

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage $\mathrm{V}_{\mathrm{CC} 1}$ (Note 5)
7 V
Supply Voltage VCC2 (Note 5) 25V
Input Voltage (Any Address or Strobe Input) 5.5V
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package
1509 mW
Molded Package 1476 mW
*Derate Cavity Package $10.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ DS75325 0 +70${ }^{\circ} \mathrm{C}$			

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter	Conditions			Min	Typ	Max	Units
V_{IH}	High Level Input Voltage	(Figures 1 and 2)			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	(Figures 3 and 4)					0.8	V
V_{1}	Input Clamp Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-12 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Figure 5) } \end{aligned}$				-1.3	-1.7	V
lofF	Source Collectors Terminal "Off" State Current	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}$ (Figure 1)	Full Range	DS55325			500	$\mu \mathrm{A}$
				DS75325			200	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		3	150	$\mu \mathrm{A}$
				DS75325		3	200	$\mu \mathrm{A}$
V_{OH}	High Level Sink Output Voltage	$\mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}$, $\mathrm{IOUT}=0 \mathrm{~mA}$ (Figure 2)			19	23		V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage Source Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{I}_{\text {SOURCE }} \approx-600 \mathrm{~mA} \\ & \text { (Figure 3) }(\text { Notes } 4 \text { and 6) } \end{aligned}$	Full Range				0.9	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		0.43	0.7	V
				DS75325		0.43	0.75	V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage Sink Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{I}_{\mathrm{SINK}} \approx 600 \mathrm{~mA} \text { (Figure 4) } \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	Full Range				0.9	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	DS55325		0.43	0.7	V
				DS75325		0.43	0.75	V
1	Input Current at Maximum Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}(\text { Figure 5) } \end{aligned}$	Address Inputs				1	mA
			Strobe Inputs				2	mA
IIH	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V}(\text { Figure 5) } \end{aligned}$	Address Inputs			3	40	$\mu \mathrm{A}$
			Strobe Inputs			6	80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}(\text { Figure 5) } \end{aligned}$	Address Inputs			-1	-1.6	mA
			Strobe Inputs			-2	-3.2	mA
ICC OFF	Supply Current, All Sources and Sinks "Off"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Figure } 6) \end{aligned}$	$\mathrm{V}_{\mathrm{CC} 1}$			14	22	mA
			$\mathrm{V}_{\mathrm{CC} 2}$			7.5	20	mA
${ }^{\text {I CC1 }}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 1}$, Either Sink "On"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=50 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Figure } 7) \end{aligned}$				55	70	mA
$\mathrm{I}_{\text {CC2 }}$	Supply Current from $\mathrm{V}_{\mathrm{CC} 2}$, Either Source "On"	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=24 \mathrm{~V}, \text { ISOURCE } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Figure 8) } \end{aligned}$				32	50	mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified min $/$ max limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DS 55325 and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DS75325. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.
Note 5: Voltage values are with respect to network ground terminal.
Note 6: These parameters must be measured using pulse techniques. $\mathrm{t}_{\mathrm{W}}=200 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC} 1}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}(\text { Figure 9) } \end{aligned}$	Source Collectors		25	50	ns
			Sink Outputs		20	45	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}(\text { Figure 9) } \end{aligned}$	Source Collectors		25	50	ns
			Sink Outputs		20	45	ns
${ }^{\text {t }}$ L LH	Transition Time, Low-to-High Level Output	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \text { Source Outputs, } \mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Figure 10) } \end{aligned}$		55		ns
			$\begin{aligned} & \text { Sink Outputs, } \mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=24 \Omega \text { (Figure 9) } \end{aligned}$		7	15	ns
${ }_{\text {t }}$ HL	Transition Time, High-to-Low Level Output	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	$\begin{aligned} & \text { Source Outputs, } \mathrm{V}_{\mathrm{CC} 2}=20 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Figure 10) } \end{aligned}$		7		ns
			Sink Outputs, $\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}$, $R_{L}=24 \Omega$ (Figure 9)		9	20	ns
ts	Storage Time, Sink Outputs	$\mathrm{V}_{\mathrm{CC} 2}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ (Figure 9)			15	30	ns

DC Test Circuits

TL/F/9755-3
Test Table

A	B	$\mathbf{S 1}$
GND	GND	2 V
2 V	2 V	GND

FIGURE 1. IOFF

DC Test Circuits (Continued)

TL/F/9755-6
Note 1: Figure 3 and 4 parameters must be measured using pulse techniques, $\mathrm{t}_{\mathrm{W}}=200 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
Test Table

\mathbf{C}	\mathbf{D}	$\mathbf{S 2}$	\mathbf{Y}	\mathbf{Z}
0.8 V	4.5 V	0.8 V	R_{L}	OPEN
4.5 V	0.8 V	0.8 V	OPEN	R_{L}

FIGURE 4. $\mathbf{V}_{\text {IL }}$ and Sink $\mathbf{V}_{\text {SAT }}$

DC Test Circuits (Continued)

TL/F/9755-7
Test Tables

Apply $\mathrm{V}_{\mathbf{I}}=5.5 \mathrm{~V}$ Measure II	Ground	Apply 5.5V
Apply $\mathrm{V}_{\mathbf{I}}=\mathbf{2 . 4 V}$ Measure $I_{I H}$		
A	S1	B, C, S2, D
S1	A, B	C, S2, D
B	S1	A, C, S2, D
C	S2	A, S1, B, D
S2	C, D	A, S1, B
D	S2	A, S1, B, C

$\mathbf{V}_{\mathbf{I}}, \mathbf{I}_{\mathbf{I L}}$	
Apply $\mathbf{V}_{\mathbf{I}}=\mathbf{0 . 4 V}$ Measure $\mathbf{I}_{\mathbf{L}}$	Apply 5.5V
Apply $\mathbf{I}_{\mathbf{I}}=-\mathbf{1 0} \mathbf{~ m A}$ Measure $\mathbf{V}_{\mathbf{I}}$	
A	S1, B, C, S2, D
S1	A, B, C, S2, D
B	A, S1, C, S2, D
C	A, S1, B, S2, D
S2	A, S1, B, C, D
D	A, S1, B, C, S2

FIGURE 5. $V_{I}, I_{I}, I_{I H}$ and $I_{I L}$

DC Test Circuits (Continued)

Test Table

A	B	S1
GND	5 V	GND
5 V	GND	GND

FIGURE 8. ICC2, Either Source On

DC Test Circuits (Continued)

TL/F/9755-11
Note 1: The pulse generator has the following characteristics: $Z_{O U T}=50 \Omega$, duty cycle $\leq 1 \%$.
Note 2: C_{L} includes probe and jig capacitance.

TL/F/9755-12
Test Table

Parameter	Output Under Test	Input	Connect to 5V
$t_{\text {PLH }}$ and $\mathrm{t}_{\text {PHL }}$	Source Collectors	A and S1	B, C, D and S2
		B and S1	A, C, D and S2
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$, $\mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}$ and t_{s}	Sink Output Y	C and S2	A, B, D and S1
	Sink Output Z	D and S2	A, B, C and S1

FIGURE 9. Switching Times

DC Test Circuits (Continued)

TL/F/9755-13
Note 1: The pulse generator has the following characteristics: $Z_{\text {OUT }}=50 \Omega$, duty cycle $\leq 1 \%$
Note 2: C_{L} includes probe and jig capacitance.

Test Table

Parameter	Output Under Test	Input	Connect to 5V
$\mathrm{t}_{\mathrm{TLH}}$ and $\mathrm{t}_{\mathrm{THL}}$	Source Output W	A and S1	B, C, D and S2
	Source Output X	B and S1	A, C, D and S2

FIGURE 10. Transition Times of Source Outputs

Schematic Diagram

Applications

EXTERNAL RESISTOR CALCULATION

A typical magnetic-memory word drive requirement is shown in Figure 11. A source-output transistor of one DS75325 delivers load current (l_{L}). The sink-output transistor of another DS75325 sinks this current.

The value of the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) for a particular memory application may be determined using the following equation:

$$
\begin{equation*}
R_{\text {ext }}=\frac{16\left[V_{\mathrm{CC} 2(\mathrm{Min})}-\mathrm{V}_{\mathrm{S}}-2.2\right]}{\mathrm{I}_{\mathrm{L}}-1.6\left[\mathrm{~V}_{\mathrm{CC} 2(\mathrm{Min})}-\mathrm{V}_{\mathrm{S}}-2.9\right]} \tag{1}
\end{equation*}
$$

where: $R_{\text {ext }}$ is in $k \Omega$,
$\mathrm{V}_{\mathrm{CC} 2(\mathrm{Min})}$ is the lowest expected value of $\mathrm{V}_{\mathrm{CC} 2}$ in volts, V_{S} is the source output voltage in volts with respect to ground, I_{L} is in mA .
The power dissipated in resistor $\mathrm{R}_{\text {ext }}$ during the load current pulse duration is calculated using Equation 2.

$$
\mathrm{P}_{\mathrm{Rext}} \approx \frac{\mathrm{I}_{\mathrm{L}}}{16}\left[\mathrm{~V}_{\mathrm{CC} 2(\mathrm{Min})}-\mathrm{V}_{\mathrm{S}}-2\right]
$$

where: $\mathrm{P}_{\text {Rext }}$ is in mW .
current through the external pull-up resistor ($\mathrm{R}_{\text {ext }}$) and the source gate is approximately 30 mA . This current and I_{CS} comprise I_{L}.

Note 1: For clarity, partial logic diagrams of two DS55325s are shown.
Note 2: Source and sink shown are in different packages.
FIGURE 11. Typical Application Data

Physical Dimensions inches (millimeters) (Continued)

OPTION 1

OPTION 02

Molded Dual-In-Line Package (N)
Order Number DS75325N
NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

