DS3862 Octal High Speed Trapezoidal Bus Transceiver

General Description

The DS3862 is an octal high speed schottky bus transceiver intended for use with terminated 120Ω impedance lines. It is specifically designed to reduce noise in unbalanced transmission systems. The open collector drivers generate precise trapezoidal waveforms with rise and fall times of 9 ns (typical), which are relatively independent of capacitive loading conditions on the outputs. This reduces noise coupling to the adjacent lines without any appreciable impact on the maximum data rate obtainable with high speed bus transceivers. In addition, the receivers use a low pass filter in conjunction with a high speed comparator, to further enhance the noise immunity. Tightly controlled threshold levels on the receiver provide equal rejection to both negative and positive going noise pulses on the bus.
The external termination is intended to be a 180Ω resistor from the bus to 5 V logic supply, together with a 390Ω resistor from the bus to ground. The bus can be terminated at one or both ends.

Features

- Guaranteed A.C. specifications on noise immunity and propagation delay over the specified temperature and supply voltage range
- Temperature insensitive receiver thresholds track bus logic level and respond symmetrically to positive and negative going pulses
- Trapezoidal bus waveforms reduce noise coupling to adjacent lines
- Open collector driver output allows wire-or connection
- Advanced low power schottky technology
- Glitch free power up/down protection on driver and receiver outputs
- TTL compatible driver and control inputs, and receiver outputs
- Control logic is the same as the DS3896

Logic and Connection Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	6 V
Control Input Voitage	5.5 V
Driver Input and Receiver Output	5.5 V
Receiver Input and Driver Output	5.5 V
Power Dissipation	1400 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, VCC	4.75	5.25	V
Operating Free Air Temperature	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$ unless otherwise specified (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver and Control Inputs:						
$\mathrm{V}_{\text {IH }}$	Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Logical "0' Input Voltage				0.8	V
1	Logical "1" Input Current	$A_{n}=V_{C C}$			1	mA
I_{H}	Logical "1" Input Current	$A n=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
I_{HC}	Logical "1" Input Current	$C D=T / \bar{R}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
$1 / 2$	Logical "0" Input Current	$\mathrm{An}=0.4 \mathrm{~V}$		-1	-1.6	mA
ILC	CD \& T/ $\overline{\mathrm{R}}$ Logical "0" Input Current	$C D=T / \bar{R}=0.4 \mathrm{~V}$		-180	-400	$\mu \mathrm{A}$
V_{CL}	Input Diode Clamp Voltage	Iclamp $=-12 \mathrm{~mA}$		-0.9	-1.5	V
Driver Output/Receiver Input						
$V_{\text {OLB }}$	Low Level Bus Voltage	$A n=T / \bar{R}=2 V, 1$ bus $=100 \mathrm{~mA}$		0.6	0.9	V
IIHB	Logical "1" Bus Current	$\mathrm{An}=0.8 \mathrm{~V}, \mathrm{Bn}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ and 0 V		10	100	$\mu \mathrm{A}$
ILLB	Logical "0" Bus Current	$\mathrm{An}=0.8 \mathrm{~V}, \mathrm{Bn}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ and OV			100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {TH }}$	Input Threshold	$V_{C C}=5 \mathrm{~V}$	1.5	1.7	1.9	V
Receiver Output						
VOH	Logical "1" Output Voltage	$\mathrm{Bn}=0.9 \mathrm{~V}, \mathrm{I}_{\text {oh }}=-400 \mu \mathrm{~A}$	2.4	3.2		V
V OL	Logical "0" Output Voltage	$\mathrm{Bn}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{Ol}}=16 \mathrm{~mA}$		0.35	0.5	V
los	Output Short Circuit Current	$\mathrm{Bn}=0.9 \mathrm{~V}$	-20	-70	-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		90	135	mA

Note 1: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.
Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
Note 3: All typicals are given for $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Switching Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathbf{C C}} \leq 5.25 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Driver:						
${ }_{\text {t }}$	An to Bn	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V} \quad$ (Figure 1)		12	20	ns
$\mathrm{t}_{\mathrm{DHL}}$				12	20	ns
toLHC	CD to Bn	$\mathrm{An}=\mathrm{T} / \overline{\mathrm{R}}=2.0 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \quad$ (Figure 1)		12	20	ns
$t_{\text {DHLC }}$				15	25	ns
toLHT	T/ \bar{R} to Bn	$\begin{aligned} & \mathrm{VCl}=\mathrm{An}, \mathrm{VC}=5 \mathrm{~V}, \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{RC}=390 \Omega, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RL} 1=91 \Omega, \mathrm{RL} 2=200 \Omega, \mathrm{VL}=5 \mathrm{~V} \end{aligned}$(Figure 2)		20	30	ns
${ }^{\text {t }}$ HLT				25	40	ns
t_{R}	Driver Output Rise Time	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=2 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V} \quad$ (Figure 1)	4	9	20	ns
t_{F}	Driver Output Fall Time		4	9	20	ns
Receiver:						
$\mathrm{t}_{\text {RLH }}$	Bn to An	$\mathrm{CD}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V} \quad$ (Figure 3)		15	25	ns
$\mathrm{t}_{\mathrm{RHL}}$				15	25	ns
trlzc	CD to An	$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=5 \mathrm{pF} \\ & \mathrm{RL1}=390 \Omega, \mathrm{RL} 2=\mathrm{NC}, \mathrm{VL}=5 \mathrm{~V} \quad \text { (Figure 4) } \end{aligned}$		15	25	ns
trzLC		$\begin{aligned} & \mathrm{Bn}=2.0 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{CL}=30 \mathrm{pF} \\ & \mathrm{RL1}=390 \Omega, \mathrm{RL2}=1.6 \mathrm{~K}, \mathrm{VL}=5 \mathrm{~V}(\text { Figure 4) } \end{aligned}$		10	20	ns
${ }^{\text {trHZC }}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V} \\ & \mathrm{RL1}=390 \Omega, \mathrm{RL2}=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF}(\text { Figure 4) } \end{aligned}$		5	10	ns
$t_{\text {RZHC }}$		$\begin{aligned} & \mathrm{Bn}=0.8 \mathrm{~V}, \mathrm{~T} / \overline{\mathrm{R}}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \\ & \mathrm{RL1}=\mathrm{NC}, \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF}(\text { Figure 4) } \end{aligned}$		8	15	ns
${ }^{\text {trLzT }}$	T/ \bar{R} to An	$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=3.4 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL} 2=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 2)		20	30	ns
$t_{\text {RZLT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=3.4 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=5 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL} 2=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 2)		30	45	ns
$t_{\text {RHZT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL} 1=390 \Omega \\ & \mathrm{RL2}=\mathrm{NC}, \mathrm{CL}=5 \mathrm{pF} \end{aligned}$ (Figure 2)		5	10	ns
$t_{\text {RZHT }}$		$\begin{aligned} & \mathrm{VCl}=\mathrm{Bn}, \mathrm{VC}=0 \mathrm{~V}, \mathrm{RC}=39 \Omega \\ & \mathrm{CD}=0.8 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{RL1}=\mathrm{NC} \\ & \mathrm{RL2}=1.6 \mathrm{~K}, \mathrm{CL}=30 \mathrm{pF} \end{aligned}$ (Figure 2)		10	20	ns
t_{NR}	Receiver Noise Rejection Pulse Width	(Figure 5)	9	12		ns

Note: NC means open

Switching Waveforms

Note: $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5$ ns from 10% to 90%
FIGURE 1. Driver Propagation Delays

Note: $\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{4}} \leq 5 \mathrm{~ns}$ from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$
FIGURE 2. Propagation Delay From T / \bar{R} Pin to An or Bn.

Switching Waveforms (Continued)

Note: $t_{R}=t_{F} \leq 10 \mathrm{~ns}$ from 10% to 90%
FIGURE 3. Receiver Propagation Delays

Note: $t_{\mathbf{t}}=\mathrm{t}_{\mathrm{f}} \leq 5$ ns from $\mathbf{1 0 \%}$ to $\mathbf{9 0 \%}$
FIGURE 4. Propagation Delay From CD Pin to An

Switching Waveforms (Continued)

TL/F/8539-6
Note: $t_{r}=t_{f}=2$ ns from 10% to 90%
FIGURE 5. Receiver Noise Immunity: No Response at Output Input Waveform.

Typical Application

TL/F/8539-7

