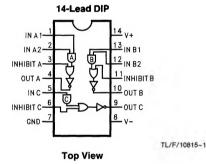
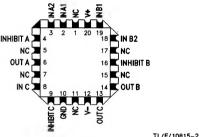
DS9616H Triple Line Driver

General Description


The DS9616H is a triple line driver which meets the electrical interface specifications of EIA RS-232-C and CCITT V.24 and/or MIL-STD-188C. Each driver converts TTL/DTL logic levels to EIA/CCIT and/or MIL-STD-188C logic levels for transmission between data terminal equipment and data communications equipment. The output slew rate is internally limited and can be lowered by an external capacitor; all output currents are short circuit limited. The outputs are protected against RS-232-C fault conditions. A logic HIGH on the inhibit terminal interrupts signal transfer and forces the output to a Vol. (EIA/CCITT MARK) state.

For the complementary function, see the DS9627MJ Dual EIA RS-232-C and MIL-STD-188C Line Receiver.


Features

- Internal slew rate limiting
- Meets EIA RS-232-C and CCITT V.24 and/or MIL-STD-188C
- Logic true inhibit function
- Output short circuit current-limiting
- Output voltage levels independent of supply voltages

Connection Diagrams

Order Number DS9616HMJ/883 See NS Package Number J14A 20-Terminal LCC

Top View
Order Number DS9616HME/883
See NS Package Number E20A

For Complete Military 883 Specifications, see RETS Data Sheet.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range

-65°C to +175°C

Operating Temperature Range

-55°C to +125°C

Lead Temperature (Soldering, 60 seconds)

s) 300°C

Internal Power Dissipation (Note 4)

DIP and CCP

400 mW

Supply Voltage

Input or Inhibit Voltage

±15V -1.5V to +6.0V

Output Signal Voltage

± 15V

Julput Oignai Voltage

Note 1: V_{IH} and V_{IL} are guaranteed by the V_{OH} and V_{OL} tests.

Note 2: All input and supply leads are grounded.

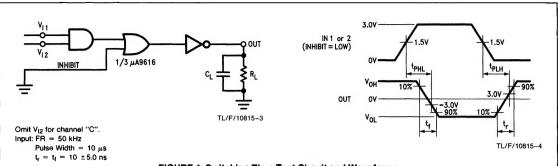
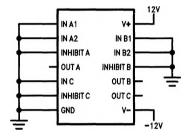
Note 3: An external capacitor may be needed to meet signal wave shaping requirements of MIL-STD-188C at the applicable modulation rate. No external capacitor is needed to meet R\$-232-C.

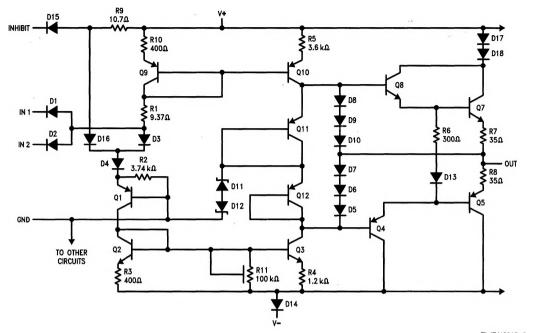
Note 4: Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at 120°C/W.

DS9616HM

Electrical Characteristics \pm 10.8V \leq V_{CC} \leq \pm 13.2V, R_L = 3.0 k Ω , unless otherwise specified

Symbol	Characteristic	Condition	Min	Max	Unit
V _{OH}	Output Voltage HIGH	V_{11} and/or $V_{12} = V_{INHIBIT} = 0.8V$	5.0	7.0	V
V _{OL}	Output Voltage LOW	$V_{I1} = V_{I2} = V_{INHIBIT} = 2.0V$	-7.0	-5.0	V
V _{OH} to V _{OL}	Output Voltage HIGH to Output Voltage LOW Magnitude Matching Error			±10	%
los+	Positive Output Short Circuit Current	$R_L = 0\Omega$, V_{11} and/or $V_{12} = V_{INHIBIT} = 0.8V$	-45	-12	mA
los-	Negative Output Short Circuit Current	$R_{L} = 0\Omega,$ $V_{11} = V_{12} = V_{INHIBIT} = 2.0V$	12	60	mA
V _{IH}	Input Voltage HIGH (Note 1)		2.0		v
V _{IL}	Input Voltage LOW (Note 1)	1		0.8	٧
Ін	Input Current HIGH	$V_{ 1} = V_{ 2} = 2.4V$		40	μΑ
		$V_{11} = V_{12} = 5.5V$		1.0	mA
I _{IL}	Input Current LOW	$V_{11} = V_{12} = 0.4V$	-1.6		mA
1+	Positive Supply Current	$V_{11} = V_{12} = V_{1NH1B1T} = 0.8V$	1	25	mA
		$V_{11} = V_{12} = V_{INHIBIT} = 2.0V$		15	mA
1-	Negative Supply Current	$V_{11} = V_{12} = V_{INHIBIT} = 0.8V$	-1.0		mA
		$V_{11} = V_{12} = V_{INHIBIT} = 2.0V$	-25		mA
Ro	Output Resistance, Power Off (Note 2)	$-2.0V \le V_{O} \le 0.5V$	300		Ω
SR+	Positive Slew Rate (Note 3)	$C_L = 2500 \text{ pF}, R_L = 3.0 \text{ k}\Omega$ (See <i>Figure 1</i>)	4.0	30	٧/μ٥
			4.0	30	V/μs
SR-	Negative Slew Rate (Note 3)	$C_L = 2500 \text{ pF}, R_L = 3.0 \text{ k}\Omega$ (See <i>Figure 1</i>)	-30	-4.0	٧/μ٩
			-30	-4.0	V/μs


FIGURE 1. Switching Time Test Circuit and Waveforms

Primary Burn-In Circuit

TL/F/10815-5

Equivalent Circuit (1/3 of circuit)

