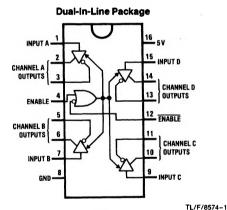


National Semiconductor

DS26C31T/DS26C31M **CMOS Quad TRI-STATE® Differential Line Driver**


General Description

The DS26C31 is a guad differential line driver designed for digital data transmission over balanced lines. The DS26C31T meets all the requirements of EIA standard RS-422 while retaining the low power characteristics of CMOS. The DS26C31M is compatible with EIA standard RS-422; however, one exception in test methodology is taken (see Note 8). This enables the construction of serial and terminal interfaces while maintaining minimal power consumption.

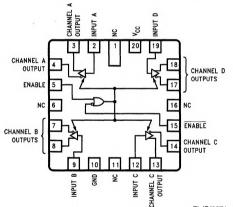
The DS26C31 accepts TTL or CMOS input levels and translates these to RS-422 output levels. This part uses special output circuitry that enables the drivers to power down without loading down the bus. This device has enable and disable circuitry common to all four drivers. The DS26C31 is pin compatible to the AM26LS31 and the DS26LS31.

All inputs are protected against damage due to electrostatic discharge by diodes to V_{CC} and ground.

Connection Diagrams

Top View

Order Number DS26C31TJ, DS26C31TM or DS26C31TN See NS Package Number J16A, M16A or N16E


> For Complete Military 883 Specifications. See RETS Data Sheet

Order Number DS26C31ME/883, DS26C31MJ/883 or DS26C31MW/883 See NS Package Number E20A, J16A or W16A

Features

- TTL input compatible
- Typical propagation delays: 6 ns
- Typical output skew: 0.5 ns
- Outputs will not load line when V_{CC} = 0V
- DS26C31T meets the requirements of EIA standard **RS-422**
- Operation from single 5V supply
- TRI-STATE outputs for connection to system buses
- Low guiescent current
- Available in surface mount
- Mil-Std-883C compliant

20-Lead Ceramic Leadless Chip Carrier (E)

TL/F/8574-12

Truth Table

ENABLE	ENABLE	Input	Non-Inverting Output	Inverting Output	
L	н	х	z	Z	
All other		L	L	н	
combinations of enable inputs		н	н	L	
L = Low logic H = High logi			relevant RI-STATE (high imped	Jance)	

http://www.national.com

DS26C31T/DS26C31M

Units

v

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to 7.0V
DC Input Voltage (VIN)	$-1.5V$ to $V_{CC}+1.5V$
DC Output Voltage (V _{OUT})	-0.5V to 7V
Clamp Diode Current (I _{IK} , I _{OK})	± 20 mA
DC Output Current, per pin (I _{OUT})	± 150 mA
DC V _{CC} or GND Current, per pin (I_{CC})	± 150 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Max. Power Dissipation (PD) @25°C (Note 3)
Ceramic "J" Pkg.	2419 mW
Plastic "N" Pkg.	1736 mW
SOIC "M" Pkg.	1226 mW
Ceramic "W" Pkg.	1182 mW
Ceramic "E" Pkg.	2134 mW
Lead Temperature (T_L) (Soldering, 4 s	ec.) 260°C

This device does not meet 2000V ESD Rating. (Note 13)

Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	4.50	5.50	v	
DC Input or Output Voltage				
(V _{IN} , V _{OUT})	0	Vcc	v	
Operating Temperature Range (T _A)				
DS26C31T	-40	+ 85	°C	
DS26C31M	-55	+ 125	°C	
Input Rise or Fall Times (t _r , t _f)		500	ns	

Symbol Parameter Conditions Min Max Тур 2.0 High Level Input Voltage νн

DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ (unless otherwise specified) (Note 4)

VIH	High Level input voltage			2.0			v
VIL	Low Level Input Voltage					0.8	v
V _{OH}	High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{I}$ $I_{OUT} = -20 \text{ m}$	-	2.5	3.4		v
V _{OL}	Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{I}$ $I_{OUT} = 20 \text{ mA}$	L		0.3	0.5	v
VT	Differential Output Voltage	R _L = 100Ω (Note 5)	2.0	3.1		v	
V _T – V_T	Difference In Differential Output	R _L = 100Ω (Note 5)			0.4	v	
V _{OS}	Common Mode Output Voltage	R _L = 100Ω (Note 5)		1.8	3.0	v	
$ V_{OS} - \overline{V_{OS}} $	Difference In Common Mode Output	R _L = 100Ω (Note 5)			0.4	v	
IIN	Input Current	$V_{IN} = V_{CC}$, GND, V_{IH} , or V_{IL}				±1.0	μΑ
Icc	Quiescent Supply	DS26C31T	$V_{IN} = V_{CC} \text{ or } GND$		200	50 0	μΑ
	Current (Note 6)	l _{OUT} = 0 μA	V _{IN} = 2.4V or 0.5V (Note 6)		0.8	2.0	mA
		DS26C31M	$V_{IN} = V_{CC} \text{ or } GND$		200	500	μA
		l _{OUT} = 0 μA	V _{IN} = 2.4V or 0.5V (Note 6)		0.8	2.1	mA
loz	TRI-STATE Output Leakage Current	$V_{OUT} = V_{CC}$ of ENABLE = V_{IL} ENABLE = V_{IH}			±0.5	±5.0	μΑ

Symbol	Parameter	Co	Min	Тур	Max	Units	
	Output Short Circuit Current	V _{IN} = V _{CC} or ((Notes 5, 7)	GND	-30	÷.	- 150	mA
	Output Leakage Current Power Off (Note 5)	DS26C31T V _{CC} = 0V	V _{OUT} = 6V	-		100	μA
	Power On (Note 5)	V _{CC} – UV	$V_{OUT} = -0.25V$			- 100	μΑ
		DS26C31M	V _{OUT} = 6V			100	μΑ
		$V_{CC} = 0V$	V _{OUT} = 0V (Note 8)			- 100	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, all voltages are referenced to ground. All currents into device pins are positive, all currents out of device pins are negative. Note 3: Ratings apply to ambient temperature at 25°C. Above this temperature derate N package at 13.89 mW/°C, J package 16.13 mW/°C, M package 9.80 mW/°C, E package 12.20 mW/°C, and W package 6.75 mW/°C.

Note 4: Unless otherwise specified, min/max limits apply across the recommended operating temperature range. All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 5: See EIA Specification RS-422 for exact test conditions.

Note 6: Measured per input. All other inputs at V_{CC} or GND.

Note 7: This is the current sourced when a high output is shorted to ground. Only one output at a time should be shorted.

Note 8: The DS26C31M (-55°C to +125°C) is tested with V_{OUT} between +6V and 0V while RS-422A condition is +6V and -0.25V.

Switching Characteristics $V_{CC} = 5V \pm 10\%$, $t_r \le 6$ ns, $t_f \le 6$ ns (Figures 1, 2, 3 and 4) (Note 4)

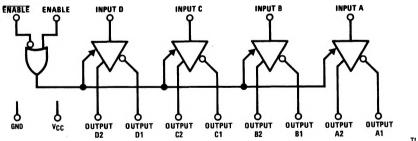
Symbol	Parameter	Conditions Min	Min	True	M		
			Тур	DS26C31T	CS26C31M	Units	
t _{PLH} , t _{PHL}	Propagation Delays Input to Output	S1 Open	2	6	11	14	ns
Skew	(Note 9)	S1 Open		0.5	2.0	3.0	ns
t _{TLH} , t _{THL}	Differential Output Rise And Fall Times	S1 Open		6	10	14	ns
tPZH	Output Enable Time	S1 Closed		11	19	22	ns
t _{PZL}	Output Enable Time	S1 Closed		13	21	28	ns
t _{PHZ}	Output Disable Time (Note 10)	S1 Closed		5	9	12	ns
t _{PLZ}	Output Disable Time (Note 10)	S1 Closed		7	11	14	ns
C _{PD}	Power Dissipation Capacitance (Note 11)			50		20	pF
CIN	Input Capacitance			6			pF

Note 9: Skew is defined as the difference in propagation delays between complementary outputs at the 50% point.

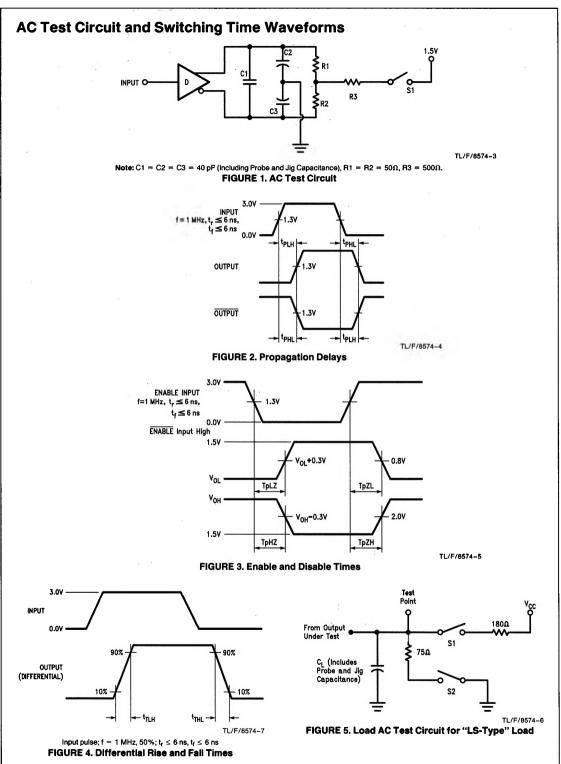
Note 10: Output disable time is the delay from ENABLE or ENABLE being switched to the output transistors turning off. The actual disable times are less than indicated due to the delay added by the RC time constant of the load.

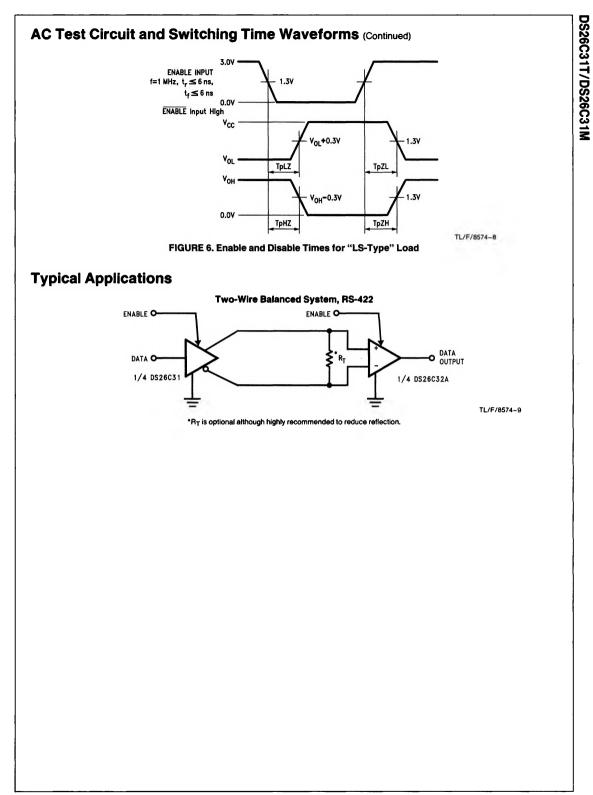
Note 11: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 1 + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} 1 + I_{CC}$.

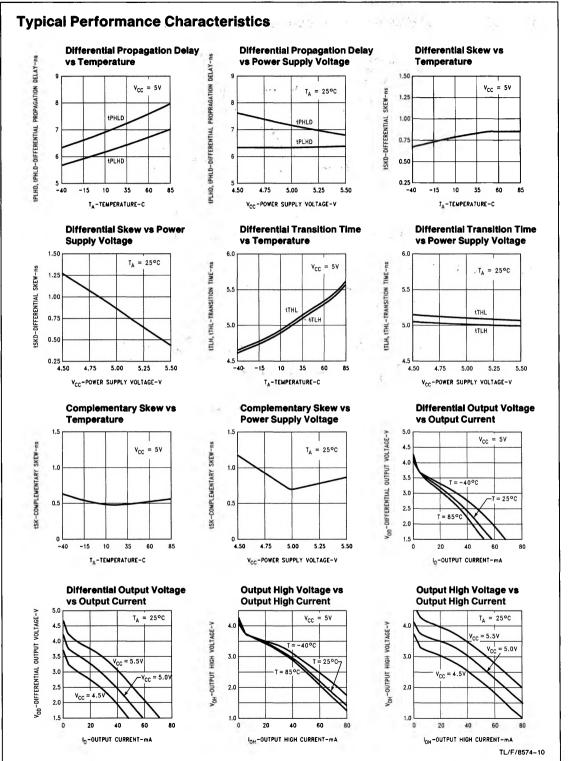
õ
Ň
õ
0
ذنة
-
~
õ
Ň
õ
0
خت
<u> </u>
2

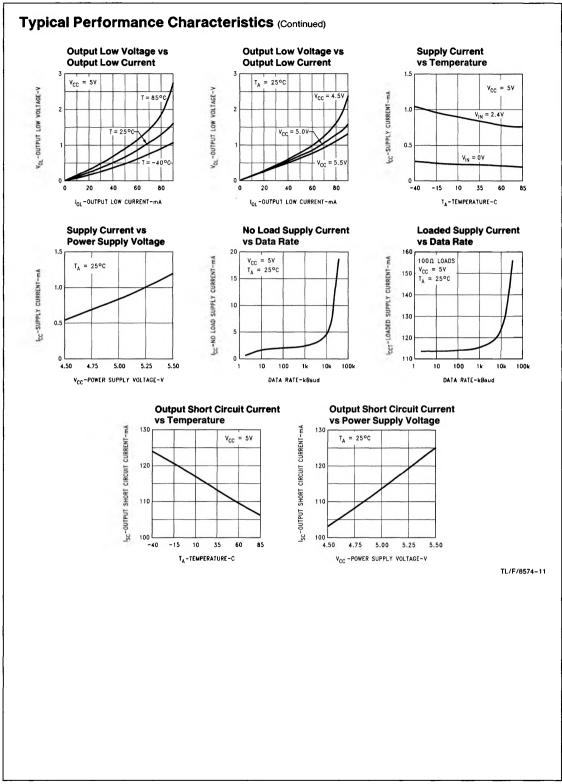

Comparison Table of Switching Characteristics into "LS-Type" Load $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_f \le 6$ ns, $t_f \le 6$ ns (Figures 2, 4, 5 and 6) (Note 12)

Symbol	Parameter	Conditions	DS26C31T		DS26LS31C		Units
		Conditions	Тур	Max	Тур	Max	Units
tplh, tphl	Propagation Delays Input to Output	C _L = 30 pF S1 Closed S2 Closed	6	8	10	15	ns
Skew	(Note 9)	C _L = 30 pF S1 Closed S2 Closed	0.5	1.0	2.0	6.0	ns
t _{THL} , t _{TLH}	Differential Output Rise and Fall Times	C _L = 30 pF S1 Closed S2 Closed	4	6			ns
^t PLZ	Output Disable Time (Note 10)	C _L = 10 pF S1 Closed S2 Open	6	9	15	35	ns
^t PHZ	Output Disable Time (Note 10)	C _L = 10 pF S1 Open S2 Closed	4	7	15	25	ns
t _{PZL}	Output Enable Time	C _L = 30 pF S1 Closed S2 Open	14	20	20	30	ns
^t PZH	Output Enable Time	C _L = 30 pF S1 Open S2 Closed	11	17	20	30	ns


Note 12: This table is provided for comparison purposes only. The values in this table for the DS26C31 reflect the performance of the device but are not tested or guaranteed.


Note 13: ESD Rating: HBM (1.5 k Ω , 100 pF) Inputs ≥ 1500V Outputs ≥ 1000V EIAJ (0Ω, 200 pF) ≥ 350V


Logic Diagram


TL/F/8574-2

DS26C31T/DS26C31M

DS26C31T/DS26C31M