DS1692,DS3692

DS1692/DS3692 -TRISTATE Differential Line Drivers

Literature Number: SNOSBK3

March 1992

DS1692/DS3692 TRI-STATE Differential Line Drivers

National Semiconductor

DS1692/DS3692 **TRI-STATE®** Differential Line Drivers

General Description

Vcc

GND

INPUT A

DISABLE 1

DISABLE 2

INPUT D

VEE

*Contact Product Marketing for availability.

MODE SELECT

The DS1692/DS3692 are low power Schottky TTL line drivers electrically similar to the DS1691A/DS3691 but tested to meet the requirements of MIL-STD-188-114A (see Application Note AN-216). MIL-STD-188-114A type 1 driver specifications can be met by adding an external three resistor voltage divider to the output of the DS3692/1692. The DS3692/ 1692 feature 4 buffered outputs with high source and sink current capability with internal short circuit protection.

With the mode select pin low, the DS1692/DS3692 are dual differential line drivers with TRI-STATE outputs. They feature ±10V output common-mode range in TRI-STATE and 0V output unbalance when operated with ±5V supply.

capacitors is not allowed. Features

Multipoint applications in differential mode with waveshaping

- Short circuit protection for both source and sink outputs
- 100Ω transmission line drive capability
- \blacksquare Low I_{CC} and I_{EE} power consumption: Differential
- mode: $I_{CC} = 9 \text{ mA/driver typ}, I_{EE} = 5 \text{ mA/driver typ}$ Low current PNP inputs compatible with TTL, MOS and CMOS
- Adaptable as MIL-STD-188-114A type 1 driver

O OUTPUT A (D) TRI-STATE® C DISABLE О ОПТРИТ В (С) мор SELECT DS005784-1 **Connection Diagram** Inputs Outputs A (D) Disable1 (2) Mode A (D) B (C) 0 0 0 0 1 RISE TIME CONTROL A 0 0 1 TRI-STATE TRI-STATE Ο Ο ΤΡΟΤΑ 0 1 0 1 0 ОИТРИТ В 0 TRI-STATE TRI-STATE 1 1 RISE TIME CONTROL B 12 RISE TIME CONTROL C 11 OUTPUT C 10 OUTPUT D BISE TIME CONTROL D DS005784-2

TRI-STATE® is a registered trademark of National Semiconductor Corporation. © 1999 National Semiconductor Corporation DS005784

Top View Order Number DS1692J, DS3692J, DS3692M or DS3692N See NS Package Number J16A, M16A* or N16A

Absolute Maximum Ratings (Note 2)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	
V _{cc}	7V
V _{EE}	-7V
Maximum Power Dissipation (Note 1) a	t 25°C
Cavity Package	1509 mW
Molded Package	1476 mW
Input Voltage	15V
Output Voltage (Power OFF)	±15V
Storage Temperature	–65°C to +150°C
Lead Temperature (Soldering, 4 sec.)	260°C

Operating Conditions					
ts					
ts					

Note 1: Derate cavity package 10.1 mW/°C; derate molded package 11.9 mW/°C above 25°C.

Electrical Characteristics

DS1692/DS3692 (Notes 3, 4, 5)

