OBSOLETE

DS92LV010AEP

SNLS183B-JANUARY 2005-REVISED JUNE 2009

www.ti.com

Bus LVDS 3.3/5.0V Single Transceiver

Check for Samples: DS92LV010AEP

FEATURES

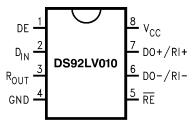
- **Bus LVDS Signaling (BLVDS)** •
- **Designed for Double Termination Applications**
- **Balanced Output Impedance**
- Lite Bus Loading 5pF Typical
- Glitch Free Power Up/Down (Driver Disabled)
- 3.3V or 5.0V Operation
- ±1V Common Mode Range
- ±100mV Receiver Sensitivity
- High Signaling Rate Capability (above 100 Mbps)
- Low Power CMOS Design
- Product Offered in 8 Lead SOIC Package

APPLICATIONS

- **Selected Military Applications**
- Selected Avionics Applications

DESCRIPTION

The DS92LV010AEP is one in a series of transceivers designed specifically for the high speed, low power proprietary bus backplane interfaces. The device operates from a single 3.3V or 5.0V power supply and includes one differential line driver and one receiver. To minimize bus loading the driver outputs and receiver inputs are internally connected. The logic interface provides maximum flexibility as 4 separate lines are provided (DIN, DE, RE, and ROUT). The device also features flow through which allows easy PCB routing for short stubs between the bus pins and the connector. The driver has 10 mA drive capability, allowing it to drive heavily loaded backplanes, with impedance as low as 27 Ohms.


The driver translates between TTL levels (singleended) to Low Voltage Differential Signaling levels. This allows for high speed operation, while consuming minimal power with reduced EMI. In addition the differential signaling provides common mode noise rejection of ±1V.

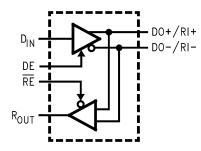
The receiver threshold is ±100mV over a ±1V common mode range and translates the low voltage differential levels to standard (CMOS/TTL) levels.

ENHANCED PLASTIC

- Extended Temperature Performance of -40°C to • +85°C
- Baseline Control Single Fab & Assembly Site ٠
- Process Change Notification (PCN) ٠
- **Qualification & Reliability Data**
- Solder (PbSn) Lead Finish is standard
- Enhanced Diminishing Manufacturing Sources (DMS) Support

Connection Diagram

See Package Number D


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

www.ti.com

SNLS183B - JANUARY 2005 - REVISED JUNE 2009

Block Diagram

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

SNLS183B-JANUARY 2005-REVISED JUNE 2009

www.ti.com

Absolute Maximum Ratings⁽¹⁾⁽²⁾⁽³⁾

J	
Supply Voltage (V _{CC})	6.0 V
Enable Input Voltage (DE, RE)	-0.3 to (V _{CC} + 0.3) V
Driver Input Voltage (DIN)	-0.3 to (V _{CC} + 0.3) V
Receiver Output Voltage (R _{OUT})	-0.3 to (V _{CC} + 0.3) V
Bus Pin Voltage (DO/RI±)	-0.3 to + 3.9 V
Driver Short Circuit Current	Continuous
ESD (HBM 1.5 kΩ, 100 pF)	>2.0 kV
Maximum Package Power Dissipation at 25°C SOIC	1025 mW
Derate SOIC Package	8.2 mW/°C
Storage Temperature Range	−65 to +150 °C
Lead Temperature (Soldering, 4 sec.)	260 °C

All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except (1) V_{OD} , V_{ID} , V_{TH} and V_{TL} unless otherwise specified. "Absolute Maximum Ratings" are these beyond which the safety of the device cannot be ensured. They are not meant to imply that the

(2)device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and (3) specifications.

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	3.0	3.6	V
Supply Voltage (V _{CC})	4.5	5.5	V
Receiver Input Voltage	0.0	2.9	V
Operating Free Air Temperature	-40	+85	°C

DC Electrical Characteristics⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+,	140	250	360	mV
ΔV_{OD}	V _{OD} Magnitude Change			DO-/RI-		3	30	mV
V _{OS}	Offset Voltage				1	1.25	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	$V_{O} = 0V, DE = V_{CC}$				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	I _{OH} = -400 μA	R _{OUT}	2.8	3		V
		Inputs Open			2.8	3		V
		Inputs Shorted			2.8	3		V
		Inputs Terminated, $R_L = 27\Omega$			2.8	3		V
V _{OL}	Voltage Output Low	I _{OL} = 2.0 mA, V _{ID} = −100 mV				0.1	0.4	V
I _{OS}	Output Short Circuit Current	$V_{OUT} = 0V, V_{ID} = +100 \text{ mV}$			-5	-35	-85	mA
V _{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low			DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, \text{ or } 0V$		1	-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V, \text{ or } 0V$		1	-20	±1	+20	μA

All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except (1) V_{OD} , V_{ID} , V_{TH} and V_{TL} unless otherwise specified.

"Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the (2)specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

All typicals are given for V_{CC} = +3.3V or 5.0 V and T_A = +25°C, unless otherwise stated. (3)

Copyright © 2005-2009, Texas Instruments Incorporated

EXAS NSTRUMENTS

SNLS183B-JANUARY 2005-REVISED JUNE 2009

www.ti.com

DC Electrical Characteristics⁽¹⁾⁽²⁾⁽³⁾ (continued)

 $T_A = -40^{\circ}C$ to +85°C unless otherwise noted, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
VIH	Minimum Input High Voltage		DIN,	2.0		V _{CC}	V
VIL	Maximum Input Low Voltage		DE,RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC} \text{ or } 2.4 V$			±1	±10	μA
IIL	Input Low Current	V _{IN} = GND or 0.4V			±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	$I_{CLAMP} = -18 \text{ mA}$		-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}$, $R_L = 27\Omega$	V _{cc}		13	20	mA
I _{CCR}		$DE = \overline{RE} = 0V$			5	8	mA
I _{CCZ}		$DE = 0V, \overline{RE} = V_{CC}$			3	7.5	mA
I _{CC}		$DE = V_{CC}, \overline{RE} = 0V, R_L = 27\Omega$			16	22	mA
C _{output}	Capacitance @ BUS Pins		DO+/RI+, DO-/RI-		5		pF

DC Electrical Characteristics⁽¹⁾⁽²⁾⁽³⁾

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
V _{OD}	Output Differential Voltage	$R_L = 27\Omega$, Figure 1		DO+/RI+,	145	270	390	mV
ΔV_{OD}	V _{OD} Magnitude Change			DO-/RI-		3	30	mV
V _{OS}	Offset Voltage				1	1.35	1.65	V
ΔV_{OS}	Offset Magnitude Change					5	50	mV
I _{OSD}	Output Short Circuit Current	$V_{O} = 0V, DE = V_{CC}$				-12	-20	mA
V _{OH}	Voltage Output High	V _{ID} = +100 mV	I _{OH} = −400 μA	R _{OUT}	4.3	5.0		V
		Inputs Open			4.3	5.0		V
		Inputs Shorted	_		4.3	5.0		V
		Inputs Terminated, $R_L = 27\Omega$			4.3	5.0		V
V _{OL}	Voltage Output Low	I _{OL} = 2.0 mA, V _{ID} = −100 mV				0.1	0.4	V
I _{OS}	Output Short Circuit Current	V _{OUT} = 0V, V _{ID} = +100 mV			-35	-90	-130	mA
V _{TH}	Input Threshold High	DE = 0V		DO+/RI+,			+100	mV
V _{TL}	Input Threshold Low			DO-/RI-	-100			mV
I _{IN}	Input Current	$DE = 0V, V_{IN} = +2.4V, \text{ or } 0V$			-20	±1	+20	μA
		$V_{CC} = 0V, V_{IN} = +2.4V, \text{ or } 0V$			-20	±1	+20	μA
VIH	Minimum Input High Voltage			DIN, DE,	2.0		V_{CC}	V
VIL	Maximum Input Low Voltage			RE	GND		0.8	V
I _{IH}	Input High Current	$V_{IN} = V_{CC} \text{ or } 2.4 V$				±1	±10	μA
IIL	Input Low Current	V _{IN} = GND or 0.4V				±1	±10	μA
V _{CL}	Input Diode Clamp Voltage	$I_{CLAMP} = -18 \text{ mA}$			-1.5	-0.8		V
I _{CCD}	Power Supply Current	$DE = \overline{RE} = V_{CC}, R_L = 27\Omega$		V _{CC}		17	25	mA
I _{CCR}		$DE = \overline{RE} = 0V$				6	10	mA
I _{CCZ}		$DE = 0V, \overline{RE} = V_{CC}$				3	8	mA
I _{CC}		$DE = V_{CC}, \overline{RE} = 0V, R_L = 27\Omega$				20	25	mA
C _{output}	Capacitance @ BUS Pins			DO+/RI+, DO-/RI-		5		pF

All typicals are given for V_{CC} = +3.3V or 5.0 V and T_A = +25°C, unless otherwise stated. (1)

(2) "Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground except (3) V_{OD} , V_{ID} , V_{TH} and V_{TL} unless otherwise specified.

SNLS183B-JANUARY 2005-REVISED JUNE 2009

www.ti.com

AC Electrical Characteristics⁽¹⁾⁽²⁾

0.01/.001/

1000 1- 10500 1/

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER TIMING REQUIREMENTS					
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figure 2, Figure 3	1.0	3.0	5.0	ns
t _{PLHD}	Differential Prop. Delay Low to High	$C_L = 10 \text{ pF}$	1.0	2.8	5.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD			0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figure 4, Figure 5	0.5	4.5	9.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	5.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.5	9.0	ns
DIFFEREN	TIAL RECEIVER TIMING REQUIREMEN	TS				
t _{PHLD}	Differential Prop. Delay High to Low	Figure 6, Figure 7	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High	$C_L = 10 \text{ pF}$	2.5	5.5	10.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD			0.5	2.0	ns
t _r	Rise Time			1.5	4.0	ns
t _f	Fall Time			1.5	4.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figure 8, Figure 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	$C_{L} = 10 \text{ pF}$ See ⁽³⁾	2.0	5.0	7.0	ns
t _{PZH}	Enable Time Z to High		2.0	7.0	13.0	ns
t _{PZL}	Enable Time Z to Low		2.0	6.0	10.0	ns

Generator waveforms for all tests unless otherwise specified: f = 1MHz, ZO = 50Ω, tr, tf ≤ 6.0ns (0%-100%) on control pins and ≤ 1.0ns for RI inputs.

(2) "Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

(3) For receiver TRI-STATE delays, the switch is set to V_{CC} for t_{PZL} , and t_{PLZ} and to GND for t_{PZH} , and t_{PHZ} .

AC Electrical Characteristics⁽¹⁾⁽²⁾

 $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 5.0V \pm 0.5V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER TIMING REQUIREMENTS					
t _{PHLD}	Differential Prop. Delay High to Low	$R_L = 27\Omega$, Figure 2, Figure 3	0.5	2.7	4.5	ns
t _{PLHD}	Differential Prop. Delay Low to High	C _L = 10 pF	0.5	2.5	4.5	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD			0.2	1.0	ns
t _{TLH}	Transition Time Low to High			0.3	2.0	ns
t _{THL}	Transition Time High to Low			0.3	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 27\Omega$, Figure 4, Figure 5	0.5	3.0	7.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF	0.5	5.0	10.0	ns
t _{PZH}	Enable Time Z to High		2.0	4.0	7.0	ns
t _{PZL}	Enable Time Z to Low		1.0	4.0	9.0	ns

(1) Generator waveforms for all tests unless otherwise specified: f = 1MHz, $ZO = 50\Omega$, tr, $tf \le 6.0$ ns (0%–100%) on control pins and ≤ 1.0 ns for RI inputs.

(2) "Testing and other quality control techniques are used to the extent deemed necessary to ensure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific PARAMETRIC testing, product performance is assured by characterization and/or design."

TEXAS INSTRUMENTS

SNLS183B-JANUARY 2005-REVISED JUNE 2009

www.ti.com

AC Electrical Characteristics⁽¹⁾⁽²⁾ (continued)

$T_{\Lambda} = -40^{\circ}C$ to	+85°C.	$V_{CC} = 5.0V \pm 0.5V$	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFEREN	TIAL RECEIVER TIMING REQUIREMEN	TS				
t _{PHLD}	Differential Prop. Delay High to Low	Figure 6, Figure 7	2.5	5.0	12.0	ns
t _{PLHD}	Differential Prop. Delay Low to High	C _L = 10 pF	2.5	4.6	10.0	ns
t _{SKD}	Differential SKEW t PHLD - tPLHD			0.4	2.0	ns
t _r	Rise Time			1.2	2.5	ns
t _f	Fall Time			1.2	2.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 500\Omega$, Figure 8, Figure 9	2.0	4.0	6.0	ns
t _{PLZ}	Disable Time Low to Z	C _L = 10 pF See ⁽³⁾	2.0	4.0	6.0	ns
t _{PZH}	Enable Time Z to High		2.0	5.0	9.0	ns
t _{PZL}	Enable Time Z to Low		2.0	5.0	7.0	ns

(3) For receiver TRI-STATE delays, the switch is set to V_{CC} for t_{PZL} , and t_{PLZ} and to GND for t_{PZH} , and t_{PHZ} .

Test Circuits and Timing Waveforms

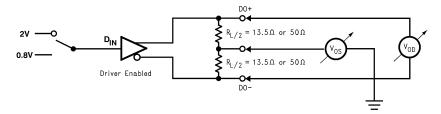


Figure 1. Differential Driver DC Test Circuit

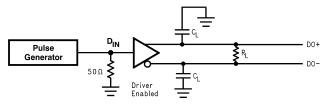


Figure 2. Differential Driver Propagation Delay and Transition Time Test Circuit

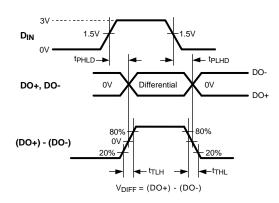


Figure 3. Differential Driver Propagation Delay and Transition Time Waveforms

6

www.ti.com

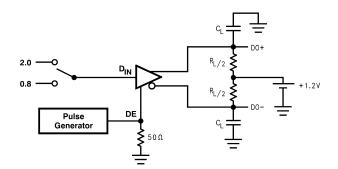


Figure 4. Driver TRI-STATE Delay Test Circuit

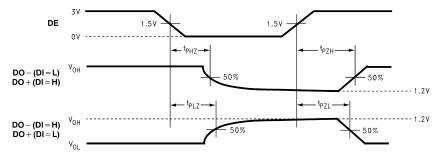


Figure 5. Driver TRI-STATE Delay Waveforms

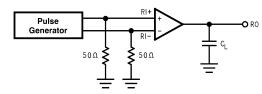


Figure 6. Receiver Propagation Delay and Transition Time Test Circuit

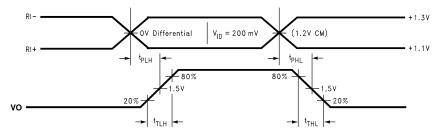
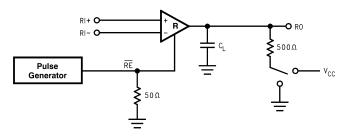



Figure 7. Receiver Propagation Delay and Transition Time Waveforms

www.ti.com

SNLS183B-JANUARY 2005-REVISED JUNE 2009

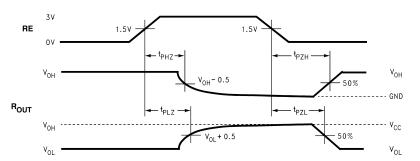


Figure 9. Receiver TRI-STATE Delay Waveforms TRI-STATE Delay Waveforms

TYPICAL BUS APPLICATION CONFIGURATIONS

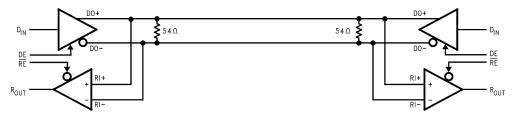


Figure 10. Bi-Directional Half-Duplex Point-to-Point Applications

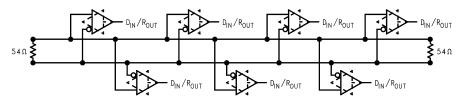


Figure 11. Multi-Point Bus Applications

www.ti.com

SNLS183B-JANUARY 2005-REVISED JUNE 2009

APPLICATION INFORMATION

There are a few common practices which should be implied when designing PCB for BLVDS signaling. Recommended practices are:

- Use at least 4 layer PCB board (BLVDS signals, ground, power and TTL signals).
- Keep drivers and receivers as close to the (BLVDS port side) connector as possible.
- Bypass each BLVDS device and also use distributed bulk capacitance. Surface mount capacitors placed close to power and ground pins work best. Two or three multi-layer ceramic (MLC) surface mount capacitors (0.1 μF, and 0.01 μF in parallel should be used between each V_{CC} and ground. The capacitors should be as close as possible to the V_{CC} pin.
- Use the termination resistor which best matches the differential impedance of your transmission line.
- Leave unused LVDS receiver inputs open (floating)

DE	RE					
Н	Н					
L	L					
L	Н					
Н	L					
	DE H L L H					

Table 1. Functional Table⁽¹⁾

(1) L = Low state, H = High state

	INPUTS	OUTI	PUTS
DE	DI	DO+	DO-
Н	L	L	Н
Н	Н	Н	L
Н	2 > & > 0.8	Х	Х
L	Х	Z	Z

 Table 2. Transmitter Mode⁽¹⁾

(1) X = High or Low logic state, Z = High impedance state L = Low state, H = High state

Table 3. Receiver Mode⁽¹⁾

	OUTPUT	
RE	(RI+)-(RI−)	
L	L (< -100 mV)	L
L	H (> +100 mV)	Н
L	100 mV > & > −100 mV	Х
Н	Х	Z

(1) X = High or Low logic state, Z = High impedance state L = Low state, H = High state

Table 4. DEVICE PIN DESCRIPTION

Pin Name	Pin #	Input/Output	Description	
DIN	2	I	TTL Driver Input	
DO±/RI±	6, 7	I/O	LVDS Driver Outputs/LVDS Receiver Inputs	
R _{OUT}	3	0	TTL Receiver Output	
RE	5	I	Receiver Enable TTL Input (Active Low)	
DE	1	I	Driver Enable TTL Input (Active High)	
GND	4	NA	Ground	
V _{CC}	8	NA	Power Supply	

Copyright © 2005–2009, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated