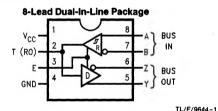



## DS96177 RS-485/RS-422 Differential Bus Repeater


## **General Description**

The DS96177 Differential Bus Repeater is a monolithic integrated device designed for one-way data communication on multipoint bus transmission lines. This device is designed for balanced transmission bus line applications and meets EIA Standard RS-485 and RS-422A. The device is designed to improve the performance of the data communication over long bus lines. The DS96177 has an active high Enable.

The DS96177 features positive and negative current limiting and TRI-STATE® outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12V to +12V. The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 160°C. The driver is designed to drive current loads up to 60 mA maximum.

The DS96177 is designed for optimum performance when used on transmission buses employing the DS96172 and DS96174 differential line drivers, DS96173 and DS96175 differential line receivers, or DS96176 differential bus transceivers.

## **Connection Diagram**



**Top View** 

Order Number DS96177CN See NS Package Number N08E

### **Features**

- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission on long bus lines in noisy environments
- TRI-STATE outputs
- Bus voltage range -7.0V to +12V
- Positive and negative current limiting
- Driver output capability ±60 mA max
- Driver thermal shutdown protection
- Receiver input high impedance
- Receiver input sensitivity of ±200 mV
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
- Low power requirements

## **Function Table**

| Differential Inputs | Enable | Enable Ou |    |   |  |  |  |
|---------------------|--------|-----------|----|---|--|--|--|
| A-B                 | E      | т         | ТҮ |   |  |  |  |
| $V_{ID} \ge 0.2V$   | н      | н         | н  | L |  |  |  |
| $V_{ID} \le -0.2V$  | н      | L         | L  | н |  |  |  |
| x                   | L      | Z         | Z  | Z |  |  |  |

Note: T is an output pin only, monitoring the BUS (RO).

H = High Level

- L = Low Level
- X = Immaterial
- Z = High Impedance (off)

## Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

| Storage Temperature Range                    |                 |
|----------------------------------------------|-----------------|
| Ceramic DIP                                  | -65°C to +175°C |
| Molded DIP                                   | -65°C to +150°C |
| Lead Temperature                             |                 |
| Ceramic DIP (Soldering, 60 sec.)             | 300°C           |
| Molded DIP (Soldering, 10 sec.)              | 265°C           |
| Maximum Power Dissipation* at 25°C           |                 |
| Molded Package                               | 930 mW          |
| Supply Voltage                               | 7.0V            |
| Input Voltage                                | 5.5V            |
| *Derate molded DIP package 7.5 mW/°C above 2 | 25°C.           |

# Recommended Operating Conditions

|                                         | Min  | Тур | Max  | Units |
|-----------------------------------------|------|-----|------|-------|
| Supply Voltage (V <sub>CC</sub> )       | 4.75 | 5.0 | 5.25 | V     |
| Voltage at any Bus Terminal             |      |     | 1    |       |
| (Separately or Common                   | -7.0 |     | 12   | v     |
| Mode) (VI or V <sub>CM</sub> )          |      |     |      |       |
| Differential Input Voltage              |      |     |      |       |
| (V <sub>ID</sub> )                      |      |     | ±12  | v     |
| Output Current HIGH (IOH)               |      |     |      |       |
| Driver                                  |      |     | -60  | mA    |
| Receiver                                |      |     | -400 | μA    |
| Output Current LOW (I <sub>OL</sub> )   |      |     |      |       |
| Driver                                  |      |     | 60   |       |
| Receiver                                |      |     | 16   | mA    |
| Operating Temperature (T <sub>A</sub> ) | 0    | 25  | 70   | °C    |

Electrical Characteristics Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified (Notes 2 and 3)

| Symbol                                              | Parameter                                                     | Conditie                                            | ons               |          | N   | lin | Тур  | Max   | Units |  |
|-----------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-------------------|----------|-----|-----|------|-------|-------|--|
| VIH                                                 | Input Voltage HIGH                                            | 0                                                   |                   |          | 2   | 2.0 |      |       | V     |  |
| VIL                                                 | Input Voltage LOW                                             | 24                                                  |                   |          |     |     |      | 0.8   | V     |  |
| VIC                                                 | Input Clamp Voltage                                           | lı = −18 mA                                         |                   |          |     |     |      | - 1.5 | V     |  |
| VOD1                                                | Differential Output Voltage                                   | $I_{O} = 0 \text{ mA}$                              |                   |          |     |     |      | 6.0   | V     |  |
| V <sub>OD2</sub> I                                  | Differential Output Voltage                                   | $R_L = 100\Omega, Figure 1$                         |                   |          | 2   | 2.0 | 2.25 |       | v     |  |
|                                                     |                                                               | $R_L = 54\Omega$ , Figure 1 and 2                   |                   |          | 1   | .5  | 2.0  |       |       |  |
| ∆ V <sub>OD2</sub>                                  | Change in Magnitude of Differential                           | R <sub>L</sub> = 100Ω, <i>Figure 1</i>              |                   |          |     |     |      | ±0.2  | v     |  |
|                                                     | Output Voltage (Note 4)                                       | $R_L = 54\Omega$ Figure 1 and 2                     | V <sub>CM</sub> = | 0V       |     |     |      | 10.2  |       |  |
| Voc                                                 | Common Mode Output Voltage (Note 5)                           | $R_L = 54\Omega \text{ or } 100\Omega$              |                   |          | L   |     |      | 3.0   | V     |  |
| ∆l∨ <sub>oc</sub> l                                 | Change in Magnitude of Common Mode<br>Output Voltage (Note 4) | Figure 1                                            |                   |          |     |     |      | ±0.2  | v     |  |
| lo                                                  | Output Current with Power Off                                 | $V_{CC} = 0V, V_{O} = -7.0V \text{ to } + 12V$      |                   |          |     |     |      | ±100  | μA    |  |
| loz                                                 | High Impedance State Output Current                           | $V_0 = -7.0V \text{ to } + 12V$                     |                   |          |     |     | ±50  | ±200  | μA    |  |
| ιн                                                  | Input Current HIGH                                            | V <sub>1</sub> = 2.7V                               |                   |          |     |     |      | 20    | μA    |  |
| կլ                                                  | Input Current LOW                                             | $V_1 = 0.5V$                                        |                   |          |     |     |      | -100  | μA    |  |
| I <sub>OS</sub> Short Circuit Output Current        |                                                               | $V_0 = -7.0V$                                       |                   |          |     |     |      | -250  |       |  |
|                                                     | (Note 9)                                                      | $V_0 = 0V$                                          |                   |          |     |     |      | -150  | mA    |  |
|                                                     |                                                               | $V_0 = V_{CC}$                                      |                   |          |     |     |      | 150   |       |  |
|                                                     |                                                               | V <sub>O</sub> = 12V                                |                   |          |     |     |      | 250   |       |  |
| lcc                                                 | Supply Current                                                | No Load                                             | Outputs           | Enabled  |     | _   |      | 35    | mA    |  |
|                                                     |                                                               |                                                     | Outputs           | Disabled |     |     |      | 40    |       |  |
| RECEI                                               | VER SECTION                                                   |                                                     |                   |          |     |     |      |       |       |  |
| Symt                                                | pol Parameter                                                 | Conditions                                          |                   | Min      | Тур |     | Max  |       | Units |  |
| VTH                                                 | Differential Input<br>High Threshold Voltage                  | $V_{\rm O} = 2.7 V, I_{\rm O} = -0.4  {\rm m}$      | nA                |          |     |     | 0.2  |       | v     |  |
| VTL                                                 | Differential Input Low<br>Threshold Voltage (Note 6)          | $V_{\rm O} = 0.5 V, I_{\rm O} = 8.0  {\rm mA}$ -0.2 |                   |          |     |     |      | v     |       |  |
| V <sub>T+</sub> -V <sub>T</sub> Hysteresis (Note 7) |                                                               | $V_{CM} = 0V$                                       |                   |          | 50  |     |      |       | mV    |  |
| VIH                                                 | Enable Input Voltage HIGH                                     | 2.0                                                 |                   |          |     |     |      | ٧     |       |  |
| VIL                                                 | Enable Input Voltage LOW                                      |                                                     |                   |          |     |     | 0.8  |       | V     |  |
| VIC                                                 | Enable Input Clamp Voltage                                    | $l_1 = -18  \text{mA}$                              |                   |          |     | T   | -1.  | 5     | v     |  |

## Electrical Characteristics (Continued)

Over recommended temperature, common mode input voltage, and supply voltage ranges, unless otherwise specified

#### **RECEIVER SECTION (Continued)**

| Symbol                                   | Parameter                      | $\begin{array}{c} \textbf{Conditions} \\ \textbf{V}_{\text{ID}} = 200 \text{ mV}, \textbf{i}_{\text{OH}} = -400 \ \mu\text{A}, \textit{Figure} \\ \textbf{3} \end{array}$ |                          | Min  | Тур  | Max  | Units |
|------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|------|------|-------|
| V <sub>OH</sub>                          | High Level Output Voltage      |                                                                                                                                                                           |                          | 2.7  | -    |      | v     |
| V <sub>OL</sub> Low Level Output Voltage | $V_{ID} = -200 \text{ mV},$    | $I_{OL} = 8.0 \text{ mA}$                                                                                                                                                 |                          |      | 0.45 | v    |       |
|                                          |                                | Figure 3                                                                                                                                                                  | $I_{OL} = 16 \text{ mA}$ |      |      | 0.50 |       |
| loz                                      | High-Impedance State Output    | V <sub>O</sub> = 0.4V                                                                                                                                                     | _                        |      |      | -360 | μA    |
|                                          | Vc                             |                                                                                                                                                                           | $V_0 = 2.4V$             |      |      | 20   |       |
| II Line Input Current (Note 8)           | Line Input Current (Note 8)    | Other Input = 0V                                                                                                                                                          | V <sub>I</sub> = 12V     |      |      | 1.0  | mA    |
|                                          | $V_{I} = -7.0V$                |                                                                                                                                                                           |                          | -0.8 |      |      |       |
| lін                                      | Enable Input Current HIGH      | V <sub>IH</sub> = 2.7V                                                                                                                                                    |                          |      |      | 20   | μA    |
| Ι <sub>ΙL</sub>                          | Enable Input Current LOW       | V <sub>IL</sub> = 0.4V                                                                                                                                                    |                          |      |      | -100 | μA    |
| RI                                       | Input Resistance               |                                                                                                                                                                           |                          |      | 12   |      | kΩ    |
| los                                      | Short Circuit Output Current   | (Note 9)                                                                                                                                                                  |                          | - 15 |      | -85  | mA    |
| Icc                                      | Supply Current (Total Package) | No Load                                                                                                                                                                   | Outputs Enabled          |      |      | 35   | mA    |
|                                          |                                |                                                                                                                                                                           | Outputs Disabled         |      |      | 40   |       |

## Drive Switching Characteristics $V_{CC} = 5.0V$ , $T_A = 25^{\circ}C$

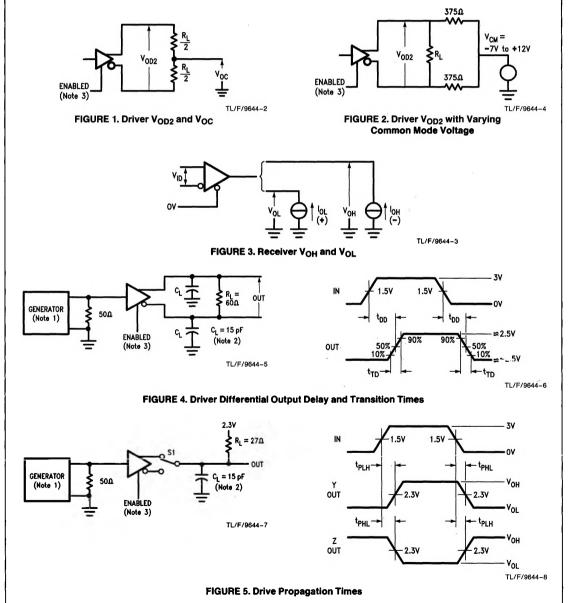
| Symbol           | Parameter                                           | Conditions                   | Min | Тур | Max | Units |
|------------------|-----------------------------------------------------|------------------------------|-----|-----|-----|-------|
| t <sub>DD</sub>  | Differential Output Delay Time                      | $R_L = 60\Omega$ , Figure 4  |     | 15  | 25  | ns    |
| t <sub>TD</sub>  | Differential Output Transition Time                 | $R_L = 60\Omega$ , Figure 4  |     | 15  | 25  | ns    |
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | $R_L = 27\Omega$ , Figure 5  |     | 12  | 20  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time,<br>High-to-Low Level Output | $R_L = 27\Omega$ , Figure 5  |     | 12  | 20  | ns    |
| t <sub>PZH</sub> | Output Enable Time to High Level                    | $R_L = 110\Omega$ , Figure 6 |     | 25  | 45  | ns    |
| t <sub>PZL</sub> | Output Enable Time to Low Level                     | $R_L = 110\Omega$ , Figure 7 |     | 25  | 40  | ns    |
| t <sub>PHZ</sub> | Output Disable Time from High Level                 | $R_L = 110\Omega$ , Figure 6 |     | 20  | 25  | ns    |
| tPLZ             | Output Disable Time from Low Level                  | $R_L = 110\Omega$ , Figure 7 |     | 29  | 35  | ns    |

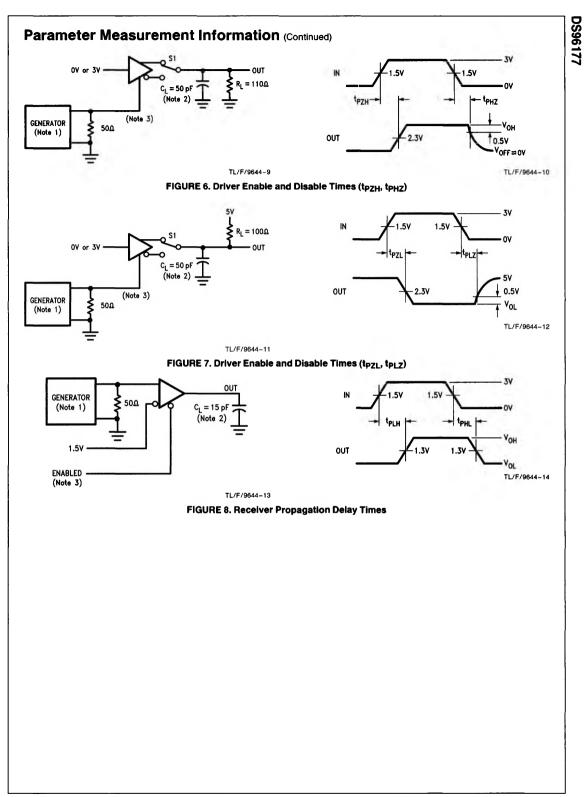
## Receiver Switching Characteristics $v_{CC} = 5.0V$ , $T_A = 25^{\circ}C$

| Symbol           | Parameter                                           | Conditions                                                               | Min | Тур | Max        | Units |
|------------------|-----------------------------------------------------|--------------------------------------------------------------------------|-----|-----|------------|-------|
| t <sub>PLH</sub> | Propagation Delay Time,<br>Low-to-High Level Output | $V_{ID} = 0V \text{ to } 3.0V,$<br>$C_L \approx 15 \text{ pF}, Figure 8$ |     | 16  | 25         | ns    |
| tPHL             | Propagation Delay Time,<br>High-to-Low Level Output |                                                                          |     | 16  | <b>2</b> 5 | ns    |
| t <sub>PZH</sub> | Output Enable Time to High Level                    | C <sub>L</sub> = 15 pF, <i>Figure 9</i>                                  |     | 15  | 22         | ns    |
| t <sub>PZL</sub> | Output Enable Time to Low Level                     |                                                                          |     | 15  | 22         | ns    |
| tPHZ             | Output Disable Time from High Level                 | C <sub>L</sub> ≈ 5.0 pF, <i>Figure 9</i>                                 |     | 14  | 30         | ns    |
| tPLZ             | Output Disable Time from Low Level                  |                                                                          |     | 24  | 40         | ns    |

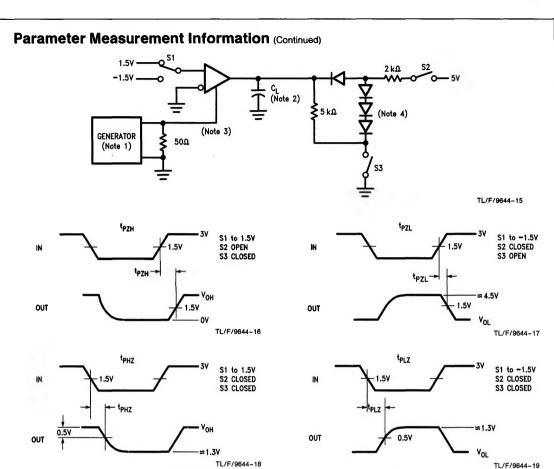
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified Min/Max limits apply across the 0°C to +70°C range for the DS96177. All typicals are given for V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C. Note 3: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 4:  $\Delta |V_{OD}|$  and  $\Delta |V_{OC}|$  are the changes in magnitude of  $V_{OD}$ ,  $V_{OC}$  respectively, that occur when the input is changed from a high level to a low level. Note 5: In EIA Standards RS-422A and RS-485,  $V_{OC}$ , which is the average of the two output voltages with respect to ground, is called output offset voltage,  $V_{OS}$ . Note 6: The algebraic convention, when the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.


Note 7: Hysteresis is the difference between the positive-going input threshold voltage, VT+, and the negative going input threshold voltage, VT-.

Note 8: Refer to EIA Standards RS-485 for exact conditions.

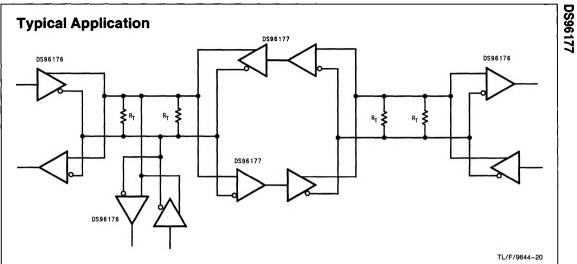

Note 9: Only one output at a time should be shorted.

## **Parameter Measurement Information**










#### FIGURE 9. Receiver Enable and Disable Times

Note 1: The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, duty cycle  $\approx$  50%, t<sub>r</sub>  $\leq$  6.0 ns, t<sub>f</sub>  $\leq$  6.0 ns, Z<sub>O</sub> = 50 $\Omega$ . Note 2: C<sub>L</sub> includes probe and stray capacitance.

Note 3: DS96177 Enable is active high.

Note 4: All diodes are 1N916 or equivalent.



#### Notes:

The line length should be terminated at both ends in its characteristic impedance. Stub lengths off the main line should be kept as short as possible.

Repeater control logic not shown

#### FIGURE 10

http://www.national.com