

DS8935 LocalTalk™ Dual Driver/Triple Receiver

General Description

The DS8935 is a dual driver/triple receiver device optimized to provide a single chip solution for a LocalTalk Interface. The device provides one differential TIA/EIA-422 driver, one TIA/EIA-423 single ended driver, one TIA/EIA-423 receiver and two TIA/EIA-423 receivers, all in a surface mount 16-pin package. This device is electrically similar to the 26LS30 and 26LS32 devices.

The drivers feature \pm 10V common mode range, and the differential driver provides TRI-STATEable outputs. The receivers offer \pm 200 mV thresholds over the \pm 10V common mode range.

The device offers enable circuitry for the differential driver and selectable enabling for the three receivers.

Features

- Single chip solution for LocalTalk port
- Two driver/three receivers per package
- Wide common mode range: ±10V
- ±200 mV receiver sensitivity
- 70 mV typical receiver input hysteresis
- Available in SOIC packaging
- Failsafe receiver for open inputs

Connection Diagram

TL/F/12066-1

Order Number DS8935WM See NS Package Number M20B **Functional Diagram**

DS8935

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	+ 7V
Supply Voltage (V _{EE})	-7V
Enable Input Voltage (DEN1, RE, RE)	+7V
Driver Input Voltage (D _{IN})	+7V
Driver Output Voltage (Power Off: D _{OUT})	±15V
Receiver Input Voltage (VID: RIN + - RIN-)	±25V
Receiver Input Voltage (V _{CM} : (R _{IN} + + R _{IN} -)/2)	±25V
Receiver Input Voltage (Input to GND: RIN)	±25V
Receiver Output Voltage (R _{OUT})	+ 5.5V

Maximum Package Power Dissipation @+25°C

M Package 1.34W Derate M Package 10.7 mW/°C above +25°C Storage Temperature Range -65°C to +150°C Lead Temperature Range (Soldering, 4 Sec.) +260°C This device does not meet 2000V ESD Rating (Note 8)

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	+ 4.75	+ 5.0	+ 5.25	v
Supply Voltage (V _{EE})	-4.75	~5.0	-5:25	V
Operating Free Air				
Temperature (T _A)	0	25	70	•C

Electrical Characteristics

Т

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions		Pin	Min	Тур	Max	Units
DIFFEREN	TIAL DRIVER CHARACTERISTICS	3						
V _{OD}	Output Differential Voltage	$R_L = \infty$ or $R_L = 3.9 k\Omega$			±7	±9.0	±10	V
Vo	Output Voltage	$R_L = \infty \text{ or } R_L = 3$.9 kΩ			±4.5	±5.25	v
V _{OD1}	Output Differential Voltage	$R_{L} = 100\Omega, Figure$	1		4.0	6.4		V
V _{SS}	Vodi - Vodi				8.0	12.8		V
∆V _{OD1}	Output Unbalance					0.02	0.4	v
Vos	Offset Voltage			D _{OUT} +,		0	3	v
ΔV _{OS}	Offset Unbalance			D _{OUT} -		0.05	0.4	v
V _{OD2}	Output Differential Voltage	$RL = 140\Omega$, Figure	91	x-	6.0	7.0		 v
lozd	TRI-STATE® Leakage Current	$V_{\rm CC} = 5.25 V$	$V_0 = +10V$			2	150	μΑ
		$V_{EE} = -5.25V$	$V_0 = +6V$			1	100	μA
			$V_0 = -6V$			-1	- 100	μA
		$V_0 = -10V$				-2	- 150	μA
SINGLE EN	IDED DRIVER CHARACTERISTIC	S			-01			
Vo	Output Voltage (No Load)	$R_L = \infty$ or $R_L = 3$.9 kΩ, <i>Figure 2</i>	*	4	4.4	6	I ⊻I
VT	Output Voltage	$R_L = 3 k\Omega$, Figure	2	Deum	3.7	4.3		V
		$R_{L} = 450\Omega, Figure$	2		3.6	4.1		N
ΔVT	Output Unbalance					0.02	0.4	V
DRIVER CI	HARACTERISTICS							
V _{CM}	Common Mode Range	Power Off, or D1 D	isabled		±10			v
IOSD	Short Circuit Current	V _O = 0V, Sourcing	Current			-80	- 150	mA
		$V_{O} = 0V$, Sinking (Current			80	150	mA
IOXD	Power-Off Leakage Current	e Current $V_0 = +10V$ Dour	$D_{OUT}+,$		2	150	μΑ	
	$(V_{CC} = V_{EE} = 0V)$	$V_0 = +6V$		-001		1	100	μΑ
		$V_0 = -6V$	y = -6V			-1	-100	μΑ
		$V_0 = -10V$				-2	-150	μΑ

Symbol	Parameter	Condit	tions	Pin	Min	Тур	Max	Units
RECEIVER	CHARACTERISTICS							
V _{TH}	Input Threshold	$-7V \le V_{CM} \le -7$	+ 7V		-200	±35	+ 200	mV
V _{HY}	Hysteresis	$V_{CM} = 0V$				70		mV
R _{IN}	Input Resistance	$-10V \le V_{CM} \le$	+ 10V		6.0	8.5		kΩ
IIN	Input Current (Other Input = 0V,	$V_{IN} = +10V$		R _{IN} +,			3.25	mA
	Power On, or $V_{CC} = V_{EE} = 0V$)	$V_{IN} = +3V$		R _{IN} -	0		1.50	mA
		$V_{IN} = -3V$			0		- 1.50	mA
		$V_{IN} = -10V$	$V_{IN} = -10V$				-3.25	mA
VIB	Input Balance Test	$R_{S} = 500\Omega$ (R2	$R_{S} = 500\Omega (R2 \text{ only})$				±400	mV
V _{OH}	High Level Output Voltage	$I_{OH} = -400 \ \mu A,$ $V_{IN} = +200 \ mV$			2.7	4.2		v
		$I_{OH} = -400 \ \mu A$, V _{IN} = OPEN		2.7	4.2		V
V _{OL}	Low Level Output Voltage	$I_{OL} = 8.0 \text{ mA, V}_{I}$	_N = -200 mV	ROUT		0.3	0.5	V
IOSR	Short Circuit Current	$V_{O} = 0V$			-15	-34	-85	mA
IOZR	TRI-STATE Output Current	V _{CC} = Max	$V_{O} = 2.4V$			0	+ 20	μA
			$V_{\rm O} = 0.4V$			0	- 20	μΑ
DEVICE CI	ARACTERISTICS							
VIH	High Level Input Voltage				2.0			v
VIL	Low Level Input Voltage			D _{IN} ,			0.8	V
ын	High Level Input Current	$V_{IN} = 2.4V$		DENT, BE		1	40	μA
IIL	Low Level Input Current	$V_{IN} = 0.4V$		RE		- 10	-200	μA
V _{CL}	Input Clamp Voltage	$I_{\rm IN} = -12 \rm mA$					- 1.5	V
Icc	Power Supply Current	No Load		V _{CC}		40	65	mA
IEE		D1 Enabled or Di	isabled	VEE		-5	-15	mA

Switc Over Sup	hing Characteristics ply Voltage and Operating Temperature Ranges, u	unless otherwise specified (Notes 4	and 5)		a A të X	
Symbol	Parameter	Conditions	Min	Тур	Max	Units
DIFFERENT	TIAL DRIVER CHARACTERISTICS			- 2°	4.00	10
t _{PHLD}	Differential Propagation Delay High to Low	$R_{L} = 100\Omega, C_{L} = 500 pF,$	70	134	350	ns
t _{PLHD}	Differential Propagation Delay Low to High	(<i>Figures 3</i> and 4) $C_4 = C_5 = 50 \text{ pF}$	70	141	350	ns
tSKD	Differential Skew tPHLD - tPLHD	01 - 02 - 30 pr)	7	50	ns
t _r	Rise Time		50	140	300	ns
t _f	Fall Time		50	140	300	ns
t _{PHZ}	Disable Time High to Z	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF}$ (Figures 7 and 8)		300	600	ns
t _{PLZ}	Disable Time Low to Z			300	600	ns
t _{PZH}	Enable Time Z to High			160	350	ns
tPZL	Enable Time Z to Low			160	350	ns
SINGLE EN	DED DRIVER CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$R_{L} = 450\Omega, C_{L} = 500 pF$	70	120	350	ns
t _{PLH}	Propagation Delay Low to High	(Figures 5 and 6)	70	150	350	ns
t _{SK}	Skew, t _{PHL} — t _{PLH}	-8		30	70	ns
t _r	Rise Time		50	100	300	ns
t _f	Fall Time		20	50	300	ns
RECEIVER	CHARACTERISTICS					
t _{PHL}	Propagation Delay High to Low	$C_L = 15 pF$	10	33	75	ns
t _{PLH}	Propagation Delay Low to High	(Figures 9 and 10)	10	30	75	- ns
tsĸ	Skew, tpHL tpLH		4	3	20	ns
tHZ	Disable Time High to Z	C _L = 15 pF	- 67	20	75	ns
t _{LZ}	Disable Time Low to Z	(Figures 9 and 11)		20	75	ns
t _{ZH}	Enable Time Z to High			20	75	ns
tzL	Enable Time Z to Low	-1		20	75	ns

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of Electrical Characteristics specifies conditions of device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD}, V_{OD1}, V_{OD2}, and V_{SS}.

Note 3: All typicals are given for: V_{CC} = +5.0V, V_{EE} = -5.0V, T_A = +25°C unless otherwise specified.

Truth Tables

Driver (D1

Inp	uts	Outputs	
D _{EN1}	D _{IN1}	D _{OUT1} +	D _{OUT1} -
н	X	Z	Z
L	L	L	н
L	н	н	L

Driver (D2)
----------	-----

Input	Output	
D _{IN2}	D _{OUT2} -	
L	н	
Н	L	

Receiver (1)					
DE	Input		Output		
n6	ne	R _{IN1} -	R _{OUT1}		
0	1	x	Z		
Any	Other	≤ −200 mV	н		
Comb	ination	≥ + 200 mV	L		
		Open [†]	н		

Receiver	(2)
----------	-----

DE	DE	Inputs	Output		
nc	nc	R _{IN2} +-R _{IN2} -	R _{OUT2}		
0	1	x	Z		
Any	Other	≤ ~ 200 mV	L		
Comb	ination	≥ + 200 mV	н		
		Open [†]	н		

Receiver (3)

RE	RE	Input	Output
		R _{IN3} +	R _{OUT3}
0	1	X	Z
Any Other Combination		≤ – 200 mV	L
		≥ + 200 mV	н
		Open [†]	н

H = Logic High Level (Steady State) L = Logic Low Level (Steady State) X = Irrelevant (Any Input) Z = Off State (TRI-STATE, High Impedance) [†]OPEN = Non-Terminated

Parameter Measurement Information

FIGURE 1. Differential Driver DC Test Circuit

TL/F/12066-4

TL/F/12066-5

TL/F/12066-7

TL/F/12066-3

FIGURE 3. Differential Driver Propagation Delay and Transition Time Test Circuit

FIGURE 4. Differential Driver Propagation Delay and Transition Time Waveforms

FIGURE 5. Single Ended Driver Propagation Delay and Transition Time Test Circuit

DS8935

FIGURE 12. Typical LocalTalk™ Application

TL/F/12066-14

DS8935

TABLE	. Device	Pin Descri	ptions
	. Device	FIII DCOVII	

Pin #	Name	Description
2, 4	D _{IN}	TTL Driver Input Pins
3	DENT	Active Low Driver Enable Pin. A High on this Pin TRI-STATEs the Driver Outputs (D1 Only)
19	DOUT +	Non-Inverting Driver Output Pin
17, 18	D _{OUT} -	Inverting Driver Output Pin
13, 15	R _{IN} +	Non-Inverting Receiver Input Pin
16, 14	R _{IN} -	Inverting Receiver Input Pin
5, 6, 7	ROUT	Receiver Output Pin
9	R _{EN}	Active Low Receiver Enable
12	REN	Active High Receiver Enable
10, 11	N/C	Not Connected
8	GND	Ground Pin
1	VEE	Negative Power Supply Pin, $-5V \pm 5\%$
20	V _{CC}	Positive Power Supply Pin, $+5V \pm 5\%$

Typical Application Information (Continued)

DRIVER OUTPUT WAVEFORMS

The driver configuration on the DS8935 is unique among TIA/EIA-422 devices in that it utilizes -5V V_{EE} supply. A typical TIA/EIA-422 driver uses +5V only and generates signal swings of approximately 0V-5V.

By utilizing V_{EE}, the differential driver is able to generate a much larger differential signal. The typical output voltage is about |4| V, which gives |8| V differentially, thus providing a much greater noise margin than +5V drivers. See *Figure 13*. The receiver therefore has a range of +8V to -8V or V_{SS} of 16V (V_{SS} = V_{OD}-V_{OD}•).

Each side of the differential driver operates similar to a TIA/ EIA-423 driver. The output voltages are slightly different due to the loading: the differential driver has differential termination, the single-ended driver is terminated with a resistor to ground.

Note: • V_{CC} = +5V, V_{EE} = -5V

D1 Enabled (Active)

FIGURE 13. Typical Driver Output Waveforms

UNUSED PINS

Unused driver outputs should be left open. If tied to either ground or supply, the driver may enter an I_{OS} state and consume excessive power. Unused driver inputs should not be left floating as this may lead to unwanted switching which may affect I_{CC} , particularly the frequency component. Unused driver inputs should be tied to ground.

Receiver outputs will be in a HIGH state when inputs are open; therefore, outputs should not be tied to ground. It is best to leave unused receiver outputs floating.

RECEIVER FAILSAFE

All three receivers on this device incorporate open input failsafe protection. The differential receiver output will be in a HIGH state when inputs are open, but will be indetermined if inputs are shorted together. Unused differential inputs should be left floating.

Both single-ended receivers (inverting and non-inverting) are biased internally so that an open input will result in a HIGH output. Therefore, these inputs should not be shorted to ground when unused.

BYPASS CAPACITORS

Bypass capacitors are recommended for both V_{CC} and V_{EE}. Noise induced on the supply lines can affect the signal quality of the output; V_{CC} affects the V_{OH} and V_{EE} affects the V_{OL}. Capacitors help reduce the effect on signal quality. A value of 0.1 μ F is typically used.

Since this is a power device, it is recommended to use a bypass capacitor for each supply and for each device. Sharing a bypass capacitor between other devices may not be sufficient.

TERMINATION

On a multi-point transmission line which is electrically long, it is advisable to terminate the line at both ends with its characteristic impedance to prevent signal reflection and its associated noise/crosstalk.

A 100 Ω termination resistor is commonly specified by TIA/ EIA-422 for differential signals. The DS8935 is also specified using 140 Ω termination which will result in less power associated with the driver output. The additional resistance is typical of applications requiring EMI filtering on the driver outputs.

TWO-WIRE LocalTalk

The DS8935 is a single chip solution for a LocalTalk interface. A typical application is shown in *Figure 12*.

An alternative implementation of LocalTalk is to only use two wires to communicate. The differential data lines can be transformer-coupled on to a twisted pair medium. See *Figure 14*. The handshake function must then be accomplished in software.

FIGURE 14. Differential Communication, Transformer-Coupled to a Twisted-Pair Line

SINGLE + 5V SUPPLY

The DS8935 is derived from the DS3691/92 which could be configured using a single +5V supply (V_{EE} = 0V). This device is not specified for this type of operation. However, the device will not be damaged if operated using a single +5V supply.

Both drivers require the -5V supply in order to meet the output voltage levels specified. When the device switches from a positive voltage to the complimentary state, it is pulled toward the V_{EE} level. If that level is 0V, then the

complimentary state will be near 0V instead of V_{EE}. Thus, the output would switch from about 4V to 0V, instead of 4V to -4V. The differential driver will meet TIA/EIA-422, but with a reduced noise margin. The single-ended driver will not meet TIA/EIA-423 without the -5V supply.

DS8935

The receivers will be functional but may suffer parametrically. The inverting receiver is referenced to V_{EE} therefore, the threshold may shift slightly. The inputs can still vary over the \pm 10V common mode range.

http://www.national.com

Typical Performance Characteristics

The DS8935 is very closely related to the DS8925. Please refer to the DS8925 datasheet for the typical performance characteristics.