Symbol	Parameter	Cond	itions	Min	Тур	Max	Units
DS1692, V_{CC} = 5V ±10%, DS3692, V_{CC} = 5V ±5%, V_{EE} CONNECTION TO GROUND, MODE SELECT \leq 0.8V							
Vo	Differential Output Voltage	R _L = ∞	$V_{IN} = 2V$	2.5	3.6		V
$\overline{V_O}$	V _{A,B}		$V_{IN} = 0.8V$	-2.5	-3.6		V
V _T	Differential Output Voltage	$R_L = 100\Omega$	$V_{IN} = 2V$	2	2.6		V
$\overline{V_T}$	V _{A,B}	$V_{CC} \ge 4.75V$	$V_{IN} = 0.8V$	-2	-2.6		V
$V_{OS}, \overline{V_{OS}}$	Common-Mode Offset	$R_L = 100\Omega$			2.5	3	V
	Voltage						
$ V_T - \overline{V_T} $	Difference in Differential	$R_L = 100\Omega$			0.05	0.4	V
	Output Voltage						
$ V_{OS} - \overline{V_{OS}} $	Difference in Common-	$R_L = 100\Omega$			0.05	0.4	V
	Mode Offset Voltage						
V _{SS}	$ V_T - \overline{V_T} $	$R_L = 100\Omega, V_{CO}$	_c ≥ 4.75V	4.0	4.8		V
I _{ox}	TRI-STATE Output Current	$V_{O} \leq -10V$			-0.002	-0.15	mA
		V _O ≥ 15V			0.002	0.15	mA
I _{SA}	Output Short Circuit Current	V _{IN} = 0.4V	V _{OA} = 6V		80	150	mA
			V _{OB} = 0V		-80	-150	mA
I _{SB}	Output Short Circuit Current	V _{IN} = 2.4V	$V_{OA} = 0V$		-80	-150	mA
			V _{OB} = 6V		80	150	mA
I _{cc}	Supply Current				18	30	mA
DS1692, $V_{cc} = 5$	V ±10%, V _{EE} = -5V ±10%, DS3692	$V_{\rm CC} = 5V \pm 5\%$	$V_{EE} = -5 \pm 5\%$,	MODE SE	ELECT < 0.8	3V	
Vo	Differential Output Voltage	R _L = ∞	V _{IN} = 2.4V	7	8.5		V
$\overline{V_O}$	V _{A,B}		$V_{IN} = 0.4V$	-7	-8.5		V
V _T	Differential Output Voltage	R _L = 200Ω	V _{IN} = 2.4V	6	7.3		V
$\overline{V_T}$	V _{A,B}		V _{IN} = 0.4V	-6	-7.3		V
$ V_T - \overline{V_T} $	Output Unbalance	$ V_{CC} = V_{EE} , F$	L = 200Ω		0.02	0.4	V
I _{ox}	TRI-STATE Output Current		V _O = 10V		0.002	0.15	mA
			$V_{\rm O} = -10V$		-0.002	-0.15	mA
Is ⁺	Output Short Circuit Current	$V_{O} = 0V$	V _{IN} = 2.4V		-80	-150	mA
Is ⁻			$V_{IN} = 0.4V$		80	150	mA
I _{SLEW}	Slew Control Current				±140		μA
I _{cc}	Positive Supply Current	$V_{IN} = 0.4V, R_L$	= ∞		18	30	mA
I _{EE}	Negative Supply Current	$V_{IN} = 0.4V, R_L$	= ∞		-10	-22	mA

Electrical Characteristics V _{EE} ≤ 0V (Notes 3, 4)							
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IH}	High Level Input Voltage			2			V
V _{IL}	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	$V_{IN} = 2.4V$			1	40	μA
		$V_{IN} \le 15V$			10	100	μA
I _{IL}	Low Level Input Current	$V_{IN} = 0.4V$			-30	-200	μA
VI	Input Clamp Voltage	I _{IN} = -12 mA				-1.5	V
I _{XA}	Output Leakage Current	$V_{CC} = V_{EE} = 0V$	V _O = 15V		0.01	0.15	mA
I _{XB}	Power OFF		$V_{0} = -15V$		-0.01	-0.15	mA

Switching Characteristics T_{A} = 25 $^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{cc} = 5V, MODE SELECT = 0.8V						
t _r	Differential Output Rise Time	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		120	200	ns
t _f	Differential Output Fall Time	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		120	200	ns
t _{PDH}	Output Propagation Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		120	200	ns
t _{PDL}	Output Propagation Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		120	200	ns
t _{PZL}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 2</i>)		180	250	ns
t _{PZH}	TRI-STATE Delay	$R_{L} = 100\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		180	250	ns
t _{PLZ}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 2</i>)		80	150	ns
t _{PHZ}	TRI-STATE Delay	$R_L = 100\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 2</i>)		80	150	ns
$V_{CC} = 5V,$	$V_{cc} = 5V, V_{EE} = -5V, MODE SELECT = 0.8V$					
t _r	Differential Output Rise Time	$R_L = 200\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		190	300	ns
t _f	Differential Output Fall Time	$R_L = 200\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		190	300	ns
t _{PDL}	Output Propagation Delay	$R_L = 200\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 1</i>)		190	300	ns
t _{PDH}	Output Propagation Delay	R_{L} = 200 Ω , C_{L} = 500 pF (<i>Figure 1</i>)		190	300	ns
t _{PZL}	TRI-STATE Delay	R _L = 200Ω, C _L = 500 pF (<i>Figure 2</i>)		180	250	ns
t _{PZH}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 2</i>)		180	250	ns
t _{PLZ}	TRI-STATE Delay	$R_{L} = 200\Omega, C_{L} = 500 \text{ pF} (Figure 2)$		80	150	ns
t _{PHZ}	TRI-STATE Delay	$R_L = 200\Omega$, $C_L = 500 \text{ pF}$ (<i>Figure 2</i>)		80	150	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.

Note 3: Unless otherwise specified, min/max limits apply across the –55°C to +125°C temperature range for the DS1692 and across the 0°C to +70°C range for the DS3692. All typicals are given for V_{CC} = 5V and T_A = 25°C. V_{CC} and V_{EE} as listed in operating conditions.

Note 4: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 5: Only one output at a time should be shorted.

www.national.com

4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated