DS7880,DS8880

DS7880 DS8880 High Voltage 7-Segment Decoder/Driver

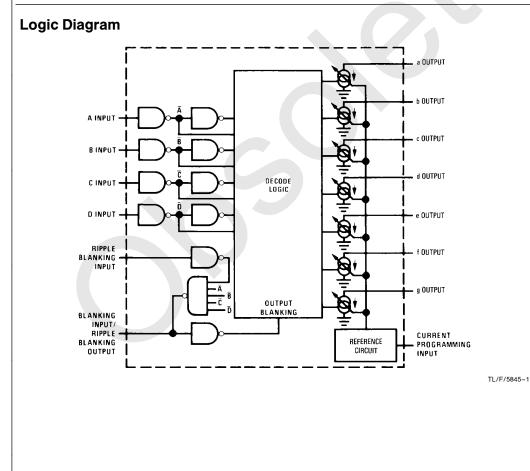
Literature Number: SNOSBN2A

National Semiconductor

DS7880/DS8880 High Voltage 7-Segment Decoder/Driver

General Description

The DS7880/DS8880 is custom designed to decode four lines of BCD and drive a gas-filled seven-segment display tube.


Each output constitutes a switchable, adjustable current sink which provides constant current to the tube segment, even with high tube anode supply tolerance or fluctuation. These current sinks have a voltage compliance from 3V to at least 80V; typically the output current varies 1% for output voltage changes of 3 to 50V. Each bit line of the decoder switches a current sink on or off as prescribed by the input code. Each current sink is ratioed to the b-output current as required for even illumination of all segments.

Output currents may be varied over the 0.2 to 1.5 mA range for driving various tube types or multiplex operation. The output current is adjusted by connecting an external program resistor (R_P) from V_{CC} to the Program input in accordance with the programming curve. The circuit design provides a one-to-one correlation between program input current and b-segment output current.

The Blanking Input provides unconditional blanking of any output display, while the Ripple Blanking pins allow simple leading- or trailing-zero blanking.

Features

- Current sink outputs
- Adjustable output current—0.2 to 1.5 mA
- High output breakdown voltage—110V typ
- Suitable for multiplex operation
- Blanking and Ripple Blanking provisions
- Low fan-in and low power

© 1995 National Semiconductor Corporation TL/F/5845

RRD-B30M105/Printed in U. S. A.

March 1988

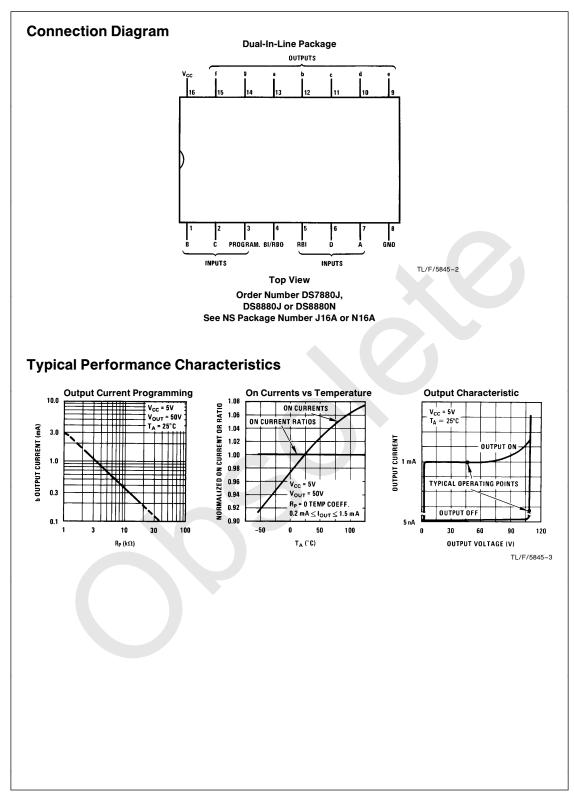
Absolute Maximum Ratings (Note 1)

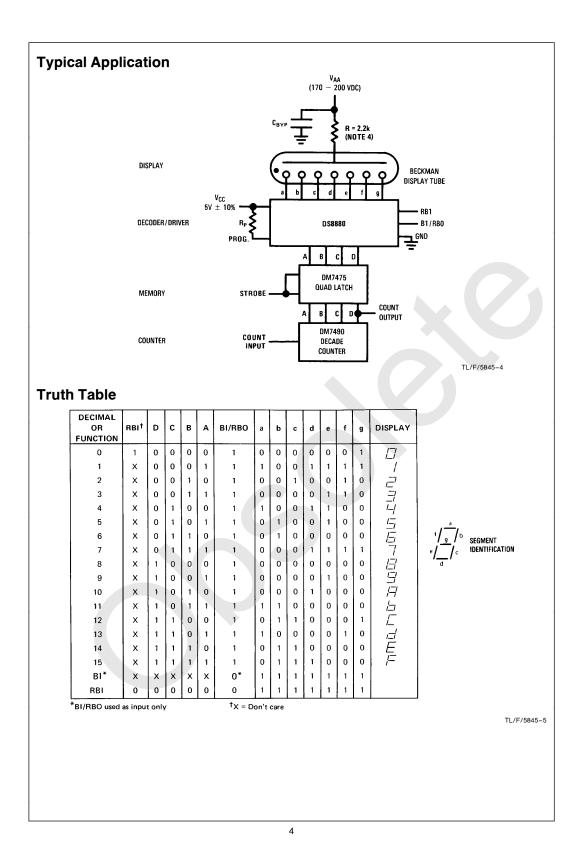
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

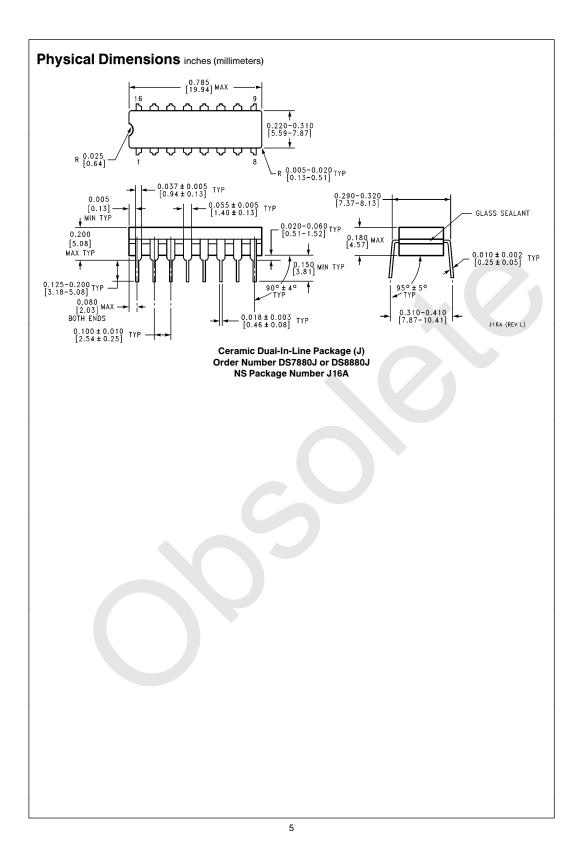
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		(Note 4) Storage Temperature Range		50 mA −65°C to +150°C		
Input Voltage (Except BI)	6V					
Input Voltage (BI)	V _{CC}	Operating Con	ditions			
Segment Output Voltage	80V	0	Min	Max	Units	
Power Dissipation	600 mW	Supply Voltage (V _{CC}) DS7880	4.5	5.5	V	
Maximum Power Dissipation* at 25°C		DS8880	4.75	5.25	v	
Cavity Package	1509 mW	Temperature (T _A)				
Molded Package	1476 mW	DS7880	-55	+125	°C	
*Derate cavity package 10.06 mW/°C above 25°C; dera 11.81 mW/°C above 25°C.	te molded package	DS8880	0	+70	°Ĉ	

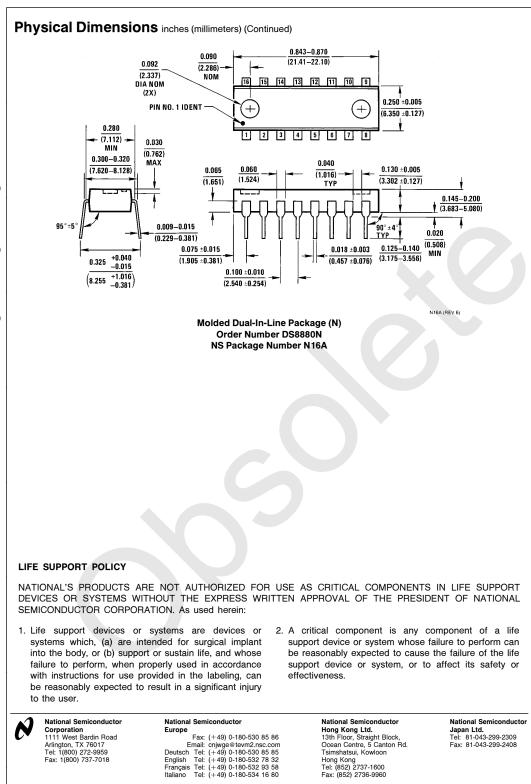
Transient Segment Output Current

Electrical Characteristics (Notes 2 and 3)


Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	Logical "1" Input Voltage	V _{CC} = Min	V _{CC} = Min				V
V _{IL}	Logical "0" Input Voltage	V _{CC} = Min				0.8	v
V _{OH}	Logical "1" Output Voltage	$V_{CC} = Min$, $I_{OUT} = -200 \ \mu$ A, RBC	$V_{CC} = Min, I_{OUT} = -200 \ \mu A, RBO$		3.7		V
V _{OL}	Logical "0" Output Voltage	$V_{CC} = Min, I_{OUT} = 8 mA, RBO$			0.13	0.4	v
I _{IH}	Logical "1" Input Current	V _{CC} = Max, Except BI	$V_{IN} = 2.4V$		2	15	μA
			$V_{IN} = 5.5V$		4	400	μA
IIL	Logical "0" Input Current	$V_{CC} = Max, V_{IN} = 0.4V$	Except BI		-300	-600	μA
			BI		-1.2	-2.0	mA
ICC	Power Supply Current	$V_{CC} = Max, R_p = 2.2k, All Inputs = 0V$			27	43	mA
V _{CD}	Input Diode Clamp Voltage	$V_{CC} = Max, T_A = 25^{\circ}C, I_{IN} = 12 \text{ mA}$			-0.9	-1.5	V
IO	SEGMENT OUTPUTS "ON" Current Ratio	All Outputs = 50V, $I_{OUT}b = Ref.$	Outputs a, f, and g	0.84	0.93	1.02	
			Outut c	1.12	1.25	1.38	
			Output d	0.90	1.00	1.10	
			Output e	0.99	1.10	1.21	
I _b ON	Output b "ON" Current	$\label{eq:VCC} \begin{split} V_{CC} &= 5V, V_{OUT}b = 50V, \\ All \mbox{ Other Outputs} &\geq 5V, \\ T_A &= 25^\circ\mbox{C} \end{split}$	$R_{p} = 18.1k$	0.15	0.20	0.25	mA
			$R_{p} = 7.03k$	0.45	0.50	0.55	mA
			$R_{p} = 3.40k$	0.90	1.00	1.10	mA
			$R_{p} = 2.20k$	1.35	1.50	1.65	mA
V _{SAT}	Output Saturation Voltage	$V_{CC} = Min, R_p = 1k \pm 5\%, I_{OUT}b = 2 mA, (Note 5)$			0.8	2.5	V
ICEX	Output Leakage Current	$V_{OUT} = 75V, BI = 0V, R_p = 2.2k$			0.003	3	μA
V _{BR}	Output Breakdown Voltage	$I_{OUT} = 250 \ \mu A, BI = 0V, R_p = 2.2k$		80	110		V
t _{pd}	Propagation Delays BCD Input to Segment Output	$V_{CC} = 5V, T_A = 25^{\circ}C$			0.4	10	μs
	BI to Segment Output				0.4	10	μs
	RBI to Segment Output				0.7	10	μs
	RBI to RBO				0.4	10	μs


Note 1: "Absolute Maximum Rating" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS7880 and across the 0°C to +70°C range for the DS8880. All typical values are for T_{A} = 25°C and V_{CC} = 5V.


Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min or absolute value basis.

Note 4: In all applications transient segment output current must be limited to 50 mA. This may be accomplished in dc applications by connecting a 2.2k resistor from the anode-supply filter capacitor to the display anode, or by current limiting the anode driver in multiplex applications. Note 5: For saturation mode the segment output currents are externally limited and ratioed.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated