DS90C031 LVDS Quad CMOS Differential Line Driver

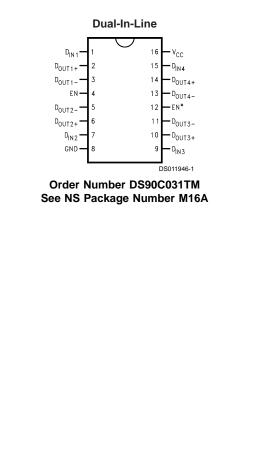
Literature Number: SNLS095A

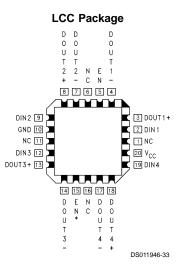
June 1998

DS90C031 LVDS Quad CMOS Differential Line Driver

General Description

The DS90C031 is a quad CMOS differential line driver designed for applications requiring ultra low power dissipation and high data rates. The device is designed to support data rates in excess of 155.5 Mbps (77.7 MHz) utilizing Low Voltage Differential Signaling (LVDS) technology.

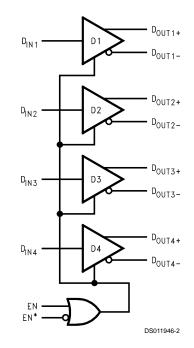

The DS90C031 accepts TTL/CMOS input levels and translates them to low voltage (350 mV) differential output signals. In addition the driver supports a TRI-STATE[®] function that may be used to disable the output stage, disabling the load current, and thus dropping the device to an ultra low idle power state of 11 mW typical.


The DS90C031 and companion line receiver (DS90C032) provide a new alternative to high power psuedo-ECL devices for high speed point-to-point interface applications.

Features

- >155.5 Mbps (77.7 MHz) switching rates
- ±350 mV differential signaling
- Ultra low power dissipation
- 400 ps maximum differential skew (5V, 25°C)
- 3.5 ns maximum propagation delay
- Industrial operating temperature range
- Military operating temperature range option
- Available in surface mount packaging (SOIC) and (LCC)
- Pin compatible with DS26C31, MB571 (PECL) and 41LG (PECL)
- Compatible with IEEE 1596.3 SCI LVDS standard
- Conforms to ANSI/TIA/EIA-644 LVDS standard
- Available to Standard Microcircuit Drawing (SMD) 5962-95833

Connection Diagrams



Order Number DS90C031E-QML See NS Package Number E20A For Complete Military Specifications, refer to appropriate SMD or MDS.

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Functional Diagram

DRIVER

Enables		Input	Out	puts
EN	EN*	D _{IN}	D _{OUT+}	D _{OUT-}
L	Н	Х	Z	Z
All other combinations		L	L	Н
of ENABLE inputs	Н	Н	L	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
Input Voltage (D _{IN})	-0.3V to (V _{CC} + 0.3V)
Enable Input Voltage (EN, EN*)	-0.3V to (V _{CC} + 0.3V)
Output Voltage (D _{OUT+} , D _{OUT-})	-0.3V to (V _{CC} + 0.3V)
Short Circuit Duration (D _{OUT+} , D _{OUT-})	Continuous
Maximum Package Power Dissip	ation @ +25°C
M Package	1068 mW
E Package	1900 mW
Derate M Package	8.5 mW/°C above +25°C
Derate E Package	12.8 mW/°C above +25°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature Range Soldering (4 sec.)	+260°C

Maximum Junction Temperature (DS90C031T)	+150°C
Maximum Junction Temperature (DS90C031E)	+175°C
ESD Rating (Note 7)	
(HBM, 1.5 kΩ, 100 pF)	≥ 3,500V
(EIAJ, 0 Ω, 200 pF)	≥ 250V

Recommended Operating Conditions

its
/
С
С
\ \

Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (Notes 2, 3)

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
V _{OD1}	Differential Output Voltage	$R_L = 100\Omega \ (Figure \ 1)$		D _{OUT-} ,	250	345	450	mV
ΔV_{OD1}	Change in Magnitude of V _{OD1} for Complementary Output States			D _{OUT+}		4	35	mV
Vos	Offset Voltage				1.125	1.25	1.375	V
ΔV_{OS}	Change in Magnitude of V _{OS} for Complementary Output States					5	25	mV
V _{OH}	Output Voltage High	$R_L = 100\Omega$]		1.41	1.60	V
V _{OL}	Output Voltage Low				0.90	1.07		V
V _{IH}	Input Voltage High			D _{IN} ,	2.0		V _{CC}	V
V _{IL}	Input Voltage Low		EN,	GND		0.8	V	
I _I	Input Current	$V_{IN} = V_{CC}$, GND, 2.5V or 0.	EN*	-10	±1	+10	μA	
V _{CL}	Input Clamp Voltage	I _{CL} = -18 mA		1	-1.5	-0.8		V
I _{os}	Output Short Circuit Current	V _{OUT} = 0V (Note 8)		D _{OUT-} ,		-3.5	-5.0	mA
I _{oz}	Output TRI-STATE Current	EN = 0.8V and EN [*] = 2.0V, V_{OUT} = 0V or V_{CC}		D _{OUT+}	-10	±1	+10	μA
I _{cc}	No Load Supply Current	D _{IN} = V _{CC} or GND	DS90C031T	V _{cc}		1.7	3.0	mA
	Drivers Enabled	D _{IN} = 2.5V or 0.4V	1			4.0	6.5	mA
I _{CCL}	Loaded Supply Current Drivers Enabled	$R_L = 100\Omega$ All Channels $V_{IN} = V_{CC}$ or GND	DS90C031T			15.4	21.0	mA
		$v_{IN} = v_{CC}$ of GND (all inputs)	DS90C031E			15.4	25.0	mA
I _{ccz}	No Load Supply Current	$D_{IN} = V_{CC}$ or GND	DS90C031T			2.2	4.0	mA
	Drivers Disabled	$EN = GND, EN^* = V_{CC}$	DS90C031E]		2.2	10.0	mA

Switching Characteristics V_{CC} = +5.0V, T_A = +25°C DS90C031T. (Notes 3, 4, 6, 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Propagation Delay High to Low	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF}$	1.0	2.0	3.0	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 2 and Figure 3)	1.0	2.1	3.0	ns
t _{SKD}	Differential Skew t _{PHLD} - t _{PLHD}		0	80	400	ps
t _{SK1}	Channel-to-Channel Skew (Note 4)		0	300	600	ps

Switching Characteristics (Continued)

 V_{CC} = +5.0V, T_A = +25°C DS90C031T. (Notes 3, 4, 6, 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{TLH}	Rise Time			0.35	1.5	ns
t _{THL}	Fall Time			0.35	1.5	ns
t _{PHZ}	Disable Time High to Z	R _L = 100Ω,		2.5	10	ns
t _{PLZ}	Disable Time Low to Z	C _L = 5 pF		2.5	10	ns
t _{PZH}	Enable Time Z to High	(Figure 4 and Figure 5)		2.5	10	ns
t _{PZL}	Enable Time Z to Low			2.5	10	ns

Switching Characteristics V_{CC} = +5.0V ± 10%, T_A = -40°C to +85°C DS90C031T. (Notes 3, 4, 5, 6, 9)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Propagation Delay High to Low	$R_{L} = 100\Omega, C_{L} = 5 \text{ pF}$	0.5	2.0	3.5	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 2 and Figure 3)	0.5	2.1	3.5	ns
t _{SKD}	Differential Skew t _{PHLD} - t _{PLHD}		0	80	900	ps
t _{SK1}	Channel-to-Channel Skew (Note 4)		0	0.3	1.0	ns
t _{SK2}	Chip to Chip Skew (Note 5)				3.0	ns
t _{TLH}	Rise Time			0.35	2.0	ns
t _{THL}	Fall Time			0.35	2.0	ns
t _{PHZ}	Disable Time High to Z	$R_L = 100\Omega$,		2.5	15	ns
t _{PLZ}	Disable Time Low to Z	C _L = 5 pF		2.5	15	ns
t _{PZH}	Enable Time Z to High	(<i>Figure 4</i> and <i>Figure 5</i>)		2.5	15	ns
t _{PZL}	Enable Time Z to Low			2.5	15	ns

Switching Characteristics $V_{CC} = +5.0V \pm 10\%$, $T_A = -55$ °C to +125°C DS90C031E. (Notes 3, 4, 5, 6, 9, 10)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHLD}	Differential Propagation Delay High to Low	$R_{L} = 100\Omega, C_{L} = 20 \text{ pF}$	0.5	2.0	5.0	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 3)	0.5	2.1	5.0	ns
t _{skD}	Differential Skew t _{PHLD} - t _{PLHD}	C _L Connected between		0.08	3.0	ns
t _{SK1}	Channel-to-Channel Skew (Note 4)	each Output and GND	0	0.3	3.0	ns
t _{SK2}	Chip to Chip Skew (Note 5)				4.5	ns
t _{PHZ}	Disable Time High to Z	$R_{L} = 100\Omega,$		2.5	20	ns
t _{PLZ}	Disable Time Low to Z	$C_L = 5 \text{ pF}$		2.5	20	ns
t _{PZH}	Enable Time Z to High	(<i>Figure 4</i> and <i>Figure 5</i>)		2.5	20	ns
t _{PZL}	Enable Time Z to Low			2.5	20	ns

Parameter Measurement Information

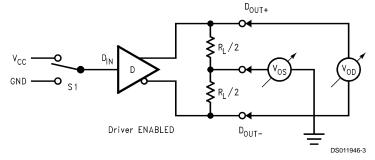


FIGURE 1. Driver V_{OD} and V_{OS} Test Circuit

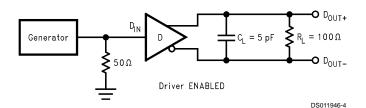


FIGURE 2. Driver Propagation Delay and Transition Time Test Circuit

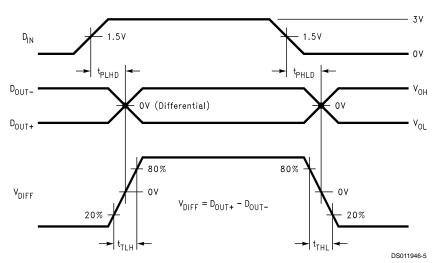


FIGURE 3. Driver Propagation Delay and Transition Time Waveforms

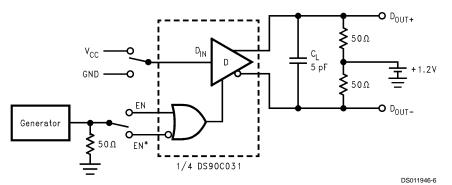
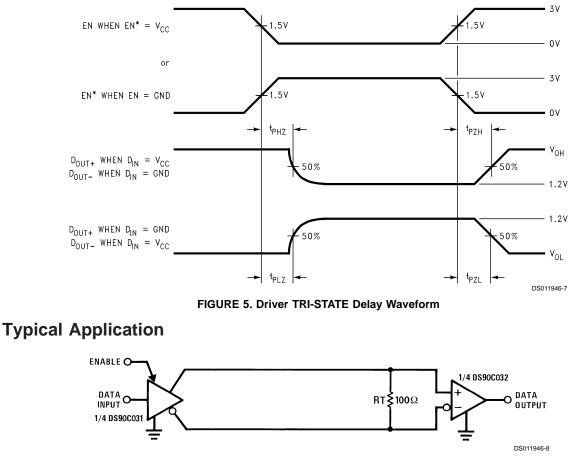



FIGURE 4. Driver TRI-STATE Delay Test Circuit

Parameter Measurement Information (Continued)

Applications Information

LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 6. This configuration provides a clean signaling environment for the quick edge rates of the drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic impedance of the media is in the range of 100Ω . A termination resistor of 100Ω should be selected to match the media, and is located as close to the receiver input pins as possible. The termination resistor converts the current sourced by the driver into a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration, but the effects of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account.

