested information is returned to the
CPU for alignment, sign or zero extension, and forwarding, and the access is terminated.

Write transfers consist of a request cycle, where address and attributes are driven along with a transfer
request, a MMU access cycle during which protection checks and address translation occurs, a data drive
cycle (in parallel with the MMU lookup) where write data is driven and external devices accept write data
for the access, and a termination cycle during which termination status is returned. Writes are buffered
externally and may be written to memory during unused cycles.

Misaligned data accesses are supported with one or more transfers to the data memory interface. If a data
access is misaligned, but is contained within an aligned 64-bit doubleword, the core performs a single
transfer, and the memory interface is responsible for delivering (reads) or accepting (writes) the data
corresponding to the size signals aligned according to the low order three address bits. If a data access is
misaligned and crosses a 64-bit boundary, the e200z759n3 load/store unit will perform a pair of transfers
beginning at the effective address, requesting the original data size (either halfword or word) for the first
transfer, and for the second transfer the address is incremented to the next 64-bit boundary, and the size
signals are driven to indicate the number of remaining bytes to be transferred.

Access requests are generated in an overlapped fashion in order to support sustained single cycle transfers.
Up to three access requests may be in progress at any one cycle, two accesses outstanding and a third in
the pending request phase. In addition, the core may choose to change the request address and attribute
values if a previous request is still pending.

Access requests are assumed to be accepted as long as there are fewer than two accesses in progress
(p_treq_b asserted with p_tbusy[1]_b negated), or if an access in progress is terminated during the same
cycle a new request is active (p_treq_b asserted with p_tbusy[1]_b asserted and one of p_ta_b or
p_tea_b asserted), or if an access is aborted during the same cycle a new request is active (p_treq_b
asserted with p_abort_b asserted). Once an access has been accepted, the core is free to change the current
request—the interface control logic needs to capture access information.

The logic equation for taken is (~p_treq_b & (p_tbusy[1]_b | ~p_ta_b | ~p_tea_b) & ~p_halt_zlb).

The core can also abort an accepted access during the cycle following a valid (taken) request, by asserting
p_abort_b during the clock cycle following a valid p_treq_b. In this case, external Cache control logic

e200z759n3 Core Reference Manual, Rev. 2

934 Freescale Semiconductor

must terminate the accepted access. In the case of an aborted access, the address bus and all attributes
associated with the aborted request are undefined. It is possible and normal for an access that follows the
aborted access to be requested and accepted, and the assertion of abort for the prior request must not affect
the subsequent access. Note that in this case p_abort_b may assert during the same clock cycle that the
following access is being requested, and should only abort the access taken in the previous cycle.

The Cache control logic is responsible for proper pipelining and latching of all interface signals to initiate
memory accesses.

The p_tea_b signal is used to terminate the current bus cycle when a fault is detected. When the core
recognizes a bus error condition for an access, the access is terminated, and subsequent accesses may be
aborted.

When a bus cycle is terminated with a bus error, the core can enter storage error exception processing
immediately following the bus cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the instruction cache before it is ready
to execute them. If a bus error occurs on an instruction fetch, the core does not take the exception until it
attempts to use the instruction. Should an intervening instruction cause a branch, or should a task switch
occur, the storage error exception for the unused access does not occur.

A bus error termination for any write access or read access that reference data specifically requested by
the execution unit causes the core to begin exception processing. The DCache memory controller is
responsible for properly aborting a following data access in the pipeline when a data load or store is
terminated with p_tea_b. This is referred to as an “implicit abort”. In addition to implicit aborts, the CPU
may abort a requested access in the clock cycle after it is taken using the p_abort_b signal. Due to the
pipelined nature of the interface, the CPU cannot cause an explicitly signaled abort of an access that is past
the MMU lookup cycle; these accesses are aborted by the Cache memory controller in certain
circumstances described in Section 15.3.1.8, Error termination and abort operation, and Section 15.3.1.7,
Abort operation.

15.3.1.1 Basic read transfer cycles

During a read transfer, the core receives data from memory or a peripheral device. Figure 15-2 illustrates
functional timing for basic read transfers. Clock-by-clock descriptions of activity in Figure 15-2 follows:

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 935

Figure 15-2. Basic read transfers

Clock 1 (C1)

The first read transfer starts in clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The transfer code (p_tc[0:2]) and transfer type (p_ttype[0:3]) attributes identify
the specific access type. The transfer size attribute (p_tsiz[0:2]) indicates the size of the transfer. The
read/write (p_rw_b) signal is driven high for a read cycle.

The core asserts transfer request (p_treq_b) during C1 to indicate that a transfer is being requested. Since
the bus is currently idle, as indicated by the p_tbusy_b encoding (0 transfers outstanding), the first read
request to addrx is considered taken at the end of C1

Clock 2 (C2):

During C2, the p_tbusy[0:1]_b signals are driven to indicate that an access is in progress.

The MMU performs protection checks and address translation in the first part of C2.

The addrx memory access takes place using the address and attribute values that were driven during C1 to
enable reading of one or more bytes of memory.

Another read transfer request is made during C2 to addry, and since the request pipeline is not full, it is
considered taken at the end of C2.

Clock 3 (C3):

During C3, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addrx
and addry).

The MMU performs protection checks and address translation in the first part of C3. Also during C3, the
addry memory access takes place using the address and attribute values that were driven during C2 to
enable reading of one or more bytes of memory.

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data z

addr x addr y addr z

addr x read addr y read addr z read

Single cycle reads, full pipelining
1 2 3 4 5 6

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

936 Freescale Semiconductor

During C3, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addrx is completing,
and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31]] that were driven during
C1 to place information on the data bus. The memory drives valid data to the core in C3.

During C3, the core asserts p_treq_b indicating that another transfer is being requested. The address and
attribute signals are driven for a request to addrz.

Clock 4 (C4):

During C4, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addry
and addrz).

The MMU performs protection checks and address translation in the first part of C4. Also during C4, the
addrz memory access takes place using the address and attribute values that were driven during C3 to
enable reading of one or more bytes of memory.

During C4, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addry is completing,
and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31] that were driven during
C2 to place information on the data bus. The Cache controller drives valid data to the core in C4.

During C4, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

Clock 5 (C5):

During C5, the p_tbusy[0:1]_b signals are driven to indicate that only a single access is now outstanding
(addry access terminated at the end of C4).

Also during C5, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addrz is
completing, and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31] that were
driven during C3 to place information on the data bus. The Cache controller drives valid data to the core
in C5.

During C5, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

Clock 6 (C6):

During C6, the p_tbusy[0:1]_b signals are driven to indicate that there are no outstanding transfers (addrz
access terminated at the end of C5).

15.3.1.2 Read transfer with wait states

Figure 15-3 shows an example of wait state operation. Signal p_ta_b for the first request (addrx) is not
asserted during C3, so wait states are inserted until p_ta_b is recognized (during C4).

Meanwhile, subsequent requests have been generated by the CPU for addry, which is taken in C2, since
only a single transaction is then outstanding, and for addrz, which is not taken until the end of C4. This
request is not considered taken in C3 since there are already two outstanding transfers, and no termination
signal is asserted during C3. During C4, p_ta_b is asserted to terminate the access to addrx. The request
for access to addrz is taken at the end of C4, and during C5, the MMU lookup and memory access occur.

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 937

Figure 15-3. Read transfer with wait state

When a requested access is is not taken at the end of a given clock cycle, the CPU is free to negate or
change the request on the next cycle. Cache and MMU control logic must be cognizant of this protocol.
With two outstanding transfers in progress, a subsequent request is considered accepted only if one of
p_abort_b, p_ta_b, or p_tea_b are asserted and p_treq_b is also asserted at the end of a clock cycle.
Figure 15-4 shows an example of a request change due to a not-taken request. In C3, the request for addrz
is not taken since two requests are outstanding and no termination was asserted. In C4, the request changes
to addrw, which is then taken in C4 since termination for the initial request to addrx is asserted. The addrw
request terminates at the end of C6.

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data z

addr x addr y addr z

addr x read addr y read addr z read

1 2 3 4 5 6 7
Read with wait-state, single cycle reads, full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

938 Freescale Semiconductor

Figure 15-4. Read transfer with wait state, request change

15.3.1.3 Basic write transfer cycles

During a write transfer, the core provides write data to a memory or peripheral device. Figure 15-5
illustrates functional timing for basic write transfers. Clock-by-clock descriptions of activity in
Figure 15-5 follows:

Figure 15-5. Basic write transfers

Clock 1 (C1)

addr x addr y addr z addr w

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data w

addr x addr y addr w

addr x read addr y read addr w read

1 2 3 4 5 6 7
Read with wait-state, single cycle reads, request change, full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data z

addr x addr y addr z

addr x addr y addr z

Single cycle writes, full pipelining
1 2 3 4 5 6

m_clk

p_treq_b

p_addr,

attributes

p_rw

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 939

The first write transfer starts in clock cycle 1. During C1, the core places valid values on the address bus
and transfer attributes. The transfer code (p_tc[0:2]) and transfer type (p_ttype[0:3]) attributes identify
the specific access type. The transfer size attribute (p_tsiz[0:2]) indicates the size of the transfer. The
read/write (p_rw_b) signal is driven low for a write cycle.

The core asserts transfer request (p_treq_b) during C1 to indicate that a transfer is being requested. Since
the bus is currently idle, as indicated by the p_tbusy_b encoding (0 transfers outstanding), the first write
request to addrx is considered taken at the end of C1

Clock 2 (C2):

During C2, the p_tbusy[0:1]_b signals are driven to indicate that an access is in progress.

The MMU performs protection checks and address translation in the first part of C2. Also during C2, data
for the addrx write (datax) is provided on the p_data_out bus. Write data for an access is driven once the
access is taken.

Unlike reads, the write is not performed during the MMU lookup cycle. It must be buffered for later use,
since the protection check outcome may not allow the write. In addition, the write must be implicitly
aborted if a preceding read or write data access results in an error.

Another write transfer request is made during C2 to addry, and since the request pipeline is not full, it is
considered taken at the end of C2.

Clock 3 (C3):

During C3, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addrx
and addry). Data for the addry write (datay) is provided on the p_data_out bus.

Also during C3, the addrx memory access takes place using the address and attribute values that were
driven during C1, and the data that was driven during C2 to enable writing of one or more bytes of memory.

During C3, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addrx is complete.

During C3, the core asserts p_treq_b indicating that another transfer is being requested. The address and
attribute signals are driven for a request to addrz.

Clock 4 (C4):

During C4, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addry
and addrz).

Also during C4, the addry memory access takes place using the address and attribute values that were
driven during C2, and the data that was driven during C3 to enable writing of one or more bytes of memory.

During C4, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addry is complete.

During C4, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

Clock 5 (C5):

During C5, the p_tbusy[0:1]_b signals are driven to indicate that only a single access (addrz) is now
outstanding (addry access terminated at the end of C4).

e200z759n3 Core Reference Manual, Rev. 2

940 Freescale Semiconductor

Also during C5, the addrz memory access takes place using the address and attribute values that were
driven during C3, and the data that was driven during C4 to enable writing of one or more bytes of memory.

Also during C5, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addrz is
complete.

During C5, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

Clock 6 (C6):

During C6, the p_tbusy[0:1]_b signals are driven to indicate that there are no outstanding transfers (addrz
access terminated at the end of C5).

15.3.1.4 Write transfer with wait states

Figure 15-6 shows an example of wait state operation during write cycles.

Figure 15-6. Write transfer with wait state

Signal p_ta_b for the first request (addrx) is not asserted during C3, so wait states are inserted until p_ta_b
is recognized (during C4).

Meanwhile, a subsequent request has been generated by the CPU for addry, which is taken in C2 (since
only a single transaction is then outstanding), and datay is driven in C3 once addry is taken. The MMU
performs protection checks and address translation for addry in the first part of C3. This information must
be stored until the addry write is allowed to begin, which is not until the successful outcome of the
preceding write to addrx.

Also during C3, a request is generated for a write to addrz, which is not taken until the end of C4. This
request is not considered taken in C3 since there are already two outstanding transfers, and no termination

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data z

addr x addr y addr z

addr x addr y addr z

1 2 3 4 5 6 7
Write with wait-state, single cycle writes, full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 941

signal is asserted during C3. Data for addry remains driven until the next access request is taken. Data for
a write cycle is not driven until the cycle after access is taken, thus dataz is not driven until C5.

During C4, the write to addrx successfully terminates. At the end of C4, the write to addrz is taken.

In C5, the write to addry occurs using the information driven during C2 and C3. Data for addrz is also
driven during C5.

During C5, the write to addry successfully terminates. In C6, the write to addrz occurs using the
information driven during C4 and C5.

15.3.1.5 Read and write transfers

Figure 15-7 shows a sequence of read and write cycles.

Figure 15-7. Single-cycle read and write transfers — 1

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second read request (addry) is taken at the end of C2 since only one access is outstanding (addrx).

p_ta_b is asserted during C3 for the first read access (addrx). Also during C3, a request is generated for a
write to addrz, which is taken at the end of C3 since the first access is terminating.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken. During C4, read data is
supplied for the addry read, and the access is terminated.

During C5, p_ta_b is asserted to complete the write cycle to addrz.

Figure 15-8 shows another sequence of read and write cycles. This example shows the memory controller
buffering an interleaved write access between two reads.

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y

data z

addr x addr y addr z

addr x read addr y read addr z write

1 2 3 4 5 6
Single cycle reads, single cycle write, full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

942 Freescale Semiconductor

Figure 15-8. Single-cycle read and write transfers — 2

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The first write request (addry) is taken at the end of C2 since only one access is outstanding (addrx).

p_ta_b is asserted during C3 for the first read access (addrx). Also during C3, a request is generated for a
read to addrz, which is taken at the end of C3 since the first access is terminating.

Data for the addry write cycle is driven in C3, the cycle after the access is taken. Also during C3, protection
checks are made for the addry write, and any address translation is performed.

During C4, the addry write access is terminated with p_ta_b (assumes no MMU fault occurred) after being
buffered. Since there is another read access to addrz occurring during C4, the memory controller delays
the addry write while checking that no conflict or hazard is occurring with addrz and performs the read
access to addrz.

During C5, p_ta_b is asserted to complete the read cycle to addrz. Since no read cycle needs to occur to
memory during C5, the buffered write access for addry is performed to memory. Optionally, the memory
controller may continue to hold the write in the buffer until a later time.

Once a write has been buffered, p_tea_b may not be subsequently asserted for that write cycle. Also, once
it has been buffered, a transfer error on an access that logically follows the write must not affect the write
from being performed.

Figure 15-9 shows another sequence of read and write cycles. In this example, reads incur a single wait
state.

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data z

data y

addr x addr y addr z

addr x read addr z read addr y write**

1 2 3 4 5 6
Single cycle read, single cycle writes, full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 943

Figure 15-9. Multi-cycle read and write transfers — 1

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second read request (addry) is taken at the end of cycle C2 since only one access is outstanding (addrx).

The first write request (addrz) is not taken during C3 since two accesses are outstanding in C3
(addrx,addry).

p_ta_b is asserted during C4 for the first read access (addrx). Also during C4, the request for a write to
addrz is taken since the first access is terminating.

Data for the addrz write cycle is driven in C5, the cycle after the access is taken. The MMU lookup occurs
in C5 for the write to addrz. A second write request (addrw) is not taken during C5 since two accesses are
still outstanding (addry,addrz).

During C6, the addry read access is terminated and the addrw write request is taken.

During C7, data for the addrw write access is driven. The MMU lookup occurs for the write to addrw. In
C7, the write to addrz may be performed, since it is determined that the preceding access terminated
successfully. p_ta_b is asserted to complete the write cycle to addrz.

During C8, p_ta_b is asserted to complete the write cycle to addrw.

Figure 15-10 shows another sequence of read and write cycles. In this example, reads incur a single wait
state.

addr x addr y addr z addr w

Idle 1 outst. 2 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y

data z data w

addr x addr y addr z addr w

addr x read addr y read addr z write addr w write

1 2 3 4 5 6 7
Reads with wait-state, single cycle writes, full pipelining

8 9
m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

944 Freescale Semiconductor

Figure 15-10. Multi-cycle read and write transfers — 2

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle.

The first write request (addry) is taken at the end of cycle C2 since only one access is outstanding (addrx).

The second read request (addrz) is not taken during C3 since two accesses are outstanding in C3
(addrx,addry). Data for the addry write cycle is driven in C3, the cycle after the access is taken. The MMU
lookup (if present) occurs in C3 for the write to addry.

p_ta_b is asserted during C4 for the first read access (addrx). Also during C4, the request for a read to
addrz is taken since the first access is terminating.

The MMU lookup occurs in C5 for the read to addrz. Also during C5, p_ta_b is asserted to terminate the
write cycle to addry, which has been buffered. This write does not occur during C5 since a read request is
being serviced (assumes no hazard has been detected). A second write request (addrw) is taken at the end
of C5 since the second access is terminating.

During C6, data for the addrw write access is driven. The MMU lookup occurs for the write to addrw.

During C7, p_ta_b is asserted to complete the read cycle to addrz. The buffered write for addry is now
performed since no read is occurring.

During C8,the write to addrw is performed, and p_ta_b is asserted to terminate the write cycle to addrw.

15.3.1.6 Misaligned accesses

Figure 15-11 illustrates functional timing for a misaligned read transfer. The read to addrx is misaligned
across a 64-bit boundary.

addr x addr y addr z addr w

Idle 1 outst. 2 outst. 2 outst. 2 outst. 1 outst. Idle

data x data z

data y data w

addr x addr y addr z addr w

addr x read addr z addr y write addr w write

1 2 3 4 5 6 7
Read with wait-state, single cycle write, read with wait state, single cycle write, full pipelining

8 9
m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_acc

mem_acc

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 945

Figure 15-11. Misaligned read transfer

The first portion of the misaligned read transfer starts in C1. During C1, the core places valid values on
the address bus and transfer attributes. The read/write (p_rw_b) signal is driven high for a read cycle. The
transfer code (p_tc[0:2]) and transfer type (p_ttype[0:3]) attributes identify the specific access type. The
transfer size attribute (p_tsiz[0:2]) indicates the size of the transfer. Even though the transfer is misaligned,
the size value driven corresponds to the size of the entire misaligned data item.

The core asserts transfer request (p_treq_b) during C1 to indicate that a transfer is being requested. Since
the bus is currently idle, as indicated by the p_tbusy_b encoding (0 transfers outstanding), the first read
request to addrx is considered taken at the end of C1

During C2, the p_tbusy[0:1]_b signals are driven to indicate that an access is in progress.

The MMU performs protection checks and address translation in the first part of C2.

The addrx memory access takes place using the address and attribute values that were driven during C1 to
enable reading of one or more bytes of memory.

The second portion of the misaligned read transfer request is made during C2 to addrx+, and since the
request pipeline is not full, it is considered taken at the end of C2. The size value driven is the size of the
remaining bytes of data in the misaligned read.

During C3, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addrx
and addrx+).

The MMU performs protection checks and address translation in the first part of C3. Also during C3, the
addrx+ memory access takes place using the address and attribute values that were driven during C2 to
enable reading of one or more bytes of memory.

addr x addr x+ addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data x+ data z

addr x addr x+ addr z

addr x read addr x+ read addr z read

Misaligned read, full pipelining
1 2 3 4 5 6

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

946 Freescale Semiconductor

During C3, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addrx is completing,
and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31] that were driven during
C1 to place information on the data bus. The memory drives valid data to the core in C3.

During C3, the core asserts p_treq_b indicating that another transfer is being requested. The address and
attribute signals are driven for a request to addrz.

During C4, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding
(addrx+ and addrz).

The MMU performs protection checks and address translation in the first part of C4. Also during C4, the
addrz memory access takes place using the address and attribute values that were driven during C3 to
enable reading of one or more bytes of memory.

During C4, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addrx+ is
completing, and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31] that were
driven during C2 to place information on the data bus. The memory drives valid data to the core in C4.

During C4, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

During C5, the p_tbusy[0:1]_b signals are driven to indicate that only a single access is now outstanding
(addrx+ access terminated at the end of C4).

Also during C5, the core samples the level of p_ta_b. Since it is asserted, the read cycle for addrz is
completing, and the memory control logic uses the values of p_tsiz[0:2], and p_addr[29:31] that were
driven during C3 to place information on the data bus. The memory drives valid data to the core in C5.

During C5, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

During C6, the p_tbusy[0:1]_b signals are driven to indicate that there are no outstanding transfers (addrz
access terminated at the end of C5).

Figure 15-12 illustrates functional timing for a misaligned write transfer. The write to addrx is misaligned
across a 64-bit boundary.

Figure 15-12. Misaligned write transfer

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data x data z

addr x addr x+ addr z

addr x addr x+ addr z

attributes

p_rw

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 947

The first portion of the misaligned write transfer starts in C1. During C1, the core places valid values on
the address bus and transfer attributes. The transfer code (p_tc[0:2]) and transfer type (p_ttype[0:3])
attributes identify the specific access type. The transfer size attribute (p_tsiz[0:2]) indicates the size of the
transfer. Note that for the misaligned transfer, the size is driven to indicate the size of the entire misaligned
data item, not just the portion driven in the first cycle. The read/write (p_rw_b) signal is driven low for a
write cycle.

The core asserts transfer request (p_treq_b) during C1 to indicate that a transfer is being requested. Since
the bus is currently idle, as indicated by the p_tbusy_b encoding (0 transfers outstanding), the first write
request to addrx is considered taken at the end of C1

During C2, the p_tbusy[0:1]_b signals are driven to indicate that an access is in progress.

If present, the MMU performs protection checks and address translation in the first part of C2. Also during
C2, data for the addrx write (datax) is provided on the p_data_out bus. Write data for an access is driven
once the access is taken.

Unlike reads, the write is not performed during the MMU lookup cycle. It must be buffered for later use,
since the protection check outcome may not allow the write. In addition, the write must be implicitly
aborted if a preceding read or write data access results in an error.

The second half of the misaligned write transfer request is made during C2 to addrx+, and since the request
pipeline is not full, it is considered taken at the end of C2.

During C3, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding (addrx
and addrx+). Data for the addrx+ write (datax) is provided on the p_data_out bus. The value driven remains
unchanged from the previous cycle.

Also during C3, the addrx memory access takes place using the address and attribute values that were
driven during C1, and the data that was driven during C2 to enable writing of one or more bytes of memory.

During C3, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addrx is complete.

During C3, the core asserts p_treq_b indicating that another transfer is being requested. The address and
attribute signals are driven for a request to addrz.

During C4, the p_tbusy[0:1]_b signals are driven to indicate that two accesses are now outstanding
(addrx+ and addrz).

Also during C4, the addrx+ memory access takes place using the address and attribute values that were
driven during C2, and the data that was driven during C3 to enable writing of one or more bytes of memory.

During C4, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addrx+ is complete.

During C4, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

During C5, the p_tbusy[0:1]_b signals are driven to indicate that only a single access (addrz) is now
outstanding (addrx+ access terminated at the end of C4).

Also during C5, the addrz memory access takes place using the address and attribute values that were
driven during C3, and the data that was driven during C4 to enable writing of one or more bytes of memory.

e200z759n3 Core Reference Manual, Rev. 2

948 Freescale Semiconductor

Also during C5, the core samples the level of p_ta_b. Since it is asserted, the write cycle for addrz is
complete.

During C5, the core negates p_treq_b indicating that no further transfer is being requested. The address
and attribute signals are thus undefined.

During C6, the p_tbusy[0:1]_b signals are driven to indicate that there are no outstanding transfers (addrz
access terminated at the end of C5).

An example of a misaligned write cycle followed by an aligned read cycle is shown in Figure 15-13.

Figure 15-13. Misaligned write, single-cycle read transfer

The first portion of the misaligned write request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second portion of the misaligned write request (addrx+) is taken at the end of cycle C2 since only one
access is outstanding (addrx).

Data for the addrx write cycle is driven in C2, the cycle after the access is taken. The MMU lookup occurs
in C2 for the write to addrx.

During C3, the write to addrx occurs using the information driven during C1 and C2. p_ta_b is asserted
during C3 for the first write access (addrx).

Data for the addrx+ write cycle is driven in C3, the cycle after the access is taken. The MMU lookup occurs
in C3 for the write to addrx+. The data value driven remains unchanged from the previous access.

Also during C3, the request for a read to addrz is taken since the first access is terminating.

The MMU lookup and a memory access occurs in C4 for the read to addrz. Also during C4, p_ta_b is
asserted to terminate the write cycle to addrx+, which has been buffered. This write does not occur during
C4 since a read request is being serviced (assumes no hazard has been detected).

addr x addr x+ addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data z

data x data x

addr x addr x+ addr z

addr x addr z addr x+

Misaligned single cycle write, single cycle read, full pipelining
1 2 3 4 5 6

m_clk

p_treq_b

p_addr,

attributes

p_rw

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 949

During C5, p_ta_b is asserted to complete the read cycle to addrz. The buffered write for addrx+ is now
performed since no read is occurring.

15.3.1.7 Abort operation

Under certain circumstances, the CPU may abort an access in the clock cycle following a valid (taken)
p_treq_b in the previous clock. In this event, the previous taken access address is an invalid one and must
not be used to access devices. Circumstances that may cause aborted accesses include:

• When an exception is detected on a taken request

• When p_tea_b occurs on a previous data access

• Internal exception conditions requiring an access to be aborted

Aborted accesses are indicated by the assertion of the p_abort_b output early in the clock cycle following
a taken access.

For certain external interfaces, this may be too late to cancel a pending access. An indication that an abort
will occur on a pending request if the current access is terminated with error is provided via the p_err_kill
output signal. This signal allows the BIU to interface to an external bus that does not provide an abort
function directly, but instead uses a two-cycle error response protocol, such as AMBA AHB. The
p_err_kill output signal is asserted along with p_treq_b for every access which, if terminated with error,
will cause a next pending access request to be aborted.

For AMBA AHB, if an access that was requested having p_err_kill asserted receives HRESP=ERROR,
this will cause assertion of p_tea_b in the first cycle of the two-cycle error response protocol, and changes
the next AHB cycle to IDLE. If an access request is pending, or becomes pending in the cycle p_tea_b is
first generated, p_abort_b will assert in the following clock cycle, and will allow p_tea_b to be generated
for the second cycle of the two-cycle error response protocol. In either case, the second cycle of the
two-cycle error response protocol will be an AHB IDLE cycle. If no access request is pending, and none
becomes pending in the cycle p_tea_b is first generated, p_abort_b will not assert in the following clock
cycle, and p_tea_b will not be generated for the second cycle of the two-cycle error response protocol.

The first cycle of the two-cycle error response protocol does not result in a p_tea_b if p_err_kill was
negated when the access was requested. In this case, p_tea_b is not generated until the second cycle of the
two-cycle error response, and any pending access will be allowed to occur normally on the AHB.

Figure 15-14 is an example of p_abort_b operation. The access for addrzis requested and taken, then
aborted. No termination response is expected for an aborted access. Note that the following access to addrw
is not affected by the abort of addrz.

e200z759n3 Core Reference Manual, Rev. 2

950 Freescale Semiconductor

Figure 15-14. p_abort_b operation

15.3.1.8 Error termination and abort operation

The p_tea_b input is used to signal an error termination for an access in progress. p_tea_b has priority
over the p_ta_b input.

Figure 15-15 shows an example of error termination with the p_tea_b input signal.

Figure 15-15. Read and write transfers, instruction read error termination

addr x addr y addr z addr w

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y data w

addr x addr y addr z addr w

addr x addr y addr w

1 2 3 4 5 6
p_abort_b operation example

7
m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

mmu_access

mem_access

p_abort_b

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. 1 outst. Idle

data x data y

data z

addr x error

addr x addr y addr z

addr x addr y addr z

1 2 3 4 5 6
Instruction read with error, data read, write; full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

p_tea_b

mmu_access

mem_access

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 951

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle. It is an instruction
prefetch.

The second read request (addry) is taken at the end of C2 since only one access is outstanding (addrx).

p_tea_b is asserted during C3 for the first read access (addrx), signaling an error condition. Since p_tea_b
terminates the access, the data input bus is undefined. Also during C3, a request is generated for a write to
addrz, which is taken at the end of C3 since the first access is terminating.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken. During C4, read data is
supplied for the addry read, and the access is terminated.

During C5, p_ta_b is asserted to complete the write cycle to addrz.

In this example of error termination, subsequent accesses must be allowed to complete. This is not always
allowable, and the memory system is responsible for preventing accesses from occurring when certain
types of transfers are terminated with error. The following figures outline cases where an error termination
for a given cycle must cause another cycle to be aborted by the memory controller prior to initiation.

Figure 15-16 shows another example of error termination with the p_tea_b input signal.

Figure 15-16. Data read error termination with implicit abort

The first read request (addrx) is taken at the end of cycle C1 since the bus is idle. It is a data read.

The second read request (addry) is taken at the end of C2 since only one access is outstanding (addrx).

p_tea_b is asserted during C3 for the first read access (addrx), signaling an error condition. Since p_tea_b
terminates the access, the data input bus is undefined. Also during C3, a request is generated for a write to
addrz, which is taken at the end of C3 since the first access is terminating.

addr x addr y addr z

Idle 1 outst. 2 outst. 2 outst. Idle Idle

data x

addr x error impl abt

addr x addr y addr z

addr x addr y

1 2 3 4 5 6
Data read with error, data read w/implicit abort, write with explicit abort; full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

p_tea_b

mmu_access

mem_access

p_abort_b

e200z759n3 Core Reference Manual, Rev. 2

952 Freescale Semiconductor

In this example the read to addrx is a data access, therefore the memory controller is responsible for an
implicit abort of another data access that is in the pipeline, in this case the data read to addry. If the access
to addry had been a write, it would be required to implicitly abort it without the write taking place. As seen
in C4, implicit aborts are terminated with assertion of p_tea_b.

Data for the addrz write cycle is driven in C4, the cycle after the access is taken. During C4, read data is
supplied for the addry read, and the access is terminated.

During C5, p_abort_b is asserted by the CPU to abort the write cycle to addrz. Since the access is aborted,
no response is expected from the memory controller.

In this example of error termination, a subsequent access must not be allowed to complete. The memory
system is responsible for preventing a subsequent pipelined access from occurring when data transfers are
terminated with error.

Figure 15-17 shows another example of error termination with the p_tea_b input signal, this time on the
initial portion of a misaligned write.

Figure 15-17. Misaligned write error termination with implicit abort

The first portion of the misaligned write request (addrx) is taken at the end of cycle C1 since the bus is idle.

The second portion of the misaligned write (addrx+) is taken at the end of C2 since only one access is
outstanding (addrx).

p_tea_b is asserted during C3 for the write read access (addrx), signaling an error condition. Since
p_tea_b terminates the access, the memory access must not occur. Also during C3, a request is generated
for a read to addrz, which is taken at the end of C3 since the first access is terminating.

addr x addr x+ addr z

Idle 1 outst. 2 outst. 2 outst. Idle

data x data x+

addr x error impl abt

addr x addr x+ addr z

addr z

1 2 3 4 5
Misaligned write with error, w/implicit abort, read with explicit abort; full pipelining

m_clk

p_treq_b

p_addr,

attributes

p_rw_b

p_tbusy_b

p_data_in

p_data_out

p_ta_b

p_tea_b

mmu_access

mem_access

p_abort_b

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 953

In this example the write to addrx is a data access, therefore the memory controller is responsible for an
implicit abort of another data access that is in the pipeline, in this case the data write to addrx+. Since it is
a write, the memory controller is required to implicitly abort it without the write taking place. As seen in
C4, this implicit abort is terminated with assertion of p_tea_b for addrx+, the second half of the misaligned
write.

During C4, p_abort_b is asserted by the CPU to abort the read cycle to addrz. Since the access is aborted,
no response is expected from the memory controller. The memory access is aborted in C4, and does not
proceed.

In this example of error termination, a subsequent access must not be allowed to complete. The memory
system is responsible for preventing a subsequent pipelined access from occurring when data transfers are
terminated with error.

15.3.2 SPR interface operation

An interface protocol is defined for Special Purpose Registers that exist external to the base e200z759n3
core, such as SPRs for the Cache, MMU, and SPE/EFPU. The protocol is a simple handshake, with fixed
response timing. Accesses to an external SPR as a result of execution of a mfspr or mtspr instruction are
initiated with assertion of either the p_wr_spr or p_rd_spr outputs. These outputs are mutually exclusive.
Data for a mtspr is placed on the p_spr_out[0:31] bus the cycle following assertion of p_wr_spr. Read
data for a mfspr instruction is sampled from p_spr_in[0:31] the cycle following assertion of p_rd_spr.

The following timing diagrams indicate operation of mfspr and mtspr instructions across the interface.
Additional detail on mtspr/mfspr instruction timing may be found in Section 4.3.8, Move to/from SPR
instruction pipeline operation.

Figure 15-18 shows an example of SPR read operations.

Figure 15-18. SPR reads

In this example, a read of an external SPR is initiated in cycle C1 with assertion of the p_rd_spr output.
The SPR identifier is provided on p_sprnum[0:9], and is an access to SPRx. In cycle C2, read data for
SPRx is provided on p_spr_in[0:31].This access terminates in C3. A second SPR read is initiated in C4
to SPRy, and data is provided on p_spr_in[0:31] in C5. This access terminates in C6.

Figure 15-19 shows an example of SPR write operations.

SPR x SPR y

data x data y

SPR reads
1 2 3 4 5 6

m_clk

p_rd_spr

p_wr_spr

p_sprnum[0:9]

p_spr_in[0:31]

p_spr_out[0:31]

e200z759n3 Core Reference Manual, Rev. 2

954 Freescale Semiconductor

Figure 15-19. SPR writes

In this example, a write of an external SPR is initiated in cycle C1 with assertion of the p_wr_spr output.
The SPR identifier is provided on p_sprnum[0:9], and is an access to SPRx. In cycle C2, write data for
SPRx is provided on p_spr_out[0:31]. This access terminates in C3. A second SPR write is initiated in C4
to SPRy. Data for the SPRy access is provided on p_spr_out[0:31] in C5. This access terminates in C6.

Figure 15-20 shows an example of SPR read and write operations.

Figure 15-20. SPR reads/writes

In this example, a read of an external SPR is initiated in cycle C1 with assertion of the p_rd_spr output.
The SPR identifier is provided on p_sprnum[0:9], and is an access to SPRx. In cycle C2, read data for
SPRx is provided on p_spr_in[0:31], and the access terminates. An SPR write is initiated in C4 to SPRy
with assertion of p_wr_spr. Data is driven in C5 for the SPRy write access, and this access terminates in
C6. In C7, another SPR read is initiated to SPRz and data is provided on p_spr_in[0:31] for this access in
C8.

SPR x SPR y

data x data y

SPR writes
1 2 3 4 5 6

m_clk

p_rd_spr

p_wr_spr

p_sprnum[0:9]

p_spr_in[0:31]

p_spr_out[0:31]

SPR x SPR y SPR z

data x data z

data y

SPR reads and writes
1 2 3 4 5 6 7 8 9

m_clk

p_rd_spr

p_wr_spr

p_sprnum[0:9]

p_spr_in[0:31]

p_spr_out[0:31]

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 955

Appendix A
Register Summary

e200z759n3 Core Reference Manual, Rev. 2

956 Freescale Semiconductor

Figure 15-21. e200z759n3 Supervisor mode programmer’s model SPRs

ESR SPR 62

Exception Syndrome

Data Exception Address

SPR General

Exception Handling/Control Registers
Save and Restore

MMU Assist1

Memory Management Registers

SUPERVISOR Mode Programmer’s Model SPRs

Decrementer

Timers
Time Base (writeonly)

MAS0

MAS1

MAS2

MAS3

MAS4

MAS6

SPR 624

SPR 625

SPR 626

SPR 627

SPR 628

SPR 630

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

SPRG8

SPRG9

SPR 272

SPR 273

SPR 274

SPR 275

SPR 276

SPR 277

SPR 278

SPR 279

SPR 604

SPR 605

DEAR SPR 61

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

SPR 570

SPR 571

TBL SPR 284

TBU SPR 285

DEC SPR 22

Process ID

PID0 SPR 48

DECAR SPR 54

IVOR0

IVOR1

IVOR15

SPR 400

SPR 401

SPR 415

Interrupt Vector Prefix

IVPR SPR 63

Interrupt Vector Offset

Control and Status

TCR SPR 340

TSR SPR 336

SPR 528

SPR 531

IVOR321

IVOR351

Control & Configuration

 SPR 1012

 SPR 1015

SPR 688

SPR 689

Cache Control1

SPR 1010L1CSR0

MMUCSR0

MMUCFG

TLB0CFG

TLB1CFG

Cache Registers

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 256

User SPR

USPRG0

SPE /EFPU APU
Status and
Control Register

SPR 512SPEFSCR

SPE/EFPU Registers

SPR 1016L1FINV0

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

SPR 516L1CFG1

SPR 1011L1CSR1

SPR 959L1FINV1

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

MCSRR01

MCSRR11

Machine Check
Address Register

MCAR SPR 573
Machine State

MSR

PVR

Processor Control Registers

Processor ID

PIR SPR 286

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 1

XER

XER

General Registers

SPR 287

System Version1

SVR SPR 1023

Accumulator

ACC

IAC1

IAC2

IAC3

IAC4

IAC5

IAC6

IAC7

IAC8

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

DBCR31

DBCR41

DBCR51

DBCR61

DBERC01

DEVENT1

DDAM1

SPR 308

SPR 309

SPR 310

SPR 561

SPR 563

SPR 564

SPR 603

SPR 569

SPR 975

SPR 576

Instruction Address
Compare

SPR 312

SPR 313

SPR 314

SPR 315

SPR 565

SPR 566

SPR 567

SPR 568

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317
Debug Status

DBSR SPR 304

Debug Counter1

DBCNT SPR 562

Data Value Compare

DVC1

DVC2

SPR 318

SPR 319

1 - These Zen-specific registers may not be supported by other Power
Architecture processors

2 - Optional registers defined by the Power Architecture Book-E architecture

3 - Read-only registers

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 957

Figure 15-22. Zen Supervisor mode programmer’s model DCRs and PMRs

Supervisor Mode Programmer’s Model DCRs and PMRs

PSU Registers1

1 - These Zen-specific registers may not be supported by
other Power Architecture processors

Performance Monitor
Registers1

Control

PMGC0

PMLCa0

PMLCa1

PMLCa2

PMLCa3

PMLCb0

PMLCb1

PMLCb2

PMLCb3

PMR 400

PMR 144

PMR 145

PMR 146

PMR 147

PMR 272

PMR 273

PMR 274

PMR 275

User Control
(read-only)

UPMGC0

UPMLCa0

UPMLCa1

UPMLCa2

UPMLCa3

UPMLCb0

UPMLCb1

UPMLCb2

UPMLCb3

PMR 384

PMR 128

PMR 129

PMR 130

PMR 131

PMR 256

PMR 257

PMR 258

PMR 259

Counters

PMC0

PMC1

PMC2

PMC3

PMR 16

PMR 17

PMR 18

PMR 19

User Counters
(read-only)

UPMC0

UPMC1

UPMC2

UPMC3

PMR 0

PMR 1

PMR 2

PMR 3

PSU

PSCR

PSSR

PSHR

PSLR

PSCTR

PSUHR

PSULR

DCR 272

DCR 273

DCR 274

DCR 275

DCR 276

DCR 277

DCR 278

Cache Access Registers1

CDACNTL

CDADATA

DCR 351

DCR 350

e200z759n3 Core Reference Manual, Rev. 2

958 Freescale Semiconductor

Figure 15-23. Zen User mode programmer’s model SPRs

Figure 15-24. Zen User mode programmer’s model PMRs

USER Mode Programmer’s Model SPRs

Timers (Read only)

Time Base

SPR 515

Cache Configuration

L1CFG0

TBL SPR 268

TBU SPR 269

Cache Register (Read-only)

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR

SPR 1

XER

XER

General Registers

SPR General (Read-only)

Control Registers

SPRG4

SPRG5

SPRG6

SPRG7

SPR 260

SPR 261

SPR 262

SPR 263

SPR 256

User SPR

USPRG0

SPE/EFPU APU Status
and
Control Register

SPR 512SPEFSCR

APU Registers

GPR0

GPR1

GPR31

Accumulator

ACC

SPR 516L1CFG1

Debug

DEVENT SPR 975

DDAM SPR 576

User Mode Programmer’s Model PMRs

1 - These Zen-specific registers may not be supported by
other Power Architecture processors

Performance Monitor
Registers1

User Control
(read-only)

UPMGC0

UPMLCa0

UPMLCa1

UPMLCa2

UPMLCa3

UPMLCb0

UPMLCb1

UPMLCb2

UPMLCb3

PMR 384

PMR 128

PMR 129

PMR 130

PMR 131

PMR 256

PMR 257

PMR 258

PMR 259

User Counters
(read-only)

UPMC0

UPMC1

UPMC2

UPMC3

PMR 0

PMR 1

PMR 2

PMR 3

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 959

0

U
C

LE

S
P

E

0 W
E

C
E 0 E
E

P
R

F
P

M
E

F
E

0

0 D
E

F
E

1

0 IS D
S 0

P
M

M

R
I 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-1. Machine State Register (MSR)

ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-2. Processor ID Register (PIR)

1 0 0 0 0 0 0 1 0 1 1 0 Version
MBG

Reserved
Minor Rev Major Rev MBG ID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-3. Processor Version Register (PVR)

System Version

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-4. System Version Register (SVR)

S
O

O
V

C
A 0

B
yt

ec
nt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-5. Integer Exception Register (XER)

0 P
IL

P
P

R

P
T

R

F
P

S
T 0

D
LK

IL
K

A
P

P
U

O

B
O

P
IE 0

S
P

E

0

V
LE

M
I

0

M
IF 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-6. Exception Syndrome Register (ESR)

M
C

P

IC
_D

P
E

R
R

C
P

_P
E

R
R

D
C

_D
P

E
R

R

E
X

C
P

_E
R

R

IC
_T

P
E

R
R

D
C

_T
P

E
R

R

IC
_L

K
E

R
R

D
C

_L
K

E
R

R

0

N
M

I

M
A

V

M
E

A

0 IF LD S
T G 0

S
N

P
E

R
R

B
U

S
_I

R
E

R
R

B
U

S
_D

R
E

R
R

B
U

S
_W

R
E

R
R

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-7. Machine Check Syndrome Register (MCSR)

e200z759n3 Core Reference Manual, Rev. 2

960 Freescale Semiconductor

W
P

W
R

C

W
IE

D
IE F
P

F
IE

A
R

E

0

W
P

E
X

T

F
P

E
X

T

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-8. Timer Control Register (TCR)

E
N

W

W
IS

W
R

S

D
IS

F
IS 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-9. Timer Status Register (TSR)

E
M

C
P

0

D
O

Z
E

N
A

P

S
LE

E
P

0

IC
R

N
H

R

0

T
B

E
N

S
E

LT
B

C
LK

D
C

LR
E

E

D
C

LR
C

E

C
IC

LR
D

E

M
C

C
LR

D
E

D
A

P
U

E
N

0

N
O

P
T

I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-10. Hardware Implementation Dependent register 0 (HID0)

0

S
Y

S
C

T
L

AT
S

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-11. Hardware Implementation Dependent register 1 (HID1)

0

B
B

F
I

0

B
A

LL
O

C

0

B
P

R
E

D

B
P

E
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-12. Branch Unit Control and Status Register (BUCSR)

0 Vector Offset 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-13. e200z759n3 Interrupt Vector Offset Register (IVOR)

FA
C

P
M

IE

F
C

E
C

E

0

T
B

S
E

L

0

T
B

E
E

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-14. Performance Monitor Global Control register (PMGC0)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 961

F
C

F
C

S

F
C

U

F
C

M
1

F
C

M
0

C
E 0 EVENT 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-15. Performance Monitor Local Control A registers (PMLCa0–PMLCa3)

0
T

R
IG

O
N

S
E

L

T
R

IG
G

E
R

E
D

0

T
R

IG
O

F
F

S
E

L

0

T
R

IG
O

N
C

N
T

L

0

T
R

IG
O

F
F

C
N

T
L

0

T
H

R
E

S
H

M
U

L

0

T
H

R
E

S
H

H
O

LD

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-16. Performance Monitor Local Control B registers (PMLCb0–PMLCb3)

CNT1 CNT2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-17. Degug Counter register (DBCNT)

E
D

M

ID
M

R
S

T

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4

D
A

C
1

D
A

C
2

R
E

T

IA
C

5

IA
C

6

IA
C

7

IA
C

8

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

0 F
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-18. Debug Control 0 register (DBCR0)

IA
C

1U
S

IA
C

1E
R

IA
C

2U
S

IA
C

2E
R

IA
C

12
M

0

IA
C

3U
S

IA
C

3E
R

IA
C

4U
S

IA
C

4E
R

IA
C

34
M

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-19. Debug Control 1 register (DBCR1)

D
A

C
1U

S

D
A

C
1E

R

D
A

C
2U

S

D
A

C
2E

R

D
A

C
12

M

D
A

C
1L

N
K

D
A

C
2L

N
K

D
V

C
1M

D
V

C
2M

DVC1BE DVC2BE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-20. Debug Control 2 register (DBCR2)

D
E

V
T

1C
1

D
E

V
T

2C
1

IC
M

P
C

1

IA
C

1C
1

IA
C

2C
1

IA
C

3C
1

IA
C

4C
1

D
A

C
1R

C
1

D
A

C
1W

C
1

D
A

C
2R

C
1

D
A

C
2W

C
1

IR
P

T
C

1

R
E

T
C

1

D
E

V
T

1C
2

D
E

V
T

2C
2

IC
M

P
C

2

IA
C

1C
2

IA
C

2C
2

IA
C

3C
2

IA
C

4C
2

D
A

C
1R

C
2

D
A

C
1W

C
2

D
A

C
2R

C
2

D
A

C
2W

C
2

D
E

V
T

1T
1

D
E

V
T

2T
1

IA
C

1T
1

IA
C

3T
1

D
A

C
1R

T
1

D
A

C
1W

T
1

C
N

T
2T

1

C
O

N
F

IG

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-21. Debug Control 3 register (DBCR3)

e200z759n3 Core Reference Manual, Rev. 2

962 Freescale Semiconductor

0
D

V
C

1C

0

D
V

C
2C

0

D
A

C
1X

M

D
A

C
2X

M

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-22. Debug Control 4 register (DBCR4)

IA
C

5U
S

IA
C

5E
R

IA
C

6U
S

IA
C

6E
R

IA
C

56
M

0

IA
C

7U
S

IA
C

7E
R

IA
C

8U
S

IA
C

8E
R

IA
C

78
M

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-23. Debug Control 5 register (DBCR5)

IA
C

1X
M

IA
C

2X
M

IA
C

3X
M

IA
C

4X
M

IA
C

5X
M

IA
C

6X
M

IA
C

7X
M

IA
C

8X
M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-24. Debug Control 6 register (DBCR6)

ID
E

U
D

E

M
R

R

IC
M

P

B
R

T

IR
P

T

T
R

A
P

IA
C

1

IA
C

2

IA
C

3

IA
C

4

D
A

C
1R

D
A

C
1W

D
A

C
2R

D
A

C
2W

R
E

T

0

D
E

V
T

1

D
E

V
T

2

D
C

N
T

1

D
C

N
T

2

C
IR

P
T

C
R

E
T

V
LE

S

D
A

C
_O

F
S

T

C
N

T
1T

R
G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-25. Debug Status Register (DBSR)

MCLK ERR 0 RESET HALT STOP DEBUG WAIT 0 1

0 1 2 3 4 5 6 7 8 9

Figure A-26. OnCE Status Register (OSR)

R/W GO EX RS[0:6]

0 1 2 3 4 5 6 7 8 9

Figure A-27. OnCE Command Register (OCMD)

0

I_
D

M
D

IS

0

I_
D

V
LE

I_
D

I

I_
D

M

0

I_
D

E

D
_D

M
D

IS

0

D
_D

W

D
_D

I

D
_D

M

D
_D

G

D
_D

E

0

W
K

U
P

F
D

B

D
R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-28. OnCE Control Register (OCR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 963

Figure A-29. CPU Scan Chain Register (CPUSCR)

*

IR
S

TA
T

13

IR
S

TA
T

12

IR
S

TA
T

11

IR
S

TA
T

10

W
A

IT
IN

G

P
C

O
F

S
T

P
C

IN
V

F
F

R
A

IR
S

TA
T

0

IR
S

TA
T

1

IR
S

TA
T

2

IR
S

TA
T

3

IR
S

TA
T

4

IR
S

TA
T

5

IR
S

TA
T

6

IR
S

TA
T

7

IR
S

TA
T

8

IR
S

TA
T

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-30. Control State register (CTL)

S
O

V
H

O
V

H

F
G

H

F
X

H

F
IN

V
H

F
D

B
Z

H

F
U

N
F

H

F
O

V
F

H

0

F
IN

X
S

F
IN

V
S

F
D

B
Z

S

F
U

N
F

S

F
O

V
F

S

M
O

D
E

S
O

V

O
V

F
G F
X

F
IN

V

F
D

B
Z

F
U

N
F

F
O

V
F

0

F
IN

X
E

F
IN

V
E

F
D

B
Z

E

F
U

N
F

E

F
O

V
F

E

F
R

M
C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-31. SPE/EFPU Status and Control Register (SPEFSCR)

W
ID

W
D

D

0

D
C

W
M

D
C

W
A

0

D
C

E
C

E

D
C

E
I

0

D
C

E
D

T

D
C

S
LC

D
C

U
L

D
C

LO

D
C

LF
C

D
C

LO
A

D
C

E
A

0

D
C

B
Z

32

D
C

A
B

T

D
C

IN
V

D
C

E

Figure A-32. L1 Cache Control and Status Register 0 (L1CSR0)

TDO

TDI

TCK

MSR

WBBRhigh

32

32
0 31

0 31

PC

32
0 31

IR

32
0 31

CTL

32
0 31

WBBRlow

32
0 31

e200z759n3 Core Reference Manual, Rev. 2

964 Freescale Semiconductor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0

IC
E

C
E

IC
E

I

0

IC
E

D
T

0

IC
U

L

IC
LO

IC
LF

C

IC
LO

A

IC
E

A

0

IC
A

B
T

IC
IN

V

IC
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-33. L1 Cache Control and Status Register 1 (L1CSR1)

C
A

R
C

H

C
W

PA

C
FA

H
A

D
C

F
IS

W
A

0

D
C

B
S

IZ
E

D
C

R
E

P
L

D
C

LA

D
C

E
C

A

D
C

N
W

AY

D
C

S
IZ

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-34. L1 Cache Configuration register 0 (L1CFG0)

IC
F

IS
W

A

0

IC
B

S
IZ

E

IC
R

E
P

L

IC
LA

IC
E

C
A

IC
N

W
AY

IC
S

IZ
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-35. L1 Cache Configuration register 1 (L1CFG1)

0

C
W

AY

0

C
S

E
T

0

C
C

M
D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-36. L1 Flush/Invalidate register (L1FINV0,1)

0

R
A

S
IZ

E

0

N
P

ID
S

P
ID

S
IZ

E

0
N

T
LB

S

M
A

V
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-37. MMU Configuration register (MMUCFG)

A
S

S
O

C

M
IN

S
IZ

E

M
A

X
S

IZ
E

IP
R

O
T

A
V

A
IL

P
2P

S
A

0

N
E

N
T

R
Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-38. TLB Configuration register (TLB0CFG, TLB1CFG)

Figure A-32. L1 Cache Control and Status Register 0 (L1CSR0)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 965

0

T
LB

1_
F

I

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-39. MMU Control and Status Register 0 (MMUCSR0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
A

S
0

0

T
LB

S
E

L
(0

1)

0

E
S

E
L

0 N
V

M
A

S
1

V
A

LI
D

IP
R

O
T

0 TID 0
T
S

TSIZ 0

M
A

S
2

EPN 0

V
LE W I M G E

M
A

S
3

RPN
U
0

U
1

U
2

U
3

U
X

S
X

U
W

S
W

U
R

S
R

M
A

S
4

0

T
LB

S
E

LD

0

T
ID

S
E

LD

0 TSIZED 0

V
LE

D

W
D

ID M
D

G
D

E
D

M
A

S
6

0 SPID 0

S
A

S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure A-40. MMU assist registers summary

0
C

N
T

E
N

0

R
D

E
N

W
R

E
N

IN
IT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 272; Read/Write; Reset - 0x0

Figure A-41. Parallel Signature Control Register (PSCR)

0

T
E

R
R

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 273; Read/Write; Reset -Unaffected

Figure A-42. Parallel Signature Status Register (PSSR)

e200z759n3 Core Reference Manual, Rev. 2

966 Freescale Semiconductor

High Signature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 274; Read/Write; Reset -Unaffected

Figure A-43. Parallel Signature High Register (PSHR)

Low Signature

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 275; Read/Write; Reset -Unaffected

Figure A-44. Parallel Signature Low Register (PSLR)

Counter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 276; Read/Write; Reset -Unaffected

Figure A-45. Parallel Signature Counter Register (PSCTR)

High Signature Update Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 277; Write-only; Reset -Unaffected

Figure A-46. Parallel Signature Update High Register (PSUHR)

Low Signature Update Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DCR - 278; Write-only; Reset -Unaffected

Figure A-47. Parallel Signature Update Low Register (PSULR)

e200z759n3 Core Reference Manual, Rev. 2

Freescale Semiconductor 967

Appendix B
Revision History
This appendix provides a list of the major differences between revisions of the e200z759n3 Core Reference
Manual.

Table B-1. Revision history

Revision Date Description of changes

1 27 Nov 2012 initial release.

2 12 Dec 2014 In Figure 13-53 (Data Acquisition Message format), changed (6 bit) value from
TCODE(011011) to TCODE(000111).

e200z759n3 Core Reference Manual, Rev. 2

968 Freescale Semiconductor

Document Number: e200z759n3CRM
Rev. 2
January 2015

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address:freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, are trademarks of Freescale Semiconductor, Inc., Reg.

U.S. Pat. & Tm. All other product or service names are the property of their respective

owners. The Power Architecture and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2014 Freescale Semiconductor, Inc.

	Chapter 1 e200z759n3 Overview
	1.1 Overview of the e200z759n3
	1.1.1 Features
	1.1.2 Microarchitecture summary
	1.1.2.1 Instruction unit features
	1.1.2.2 Integer unit features
	1.1.2.3 Load/store unit features
	1.1.2.4 Cache features
	1.1.2.5 MMU Features
	1.1.2.6 e200z759n3 system bus features

	Chapter 2 Register Model
	2.1 PowerPC Book E registers
	2.2 Zen-specific special purpose registers
	2.3 Zen-specific device control registers
	2.4 Special-purpose register descriptions
	2.4.1 Machine State Register (MSR)
	2.4.2 Processor ID Register (PIR)
	2.4.3 Processor Version Register (PVR)
	2.4.4 System Version Register (SVR)
	2.4.5 Integer Exception Register (XER)
	2.4.6 Exception Syndrome Register
	2.4.6.1 PowerPC VLE mode instruction syndrome
	2.4.6.2 Misaligned instruction fetch syndrome

	2.4.7 Machine Check Syndrome Register (MCSR)
	2.4.8 Timer Control Register (TCR)
	2.4.9 Timer Status Register (TSR)
	2.4.10 Debug registers
	2.4.11 Hardware Implementation Dependent Register 0 (HID0)
	2.4.12 Hardware Implementation Dependent Register 1 (HID1)
	2.4.13 Branch Unit Control and Status Register (BUCSR)
	2.4.14 L1 Cache Control and Status Registers (L1CSR0, L1CSR1)
	2.4.15 L1 Cache Configuration registers (L1CFG0, L1CFG1)
	2.4.16 L1 Cache Flush and Invalidate registers (L1FINV0, L1FINV1)
	2.4.17 MMU Control and Status Register (MMUCSR0)
	2.4.18 MMU Configuration register (MMUCFG)
	2.4.19 TLB Configuration registers (TLB0CFG, TLB1CFG)

	2.5 SPR register access
	2.5.1 Invalid SPR references
	2.5.2 Synchronization requirements for SPRs
	2.5.3 Special purpose register summary

	2.6 Reset settings

	Chapter 3 Instruction Model
	3.1 Unsupported instructions and instruction forms
	3.2 Implementation-specific instructions
	3.3 Book E instruction extensions
	3.4 Memory access alignment support
	3.5 Memory synchronization and reservation instructions
	3.6 Branch prediction
	3.7 Interruption of instructions by interrupt requests
	3.8 New Zen instructions and APUs
	3.9 ISEL APU
	3.10 Debug APU
	3.10.1 Debug notify halt instructions

	3.11 Machine Check APU
	3.12 WAIT APU
	3.13 Enhanced reservations APU
	3.14 Volatile Context Save/Restore APU
	3.15 Unimplemented SPRs and read-only SPRs
	3.16 Invalid forms of instructions
	3.16.1 Load and store with update instructions
	3.16.2 Load multiple word (lmw, e_lmw) instruction
	3.16.3 Branch conditional to count register instructions
	3.16.4 Instructions with reserved fields non-zero

	3.17 Instruction summary
	3.17.1 Instruction index sorted by mnemonic
	3.17.2 Instruction index sorted by opcode

	Chapter 4 Instruction Pipeline and Execution Timing
	4.1 Overview of operation
	4.1.1 Control unit
	4.1.2 Instruction unit
	4.1.3 Branch unit
	4.1.4 Instruction decode unit
	4.1.5 Exception handling

	4.2 Execution units
	4.2.1 Integer execution units
	4.2.2 Load / store unit
	4.2.3 Embedded floating-point execution units

	4.3 Instruction pipeline
	4.3.1 Description of pipeline stages
	4.3.2 Instruction prefetch buffers and branch target buffer
	4.3.3 Single-cycle instruction pipeline operation
	4.3.4 Basic load and store instruction pipeline operation
	4.3.5 Change-of-flow instruction pipeline operation
	4.3.6 Basic multi-cycle instruction pipeline operation
	4.3.7 Additional examples of instruction pipeline operation for load and store
	4.3.8 Move to/from SPR instruction pipeline operation

	4.4 Control hazards
	4.5 Instruction serialization
	4.5.1 Completion serialization
	4.5.2 Dispatch serialization
	4.5.3 Refetch serialization

	4.6 Concurrent instruction execution
	4.7 Instruction Timings
	4.8 Operand placement on performance

	Chapter 5 Embedded Floating-Point APU (EFPU2)
	5.1 Nomenclature and conventions
	5.2 EFPU programming model
	5.2.1 Signal Processing Extension / Embedded Floating-point Status and Control Register (SPEFSCR)
	5.2.2 GPRs and PowerISA 2.06 instructions
	5.2.3 SPE/EFPU available bit in MSR
	5.2.4 Embedded floating-point exception bit in ESR
	5.2.5 EFPU exceptions
	5.2.5.1 EFPU unavailable exception
	5.2.5.2 Embedded floating-point data exception
	5.2.5.3 Embedded floating-point round exception

	5.2.6 Exception Priorities

	5.3 Embedded floating-point APU operations
	5.3.1 Floating-point data formats
	5.3.1.1 Single-precision floating-point format
	5.3.1.2 Half-precision floating-point format

	5.3.2 IEEE 754 compliance
	5.3.3 Floating-point exceptions
	5.3.4 Embedded scalar single-precision floating-point instructions
	5.3.5 EFPU Vector Single-precision Embedded Floating-Point Instructions

	5.4 Embedded floating-point results summary
	5.5 EFPU instruction timing
	5.5.1 EFPU single-precision vector floating-point instruction timing
	5.5.2 EFPU single-precision scalar floating-point instruction timing

	5.6 Instruction forms and opcodes
	5.6.1 Opcodes for EFPU vector floating-point instructions
	5.6.2 Opcodes for EFPU scalar single-precision floating-point instructions

	Chapter 6 Signal Processing Extension APU (SPE APU)
	6.1 Nomenclature and conventions
	6.2 SPE programming model
	6.2.1 SPE Status and Control Register (SPEFSCR)
	6.2.2 Accumulator
	6.2.2.1 Context switch

	6.2.3 GPRs and PowerPC Book E instructions
	6.2.4 SPE available bit in MSR
	6.2.5 SPE exception bit in ESR
	6.2.6 SPE exceptions
	6.2.6.1 SPE APU Unavailable exception

	6.2.7 Exception priorities

	6.3 Integer SPE simple instructions
	6.4 Integer SPE multiply, multiply-accumulate, and operation to accumulator instructions (complex integer instructions)
	6.4.1 Multiply halfword instructions
	6.4.2 Multiply words instructions
	6.4.3 Add/subtract word to accumulator instructions
	6.4.4 Initializing and reading the accumulator

	6.5 SPE vector load/store instructions
	6.6 SPE instruction timing
	6.6.1 SPE integer simple instructions timing
	6.6.2 SPE load and store instruction timing
	6.6.3 SPE complex integer instruction timing

	6.7 Instruction forms and opcodes
	6.7.1 SPE vector integer simple instructions
	6.7.2 Opcodes for SPE load and store instructions
	6.7.3 Opcodes for SPE complex integer instructions

	Chapter 7 Interrupts and Exceptions
	7.1 e200z759n3 interrupts
	7.2 Exception Syndrome Register (ESR)
	7.3 Machine State Register (MSR)
	7.3.1 Machine Check Syndrome Register (MCSR)

	7.4 Interrupt Vector Prefix Registers (IVPR)
	7.5 Interrupt Vector Offset Registers (IVORxx)
	7.6 Hardware Interrupt Vector Offset Values (p_voffset[0:15])
	7.7 Interrupt definitions
	7.7.1 Critical Input interrupt (IVOR0)
	7.7.2 Machine Check interrupt (IVOR1)
	7.7.2.1 Machine check causes
	7.7.2.1.1 Error report machine check exceptions
	7.7.2.1.2 Non-maskable interrupt machine check exceptions
	7.7.2.1.3 Asynchronous machine check exceptions

	7.7.2.2 Machine check interrupt actions
	7.7.2.3 Checkstop state

	7.7.3 Data Storage interrupt (IVOR2)
	7.7.4 Instruction Storage interrupt (IVOR3)
	7.7.5 External Input interrupt (IVOR4)
	7.7.6 Alignment interrupt (IVOR5)
	7.7.7 Program interrupt (IVOR6)
	7.7.8 Floating-Point Unavailable interrupt (IVOR7)
	7.7.9 System Call interrupt (IVOR8)
	7.7.10 Auxiliary Processor Unavailable interrupt (IVOR9)
	7.7.11 Decrementer interrupt (IVOR10)
	7.7.12 Fixed-Interval Timer interrupt (IVOR11)
	7.7.13 Watchdog Timer interrupt (IVOR12)
	7.7.14 Data TLB Error interrupt (IVOR13)
	7.7.15 Instruction TLB Error interrupt (IVOR14)
	7.7.16 Debug interrupt (IVOR15)
	7.7.17 System Reset interrupt
	7.7.18 SPE/EFPU APU Unavailable interrupt (IVOR32)
	7.7.19 Embedded Floating-point Data interrupt (IVOR33)
	7.7.20 Embedded Floating-point Round interrupt (IVOR34)
	7.7.21 Performance monitor interrupt (IVOR35)

	7.8 Exception recognition and priorities
	7.8.1 Exception priorities

	7.9 Interrupt processing
	7.9.1 Enabling and disabling exceptions
	7.9.2 Returning from an interrupt handler

	7.10 Process switching

	Chapter 8 Performance Monitor
	8.1 Overview
	8.2 Performance Monitor APU instructions
	8.3 Performance Monitor APU registers
	8.3.1 Invalid PMR references
	8.3.2 References to read-only PMRs
	8.3.3 Performance Monitor Global Control Register 0 (PMGC0)
	8.3.4 User Performance Monitor Global Control Register 0 (UPMGC0)
	8.3.5 Performance Monitor Local Control A Registers (PMLCa0-PMLCa3)
	8.3.6 User Performance Monitor Local Control A Registers (UPMLCa0-UPMLCa3)
	8.3.7 Performance Monitor Local Control B Registers (PMLCb0-PMLCb3)
	8.3.8 User Performance Monitor Local Control B registers (UPMLCb0-UPMLCb3)
	8.3.9 Performance Monitor Counter registers (PMC0-PMC3)
	8.3.10 User Performance Monitor Counter registers (UPMC0-UPMC3)

	8.4 Performance monitor interrupt
	8.5 Event counting
	8.5.1 MSR-based context filtering

	8.6 Examples
	8.6.1 Chaining counters
	8.6.2 Thresholding

	8.7 Event selection

	Chapter 9 Power Management
	9.1 Power management
	9.1.1 Active state
	9.1.2 Waiting state
	9.1.3 Halted state
	9.1.4 Stopped state
	9.1.5 Power management pins
	9.1.6 Power management control bits
	9.1.7 Software considerations for power management using wait instructions
	9.1.8 Software considerations for power management using Doze, Nap or Sleep
	9.1.9 Debug considerations for power management

	Chapter 10 Memory Management Unit
	10.1 Overview
	10.2 Effective to real address translation
	10.2.1 Effective addresses
	10.2.2 Address spaces
	10.2.3 Process ID
	10.2.4 Translation flow
	10.2.5 Permissions
	10.2.6 Restrictions on 1 KB and 2 KB page size usage

	10.3 Translation Lookaside Buffer (TLB)
	10.4 Configuration information
	10.4.1 MMU Configuration Register (MMUCFG)
	10.4.2 TLB0 Configuration Register (TLB0CFG)
	10.4.3 TLB1 Configuration Register (TLB1CFG)

	10.5 Software interface and TLB instructions
	10.5.1 TLB read entry instruction (tlbre)
	10.5.2 TLB write entry instruction (tlbwe)
	10.5.3 TLB search instruction (tlbsx)
	10.5.4 TLB Invalidate (tlbivax) Instruction
	10.5.5 TLB synchronize instruction (tlbsync)

	10.6 TLB operations
	10.6.1 Translation reload
	10.6.2 Reading the TLB
	10.6.3 Writing the TLB
	10.6.4 Searching the TLB
	10.6.5 TLB miss exception update
	10.6.6 IPROT invalidation protection
	10.6.7 TLB load on reset
	10.6.8 The G bit

	10.7 MMU control registers
	10.7.1 Data Exception Address Register (DEAR)
	10.7.2 MMU Control and Status Register 0 (MMUCSR0)
	10.7.3 MMU assist registers (MAS)
	10.7.3.1 MMU Read/Write and Replacement Control register (MAS0)
	10.7.3.2 Descriptor Context and Configuration Control register (MAS1)
	10.7.3.3 EPN and Page Attributes register (MAS2)
	10.7.3.4 RPN and Access Control register (MAS3)
	10.7.3.5 Hardware Replacement Assist Configuration register (MAS4)
	10.7.3.6 TLB Search Context Register 0 (MAS6)

	10.7.4 MAS registers summary
	10.7.5 MAS register updates

	10.8 TLB coherency control
	10.9 Core interface operation for MMU control instructions
	10.9.1 Transfer type encodings for MMU control instructions

	10.10 Effect of hardware debug on MMU operation
	10.11 External translation alterations for realtime systems

	Chapter 11 L1 Cache
	11.1 Overview
	11.2 16 KB cache organization
	11.3 Cache lookup
	11.4 Cache control
	11.4.1 L1 Cache Control and Status Register 0 (L1CSR0)
	11.4.2 L1 Cache Control and Status Register 1 (L1CSR1)
	11.4.3 L1 Cache Configuration Register 0 (L1CFG0)
	11.4.4 L1 Cache Configuration Register 1 (L1CFG1)

	11.5 Data cache software coherency
	11.6 Address aliasing
	11.7 Cache Operation
	11.7.1 Cache enable/disable
	11.7.2 Cache fills
	11.7.3 Cache line replacement
	11.7.4 Cache miss access ordering
	11.7.5 Cache-inhibited accesses
	11.7.6 Guarded accesses
	11.7.7 Cache-inhibited guarded accesses
	11.7.8 Cache invalidation
	11.7.9 Cache flush/invalidate by set and way
	11.7.9.1 L1 Flush and Invalidate Control Register 0 (L1FINV0)
	11.7.9.2 L1 Flush and Invalidate Control Register 1 (L1FINV1)

	11.8 Cache parity and EDC protection
	11.8.1 Cache error action control
	11.8.1.1 L1CSR[0,1][I,D]CEA = 00, machine check generation on error
	11.8.1.2 L1CSR[0,1][I,D]CEA = 01, correction/auto-invalidation on error
	11.8.1.2.1 Instruction cache errors
	11.8.1.2.2 Data cache errors
	11.8.1.2.3 Data cache line flush or invalidation due to reservation instructions (l[b,h,w]arx, st[b,h,w]cx.)

	11.8.2 Parity/EDC error handling for cache control operations and instructions
	11.8.2.1 L1FINV[0,1] operations
	11.8.2.2 Cache touch instructions (dcbt, dcbtst, icbt)
	11.8.2.3 icbi instructions
	11.8.2.4 dcbi instructions
	11.8.2.5 dcbst instructions
	11.8.2.6 dcbf instructions
	11.8.2.7 dcbz instructions
	11.8.2.8 Cache locking instructions (dcbtls, dcbtstls, dcblc, icbtls, icblc)

	11.8.3 Cache inhibited accesses and parity/EDC errors
	11.8.4 Snoop operations and parity/EDC errors
	11.8.5 EDC checkbit/syndrome coding scheme generation - ICache
	11.8.6 EDC checkbit/syndrome coding scheme generation - DCache
	11.8.7 Cache error injection

	11.9 Push and store buffers
	11.10 Cache management instructions
	11.10.1 Instruction cache block invalidate (icbi) instruction
	11.10.2 Instruction cache block touch (icbt) instruction
	11.10.3 Data cache block allocate (dcba) instruction
	11.10.4 Data cache block flush (dcbf) instruction
	11.10.5 Data cache block invalidate (dcbi) instruction
	11.10.6 Data cache block store (dcbst) instruction
	11.10.7 Data cache block touch (dcbt) instruction
	11.10.8 Data cache block touch for store (dcbtst) instruction
	11.10.9 Data cache block set to zero (dcbz) instruction

	11.11 Touch instructions
	11.12 Cache line locking/unlocking APU
	11.12.1 Overview
	11.12.2 dcbtls - data cache block touch and lock set
	11.12.3 dcbtstls - data cache block touch for store and lock set
	11.12.4 dcblc - data cache block lock clear
	11.12.5 icbtls - instruction cache block touch and lock set
	11.12.6 icblc - instruction cache block lock clear
	11.12.7 Effects of other cache instructions on locked lines
	11.12.8 Flash clearing of lock bits

	11.13 Cache instructions and exceptions
	11.13.1 Exception conditions for cache instructions
	11.13.2 Transfer type encodings for cache management instructions

	11.14 Sequential consistency
	11.15 Self-modifying code requirements
	11.16 Page table control bits
	11.16.1 Writethrough stores
	11.16.2 Cache-inhibited accesses
	11.16.3 Memory coherence required
	11.16.4 Guarded storage
	11.16.5 Misaligned accesses and the endian (E) bit

	11.17 Reservation instructions and cache interactions
	11.18 Effect of hardware debug on cache operation
	11.19 Cache memory access for debug / error handling
	11.19.1 Cache memory access via software
	11.19.2 Cache memory access through JTAG/OnCE port
	11.19.3 Cache Debug Access Control register (CDACNTL)
	11.19.3.1 Cache Debug Access Data register (CDADATA)

	11.20 Hardware Debug (Cache) Control Register 0
	11.21 Hardware cache coherency
	11.21.1 Coherency protocol
	11.21.2 Snoop command port
	11.21.3 Snoop request queue
	11.21.4 Snoop lookup operation
	11.21.5 Snoop errors
	11.21.6 Snoop collisions
	11.21.7 Snoop synchronization
	11.21.7.1 Synchronization port request
	11.21.7.2 Snoop command port request

	11.21.8 Starvation control
	11.21.9 Queue flow control
	11.21.10 Snooping in low power states

	Chapter 12 Debug Support
	12.1 Overview
	12.1.1 Software debug facilities
	12.1.1.1 PowerISA 2.06 compatibility

	12.1.2 Additional debug facilities
	12.1.3 Hardware debug facilities
	12.1.4 Sharing debug resources by software/hardware
	12.1.4.1 Simultaneous hardware and software debug event handing

	12.2 Software debug events and exceptions
	12.2.1 Instruction Address Compare event
	12.2.2 Data Address Compare event
	12.2.2.1 Data Address Compare event status updates

	12.2.3 Linked Instruction Address and Data Address Compare event
	12.2.4 Trap debug event
	12.2.5 Branch Taken debug event
	12.2.6 Instruction Complete debug event
	12.2.7 Interrupt Taken debug event
	12.2.8 Critical Interrupt Taken debug event
	12.2.9 Return debug event
	12.2.10 Critical Return debug event
	12.2.11 Debug Counter debug event
	12.2.12 External debug event
	12.2.13 Unconditional debug event

	12.3 Debug registers
	12.3.1 Debug address and value registers
	12.3.2 Debug Counter register (DBCNT)
	12.3.3 Debug Control and Status registers
	12.3.3.1 Debug Control Register 0 (DBCR0)
	12.3.3.2 Debug Control Register 1 (DBCR1)
	12.3.3.3 Debug Control Register 2 (DBCR2)
	12.3.3.4 Debug Control Register 3 (DBCR3)
	12.3.3.5 Debug Control Register 4 (DBCR4)
	12.3.3.6 Debug Control Register 5 (DBCR5)
	12.3.3.7 Debug Control Register 6 (DBCR6)
	12.3.3.8 Debug Status register (DBSR)

	12.3.4 Debug External Resource Control register (DBERC0)
	12.3.5 Debug Event Select register (DEVENT)
	12.3.6 Debug Data Acquisition Message register (DDAM)

	12.4 External debug support
	12.4.1 External debug registers
	12.4.1.1 External Debug Control Register 0 (EDBCR0)
	12.4.1.2 External Debug Status Register 0 (EDBSR0)
	12.4.1.3 External Debug Status Register Mask 0 (EDBSRMSK0)

	12.4.2 OnCE introduction
	12.4.3 JTAG/OnCE pins
	12.4.4 OnCE internal interface signals
	12.4.4.1 CPU debug request (dbg_dbgrq)
	12.4.4.2 CPU debug acknowledge (cpu_dbgack)
	12.4.4.3 CPU address, attributes
	12.4.4.4 CPU data

	12.4.5 OnCE interface signals
	12.4.5.1 OnCE enable (jd_en_once)
	12.4.5.2 OnCE debug request/event (jd_de_b, jd_de_en)
	12.4.5.3 e200z759n3 OnCE debug output (jd_debug_b)
	12.4.5.4 e200z759n3 CPU clock on input (jd_mclk_on)
	12.4.5.5 Watchpoint events (jd_watchpt[0:29])

	12.4.6 e200z759n3 OnCE controller and serial interface
	12.4.6.1 e200z759n3 OnCE Status Register (OSR)
	12.4.6.2 e200z759n3 OnCE Command register (OCMD)
	12.4.6.3 e200z759n3 OnCE Control Register (OCR)

	12.4.7 Access to debug resources
	12.4.8 Methods of entering debug mode
	12.4.8.1 External debug request during RESET
	12.4.8.2 Debug request during RESET
	12.4.8.3 Debug request during normal activity
	12.4.8.4 Debug request during Waiting, Halted, or Stopped state
	12.4.8.5 Software request during normal activity
	12.4.8.6 Debug notify halt instructions

	12.4.9 CPU Status and Control Scan Chain Register (CPUSCR)
	12.4.9.1 Instruction Register (IR)
	12.4.9.2 Control State register (CTL)
	12.4.9.3 Program Counter register (PC)
	12.4.9.4 Write-Back Bus Register (WBBRlow, WBBRhigh)
	12.4.9.5 Machine State Register (MSR)
	12.4.9.6 Exiting debug mode and interrupt blocking

	12.4.10 Instruction Address FIFO buffer (PC FIFO)
	12.4.10.1 PC FIFO

	12.4.11 Reserved registers (reserved)

	12.5 Watchpoint support
	12.6 MMU and cache operation during debug
	12.7 Cache array access during debug
	12.8 Basic steps for enabling, using, and exiting external debug mode
	12.9 Parallel Signature unit
	12.9.1 Parallel Signature Control Register (PSCR)
	12.9.2 Parallel Signature Status Register (PSSR)
	12.9.3 Parallel Signature High Register (PSHR)
	12.9.4 Parallel Signature Low Register (PSLR)
	12.9.5 Parallel Signature Counter Register (PSCTR)
	12.9.6 Parallel Signature Update High Register (PSUHR)
	12.9.7 Parallel Signature Update Low Register (PSULR)

	Chapter 13 Nexus 3 Module
	13.1 Introduction
	13.1.1 General description
	13.1.2 Terms and definitions
	13.1.3 Feature list
	13.1.4 Functional block diagram

	13.2 Enabling Nexus 3 operation
	13.3 TCODEs supported
	13.4 Nexus 3 programmer’s model
	13.4.1 Client Select Control register (CSC)
	13.4.2 Port Configuration Register (PCR) - reference only
	13.4.3 Nexus Development Control Register 1 (DC1)
	13.4.4 Nexus Development Control Registers 2 and 3 (DC2, DC3)
	13.4.5 Nexus Development Control Register 4 (DC4)
	13.4.6 Development Status register (DS)
	13.4.7 Watchpoint Trigger registers (WT, PTSTC, PTETC, DTSTC, DTETC)
	13.4.8 Nexus Watchpoint Mask register (WMSK)
	13.4.9 Nexus Overrun Control Register (OVCR)
	13.4.10 Data Trace Control Register (DTC)
	13.4.11 Data Trace Start Address Registers (DTSA1-4)
	13.4.12 Data Trace End Address registers (DTEA1-4)
	13.4.13 Read/Write Access Control/Status register (RWCS)
	13.4.14 Read/Write Access Data (RWD)
	13.4.15 Read/Write Access Address register (RWA)

	13.5 Nexus 3 register access via JTAG/OnCE
	13.6 Nexus message fields
	13.6.1 TCODE field
	13.6.2 Source ID field (SRC)
	13.6.3 Relative address field (U-ADDR)
	13.6.4 Full address field (F-ADDR)
	13.6.5 Address space indication field (MAP)

	13.7 Nexus message queues
	13.7.1 Message queue overrun
	13.7.2 CPU stall
	13.7.3 Message suppression
	13.7.4 Nexus message priority
	13.7.5 Data Acquisition Message (DQM) priority loss response
	13.7.6 Ownership Trace Message (OTM) priority loss response
	13.7.7 Program Trace Message (PTM) priority loss response
	13.7.8 Data Trace Message (DTM) priority loss response

	13.8 Debug Status messages
	13.9 Error messages
	13.10 Ownership trace
	13.10.1 Overview
	13.10.2 Ownership Trace Messaging (OTM)

	13.11 Program trace
	13.11.1 Branch Trace messaging types
	13.11.1.1 Zen Indirect Branch message instructions
	13.11.1.2 Zen Direct Branch Message instructions
	13.11.1.3 BTM using Branch History Messages
	13.11.1.4 BTM using Traditional Program Trace messages

	13.11.2 BTM Message formats
	13.11.2.1 Indirect Branch Messages (history)
	13.11.2.2 Indirect Branch Messages (traditional)
	13.11.2.3 Direct Branch Messages (traditional)

	13.11.3 Program Trace message fields
	13.11.3.1 Sequential Instruction Count field (ICNT)
	13.11.3.2 Branch/Predicate Instruction History (HIST)
	13.11.3.3 Execution mode indication

	13.11.4 Resource Full Messages
	13.11.5 Program Correlation Messages (PCM)
	13.11.5.1 Program Correlation Message generation for TLB update with new address translation
	13.11.5.2 Program Correlation Message generation for TLB invalidate (tlbivax) operations
	13.11.5.3 Program Correlation Message generation for PID updates or MSRIS updates

	13.11.6 Program trace overflow error messages
	13.11.7 Program trace synchronization messages
	13.11.8 Enabling Program Trace
	13.11.9 Program Trace timing diagrams (2 MDO / 1 MSEO configuration)

	13.12 Data Trace
	13.12.1 Data Trace Messaging (DTM)
	13.12.2 DTM Message formats
	13.12.2.1 Data Write Messages
	13.12.2.2 Data Read Messages
	13.12.2.3 Data Trace Synchronization Messages

	13.12.3 DTM operation
	13.12.3.1 Data trace windowing
	13.12.3.2 Data access / instruction access data tracing
	13.12.3.3 Data trace filtering
	13.12.3.4 Zen bus cycle special cases

	13.12.4 Data Trace Timing Diagrams(8 MDO / 2 MSEO configuration)

	13.13 Data Acquisition messaging
	13.13.1 Data Acquisition ID Tag field
	13.13.2 Data Acquisition Data field
	13.13.3 Data Acquisition Trace event

	13.14 Watchpoint Trace Messaging
	13.14.1 Watchpoint Timing Diagram (2 MDO / 1 MSEO configuration)

	13.15 Nexus 3 read/write access to memory-mapped resources
	13.15.1 Single write Access
	13.15.2 Block write access
	13.15.3 Single read access
	13.15.4 Block read access
	13.15.5 Error handling
	13.15.5.1 AHB read/write error
	13.15.5.2 Access termination

	13.15.6 Read/write access error message

	13.16 Nexus 3 pin interface
	13.16.1 Pins implemented
	13.16.2 Pin protocol

	13.17 Rules for output messages
	13.18 Auxiliary port arbitration
	13.19 Examples
	13.20 Electrical characteristics
	13.21 IEEE 1149.1 (JTAG) RD/WR sequences
	13.21.1 JTAG sequence for accessing internal Nexus registers
	13.21.2 JTAG sequence for read access of memory-mapped resources
	13.21.3 JTAG sequence for write access of memory-mapped resources

	Chapter 14 External Core Complex Interfaces
	14.1 Signal index
	14.2 Signal descriptions
	14.2.1 e200z759n3 processor clock (m_clk)
	14.2.2 Reset-related signals
	14.2.2.1 Power-on reset (m_por)
	14.2.2.2 Reset (p_reset_b)
	14.2.2.3 Watchdog reset status (p_wrs[0:1])
	14.2.2.4 Debug reset control (p_dbrstc[0:1])
	14.2.2.5 Reset base (p_rstbase[0:29])
	14.2.2.6 Reset endian mode (p_rst_endmode)
	14.2.2.7 Reset VLE Mode (p_rst_vlemode)
	14.2.2.8 JTAG/OnCE reset (j_trst_b)

	14.2.3 Address and data buses
	14.2.3.1 Address bus (p_d_haddr[31:0], p_i_haddr[31:0])
	14.2.3.2 Read data bus (p_d_hrdata[63:0], p_i_hrdata[63:0])
	14.2.3.3 Write data bus (p_d_hwdata[63:0])

	14.2.4 Transfer attribute signals
	14.2.4.1 Transfer type (p_d_htrans[1:0], p_i_htrans[1:0])
	14.2.4.2 Write (p_d_hwrite, p_i_hwrite)
	14.2.4.3 Transfer size (p_d_hsize[1:0], p_i_hsize[1:0])
	14.2.4.4 Burst type (p_d_hburst[2:0], p_i_hburst[2:0])
	14.2.4.5 Protection control (p_d_hprot[5:0], p_i_hprot[5:0])
	14.2.4.6 Transfer data error (p_d_htrans_derr)
	14.2.4.7 Globally coherent access - (p_d_gbl)
	14.2.4.8 Cache way replacement (p_d_wayrep[0:1], p_i_wayrep[0:1])

	14.2.5 Byte lane specification
	14.2.5.1 Unaligned access (p_d_hunalign, p_i_hunalign)
	14.2.5.2 Byte strobes (p_d_hbstrb[7:0], p_i_hbstrb[7:0])

	14.2.6 Transfer control signals
	14.2.6.1 Transfer ready (p_d_hready, p_i_hready)
	14.2.6.2 Transfer response (p_d_hresp[2:0], p_i_hresp[1:0])
	14.2.6.3 Bus stall global write request (p_stall_bus_gwrite)

	14.2.7 AHB clock enable signals
	14.2.7.1 Instruction AHB clock enable (p_i_ahb_clken)
	14.2.7.2 Data AHB clock enable (p_d_ahb_clken)

	14.2.8 Master ID configuration signals
	14.2.8.1 CPU master ID (p_masterid[3:0])
	14.2.8.2 Nexus master ID (nex_masterid[3:0])

	14.2.9 Coherency control signals
	14.2.9.1 Snoop ready (p_snp_rdy)
	14.2.9.2 Snoop request (p_snp_req)
	14.2.9.3 Snoop command input (p_snp_cmd_in[0:1])
	14.2.9.4 Snoop request ID input (p_snp_id_in[0:3])
	14.2.9.5 Snoop address input (p_snp_addr_in[0:26])
	14.2.9.6 Snoop acknowledge (p_snp_ack)
	14.2.9.7 Snoop request ID output (p_snp_id_out[0:3])
	14.2.9.8 Snoop response (p_snp_resp[0:4])
	14.2.9.9 Cache stalled (p_cac_stalled)
	14.2.9.10 Data cache enabled (p_d_cache_en)

	14.2.10 Memory synchronization control signals
	14.2.10.1 Synchronization request in (p_sync_req_in)
	14.2.10.2 Synchronization request acknowledge out (p_sync_ack_out)
	14.2.10.3 Synchronization request out (p_sync_req_out)
	14.2.10.4 Synchronization request acknowledge in (p_sync_ack_in)

	14.2.11 Interrupt signals
	14.2.11.1 External input interrupt request (p_extint_b)
	14.2.11.2 Critical input interrupt request (p_critint_b)
	14.2.11.3 Non-maskable input interrupt request (p_nmi_b)
	14.2.11.4 Interrupt pending (p_ipend)
	14.2.11.5 Autovector (p_avec_b)
	14.2.11.6 Interrupt vector offset (p_voffset[0:15])
	14.2.11.7 Interrupt vector acknowledge (p_iack)
	14.2.11.8 Machine check (p_mcp_b)

	14.2.12 External translation alteration signals
	14.2.12.1 External PID enable (p_extpid_en)
	14.2.12.2 External PID in (p_extpid[6:7])

	14.2.13 Timer facility signals
	14.2.13.1 Timer disable (p_tbdisable)
	14.2.13.2 Timer external clock (p_tbclk)
	14.2.13.3 Timer interrupt status (p_tbint)

	14.2.14 Processor reservation signals
	14.2.14.1 CPU reservation status (p_rsrv)
	14.2.14.2 CPU reservation clear (p_rsrv_clr)

	14.2.15 Miscellaneous processor signals
	14.2.15.1 CPU ID (p_cpuid[0:7])
	14.2.15.2 PID0 outputs (p_pid0[0:7])
	14.2.15.3 PID0 update (p_pid0_updt)
	14.2.15.4 System version (p_sysvers[0:31])
	14.2.15.5 Processor version (p_pvrin[16:31])
	14.2.15.6 HID1 system control (p_hid1_sysctl[0:7])
	14.2.15.7 Debug event outputs (p_devnt_out[0:7])

	14.2.16 Processor state signals
	14.2.16.1 Processor mode (p_mode[0:3])
	14.2.16.2 Processor execution pipeline status (p_pstat_pipe0[0:5], p_pstat_pipe1[0:5])
	14.2.16.3 Branch prediction status (p_brstat[0:1])
	14.2.16.4 Processor exception enable MSR values (p_msr_EE, p_msr_CE, p_msr_DE, p_msr_ME)
	14.2.16.5 Processor return from interrupt (p_rfi, p_rfci, p_rfdi, p_rfmci)
	14.2.16.6 Processor machine check (p_mcp_out)

	14.2.17 Power management control signals
	14.2.17.1 Processor waiting (p_waiting)
	14.2.17.2 Processor halt request (p_halt)
	14.2.17.3 Processor halted (p_halted)
	14.2.17.4 Processor stop request (p_stop)
	14.2.17.5 Processor stopped (p_stopped)
	14.2.17.6 Low-power mode signals (p_doze, p_nap, p_sleep)
	14.2.17.7 Wakeup (p_wakeup)

	14.2.18 Performance monitor signals
	14.2.18.1 Performance monitor event (p_pm_event)
	14.2.18.2 Performance monitor counter 0 overflow state (p_pmc0_ov)
	14.2.18.3 Performance monitor counter 1 overflow state (p_pmc1_ov)
	14.2.18.4 Performance monitor counter 2 overflow state (p_pmc2_ov)
	14.2.18.5 Performance monitor counter 3 overflow state (p_pmc3_ov)
	14.2.18.6 Performance monitor counter 3 qualifier inputs (p_pmc[0,1,2,3]_qual)

	14.2.19 Debug event input signals
	14.2.19.1 Unconditional debug event (p_ude)
	14.2.19.2 External debug event 1 (p_devt1)
	14.2.19.3 External debug event 2 (p_devt2)

	14.2.20 Debug event output signals (p_devnt_out[0:7])
	14.2.21 Debug/emulation (Nexus 1/ OnCE) support signals
	14.2.21.1 OnCE enable (jd_en_once)
	14.2.21.2 Debug session (jd_debug_b)
	14.2.21.3 Debug request (jd_de_b)
	14.2.21.4 DE_b active high output enable (jd_de_en)
	14.2.21.5 Processor clock on (jd_mclk_on)
	14.2.21.6 Watchpoint events (jd_watchpt[0:29])

	14.2.22 Development support (Nexus 3) signals
	14.2.23 JTAG support signals
	14.2.23.1 JTAG/OnCE serial input (j_tdi)
	14.2.23.2 JTAG/OnCE serial clock (j_tclk)
	14.2.23.3 JTAG/OnCE serial output (j_tdo)
	14.2.23.4 JTAG/OnCE test mode select (j_tms)
	14.2.23.5 JTAG/OnCE test reset (j_trst_b)
	14.2.23.6 Test-Logic-Reset (j_tst_log_rst)
	14.2.23.7 Run-Test/Idle (j_rti)
	14.2.23.8 Capture IR (j_capture_ir)
	14.2.23.9 Shift IR (j_shift_ir)
	14.2.23.10 Update IR (j_update_ir)
	14.2.23.11 Capture DR (j_capture_dr)
	14.2.23.12 Shift DR (j_shift_dr)
	14.2.23.13 Update DR w/write (j_update_gp_reg)
	14.2.23.14 Register select (j_gp_regsel)
	14.2.23.15 Enable OnCE register select (j_en_once_regsel)
	14.2.23.16 External Nexus register select (j_nexus_regsel)
	14.2.23.17 External LSRL register select (j_lsrl_regsel)
	14.2.23.18 Serial data (j_serial_data)
	14.2.23.19 Key data in (j_key_in)

	14.2.24 JTAG ID signals
	14.2.24.1 JTAG ID sequence (j_id_sequence[0:1])
	14.2.24.2 JTAG ID sequence (j_id_sequence[2:9])
	14.2.24.3 JTAG ID version (j_id_version[0:3])

	14.2.25 Test signals

	14.3 Timing diagrams
	14.3.1 AHB clock enable and the internal HCLK
	14.3.2 Processor instruction/data transfers
	14.3.2.1 Basic read transfer cycles
	14.3.2.2 Read transfer with wait state
	14.3.2.3 Basic write transfer cycles
	14.3.2.4 Write transfer with wait states
	14.3.2.5 Read and write transfers
	14.3.2.6 Misaligned accesses
	14.3.2.7 Burst accesses
	14.3.2.8 Error termination operation

	14.3.3 Memory synchronization control operation
	14.3.4 Cache coherency interface operation
	14.3.4.1 Stop mode entry/exit and snoop ready signaling

	14.3.5 Power management
	14.3.6 Interrupt Interface
	14.3.7 Time base interface
	14.3.8 JTAG test interface

	Chapter 15 Internal Core Interfaces
	15.1 Signal index
	15.2 Signal descriptions
	15.2.1 Address and data buses
	15.2.1.1 Data address bus (p_d_addr[0:31])
	15.2.1.2 Instruction address bus (p_i_addr[0:31])
	15.2.1.3 Data input data bus (p_d_data_in[0:63])
	15.2.1.4 Instruction input data bus (p_i_data_in[0:63])
	15.2.1.5 Data output data bus (p_d_data_out[0:63])

	15.2.2 Transfer attribute signals
	15.2.2.1 Read/write (p_d_rw_b)
	15.2.2.2 Data transfer code (p_d_tc[0:1])
	15.2.2.3 Instruction transfer code (p_i_tc[0:4])
	15.2.2.4 Data transfer size (p_d_tsiz[0:2])
	15.2.2.5 Element size (p_elsiz[0:1])
	15.2.2.6 Instruction Transfer Size (p_i_tsiz[0:2])
	15.2.2.7 Data Transfer Type (p_d_ttype[0:5])
	15.2.2.8 Data sequential access (p_d_seq_b)
	15.2.2.9 Instruction sequential access (p_i_seq_b)
	15.2.2.10 Misaligned access (p_d_misal_b)
	15.2.2.11 Block data transfer (p_d_bdt)
	15.2.2.12 Error kill control (p_d_err_kill, p_i_err_kill)

	15.2.3 Transfer control signals
	15.2.3.1 Halt ZLB (p_d_halt_zlb, p_i_halt_zlb)
	15.2.3.2 Transfer request (p_d_treq_b, p_i_treq_b)
	15.2.3.3 Transfer busy (p_d_tbusy[0:1]_b, p_i_tbusy[0:1]_b)
	15.2.3.4 Transfer abort (p_d_abort_b, p_i_abort_b)
	15.2.3.5 Transfer acknowledge (p_d_ta_b, p_i_ta_b)
	15.2.3.6 Transfer error acknowledge (p_d_tea_b, p_i_tea_b)
	15.2.3.7 Translation miss (p_d_tmiss_b, p_i_tmiss_b)
	15.2.3.8 Byte ordering error (p_d_boerr_b, p_i_boerr_b)
	15.2.3.9 Alignment error (p_d_alignerr_b)
	15.2.3.10 Cache tag parity error (p_d_tag_perr_b, p_i_tag_perr_b)
	15.2.3.11 Cache data parity error (p_d_data_perr_b, p_i_data_perr_b)
	15.2.3.12 External termination error (p_d_xte_b, p_i_xte_b)
	15.2.3.13 Guarded termination status (p_d_ta_g)
	15.2.3.14 Cache-inhibited termination status (p_d_ta_ci)
	15.2.3.15 Access physical address (p_[d,i]_ta_addr[0:31])
	15.2.3.16 Termination error signaling and qualification
	15.2.3.17 Store exclusive failure (p_d_xfail_b)
	15.2.3.18 Read endian mode select (p_d_rdbigend_b, p_i_rdbigend_b)
	15.2.3.19 Write endian mode select (p_d_wrbigend_b)
	15.2.3.20 VLE mode select (p_rd_vle)

	15.2.4 Byte lane specification
	15.2.5 External SPR interface signals
	15.2.5.1 SPR number (p_sprnum[0:9])
	15.2.5.2 SPR read data (p_spr_in[0:31])
	15.2.5.3 SPR write data (p_spr_out[0:31])
	15.2.5.4 SPR read control (p_rd_spr)
	15.2.5.5 SPR write control (p_wr_spr)

	15.2.6 Miscellaneous processor signals
	15.2.6.1 PID0 outputs (p_pid0[0:7])
	15.2.6.2 PID0 update (p_pid0_updt)

	15.2.7 Cache/MMU status signals
	15.2.7.1 Cache enabled (p_d_cache_enabled, p_i_cache_enabled)
	15.2.7.2 Cache/MMU busy (p_d_cmbusy, p_i_cmbusy)
	15.2.7.3 Cache set CUL (p_d_set_cul, p_i_set_cul)
	15.2.7.4 User cache lock DSI control (p_ucl_dsi)
	15.2.7.5 Cache push parity error (p_d_cp_perr)
	15.2.7.6 Cache push address (p_d_push_addr[0:31])
	15.2.7.7 Bus write error (p_d_bus_wrerr)
	15.2.7.8 Bus write error address (p_d_bus_wrerr_addr[0:31])
	15.2.7.9 Cache linefill status (p_d_lf_status[0:3], p_i_lf_status[0:3])
	15.2.7.10 Linefill status address (p_d_lf_addr[0:31], p_i_lf_addr[0:31])
	15.2.7.11 Debug mode MMU disable (p_d_dmdis, p_i_dmdis)
	15.2.7.12 Debug mode MMU ‘VLE’ attribute (p_dbg_vle)
	15.2.7.13 Debug mode MMU ‘W’ attribute (p_d_dbg_w)
	15.2.7.14 Debug mode MMU ‘I’ attribute (p_d_dbg_i, p_i_dbg_i)
	15.2.7.15 Debug mode MMU ‘M’ attribute (p_d_dbg_m, p_i_dbg_m)
	15.2.7.16 Debug mode MMU ‘G’ attribute (p_d_dbg_g)
	15.2.7.17 Debug mode MMU ‘E’ attribute (p_d_dbg_e, p_i_dbg_e)

	15.2.8 EFPU interface signals
	15.2.9 Test signals

	15.3 Timing diagrams
	15.3.1 Processor instruction/data transfers
	15.3.1.1 Basic read transfer cycles
	15.3.1.2 Read transfer with wait states
	15.3.1.3 Basic write transfer cycles
	15.3.1.4 Write transfer with wait states
	15.3.1.5 Read and write transfers
	15.3.1.6 Misaligned accesses
	15.3.1.7 Abort operation
	15.3.1.8 Error termination and abort operation

	15.3.2 SPR interface operation

	Appendix A Register Summary
	Appendix B Revision History

