3.3V 8 MHz to 135 MHz Dual FPD-Link Receiver

Check for Samples: DS90C3202

FEATURES

- Up to 9.45 Gbit/s data throughput
- 8 MHz to 135 MHz input clock support
- Supports up to QXGA panel resolutions
- Supports HDTV panel resolutions and frame rates up to 1920 x 1080p
- LVDS 30-bit, 24-bit or 18-bit color data inputs
- Supports single pixel and dual pixel interfaces
- Supports spread spectrum clocking

- Two-wire serial communication interface
- Programmable clock edge and control strobe select
- · Power down mode
- +3.3V supply voltage
- 128-pin TQFP Package
- Compliant to TIA/EIA-644-A-2001 LVDS Standard

DESCRIPTION

The DS90C3202 is a 3.3V single/dual FPD-Link 10-bit color receiver is designed to be used in Liquid Crystal Display TVs, LCD Monitors, Digital TVs, and Plasma Display Panel TVs. The DS90C3202 is designed to interface between the digital video processor and the display device using the low-power, low-EMI LVDS (Low Voltage Differential Signaling) interface. The DS90C3202 converts up to ten LVDS data streams back into 70 bits of parallel LVCMOS/LVTTL data. The receiver can be programmed with rising edge or falling edge clock. Optional wo-wire serial programming allows fine tuning in development and production environments. With an input clock at 135 MHz, the maximum transmission rate of each LVDS line is 945 Mbps, for an aggregate throughput rate of 9.45 Gbps (945 Mbytes/s). This allows the dual 10-bit LVDS Receiver to support resolutions up to HDTV.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Block Diagram

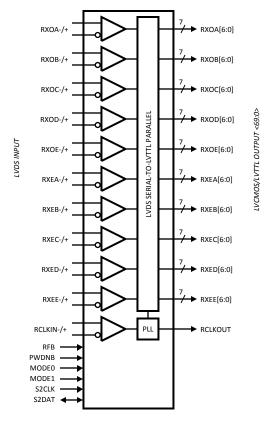


Figure 1. Receiver Block Diagram

Typical Application Diagram

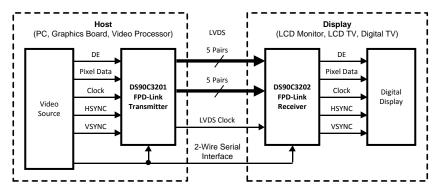


Figure 2. LCD Panel Application Diagram

Functional Description

The DS90C3201 and DS90C3202 are a dual 10-bit color Transmitter and Receiver FPD-Link chipset designed to transmit data at clocks speeds from 8 to 135 MHz. DS90C3201 and DS90C3202 are designed to interface between the digital video processor and the display using a LVDS interface. The DS90C3201 transmitter serializes 2 channels of video data (10-bit each for RGB for each channel, totaling 60 bits) and control signals (HSYNC, VSYNC, DE and two user-defined signals) along with clock signal to 10 channels of LVDS signals and transmits them. The DS90C3202 receiver converts 10 channels of LVDS signals into parallel signals and outputs

2 channels of video data (10-bit each for RGB for each channel, totaling 60 bits) and control signals (HSYNC, VSYNC, DE and two user-defined signals) along with clock signal. The dual high speed LVDS channels supports single pixel in-single pixel out and dual pixel in-dual pixel out transmission modes. The FPD-Link chipset is suitable for a variety of display applications including LCD Monitors, LCD TV, Digital TV, and DLP TV, and Plasma Display Panels.

Using a true 10-bit color depth system, the 30-bit RGB color produces over 1.07 billion colors to represent High Definition (HD) displays in their most natural color, surpassing the maximum 16.7 million colors achieved by 6/8-bit color conventionally used for large-scale LCD televisions and LCD monitors.

LVDS RECEIVER

The LVDS Receiver receives input RGB video data and control signal timing.

SELECTABLE OUTPUT DATA STROBE

The Receiver output data edge strobe can be latched on the rising or falling edges of clock signal. The dedicated RFB pin is used to program output strobe select on the rising edge of RCLK or the falling edge of RCLK.

2-WIRE SERIAL COMMUNICATION INTERFACE

Optional Two-Wire serial interface programming allows fine tuning in development and production environments. The Two-Wire serial interface provides several capabilities to reduce EMI and to customize output timing. These capabilities are selectable/programmable via Two-Wire serial interface: Programmable Skew Rates, Progress Turn On Function, Input/Output Channel Control.

PROGRAMMABLE SKEW RATES

Programmable edge rates allow the LVCMOS/LVTTL Data and Clock outputs to be adjusted for better impedance matching for noise and EMI reduction. The individual output drive control registers for Rx data out and Rx clock out are programmable via Two-Wire serial interface.

PROGRESS TURN ON FUNCTION

Progress Turn On (PTO) function aligns the two output channels of LVCMOS/LVTLL in either a non-skew data format (simultaneous switching) or a skewed data format (staggered). The skewed format delays the selected channel data and staggers the outputs. This reduces the number of outputs switching simultaneously, which lowers EMI radiation and minimizes ground bounce. Feature is controlled via Two-Wire serial interface.

INPUT/OUTPUT CHANNEL CONTROL

Full independent control for input/output channels can be disabled to minimize power supply line noise and overall power dissipation. Feature is configured via Two-Wire serial interface

Copyright © 2005–2006, Texas Instruments Incorporated

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Supply Voltage (V _{DD})		-0.3V to +4V
LVCMOS/LVTTL Input Voltage		-0.3V to (V _{DD} + 0.3V)
LVCMOS/LVTTL Output Voltage		-0.3V to (V _{DD} + 0.3V)
LVDS Receiver Input Voltage		-0.3V to (V _{DD} + 0.3V)
Junction Temperature	+150°C	
Storage Temperature	−65°C to +150°C	
Lead Temperature (Soldering, 10 seconds)		+260°C
Maximum Package Power Dissipation Capacity at 25°C	128 TQFP Package	1.4W
Package Derating		25.6mW/°C above +25°C
ESD Rating:	HBM, 1.5kΩ, 100pF	> 2 kV
	EIAJ, 0Ω, 200pF	> 200 V

^{(1) &}quot;Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Recommended Operating Conditions

	Min	Nom	Max	Unit
Supply Voltage (V _{DD})	3.15	3.3	3.6	V
Operating Free Air Temperature (T _A)	0	+25	+70	°C
Supply Noise Voltage (V _{P-P})			±100	mV _{p-p}
Receiver Input Range	0		V_{DD}	V
Input Clock Frequency (f)	8		135	MHz

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition	ns	Min	Тур	Max	Unit
CMOS/TTL	DC SPECIFICATIONS (Rx outputs	s, control inputs and outp	outs)				
V _{IH}	High Level Input Voltage			2.0		V_{DD}	V
V _{IL}	Low Level Input Voltage			0		0.8	V
V _{OH}	High Level Output Voltage	Rx clock out	$I_{OH} = -4 \text{ mA}$	2.4			V
		Rx data out	I _{OH} = −2 mA				
V_{OL}	Low Level Output Voltage	Rx clock out	$I_{OL} = +4 \text{ mA}$			0.4	V
		Rx data out	I_{OL} = +2 mA				
V_{CL}	Input Clamp Voltage	I _{CL} = −18 mA			-0.8	-1.5	V
I _{IN}	Input Current	$V_{IN} = V_{DD}$				+10	μΑ
		$V_{IN} = 0V$		-10			μΑ
I _{OS}	Output Short Circuit Current	V _{OUT} = 0V				-120	mA
LVDS RECE	EIVER DC SPECIFICATIONS			•		,	
V_{TH}	Differential Input High Threshold	$V_{CM} = +1.2V$				+100	mV
V_{TL}	Differential Input Low Threshold			-100			mV
V _{IN}	Input Voltage Range (Single-ended)			0		V_{DD}	V
V _{ID}	Differential Input Voltage			0.200		0.600	V
V_{CM}	Differential Common Mode Voltage			0.2	1.2	V _{DD} =0.1	V
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{DD} = 3.6V$				±10	μΑ
		$V_{IN} = 0V, V_{DD} = 3.6V$				±10	μΑ
RECEIVER	SUPPLY CURRENT						
ICCRW	Receiver Supply Current, Worst	C _L = 8 pF,	f = 8 MHz		65	130	mA
	Case (Figure 4, Figure 6)	Worst Case Pattern, Default Register Settings	f = 135 MHz		375	550	mA
ICCRG	Receiver Supply Current,	$C_L = 8 pF$,	f = 8 MHz		55	120	mA
	Incremental Test Pattern (Figure 5, Figure 6)	Worst Case Pattern, Default Register Settings f = 135 MHz			245	400	mA
ICCRZ	Receiver Supply Current, Power Down	PDWNB = Low, Receiver Outputs stay low during Powerdown mode, Default Register Settings				2	mA

Product Folder Links: DS90C3202

Receiver Switching Characteristics⁽¹⁾

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Condition or Reference	Min	Тур	Max	Unit
CLHT	LVCMOS/LVTTL Low-to-High Transition Time, C _L = 8pF, (Figure 7) (2) Register addr 28d/1ch, bit [2] (RCLK)=0b (Default), bit [1] (RXE) =0b (Default), bit [0] (RXO) =0b (Default)	Rx clock out Rx data out		1.45 2.40	2.10 3.50	ns ns
CHLT	LVCMOS/LVTTL High-to-Low Transition Time, C _L	Rx clock out		1.35	2.20	ns
	= 8pF, (Figure 7) (2) Register addr 28d/1ch, bit [2] (RCLK)=0b (Default), bit [1] (RXE) =0b (Default), bit [0] (RXO) =0b (Default)	Rx data out		2.40	3.60	ns
CLHT	LVCMOS/LVTTL Low-to-High Transition Time, C _L	Rx clock out		2.45		ns
Programmable adjustment	= 8pF, (Figure 7) (2) Register addr 28d/1ch, bit [2] (RCLK)=1b (Default), bit [1] (RXE) =1b (Default), bit [0] (RXO) =1b (Default)	Rx data out		3.40		ns
CHLT	LVCMOS/LVTTL High-to-Low Transition Time, CL	Rx clock out		2.35		ns
Programmable adjustment	= 8pF, (Figure 7) (2) Register addr 28d/1ch, bit [2] (RCLK)=0b (Default), bit [1] (RXE) =0b (Default), bit [0] (RXO) =0b (Default)	Rx data out		3.40		ns
RCOP	RCLK OUT Period (Figure 13, Figure 14) (2)	8–135 MHz	7.4	Т	125	ns
RCOH	RCLK OUT High Time (Figure 13 , Figure 14)	Rx clock out	0.4T	0.5T	0.6T	ns
RCOL	RCLK OUT Low Time (Figure 13, Figure 14)	Rx clock out	0.4T	0.5T	0.6T	ns
RSRC	RxOUT Setup to RCLK OUT (Figure 13, Figure 14) Register addr 29d/1dh [2:1]= 00b (Default)	(2) (3)	2.60	0.5T		ns
RHRC	RxOUT Hold to RCLK OUT (Figure 13 , Figure 14) Register addr 29d/1dh [2:1]= 00b (Default)	(2) (3)	3.60	0.5T		ns
RSRC/RHRC Programmable Adjustment	Register addr 29d/1dh [2:1] = 01b, (Figure 15, Figure 1	re 16) ⁽⁴⁾		+1UI / -1UI		ns
	Register addr 29d/1dh [2:1] = 10b, (Figure 15 Figure RSRC decreased from default by 1UI RHRC increased from default by 1UI	re 16) ⁽⁴⁾		-1UI / +1UI		ns
	Register addr 29d/1dh [2:1] = 11b, (Figure 15 Figure RSRC increased from default by 2UI RHRC decreased from default by 2UI	re 16) ⁽⁴⁾		+2UI / -2UI		ns
RPLLS	Receiver Phase Lock Loop Set (Figure 8)				10	ms
RPDD	Receiver Powerdown Delay (Figure 9)				100	ns
RPDL	Receiver Propagation Delay — Latency (Figure 10))			4*RCLK	ns
RITOL	Receiver Input Tolerance (Figure 12 Figure 18) (2) (4)	V _{CM} = 1.25V, V _{ID} = 350mV			0.25	UI

Typical values are given for V_{DD} = 3.3V and T $_{A}$ = +25°C. Specification is guaranteed by characterization.

A Clock Unit Symbol (T) is defined as 1/ (Line rate of RCLK). E.g. For Line rate of RCLK at 85MHz, 1 T = 11.76ns
A Unit Interval (UI) is defined as 1/7th of an ideal clock period (RCLK/7). E.g. For an 11.76ns clock period (85MHz), 1 UI = 1.68ns

Two-Wire Serial Communication Interface

Over recommended operating supply and temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SC}	S2CLK Clock Frequency				400	kHz
SC:LOW	Clock Low Period	$R_P = 4.7K\Omega$, $C_L = 50pF$	1.5			us
SC:HIGH	Clock High Period	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.6			us
SCD:TR	S2CLK and S2DAT Rise Time	$R_P = 4.7K\Omega$, $C_L = 50pF$			0.3	us
SCD:TF	S2CLK and S2DAT Fall Time	$R_P = 4.7K\Omega$, $C_L = 50pF$			0.3	us
SU:STA	Start Condition Setup Time	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.6			us
HD:STA	Start Condition Hold Time	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.6			us
HD:STO	Stop Condition Hold Time	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.6			us
SC:SD	Clock Falling Edge to Data	$R_P = 4.7K\Omega$, $C_L = 50pF$	0			us
SD:SC	Data to Clock Rising Edge	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.1			us
SCL:SD	S2CLK Low to S2DAT Data Valid	$R_P = 4.7K\Omega$, $C_L = 50pF$	0.1		0.9	us
BUF	Bus Free Time	$R_P = 4.7K\Omega$, $C_L = 50pF$	13			us

Product Folder Links: DS90C3202

AC Timing Diagrams



Figure 3. Two-Wire Serial Communication Interface Timing Diagram

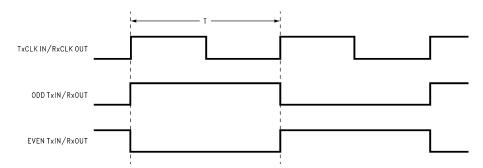


Figure 4. "Worst Case" Test Pattern

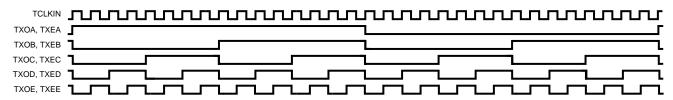


Figure 5. Incremental Test Pattern

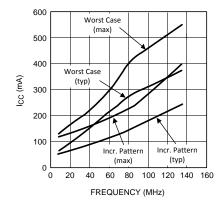


Figure 6. Typical and Max ICC with Worse Case and Incremental Pattern

Figure 7. LVCMOS/LVTTL Output Load and Transition Times

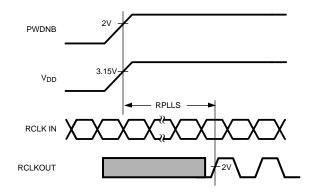


Figure 8. Receiver Phase Lock Loop Wake-up Time

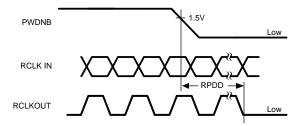


Figure 9. Powerdown Delay

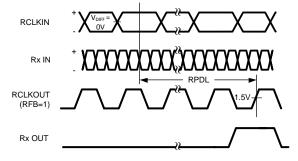


Figure 10. Receiver Propagation Delay

Copyright © 2005–2006, Texas Instruments Incorporated

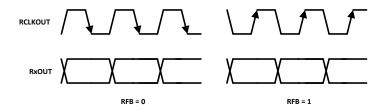
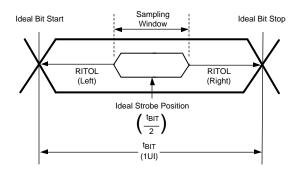
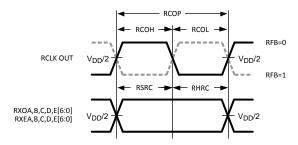



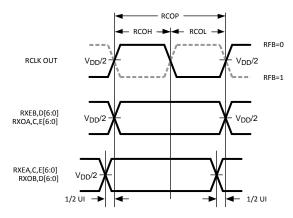
Figure 11. RFB: LVTTL Level Programmable Strobe Select



RITOL ≥ Cable Skew (type, length) + Source Clock Jitter (cycle to cycle) + ISI (Inter-symbol interference) Cable Skew—typically 10 ps–40 ps per foot, media dependent Please see National's AN-1217 for more details.

Cycle-to-cycle jitter is less than 100 ps (worse case estimate).

ISI is dependent on interconnect length; may be zero.


Figure 12. Receiver Input Tolerance and Sampling Window

Register address 29d/1dh bit [2:1] = 00b

Figure 13. Receiver RSRC and RHRC Output Setup/Hold Time — PTO Disabled

RegisterAddress 29d/1dh bit [2:1] = 00b

Figure 14. Receiver RSRC and RHRC Output Setup/Hold Time — PTO Enabled

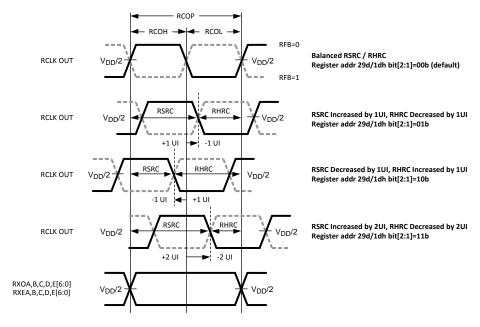


Figure 15. Receiver RSRC and RHRC Output Setup/Hold Time Adjustment — PTO Disabled

Copyright © 2005–2006, Texas Instruments Incorporated

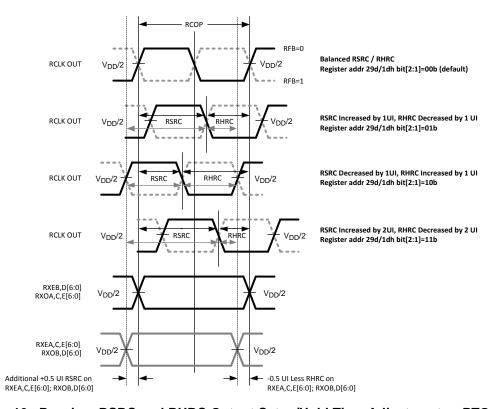


Figure 16. Receiver RSRC and RHRC Output Setup/Hold Time Adjustment — PTO Enabled

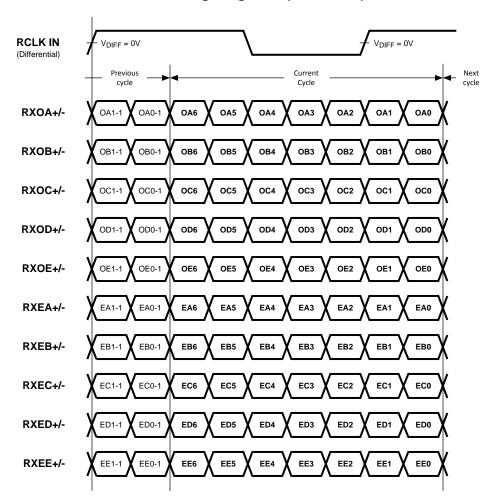


Figure 17. LVDS Input Mapping

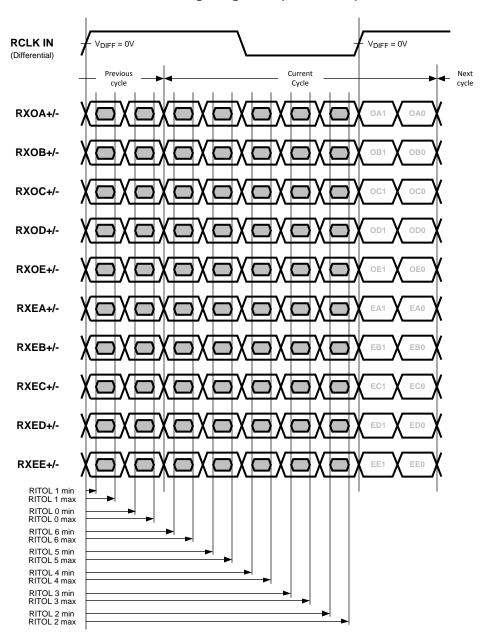


Figure 18. Receiver RITOL Min and Max

PIN ASSIGNMENTS

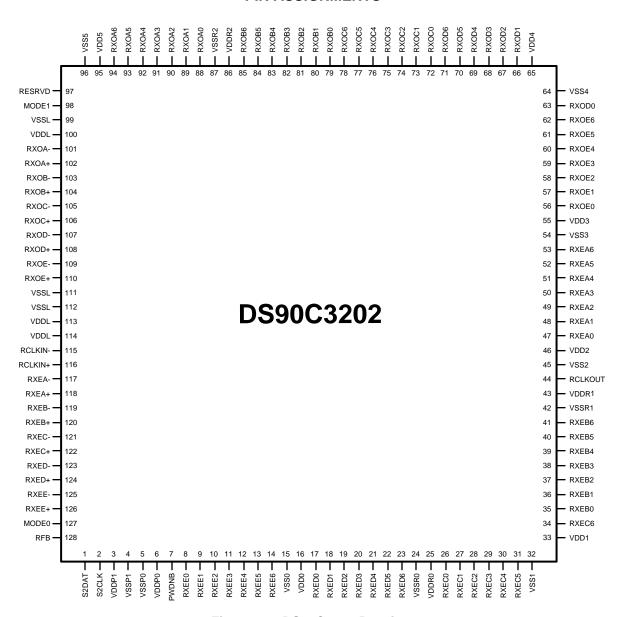


Figure 19. DS90C3202 Receiver

DS90C3202 PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Pin Type	Description
1	S2DAT	I/OP	Digital	Two-wire Serial Interface – Data
2	S2CLK	I/P	Digital	Two-wire Serial Interface – Clock
3	VDDP1	VDD	PLL	Power supply for PLL circuitry
4	VSSP1	GND	PLL	Ground pin for PLL circuitry
5	VSSP0	GND	PLL	Ground pin for PLL circuitry
6	VDDP0	VDD	PLL	Power supply for PLL circuitry
7	PWDNB	I/P	LVTTL I/P (pulldown)	Powerdown Bar (Active LOW) 0 = DEVICE DISABLED 1 = DEVICE ENABLED
8	RXEE0	O/P	LVTTL O/P	LVTTL level data output

Copyright © 2005–2006, Texas Instruments Incorporated

DS90C3202 PIN DESCRIPTIONS (continued)

	D390C3202 PIN DESCRIPTIONS (continued)							
Pin No.	Pin Name	1/0	Pin Type	Description				
9	RXEE1	O/P	LVTTL O/P	LVTTL level data output				
10	RXEE2	O/P	LVTTL O/P	LVTTL level data output				
11	RXEE3	O/P	LVTTL O/P	LVTTL level data output				
12	RXEE4	O/P	LVTTL O/P	LVTTL level data output				
13	RXEE5	O/P	LVTTL O/P	LVTTL level data output				
14	RXEE6	O/P	LVTTL O/P	LVTTL level data output				
15	VSS0	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry				
16	VDD0	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry				
17	RXED0	O/P	LVTTL O/P	LVTTL level data output				
18	RXED1	O/P	LVTTL O/P	LVTTL level data output				
19	RXED2	O/P	LVTTL O/P	LVTTL level data output				
20	RXED3	O/P	LVTTL O/P	LVTTL level data output				
21	RXED4	O/P	LVTTL O/P	LVTTL level data output				
22	RXED5	O/P	LVTTL O/P	LVTTL level data output				
23	RXED6	O/P	LVTTL O/P	LVTTL level data output				
24	VSSR0	GND	RX LOGIC	Ground pin for logic				
25	VDDR0	VDD	RX LOGIC	Power supply for logic				
26	RXEC0	O/P	LVTTL O/P	LVTTL level data output				
27	RXEC1	O/P	LVTTL O/P	LVTTL level data output				
28	RXEC2	O/P	LVTTL O/P	LVTTL level data output				
29	RXEC3	O/P	LVTTL O/P	LVTTL level data output				
30	RXEC4	O/P	LVTTL O/P	LVTTL level data output				
31	RXEC5	O/P	LVTTL O/P	LVTTL level data output				
32	VSS1	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry				
33	VDD1	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry				
34	RXEC6	O/P	LVTTL O/P	LVTTL level data output				
35	RXEB0	O/P	LVTTL O/P	LVTTL level data output				
36	RXEB1	O/P	LVTTL O/P	LVTTL level data output				
37	RXEB2	O/P	LVTTL O/P	LVTTL level data output				
38	RXEB3	O/P	LVTTL O/P	LVTTL level data output				
39	RXEB4	O/P	LVTTL O/P	LVTTL level data output				
40	RXEB5	O/P	LVTTL O/P	LVTTL level data output				
41	RXEB6	O/P	LVTTL O/P	LVTTL level data output				
42	VSSR1	GND	RX LOGIC	Ground pin for logic				
43	VDDR1	VDD	RX LOGIC	Power supply for logic				
44	RCLKOUT	O/P	LVTTL O/P	LVTTL level clock output				
45	VSS2	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry				
46	VDD2	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry				
47	RXEA0	O/P	LVTTL O/P	LVTTL level data output				
48	RXEA1	O/P	LVTTL O/P	LVTTL level data output				
49	RXEA2	O/P	LVTTL O/P	LVTTL level data output				
50	RXEA3	O/P	LVTTL O/P	LVTTL level data output				
51	RXEA4	O/P	LVTTL O/P	LVTTL level data output				
52	RXEA5	O/P	LVTTL O/P	LVTTL level data output				
53	RXEA6	O/P	LVTTL O/P	LVTTL level data output				
			= -					

DS90C3202 PIN DESCRIPTIONS (continued)

Pin No.	Pin Name	I/O	Pin Type	Description
54	VSS3	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry
55	VDD3	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry
56	RXOE0	O/P	LVTTL O/P	LVTTL level data output
57	RXOE1	O/P	LVTTL O/P	LVTTL level data output
58	RXOE2	O/P	LVTTL O/P	LVTTL level data output
59	RXOE3	O/P	LVTTL O/P	LVTTL level data output
60	RXOE4	O/P	LVTTL O/P	LVTTL level data output
61	RXOE5	O/P	LVTTL O/P	LVTTL level data output
62	RXOE6	O/P	LVTTL O/P	LVTTL level data output
63	RXOD0	O/P	LVTTL O/P	LVTTL level data output
64	VSS4	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry
65	VDD4	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry
66	RXOD1	O/P	LVTTL O/P	LVTTL level data output
67	RXOD2	O/P	LVTTL O/P	LVTTL level data output
68	RXOD3	O/P	LVTTL O/P	LVTTL level data output
69	RXOD4	O/P	LVTTL O/P	LVTTL level data output
70	RXOD5	O/P	LVTTL O/P	LVTTL level data output
71	RXOD6	O/P	LVTTL O/P	LVTTL level data output
72	RXOC0	O/P	LVTTL O/P	LVTTL level data output
73	RXOC1	O/P	LVTTL O/P	LVTTL level data output
74	RXOC2	O/P	LVTTL O/P	LVTTL level data output
75	RXOC3	O/P	LVTTL O/P	LVTTL level data output
76	RXOC4	O/P	LVTTL O/P	LVTTL level data output
77	RXOC5	O/P	LVTTL O/P	LVTTL level data output
78	RXOC6	O/P	LVTTL O/P	LVTTL level data output
79	RXOB0	O/P	LVTTL O/P	LVTTL level data output
80	RXOB1	O/P	LVTTL O/P	LVTTL level data output
81	RXOB2	O/P	LVTTL O/P	LVTTL level data output
82	RXOB3	O/P	LVTTL O/P	LVTTL level data output
83	RXOB4	O/P	LVTTL O/P	LVTTL level data output
84	RXOB5	O/P	LVTTL O/P	LVTTL level data output
85	RXOB6	O/P	LVTTL O/P	LVTTL level data output
86	VDDR2	VDD	RX LOGIC	Power supply for logic
87	VSSR2	GND	RX LOGIC	Ground pin for logic
88	RXOA0	O/P	LVTTL O/P	LVTTL level data output
89	RXOA1	O/P	LVTTL O/P	LVTTL level data output
90	RXOA2	O/P	LVTTL O/P	LVTTL level data output
91	RXOA3	O/P	LVTTL O/P	LVTTL level data output
92	RXOA4	O/P	LVTTL O/P	LVTTL level data output
93	RXOA5	O/P	LVTTL O/P	LVTTL level data output
94	RXOA6	O/P	LVTTL O/P	LVTTL level data output
95	VDD5	VDD	LVTTL O/P PWR	Power supply pin for LVTTL outputs and digital circuitry
96	VSS5	GND	LVTTL O/P PWR	Ground pin for LVTTL outputs and digital circuitry
97	RESRVD	I/P	LVTTL I/P (pulldown)	Tie to VSS for correct functionality

DS90C3202 PIN DESCRIPTIONS (continued)

	D590C3202 PIN DESCRIPTIONS (continued)								
Pin No.	Pin Name	1/0	Pin Type	Description					
98	MODE1	I/P	Digital (pulldown)	"ODD" Bank Enable 0 = LVTTL ODD OUTPUTS DISABLED (Data Output Low) 1 = LVTTL ODD OUTPUTS ENABLED					
99	VSSL	GND	LVDS PWR	Ground pin for LVDS					
100	VDDL	VDD	LVDS PWR	Power supply pin for LVDS					
101	RXOA-	I/P	LVDS I/P	Negative LVDS differential data input					
102	RXOA+	I/P	LVDS I/P	Positive LVDS differential data input					
103	RXOB-	I/P	LVDS I/P	Negative LVDS differential data input					
104	RXOB+	I/P	LVDS I/P	Positive LVDS differential data input					
105	RXOC-	I/P	LVDS I/P	Negative LVDS differential data input					
106	RXOC+	I/P	LVDS I/P	Positive LVDS differential data input					
107	RXOD-	I/P	LVDS I/P	Negative LVDS differential data input					
108	RXOD+	I/P	LVDS I/P	Positive LVDS differential data input					
109	RXOE-	I/P	LVDS I/P	Negative LVDS differential data input					
110	RXOE+	I/P	LVDS I/P	Positive LVDS differential data input					
111	VSSL	GND	LVDS PWR	Ground pin for LVDS					
112	VSSL	GND	LVDS PWR	Ground pin for LVDS					
113	VDDL	VDD	LVDS PWR	Power supply pin for LVDS					
114	VDDL	VDD	LVDS PWR	Power supply pin for LVDS					
115	RCLKIN-	I/P	LVDS I/P	Negative LVDS differential clock input					
116	RCLKIN+	I/P	LVDS I/P	Positive LVDS differential clock input					
117	RXEA-	I/P	LVDS I/P	Negative LVDS differential data input					
118	RXEA+	I/P	LVDS I/P	Positive LVDS differential data input					
119	RXEB-	I/P	LVDS I/P	Negative LVDS differential data input					
120	RXEB+	I/P	LVDS I/P	Positive LVDS differential data input					
121	RXEC-	I/P	LVDS I/P	Negative LVDS differential data input					
122	RXEC+	I/P	LVDS I/P	Positive LVDS differential data input					
123	RXED-	I/P	LVDS I/P	Negative LVDS differential data input					
124	RXED+	I/P	LVDS I/P	Positive LVDS differential data input					
125	RXEE-	I/P	LVDS I/P	Negative LVDS differential data input					
126	RXEE+	I/P	LVDS I/P	Positive LVDS differential data input					
127	MODE0	I/P	Digital (pulldown)	"EVEN" Bank Enable 0 = LVTTL EVEN OUTPUTS DISABLED (Data Output Low) 1 = LVTTL EVEN OUTPUTS ENABLED					
128	RFB	I/P	Digital (pulldown)	Rising Falling Bar (Figure 11) 0 = FALLING EDGE DATA STROBE 1 = RISING EDGE DATA STROBE					

APPLICATION INFORMATION

Two-Wire Serial Communication Interface Description

The DS90C3202 operates as a slave on the Serial Bus, so the S2CLK line is an input (no clock is generated by the DS90C3202) and the S2DAT line is bi-directional. DS90C3202 has a fixed 7bit slave address. The address is not user configurable in anyway.

A zero in front of the register address is required. For example, to access register 0x0Fh, "0F" is the correct way of accessing the register.

COMMUNICATING WITH THE DS90C3202 CONTROL REGISTERS

There are 32 data registers (one byte each) in the DS90C3202, and can be accessed through 32 addresses. All registers are predefined as read only or read and write. The DS90C3202 slave state machine does not require an internal clock and it supports only byte read and write. Page mode is not supported. The 7bit binary address is 0111110 All seven bits are hardwired internally.

Reading the DS90C3202 can take place either of three ways:

- 1. If the location latched in the data register addresses is correct, then the read can simply consist of a slave address byte, followed by retrieving the data byte.
- 2. If the data register address needs to be set, then a slave address byte, data register address will be sent first, then the master will repeat start, send the slave address byte and data byte to accomplish a read.
- 3. When performing continuous read operations, another write (or read) instruction in between reads needs to be completed in order for the two-wire serial interface module to read repeatedly.

The data byte has the most significant bit first. At the end of a read, the DS90C3202 can accept either Acknowledge or No Acknowledge from the Master (No Acknowledge is typically used as a signal for the slave that the Master has read its last byte).

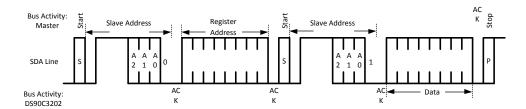


Figure 20. Byte Read

The master must generate a Start by sending the 7-bit slave address plus a 0 first, and wait for acknowledge from DS90C3202. When DS90C3202 acknowledges (the 1st ACK) that the master is calling, the master then sends the data register address byte and waits for acknowledge from the slave. When the slave acknowledges (the 2nd ACK), the master repeats the "Start" by sending the 7-bit slave address plus a 1 (indicating that READ operation is in progress) and waits for acknowledge from DS90C3202. After the slave responds (the 3rd ACK), the slave sends the data to the bus and waits for acknowledge from the master. When the master acknowledges (the 4th ACK), it generates a "Stop". This completes the "READ".

A Write to the DS90C3202 will always include the slave address, data register address byte, and a data byte.

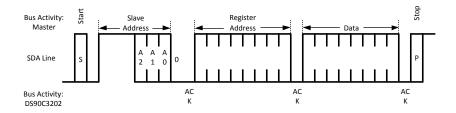


Figure 21. Byte Write

The master must generate a "Start" by sending the 7-bit slave address plus a 0 and wait for acknowledge from DS90C3202. When DS90C3202 acknowledges (the 1st ACK) that the master is calling, the master then sends the data register address byte and waits for acknowledge from the slave. When the slave acknowledges (the 2nd ACK), the master sends the data byte and wait for acknowledge from the slave. When the slave acknowledges (the 3rd ACK), the master generates a "Stop". This completes the "WRITE".

DS90C3202 Two-Wire Serial Interface Register Table

Address	R/W	RESET	Bit #	Description	Default Value
0d/0h	R	PWDN	[7:0]	Vender ID low byte[7:0] = 05h	0000_0101
1d/1h	R	PWDN	[7:0]	Vender ID high byte[15:8] =13h	0001_0011
2d/2h	R	PWDN	[7:0]	Device ID low byte[7:0] = 28h	0010_1000
3d/3h	R	PWDN	[7:0]	Device ID high byte 15:8] = 67h	0110_0111
4d/4h	R	PWDN	[7:0]	Device revision [7:0] = 00h to begin with	0000_0000
5d/5h	R	PWDN	[7:0]	Low frequency limit, 8Mhz = 8h	0000_1000
6d/6h	R	PWDN	[7:0]	High frequency limit 135Mhz = 87h = 0000_0000_1000_0111	1000_0111
7d/7h	R	PWDN	[7:0]	Reserved	0000_0000
8d/8h	R	PWDN	[7:0]	Reserved	0000_0000
9d/9h	R	PWDN	[7:0]	Reserved	0000_0000
10d/ah	R	PWDN	[7:0]	Reserved	0000_0000
11d/bh	R	PWDN	[7:0]	Reserved	0000_0000
20d/14h	R/W	None	[7:0]	Reserved	0000_0000
21d/15h	R/W	None	[7:0]	Reserved	0000_0000
22d/16h	R/W	None	[7:3]	Reserved	0000_0000
			[2:0]	LVDS input skew control for CLK channel, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Tsetup improvement	
23d/17h	R/W	None	[7]	Reserved	0000_0000
			[6:4]	LVDS input skew control for RXO channel B, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
			[3]	Reserved	
			[2:0]	LVDS input skew control for RXO channel C, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
24d/18h	R/W	None	[7]	Reserved	0000_0000
			[6:4]	LVDS input skew control for RXO channel D, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
			[3]	Reserved	
			[2:0]	LVDS input skew control for RXO channel E, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
25d/19h	R/W	None	[7]	Reserved	0000_0000
			[6:4]	LVDS input skew control for RXO channel A, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
			[3]	Reserved	
			[2:0]	LVDS input skew control for RXE channel A, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	

Address	R/W	RESET	Bit #	Description	Default Value
26d/1ah	R/W	None	[7]	Reserved	0000_0000
			[6:4]	LVDS input skew control for RXE channel B, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
			[3]	Reserved	
			[2:0]	LVDS input skew control for RXE channel C, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
27d/1bh	R/W	None	[7]	Reserved	0000_0000
			[6:4]	LVDS input skew control for RXE channel D, 000 (default) applies to no delay added, ONE buffer delay per step adjustment	
			[3]	Reserved	
			[2:0]	LVDS input skew control for RXE channel E, 000 (default) applies to no delay added, ONE buffer delay per step adjustment towards Thold improvements	
28d/1ch	R/W	None	[7:3]	Reserved	0000_0000
			[2]	LVTTL output transition time control for CLK 0: Tr/Tf = 1.0ns (default) 1: Tr/Tf = 1.5ns	
			[1]	LVTTL output transition time control for RXE 0: Tr/Tf = 1.5ns (default) 1: Tr/Tf = 2.5ns	
			[0]	LVTTL output transition time control for RXO 0: Tr/Tf = 1.5ns (default) 1: Tr/Tf = 2.5ns	
29d/1dh	R/W	None	[7:3]	Reserved	0000_0000
	JATOH INV		[2:1]	LVTTL output setup and hold time control 00: balanced setup and hold time (default) 01: setup time is increased from default position by 1UI & hold time is reduced from default position by 1UI 10: setup time is decreased from default position by 1UI & hold time is reduced from default position by 1UI 11: setup time is increased from default position by 2UI & hold time is increased from default position by 2UI	
			[0]	LVTTL output PTO control 1: PTO disabled, all outputs setup time are only controlled by contents of [2:1] 0: PTO enabled (default) Group1: CLK to latch Data is re-assigned earlier by 0.5UI respect to the normal centered position if only PTO option enabled; but PTO option and (Tsetup or Thold) adjustment can co-exist Group2: CLK to latch Data stays as the normal centered position if only PTO option enabled; but PTO option and (Tsetup or Thold) adjustment can co-exist	
30d/1eh	R/W	None	[7:5]	Reserved	0000_0000
			[4]	I/O disable control for RXE channel A, 1: disable, 0: enable (default)	
			[3]	I/O disable control for RXE channel B, 1: disable, 0: enable (default)	
			[2]	I/O disable control for RXE channel C, 1: disable, 0: enable (default)	
			[1]	I/O disable control for RXE channel D, 1: disable, 0: enable (default)	
			[0]	I/O disable control for RXE channel E, 1: disable, 0: enable (default)	

Address	R/W	RESET	Bit #	Description	Default Value
31d/1fh	R/W	None	[7:6]	11; LVTTL Outputs available as long as "NO CLK" is at HIGH regardless PLL lock or not 10; LVTTL Outputs available after 1K of CLK cycles detected & PLL generated strobes are within 0.5UI respect to REFCLK 01; LVTLL Outputs available after 2K of CLK cycles detected 00: default; LVTTL Outputs available after 1K of CLK cycles detected	0000_0000
			[5]	0: default; to select the size of wait counter between 1K or 2K, default is 1K	
			[4]	I/O disable control for RXO channel A, 1: disable, 0: enable (default)	
			[3]	I/O disable control for RXO channel B, 1 disable, 0: enable (default)	
			[2]	I/O disable control for RXO channel C, 1: disable, 0: enable (default)	
			[1]	I/O disable control for RXO channel D, 1: disable, 0: enable (default)	
			[0]	I/O disable control for RXO channel E, 1: disable, 0: enable (default)	

PACKAGE OPTION ADDENDUM

24-.lan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing			(2)		(3)		(4)	
DS90C3202VS/NOPB	ACTIVE	TQFP	PDT	128	90	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	0 to 70	DS90C3202VS	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

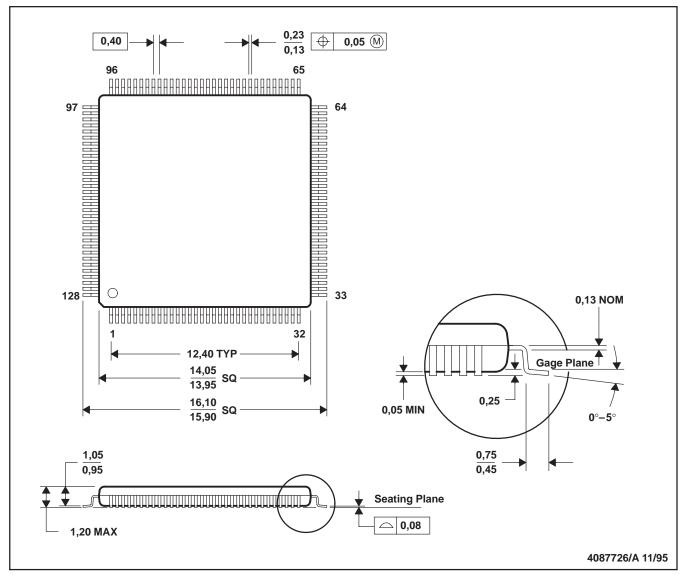
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PDT (S-PQFP-G128)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>