The DS90C031 differential line driver is a balanced current source design. A current mode driver, generally speaking has a high output impedance and supplies a constant current for a range of loads (a voltage mode driver on the other hand supplies a constant voltage for a range of loads). Current is switched through the load in one direction to produce a logic state and in the other direction to produce the other logic state. The typical output current is mere 3.4 mA, a minimum of 2.5 mA, and a maximum of 4.5 mA. The current mode **requires** (as discussed above) that a resistive termi-

nation be employed to terminate the signal and to complete the loop as shown in Figure 6. AC or unterminated configurations are not allowed. The 3.4 mA loop current will develop a differential voltage of 340 mV across the 100Ω termination resistor which the receiver detects with a 240 mV minimum differential noise margin neglecting resistive line losses (driven signal minus receiver threshold (340 mV - 100 mV = 240 mV)). The signal is centered around +1.2V (Driver Offset, V_{OS}) with respect to ground as shown in Figure 7. Note that the steady-state voltage (V_{SS}) peak-to-peak swing is twice the differential voltage (V_{OD}) and is typically 680 mV. The current mode driver provides substantial benefits over voltage mode drivers, such as an RS-422 driver. Its quiescent current remains relatively flat versus switching frequency. Whereas the RS-422 voltage mode driver increases exponentially in most case between 20 MHz-50 MHz. This is due to the overlap current that flows between the rails of the device when the internal gates switch. Whereas the current mode driver switches a fixed current between its output without any substantial overlap current. This is similar to some ECL and PECL devices, but without the heavy static I_{CC} requirements of the ECL/PECL designs. LVDS requires 80% less current than similar PECL devices. AC specifications for the driver are a tenfold improvement over other existing RS-422 drivers.

The TRI-STATE function allows the driver outputs to be disabled, thus obtaining an even lower power state when the transmission of data is not required.

Applications Information (Continued)

The footprint of the DS90C031 is the same as the industry standard 26LS31 Quad Differential (RS-422) Driver.

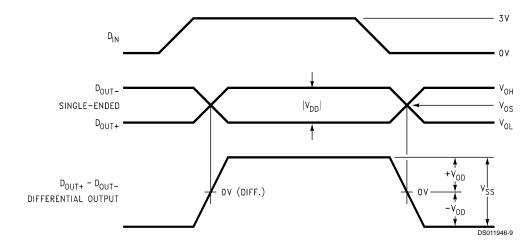


FIGURE 7. Driver Output Levels

Pin Descriptions

Pin No. (SOIC)	Name	Description
1, 7, 9, 15	D _{IN}	Driver input pin, TTL/CMOS compatible
2, 6, 10, 14	D _{OUT+}	Non-inverting driver output pin, LVDS levels
3, 5, 11, 13	D _{OUT-}	Inverting driver output pin, LVDS levels
4	EN	Active high enable pin, OR-ed with EN*
12	EN*	Active low enable pin, OR-ed with EN

Pin No. (SOIC)	Name	Description	
16	V _{cc}	Power supply pin, $+5V \pm 10\%$	
8	GND	Ground pin	

Ordering Information

Operating	Package Type/	Order Number
Temperature	Number	
-40°C to +85°C	SOP/M16A	DS90C031TM
–55°C to +125°C	LCC/E20A	DS90C031E-QML
DS90C031E-QML	(NSID)	
5962-95833	(SMD)	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except: V_{OD1} and ΔV_{OD1} .

Note 3: All typicals are given for: V_{CC} = +5.0V, T_A = +25 $^\circ\text{C}.$

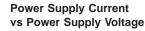
Note 4: Channel-to-Channel Skew is defined as the difference between the propagation delay of the channel and the other channels in the same chip with an event on the inputs.

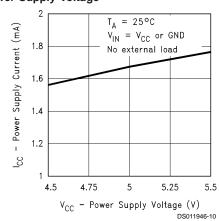
Note 5: Chip to Chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays.

Note 6: Generator waveform for all tests unless otherwise specified: f = 1 MHz, $Z_O = 50\Omega$, $t_r \le 6$ ns, and $t_f \le 6$ ns.

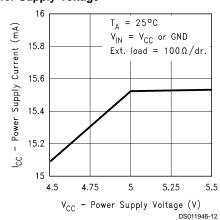
Note 7: ESD Ratings:

HBM (1.5 kΩ, 100 pF) \geq 3,500V

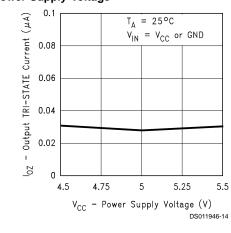

EIAJ (0 Ω , 200 pF) \ge 250V

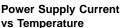

Note 8: Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

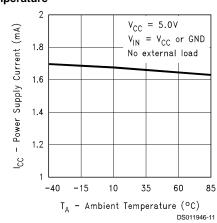
Note 9: C_L includes probe and jig capacitance.

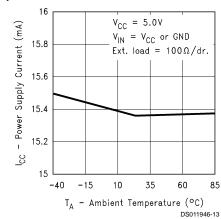

Note 10: Guaranteed by characterization data (DS90C031E).

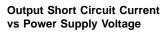
Typical Performance Characteristics

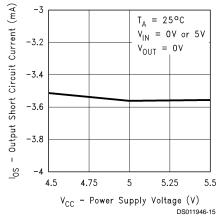


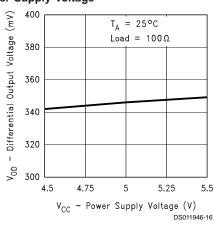


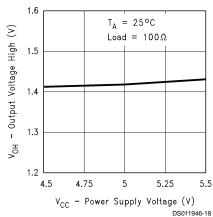

Power Supply Current vs Power Supply Voltage


Output TRI-STATE Current vs Power Supply Voltage

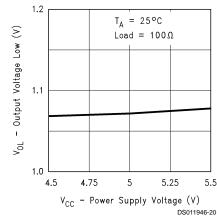


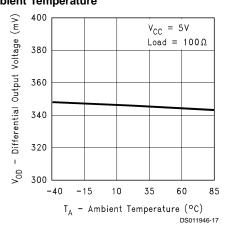


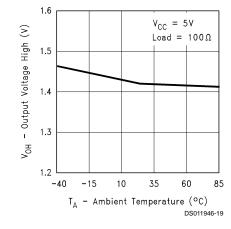


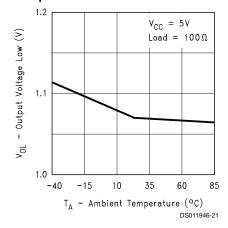


Typical Performance Characteristics (Continued)


Differential Output Voltage vs Power Supply Voltage


Output Voltage High vs Power Supply Voltage


Output Voltage Low vs Power Supply Voltage


Differential Output Voltage vs Ambient Temperature

Output Voltage High vs Ambient Temperature

Output Voltage Low vs Ambient Temperature

Typical Performance Characteristics (Continued) Offset Voltage vs Offset Voltage vs **Power Supply Voltage Ambient Temperature** 1.4 1.4 $T_A = 25°C$ $V_{CC} = 5V$ Load = 100Ω Load = 100Ω V_{OS} - Offset Voltage (V) V_{OS} - Offset Voltage (V) 1.3 1.3 1.2 1.2 1.1 1.1 4.5 4.75 5 5.25 5.5 -40 -15 10 35 V_{CC} - Power Supply Voltage (V) T_A - Ambient Temperature (°C) DS011946-22 **Power Supply Current Power Supply Current** vs Frequency vs Frequency 10 21 $T_A = 25°C$ $T_A = 25°C$ - Power Supply Current (mA) - Power Supply Current (mA) 9 $V_{CC} = 5V$ 20 $V_{CC} = 5V$ 8 All Drivers Switching $Load = 100 \Omega/dr$ 7 Load = 100Ω 19 6 5 18 1 dr load 4 17 3 No loads 2 16 4 drivers 1 0 15 10 0.01 0.1 10 100 1000 0.1 1 1 0.01 F₀ - Frequency (MHz) F_0 - Frequency (MHz) DS011946-24 **Differential Output Voltage Differential Propagation Delay** vs Load Resistor vs Power Supply Voltage 550 - Differential Output Voltage (mV) t_{PLHD}, t_{PHLD} - Differential Propagation Delay (ns) $T_A = 25°C$ $V_{CC} = 5V$ 4 500 $T_A = 25°C$ Freq = 65 MHzLoad = 100Ω 3 450 t_{PHLD} 400 2 ^t₽LHD 350 1 V_{OD} 300 90 100 110 120 130 140 150 0 R_{I} - Load Resistor (Ω) 4.5 4.75 5

DS011946-26

60

85

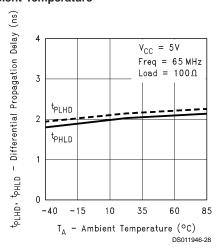
1000

DS011946-25

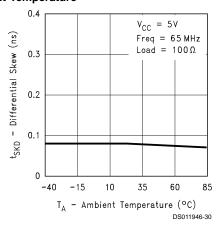
100

5.25

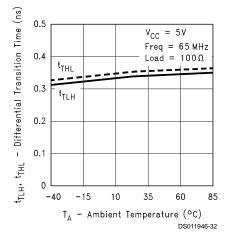
V_{CC} - Power Supply Voltage (V)

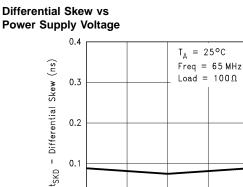

5.5

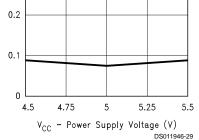
DS011946-27

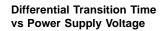

DS011946-23

Typical Performance Characteristics (Continued)

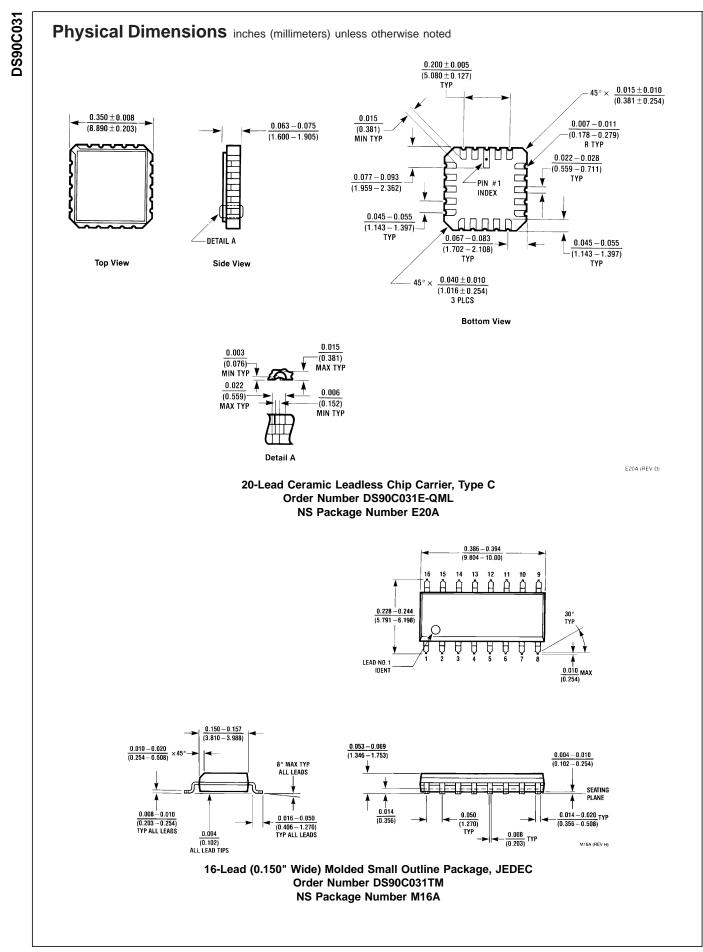





Differential Skew vs Ambient Temperature



Differential Transition Time vs Ambient Temperature



Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com
 National Semiconductor

 Europe
 Fax: +49 (0) 180-530 85 86

 Email: europe.support@nsc.com

 Deutsch Tel: +49 (0) 69 9508 6208

 English Tel: +44 (0) 870 24 0 2171

 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated