

Multipoint RS485/RS422 Transceivers/Repeaters

Check for Samples: DS3695, DS3695T, DS3696, DS3697

FEATURES

- Meets EIA standard RS485 for Multipoint Bus Transmission and is Compatible with RS-422
- 15 ns Driver Propagation Delays with 2 ns Skew (Typical)
- Single +5V supply
- -7V to +12V Bus Common Mode Range Permits ±7V Ground Difference Between Devices on the Bus
- Thermal Shutdown Protection

- High Impedance to Bus with Driver in TRI-STATE or with Power Off, Over the Entire Common Mode Range Allows the Unused Devices on the Bus to be Powered Down
- Combined Impedance of a Driver Output and Receiver Input is Less than one RS485 Unit Load, Allowing up to 32 Transceivers on the Bus
- 70 mV Typical Receiver Hysteresis

DESCRIPTION

The DS3695, DS3696, and DS3697 are high speed differential TRI-STATE bus/line transceivers/repeaters designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to −7V), for multipoint data transmission.

The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12V to -7V. Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696 provides an output pin TS (thermal shutdown) which reports the occurrence of the thermal shutdown of the device. This is an "open collector" pin with an internal 10 k Ω pull-up resistor. This allows the line fault outputs of several devices to be wire OR-ed.

Both AC and DC specifications are guaranteed over the 0°C to 70°C temperature and 4.75V to 5.25V supply voltage range.

Connection and Logic Diagrams

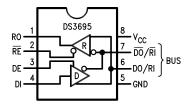


Figure 1. PDIP (Top View)
See Package Number P (R-PDIP-T8)

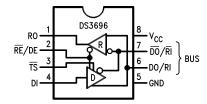


Figure 2. PDIP (Top View)
See Package Number P (R-PDIP-T8)

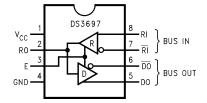


Figure 3. PDIP (Top View)
See Package Number P (R-PDIP-T8)

See Package Number P (R-PDIP-T8)

TS pin was LF (Line Fault) in previous data sheets and reports the occurrence of a thermal shutdown of the device.

AAA

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)(2)

	VALUE	UNIT
Supply Voltage, V _{CC}	7	V
Control Input Voltages	7	V
Driver Input Voltage	7	V
Driver Output Voltages	+15/-10	V
Receiver Input Voltages (DS3695, DS3696)	+15/-10	V
Receiver Common Mode Voltage (DS3697)	±25	V
Receiver Output Voltage	5.5	V
Continuous Power Dissipation @ 25°C - N Package (3)	1.07	W
Storage Temperature Range	−65 to +150	°C
Lead Temperature (Soldering, 4 sec.)	260	°C

^{(1) &}quot;Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Recommended Operating Conditions

		Min	Max	Units		
Supply Voltage, V _{CC}		4.75	5.25	V		
Bus Voltage		-7				
Operating Free Air Temp. (T _A)	Commercial	0	+70	°C		
	Industrial	-40	+85	°C		

Electrical Characteristics (1)(2)

 $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$, $4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified

Symbol	Para	ameter	Co	nditions	Min	Тур	Max	Units
V_{OD1}	Differential Driver Outp	out Voltage (Unloaded)	I _O = 0				5	V
V _{OD2}	Differential Driver Outp	out Voltage (with Load)	See Figure 4	$R = 50\Omega$; (RS-422) (3)	2			V
				R = 27Ω; (RS-485)	1.5			V
ΔV _{OD}	Change in Magnitude of Differential Output Volt Complementary Output	tage for	See Figure 4	R = 27Ω			0.2	V
V_{OC}	Driver Common Mode	Output Voltage					3.0	V
Δ V _{OC}	Change in Magnitude of Common Mode Output Complementary Output	t Voltage for					0.2	>
V _{IH}	Input High Voltage	DI, DE, RE,	E, RE /DE		2			V
V _{IL}	Input Low Voltage						0.8	V
V_{CL}	Input Clamp Voltage			I _{IN} = −18 mA			-1.5	V
I _{IL}	Input Low Current			$V_{IL} = 0.4V$			-200	μΑ
I _{IH}	Input High Current			V _{IH} = 2.4V			20	μΑ
I _{IN}	Input Current	DO/RI, DO /RI RI, RI	$\frac{V_{CC}}{RE}$ = 0V or 5.25V RE /DE or DE = 0V	V _{IN} = 12V			+1.0	mA
			RE /DE or DE = 0V	V _{IN} = −7V			-0.8	mA

⁽¹⁾ All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Submit Documentation Feedback

⁽²⁾ If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.

⁽³⁾ All typicals are given for $V_{CC} = 5V$ and $T_A = 25$ °C.

⁽²⁾ All typicals are given for $V_{CC} = 5V$ and $T_A = 25$ °C.

⁽³⁾ All limits for which derate linearly at 11.1 mW/°C to 570 mW at 70°C is applied must be derated by 10% for DS3695T and DS3696T. Other parameters remain the same for this extended temperature range device (-40°C ≤ T_A ≤ +85°C).

Electrical Characteristics (1)(2) (continued)

 $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$, $4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified

Symbol	Para	ameter		Conditions				Units
I _{OZD}	TRI-STATE Current DS3697 & DS3698	DO, DO	$V_{CC} = 0V \text{ or } 5.25V$ -7V < V_{O} < +12V	/, E = 0V			±100	μΑ
V _{TH}	Differential Input Threshold Voltage for Receiver		-7V ≤ V _{CM} ≤ +12V	-7V ≤ V _{CM} ≤ +12V			+0.2	V
ΔV_{TH}	Receiver Input Hystere	esis	V _{CM} = 0V			70		mV
V _{OH}	Receiver Output High	Voltage	I _{OH} = -400 μA		2.4			V
V _{OL}	Output Low Voltage	RO	I _{OL} = 16 mA ⁽³⁾	I _{OL} = 16 mA ⁽³⁾			0.5	V
	TS		I _{OL} = 8 mA	I _{OL} = 8 mA			0.45	V
I _{OZR}	OFF-State (High Impedance) Output Current at Receiver		$V_{CC} = Max$ $0.4V \le V_O \le 2.4V$				±20	μΑ
R _{IN}	Receiver Input Resista	ince	-7V ≤ V _{CM} ≤ +12V	-7V ≤ V _{CM} ≤ +12V				kΩ
I _{CC}	Supply Current		No Load (3)	Driver Outputs Enabled		42	60	mA
				Driver Outputs Disabled		27	40	mA
I _{OSD}	Driver Short-Circuit Ou	itput Current	$V_{O} = -7V^{(3)}$	$V_{O} = -7V^{(3)}$			-250	mA
			$V_O = +12V^{(3)}$	$V_O = +12V^{(3)}$			+250	mA
I _{OSR}	Receiver Short-Circuit	Output Current	$V_O = 0V$		-15		-85	mA

Receiver Switching Characteristics (1)(2)

 0° C $\leq T_A \leq +70^{\circ}$ C, 4.75V $< V_{CC} < 5.25$ V unless otherwise specified (Figure 5, Figure 6, Figure 7)

Symbol	Conditions	Min	Тур	Max	Units
t _{PLH}	C _L = 15 pF	15	25	37	ns
t _{PHL}	S1 and S2	15	25	37	ns
t _{PLH} -t _{PHL}	Closed	0			ns
t _{PLZ}	C _L = 15 pF, S2 Open	5	12	16	ns
t _{PHZ}	C _L = 15 pF, S1 Open	5	12	16	ns
t _{PZL}	C _L = 15 pF, S2 Open	7	15	20	ns
t _{PZH}	C _L = 15 pF, S1 Open	7	15	20	ns

Driver Switching Characteristics

 $0^{\circ}\text{C} \le \text{T}_{\Delta} \le +70^{\circ}\text{C}$, $4.75\text{V} < \text{V}_{CC} < 5.25\text{V}$ unless otherwise specified

Symbol	Conditions	Min	Тур	Max	Units
SINGLE ENDED CHARACTI	ERISTICS (Figure 8, Figure 9, Figure 10)	·			
t _{PLH}	$R_L DIFF = 60\Omega$	9	15	22	ns
t _{PHL}	$C_{L1} = C_{L2} = 100 \text{ pF}$	9	15	22	ns
t _{SKEW} t _{PLH} -t _{PHL}			2	8	ns
t _{PLZ}	C _L = 15 pF, S2 Open	7	15	30	ns
t _{PHZ}	C _L = 15 pF, S1 Open	7	15	30	ns
t _{PZL}	C _L = 100 pF, S2 Open	30	35	50	ns
t _{PZH}	C _L = 100 pF, S1 Open	30	35	50	ns
DIFFERENTIAL CHARACTE	RISTICS (Figure 8 Figure 11)	·			
t_r , t_f	$R_L DIFF = 60\Omega$ $C_{L1} = C_{L2} = 100 \text{ pF}$	6	10	18	ns

All typicals are given for V_{CC} = 5V and T_A = 25°C. Switching Characteristics apply for DS3695, DS3695T, DS3696, DS3697 only.

AC Test Circuits and Switching Waveforms

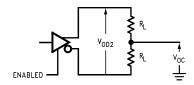


Figure 4. Driver V_{OD} and V_{OC}

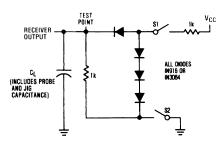
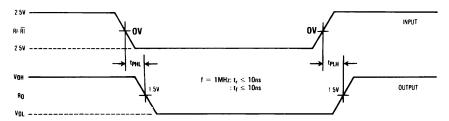



Figure 5. Receiver Propagation Delay Test Circuit

Note: Differential input voltage may be realized by grounding RI and pulsing RI between +2.5V and −2.5V.

Figure 6. Receiver Input-to-Output Propagation Delay Timing

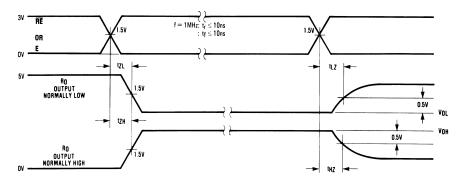
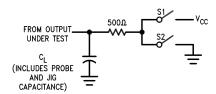



Figure 7. Receiver Enable/Disable Propagation Delay Timing

Note: Unless otherwise specified the switches are closed.

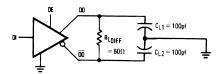
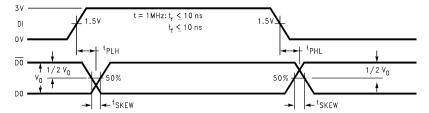



Figure 8. Driver Propagation Delay and Transition Time Test Circuits

Note: t_{PLH} and t_{PHL} are measured to the respective 50% points. t_{SKEW} is the difference between propagation delays of the complementary outputs.

Figure 9. Driver Input-to-Output Propagation Delay Timing (Single-Ended)

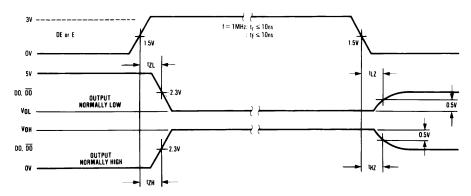


Figure 10. Driver Enable/Disable Propagation Delay Timing

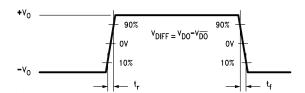


Figure 11. Driver Differential Transition Timing

Function Tables

Table 1. DS3695/DS3696 Transmitting⁽¹⁾

	Inputs		Thormal	Outputs			
RE	DE	DI	Thermal Shutdown	DO	DO	TS * (DS3696 Only)	
X	1	1	OFF	0	1	Н	
X	1	0	OFF	1	0	Н	
X	0	Х	OFF	Z	Z	Н	
Х	1	X	ON	Z	Z	L	

X—Don't care condition

Table 2. DS3695/DS3696 Receiving⁽¹⁾

	Inputs	Outputs			
RE	DE	RI– R Ī	RO	TS * (DS3696 Only)	
0	0	≥ +0.2V	1	Н	
0	0	≤ -0.2V	0	Н	
1	0	X	Z	Н	

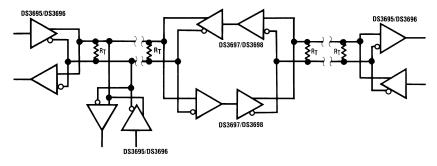

X-Don't care condition

Table 3. DS3697⁽¹⁾

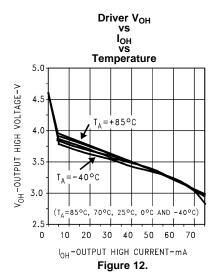
	Inputs	Thermal		Outputs	utputs			
E	RI-RĪ	Shutdown	DO	DO	RO (DS3697 Only)			
1	≥ +0.2V	OFF	0	1	1			
1	≤ -0.2V	OFF	1	0	0			
0	X	OFF	Z	Z	Z			
1	≥ +0.2V	ON	Z	Z	1			
1	≤ -0.2V	ON	Z	Z	0			

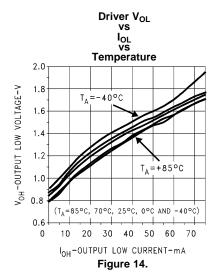
⁽¹⁾ X—Don't care condition

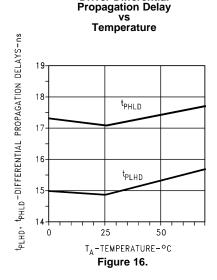
Typical Application

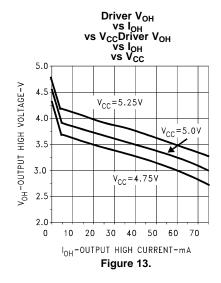
Note: Repeater control logic not shown, see AN-702.

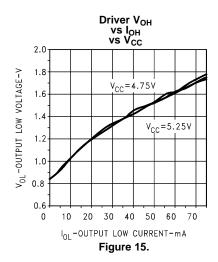
Z—High impedance state ${}^*\overline{TS}$ is an "open collector" output with an on-chip 10 kΩ pull-up resistor that reports the occurrence of a thermal shutdown of the device.

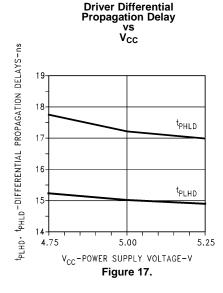

⁻High impedance state

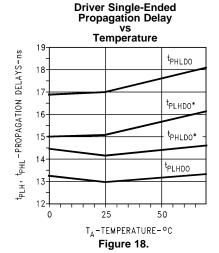

Z—High impedance state ${}^*\overline{TS}$ is an "open collector" output with an on-chip 10 k Ω pull-up resistor that reports the occurrence of a thermal shutdown of the device.

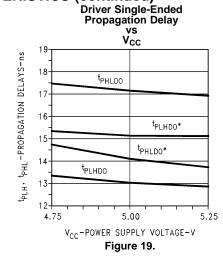

Z—High impedance state *TS is an "open collector" output with an on-chip 10 kΩ pull-up resistor that reports the occurrence of a thermal shutdown of the device.

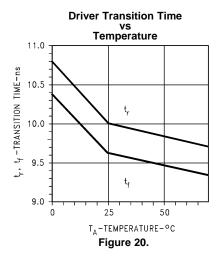

TYPICAL PERFORMANCE CHARACTERISTICS

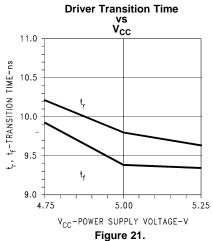


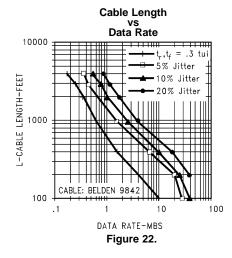


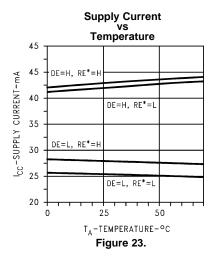

Driver Differential

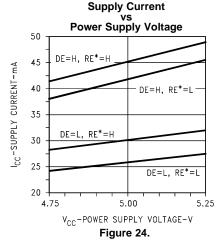


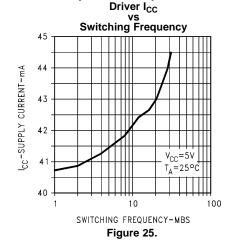


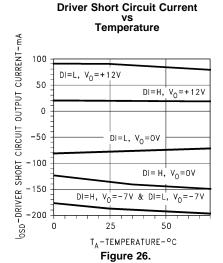


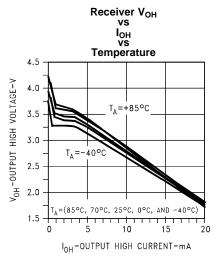












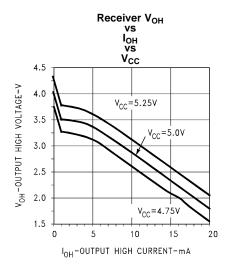
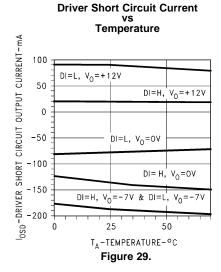
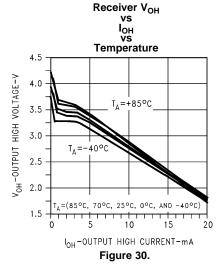
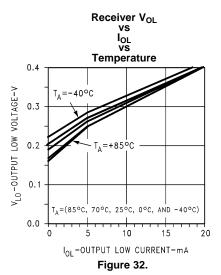
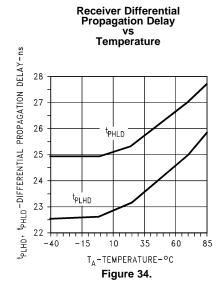
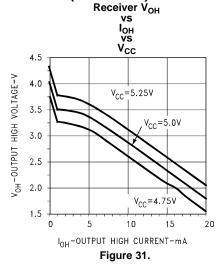
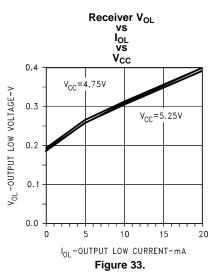
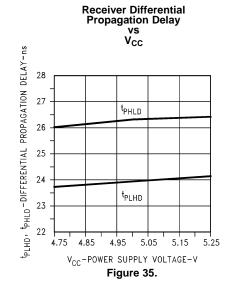


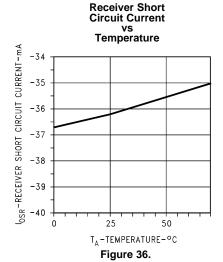
Figure 27.

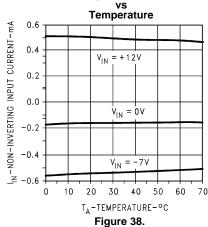





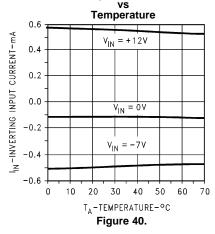

Figure 28.

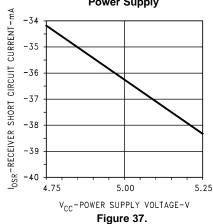


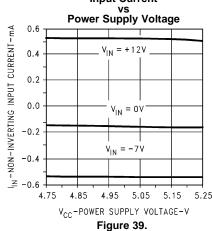











Receiver Inverting Input Current

Receiver Short Circuit Current vs Power Supply

Receiver Non-Inverting Input Current

Receiver Inverting

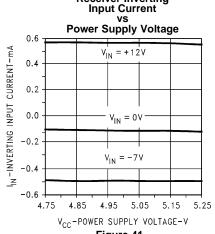
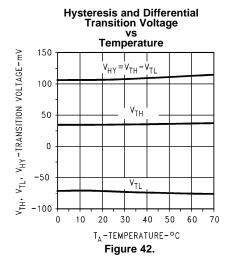
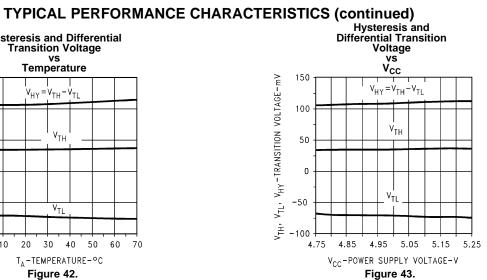




Figure 41.

www.ti.com 9-Mar-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)		Samples
	(1)		Drawing			(2)		(3)		(4)	
DS3695N	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI	0 to 70	DS3695N	Samples
DS3695N/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM	0 to 70	DS3695N	Samples
DS3695TN	ACTIVE	PDIP	Р	8	40	TBD	Call TI	Call TI		DS 3695TN	Samples
DS3695TN/NOPB	ACTIVE	PDIP	Р	8	40	Green (RoHS & no Sb/Br)	Call TI	Level-1-NA-UNLIM		DS 3695TN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

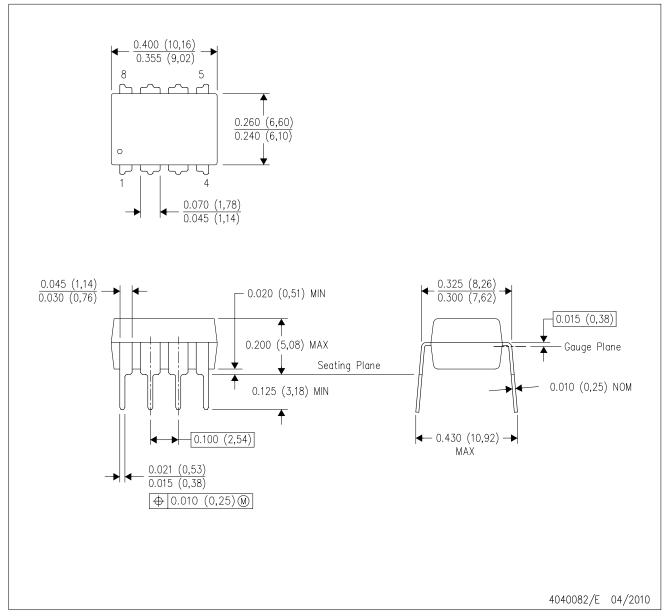
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽⁴⁾ Only one of markings shown within the brackets will appear on the physical device.

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>