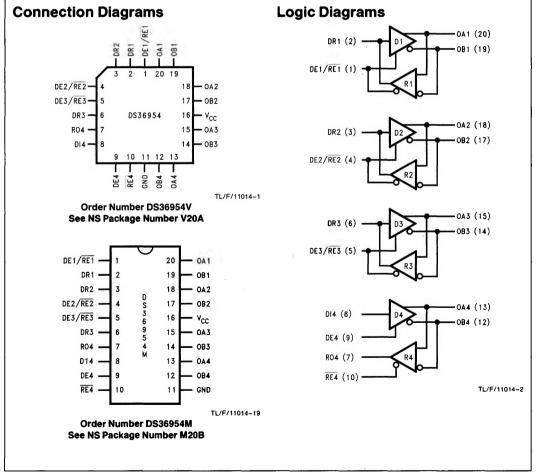


DS36954 Quad Differential Bus Transceiver

General Description


The DS36954 is a low power, quad EIA-485 differential bus transceiver especially suited for high speed, parallel, multipoint, I/O bus applications. A compact 20-pin surface mount PLCC or SOIC package provides high transceiver integration and a very small PC board footprint.

Propagation delay skew between devices is specified to aid in parallel interface designs—limits on maximum and minimum delay times are guaranteed.

Five devices can implement a complete SCSI initiator or target interface. Three transceivers in a package are pinned out for data bus connections. The fourth transceiver, with the flexibility provided by its individual enables, can serve as a control bus transceiver.

Features

- Pinout for SCSI interface
- Compact 20-pin PLCC or SOIC package
- Meets EIA-485 standard for multipoint bus transmission
- Greater than 60 mA source/sink currents
- Thermal shutdown protection
- Glitch-free driver outputs on power up and down

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Control Input Voltage	V _{CC} + 0.5V
Driver Input Voltage	V _{CC} + 0.5V
Driver Output Voltage/ Receiver Input Voltage	-10V to +15V
Receiver Output Voltage	5.5V
Continuous Power Dissipation	
V Package	1.73W
M Package	1.73W
Derate V Package	13.9 mW/°C above +25°C
Derate M Package	13.7 mW/°C above + 25°C

Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering 4 Sec.)	260°C

Recommended Operating Conditions

- 1 m +	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+ 12	v
Operating Free Air			
Temperature (T _A)	0	+ 70	°C

Electrical Characteristics

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Note 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RIVER CH	ARACTERISTICS					
VODL	Differential Driver Output Voltage (Full Load)	$i_L = 60 \text{ mA}$ $V_{CM} = 0V$	1.5	1.9	-30	v
V _{OD}	Differential Driver Output	$R_{L} = 100\Omega$ (EIA-422)	2.0	2. 25		v
	Voltage (Termination Load)	$R_{L} = 54\Omega$ (EIA-485)	1.5	2.0		v
∆IVODI	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	R _L = 54 or 100Ω (Note 4) <i>(Figure 1)</i> (EIA-422/485)	<i>a</i>		0.2	v
Voc	Driver Common Mode Output Voltage (Note 5)	R _L = 54Ω <i>(Figure 1)</i> (EIA-485)			3.0	v
	Change in Magnitude of Common Mode Output Voltage	(Note 4) <i>(Figure 1)</i> (EIA-422/485)			0.2	v
VOH	Output Voltage High	l _{OH} = −55 mA	2.7	3.2		v
V _{OL}	Output Voltage Low	I _{OL} = 55 mA		1.4	1.7	V
VIH	Input Voltage High		2.0			v
VIL	Input Voltage Low		11		0.8	v
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}$			-1.5	V
ЦΗ	Input High Current	V _{IN} = 2.4V (Note 3)			20	μA
۱ _{IL}	Input Low Current	V _{IN} = 0.4V (Note 3)			-20	μΑ
losc	Driver Short-Circuit	$V_0 = -7V$ (EIA-485)		- 130	-250	mA
	Output Current (Note 9)	V _O = 0V (EIA-422)		 90	- 150	mA
		$V_{O} = +12V$ (EIA-485)		130	250	mA

Symbol	Parameter	Condition	Min	Тур	Max	Units	
RECEIVER	CHARACTERISTICS		· · · · · ·				
IOSR	Short Circuit Output Current	V _O = 0V (Note 9)		-15	- 28	-75	mA
loz	TRI-STATE® Output Current	$V_0 = 0.4V \text{ to } 2.4V$				20	μA
VOH	Output Voltage High	$V_{ID} = 0.2V, I_{OH} = 0.4 m$	hΑ	2.4	3.0		v
VOL	Output Voltage Low	$V_{\rm ID} = -0.2V, I_{\rm OL} = 4 {\rm m}$	nA		0.35	0.5	v
V _{TH}	Differential Input High Threshold Voltage	$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$ (EIA-422/485)			0.03	0.2	v
V _{TL}	Differential Input Low Threshold Voltage (Note 6)	$V_{O} = V_{OL}, I_{O} = 4.0 \text{ mA}$ (EIA-422/485)		~0.20	-0.03		v
V _{HST}	Hysteresis (Note 7)	$V_{CM} = 0V$		35	60		mV
DRIVER AN	D RECEIVER CHARACTERISTI	CS					
VIH	Enable Input Voltage High			2.0			V
VIL	Enable Input Voltage Low					0.8	v
V _{CL} ·	Enable Input Clamp Voltage	I _{CL} = −18 mA				- 1.5	v
I _{IN}		Other Input = 0V	$V_{I} = +12V$		0.5	1.0	mA
	(Note 8)	DE/RE = 0.8V DE4 = 0.8V	$V_{I} = -7V$		-0.45	-0.8	mA
IING	Line Input Current (Note 8)	Other Input = 0V DE/RE and DE4 = 2V	V ₁ = +12V			1.0	mA
	(E)	V _{CC} = 3.0V T _A = +25°C	$V_{I} = -7V$			-0.8	mA
I _{IH} Enable Input	$V_{IN} = 2.4V$	$V_{\rm CC} = 3.0V$		1	40	μA	
	Current High	DE/RE	$V_{\rm CC} = 4.75V$		1		μΑ
			$V_{\rm CC} = 5.25V$	-1	1	40	μΑ
		$V_{IN} = 2.4V$	$V_{\rm CC} = 3.0V$		1	20	μΑ
		DE4 or RE4	$V_{\rm CC} = 5.25 V$		1	20	μΑ
hL.	Enable Input	$V_{IN} = 0.8V$	$V_{\rm CC} = 3.0V$		-6	-40	μA
	Current Low	DE/RE	$V_{CC} = 4.75V$		-12		μA
			$V_{\rm CC} = 5.25 V$		- 14	-40	μΑ
		$V_{IN} = 0.8V$	$V_{\rm CC} = 3.0V$		-3	-20	μΑ
		DE4 or RE4	$V_{CC} = 5.25V$		-7	-20	μA
ICCD	Supply Current (Note 10)	No Load, DE/ \overline{RE} and DE4 = 2.0V			75	90	mA
ICCR	Supply Current (Note 10)	No Load, DE/RE and RE		50	70	mA	

	ly Voltage and Operating Temperature ran		•				
Symbol	Parameter	Conditions		Min	Тур	Max	Units
RIVER SING	LE-ENDED CHARACTERISTICS						
t _{PZH}	Output Enable Time to High Level	$R_{L'} = 110\Omega$	(Figure 5)		35	40	ns
t _{PZL}	Output Enable Time to Low Level		(Figure 6)		25	40	ns
t _{PHZ}	Output Disable Time to High Level		(Figure 5)		15	25	ns
t _{PLZ}	Output Disable Time to Low Level		(Figure 6)		35	40	ns
RIVER DIFF	ERENTIAL CHARACTERISTICS						
t _r , t _f	Rise and Fall Time	$R_{L} = 54\Omega$ $C_{L} = 50 \text{ pF}$ $C_{D} = 15 \text{ pF}$ (<i>Figures 3, 4,</i> and <i>9</i>)			13	16	ns
tPLHD	Differential Propagation		9	15	19	ns	
tPHLD	Delays (Note 15)		9	12	19	ns	
tSKD	tPLHD - tPHLD Diff. Skew				3	6	ns
ECEIVER C	HARACTERISTICS						
t _{PLHD}	Differential Propagation Delays	$C_{L} = 15 \text{ pF}$ $V_{CM} = 2.0V$ (Figure 7)		9	14	19	ns
t _{PHLD}				9	13	19	ns
tSKD	tPLHD - tPHLD Diff. Receiver Skew				1	3	ns
t _{PZH}	Output Enable Time to High Level	C _L = 15 pF			15	22	ns
tPZL	Output Enable Time to Low Level	(Figure 8)			20	30	ns
^t PHZ	Output Disable Time from High Level				20	30	ns
tPLZ	Output Disable Time from Low Level]			17	25	ns

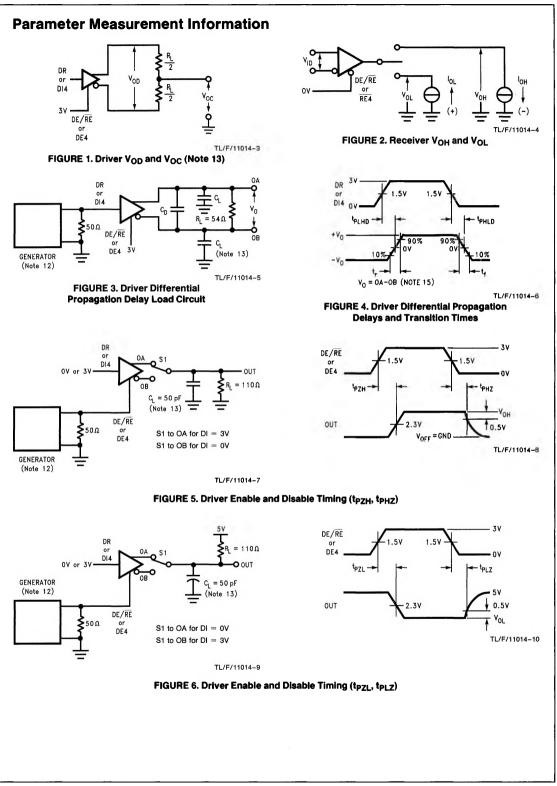
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

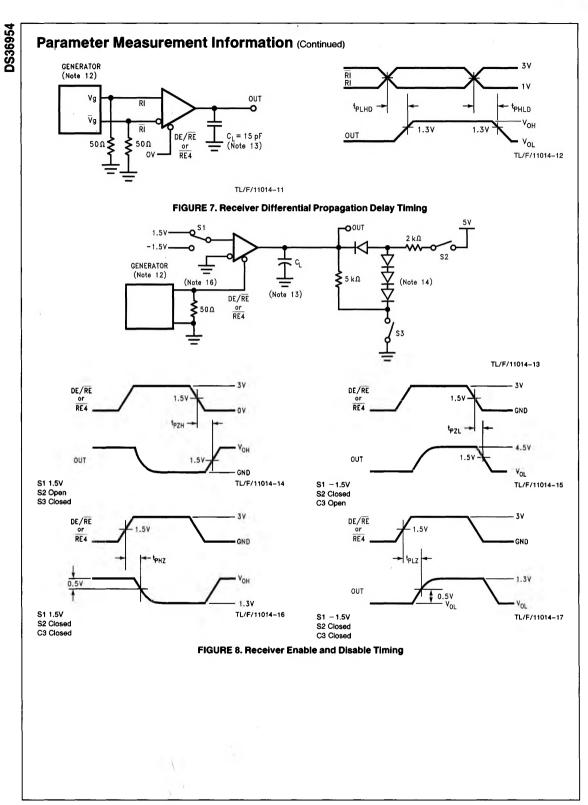
Note 3: IIH and IIL include driver input current and receiver TRI-STATE leakage current on DR(1-3).

Note 4: Δ IVODI and Δ IVOCI are changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input changes state.

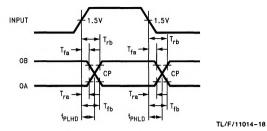
Note 5: In EIA Standards EIA-422 and EIA-485, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.


Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: IIN includes the receiver input current and driver TRI-STATE leakage current.


Note 9: Short one output at a time.

Note 10: Total package supply current.


Note 11: All typicals are given for V_{CC} = 5.0V and T_A = +25°C.

DS36954

Parameter Measurement Information (Continued)

 $T_{CP} = \frac{(T_{fb} \times T_{rb}) - (T_{ra} \times T_{fa})}{T_{rb} - T_{ra} - T_{fa} + T_{fb}}$

 T_{ra} , T_{rb} , T_{la} and T_{rb} are propagation delay measurements to the 20% and 80% levels. $T_{CP} = Crossing Point$

FIGURE 9. Propagation Delay Timing for Calculations of Driver Differential Propagation Delays

Note 12: The input pulse is supplied by a generator having the following characteristics: f = 1.0 MHz, 50% duty cycle, t_f and t_f < 6.0 ns, $Z_O = 50\Omega$.

Note 13: C_L includes probe and stray capacitance.

Note 14: Diodes are 1N916 or equivalent.

Note 15: Differential propagation delays are calculated from single-ended propagation delays measured from driver input to the 20% and 80% levels on the driver outputs (Figure 9).

Note 16: On transceivers 1-3 the driver is loaded with receiver input conditions when DE/RE is high. Do not exceed the package power dissipation limit when testing.