

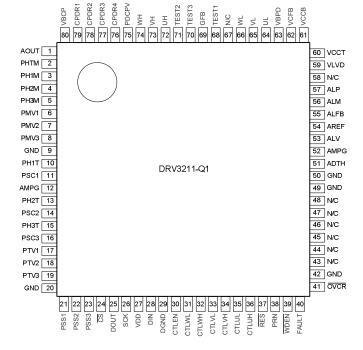
www.ti.com SLVSBS4 – DECEMBER 2012

3-Phase Brushless Motor Driver

Check for Samples: DRV3211-Q1

FEATURES

- 3-Phase Pre-drivers for N-channel MOS Field Effect Transistors (MOSFETs)
- Pulse Width Modulation (PWM) Frequency up to 20 kHz
- Fault Diagnostics
- Charge Pump
- Phase Comparators
- Phase Monitoring Sample and Hold Op-Amps
- Central Processing Unit (CPU) Reset Generator
- Serial Port I/F (SPI)
- Motor Current Sense
- 80-pin HTQFP
- 5-V Regulator


APPLICATIONS

Automotive

PINOUT

DESCRIPTION

The DRV3211-Q1 device is a field effect transistor (FET) pre-driver designed for 3-phase motor control and its application such as an oil pump or a water pump. It is equipped with three high-side pre-FET drivers and three low-side drivers which are controlled by an external microcontroller (MCU). The power for the high side is supplied by a charge pump and no bootstrap cap is needed. For commutation, this integrated circuit (IC) sends a conditional motor drive signal and output to the MCU. Diagnostics provide undervoltage, overvoltage, overcurrent, overtemperature and power bridge faults. The motor current can be measured using an integrated current sense amplifier and comparator in a battery commonmode range, which allows the motor current to be used in a high-side current sense application. Gain is attained by external resistors. If the MCU does not have enough bandwidth, the phase monitoring sample and hold amplifiers can hold phase information until the MCU is ready to process it. The pre-driver and other internal settings can be configured through the SPI interface.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN FUNCTIONS

			FI	N FUNCTIONS
	PIN		MAX RATING	FUNCTION
NO.	NAME	TYPE		
1	AOUT	0	-0.3-6 V	Test mode output
2	PHTM	I	-1-40 V	Phase comparator reference input
3	PH1M	I	-1-40 V	Phase comparator input
4	PH2M	I	-1-40 V	Phase comparator input
5	PH3M	I	-1-40 V	Phase comparator input
6	PMV1	0	-0.3-6 V	Phase comparator output
7	PMV2	0	-0.3-6 V	Phase comparator output
8	PMV3	0	-0.3-6 V	Phase comparator output
9, 20, 42, 49, 50	GND	I	-0.3-0.3 V	GND
10	PH1T	I	-2-40 V	Phase amplifier input
11	PSC1	0	-0.3-6 V	Sample and hold filter output
12	AMPG	I	-0.3-0.3 V	Quiet GND
13	PH2T	I	-2-40 V	Phase amplifier input
14	PSC2	0	-0.3-6 V	Sample and hold filter output
15	PH3T	I	-2-40 V	Phase amplifier input
16	PSC3	0	-0.3-6 V	Sample and hold filter output
17	PTV1	0	-0.3-6 V	Phase amplifier output
18	PTV2	0	-0.3-6 V	Phase amplifier output
19	PTV3	0	-0.3-6 V	Phase amplifier output
21	PSS1	I	-0.3-6 V	Sample and hold control signal input
22	PSS2	I	-0.3-6 V	Sample and hold control signal input
23	PSS3	I	-0.3-6 V	Sample and hold control signal input
24	CS	I	-0.3-6 V	SPI chip select
25	DOUT	0	-0.3-6 V	SPI data output
26	SCK	I	-0.3-6 V	SPI clock
27	VDD	0	-0.3-3.6 V	Digital supply output
28	DIN	I	-0.3-6 V	SPI data input
29	DGND	I	-0.3-0.3 V	Digital GND
30	CTLEN	I	-0.3-6 V	Pre-driver parallel enable input
31	CTLWL	I	-0.3-6 V	Pre-driver parallel input
32	CTLWH	I	-0.3-6 V	Pre-driver parallel input
33	CTLVL	I	-0.3-6 V	Pre-driver parallel input
34	CTLVH	1	-0.3-6 V	Pre-driver parallel input
35	CTLUL	I	-0.3-6 V	Pre-driver parallel input
36	CTLUH	I	-0.3-6 V	Pre-driver parallel input
37	RES	0	-0.3-6 V	Reset output
38	PRN	I	-0.3-6 V	Pulse input
39	WDEN	I	-0.3-6 V	Reset generator enable input
40	FAULT	0	-0.3-6 V	Diagnosis output
41	OVCR	1	-0.3-6 V	Over current reset input
43-48, 58, 67	N/C	_	1 _	Not connected
51	ADTH	1	-0.3-6 V	Motor overcurrent threshold input
51	ADIH	I	-U.J-6 V	iviolor overcurrent threshold input

Submit Documentation Feedback

NSTRUMENTS

PIN FUNCTIONS (continued)

	PIN		MAY DATING	FINISTION
NO.	NAME	TYPE	MAX RATING	FUNCTION
52	AMPG	I	-0.3-0.3 V	Quiet GND
53	ALV	0	-0.3-6 V	Motor current sense amp output
54	AREF	0	-0.3-40 V	Motor current sense reference output
55	ALFB	0	-0.3-40 V	Motor current sense amp feedback
56	ALM	ı	-0.3-40 V	Motor current sense amp negative input
57	ALP	ı	-0.3-40 V	Motor current sense amp positive input
59	VLVD	I	-0.3-6 V	V _{CC} undervoltage threshold input
60	VCCT	I	-0.3-6 V	V _{CC} supply input
61	VCCB	0	-0.3-40 V	V _{CC} regulator base drive for PNP external transistor
62	VCFB	I	-0.3-40 V	V _{CC} regulator current sense input
63	VBPD	I	-0.3-40 V	VB input
64	UL	0	-0.3–20 V	Pre-driver output
65	VL	0	-0.3–20 V	Pre-driver output
66	WL	0	-0.3–20 V	Pre-driver output
68	TEST1	I	-0.3-6 V	Test input
69	GFB	I	-0.3-0.3 V	Power GND
70	TEST3	I	-0.3–20 V	Test input
71	TEST2	I	-0.3-6 V	Test input
72	UH	0	-0.3-40 V	Pre-driver output
73	VH	0	-0.3-40 V	Pre-driver output
74	WH	0	-0.3-40 V	Pre-driver output
75	PDCPV	0	-0.3-40 V	Charge pump output
76	CPDR4	0	-0.3-40 V	Charge pump output
77	CPDR3	0	-0.3-40 V	Charge pump output
78	CPDR2	0	-0.3-40 V	Charge pump output
79	CPDR1	0	-0.3-40 V	Charge pump output
80	VBCP	I	-0.3-4 0V	VB input

TEXAS INSTRUMENTS

BLOCK DIAGRAM

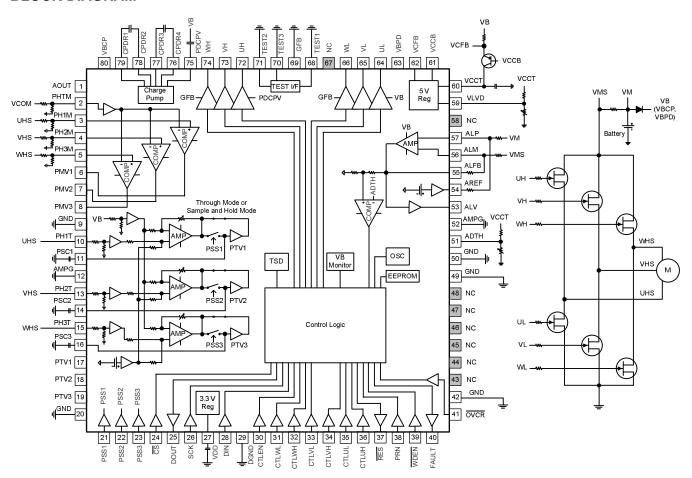


Figure 1. Top Block Diagram

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNITS
ESD ⁽¹⁾				<u>.</u>	
ESD all	CCD performance of all pine to any other pin	HBM model	-2	2	kV
pins	ESD performance of all pins to any other pin	CDM model	-500	500	V
TEMPERA	ATURE			•	
T_A	Operating temperature range		-40	125	degree
T_{J}	Junction temperature		-40	150	degree
T _s	Storage temperature		-55	150	degree

(1) ESD testing is performed according to the ACE-Q100 standard.

Submit Documentation Feedback

SLVSBS4 - DECEMBER 2012

THERMAL INFORMATION

	TUEDMAL METRIC(1)	DRV3202-Q1	
	THERMAL METRIC ⁽¹⁾	HTQP (80-PIN)	UNIT
θ_{JA}	Junction-to-ambient thermal resistance	23.0	
θ _{JCtop}	Junction-to-case (top) thermal resistance	7.5	
θ_{JB}	Junction-to-board thermal resistance	7.6	90044
Ψлт	Junction-to-top characterization parameter	0.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	7.4	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance	0.3	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

SUPPLY VOLTAGE AND CURRENT

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SUPF	PLY INPUT					
VB	VB Supply voltage		5.3	12	18	V
I_{VB}	VB Operating current	VB = 5.3 ~18 V, No PWM		20	35	mA

WATCHDOG

Description

The watchdog monitors the PRN signal and V_{CC} supply level and generates a reset to the MCU through the \overline{RES} pin if the status of the PRN is not normal or the V_{CC} is lower than the specified threshold level. The watchdog can be disabled if \overline{WDEN} is set high.

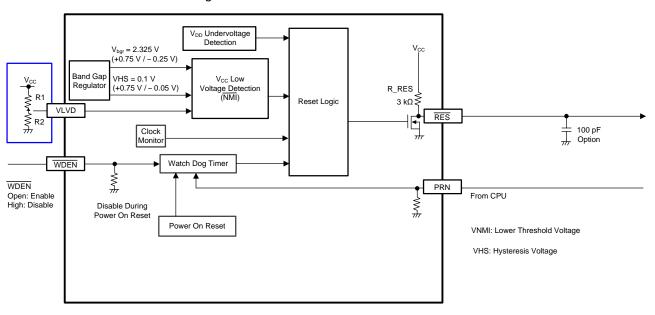
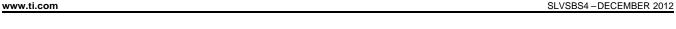
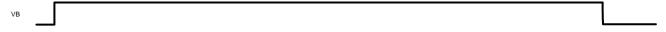
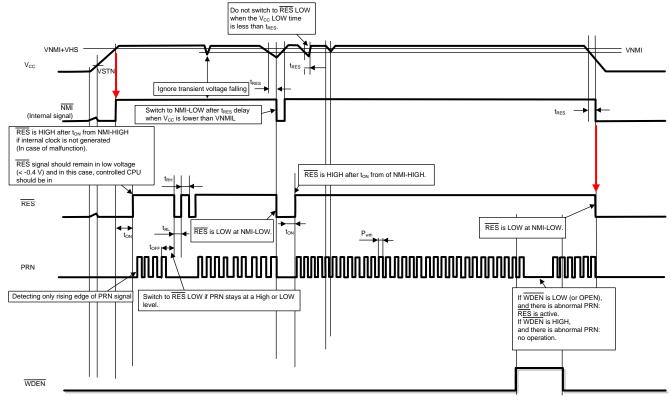





Figure 2. Watchdog Block Diagram

Submit Documentation Feedback

NOTE: $\overline{\text{WDEN}} = \text{High}$, V_{CC} undervoltage condition sets $\overline{\text{RES}} = \text{Low}$

Figure 3. Watchdog Timing Chart

WATCHDOG ELECTRICAL CHARACTERISTICS(1)

 $VB = 12 \text{ V}, T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise specified)

	PARAMETER ⁽²⁾	CONDITIONS	MIN	TYP	MAX	UNITS						
WATCH	NATCHDOG											
VSTN	Function start V _{CC} voltage RES		_	0.8	1.3	V						
t _{ON}	Power-on time RES		32	40	48	ms						
t _{OFF}	Clock off reset time RES		64	80	96	ms						
t_{RL}	Reset pulse low time RES	Refer to Figure 3	16	20	24	ms						
t _{RH}	Reset pulse high time RES		64	80	96	ms						
t _{RES}	Reset delay time RES		30	71.5	90	μs						
P _{wth}	Pulse width PRN		200	_	-	ns						

- The watchdog function is disabled and the timing parameters are invalid when the WDEN is at a high level.
- Specified by design

SERIAL PORT I/F

Description

The SPI is used to receive an input byte from CPU and to transmit an output byte to CPU. Four signals are utilized according to the timing chart of Figure 4.

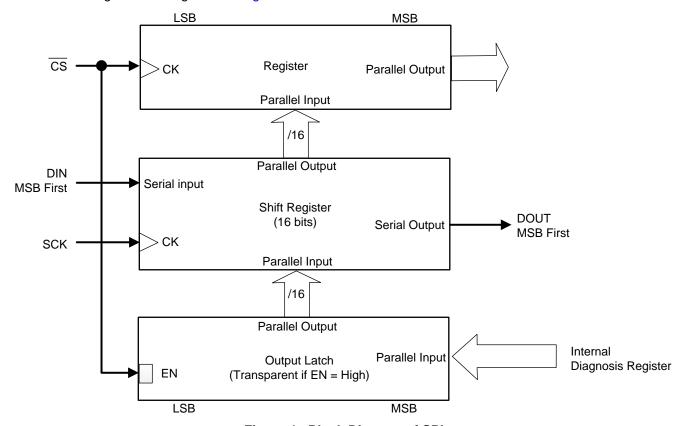


Figure 4. Block Diagram of SPI

• CS - Chip Select

- This input signal is utilized to select this IC by CPU.
- This input signal is normally high and the communication is possible only when it is forced low.
- When this input signal falls, the communication between this IC and the CPU starts.
- Transmitted data is latched and the DOUT pin comes out of high impedance.
- When this input signal rises, the communication stops.
- The DOUT pin goes into high impedance. Then, the internal input register updates with the received bits (only if the clock pulse numbers are right and the key bit of the DIN signals is correct).
- The next falling edge starts another communication.
- There is a minimum waiting time between two communications (T_{wait}).
- The pin has an internal pullup.

SCK – Synchronization Serial Clock

- This input signal is utilized to synchronize the communication by CPU.
- It is normally high and the correct clock pulse number is 16.
- At each falling edge, the CPU writes a new bit on the DIN input and this IC writes a new bit on the DOUT pin. At each rising edge, this IC reads the new bit on the DIN pin and the CPU reads the new bit on the DOUT pin.
- The maximum clock frequency is 4 MHz.
- The pin has an internal pullup.

Submit Documentation Feedback

www.ti.com SLVSBS4 – DECEMBER 2012

DIN – Serial Input Data

- This input signal is used to receive 16-bit data.
- The bits are received in order from the MSB (first) to the LSB (last).
- The pin has an internal pullup.

• DOUT - Serial Output Data

- This output signal is used to transmit 16-bit data.
- It is a 3-state output and it is in high impedance mode when CS is high.
- The serial data bits are transmitted in order from the MSB (first) to the LSB (last).

SPI ELECTRICAL CHARACTERISTICS

 $VB = 12 \text{ V}, T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise specified)

	PARAMETER ⁽¹⁾	CONDITIONS	MIN	TYP	MAX	UNITS
SPI					·	
F _{op}	Operating frequency		DC	_	4	MHz
T _{lead}	Enable lead time		100	_	_	ns
T _{wait}	Wait time between two successive communications		5	-	-	μs
T _{lag}	Enable lag time	Refer to Figure 6	100	-	-	ns
T _{pw}	SCLK pulse width		100	_	_	ns
T _{su}	Data setup time		80	_	_	ns
T _h	Data hold time		80	_	_	ns
T _{dis}	Disable time		_	_	80	ns
T _{del}	Data delay time (SCK to DOUT)	C _L = 50 pF, Refer to Figure 6	_	_	80	ns

(1) Specified by design

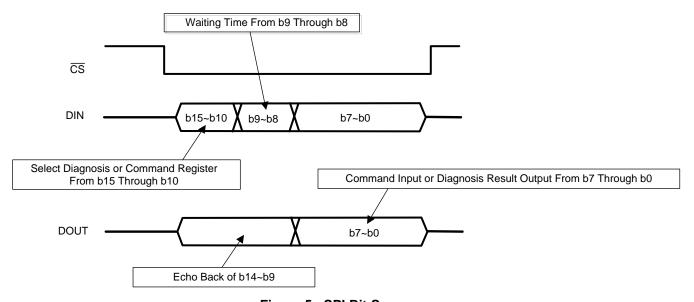


Figure 5. SPI Bit Sequence

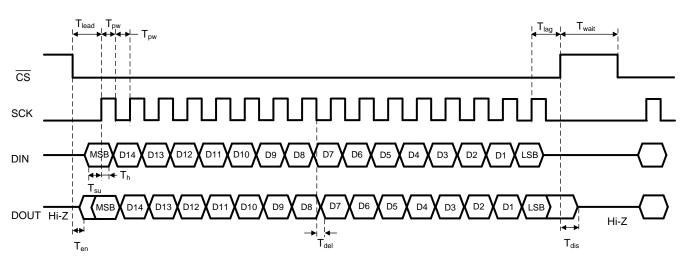


Figure 6. SPI AC Timing Definition

Table 1. SPI Bit Map (DIN)

ITEM	B15	B14	B13	B12	B11	B10	В9	В8	B7	В6	B5	B4	В3	B2	B1	В0
COMMAND1	0	0	0	0	0	1	-	-	SHM	SRT	-	-	-	-	_	-
COMMAND2	0	0	0	0	1	0	-	-	AG1	AG0	-	-	-	-	_	-
COMMAND3	0	0	0	0	1	1	-	-	-	-	-	-	-	-	_	-
DIAG_READ1	0	0	1	0	0	0	-	_	_	-	-	-	_	-	_	-
DIAG_READ2	0	1	0	0	0	0	-	-	-	-	-	-	-	-	_	-
DIAG_READ3	0	1	1	0	0	0	-	-	_	-	-	-	-	-	_	-

In Table 1, the B15-B10 are the control bits, so the each command depends on them (listed below).

1. B15-B10 = 0 0 0 0 0 1

These are the commands:

- 1) Phase AMP Sampling Hold Mode (B7 bit)
 - 0: OFF (through) (INITIAL VALUE)
 - 1: ON (use sample hold mode)
- 2) Phase AMP Short Mode [Short_Mode] (B6 bit)
 - 0: OFF (no calibration) (INITIAL VALUE)
 - 1: ON (use calibration mode)

2. **B15-B10 = 0 0 0 0 1 0**

These are the commands:

1) Phase AMP Gain (B7 bit and B6 bit)

B7:0 B6:0; Gain x1 (INITIAL VALUE)

B7:0 B6:1; Gain x2

B7:1 B6:0; Gain x3

B7:1 B6:1; Gain x4

3. **B15-B10 = 0 0 0 0 1 1**

Not used

4. B15-B10 = 0 0 1 0 0 0

This command is to read the diagnosis of the current regulator, SPI communication, overvoltage detection, and input diagnosis.

5. **B15-B10 = 0 1 0 0 0 0**

This command is to read the diagnosis of SPI communication.

6. **B15-B10 = 0 1 1 0 0 0**

Not used

0 Submit Documentation Feedback

www.ti.com SLVSBS4 – DECEMBER 2012

7. B15-B10 = Other command

This command sets the SPI-NG (DOUT, B7) bit.

Table 2. SPI Bit Map (DOUT)

ITEM	B15	B14	B13	B12	B11	B10	В9	B8	B7	В6	B5	B4	В3	B2	B1	В0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ON/OFF COMMAND ECHO BACK	0	0	0	0	0	1	0	0	_	_	_	_	_	_	-	-
LONG BAOK	0	0	0	0	0	1	1	0	_	_	_	_	_	_	_	-
DIAG_READ1	0	0	0	1	0	0	0	0	VCC	Rsvd	CCD	VCO	VDO	CPLV	TD	EEP
DIAG_READ2	0	0	1	0	0	0	0	0	SPI	_	_	_	_	_	_	-
DIAG_READ3	0	0	1	1	0	0	0	0	_	_	_	_	_	_	1	-

1. **B14-B9 = 0 0 1 0 0 0**

This flag is cleared after the register is read by the CPU.

- 1) V_{CC} Current Detection (B7)
 - 0: NORMAL
 - 1: Fail (Short to GND or open)
- 2) Overcurrent Detection (B6)
 - 0: NORMAL
 - 1: Fail (Overcurrent)
- 4) V_{CC} Overvoltage Detection (B4)
 - 0: NORMAL
 - 1: Fail (V_{CC} overvoltage)
- 5) V_{DD} Overvoltage Detection (B3)
 - 0: NORMAL
 - 1: Fail (V_{DD} overvoltage)
- 6) CPV Low Voltage Detection (B2)
 - 0: NORMAL
 - 1: Fail (CPV low voltage)
- 7) Thermal Detection (B1)
 - 0: NORMAL
 - 1: Fail (Overtemperature)
- 8) EEPROM* Data Consistency Check (B0)
 - 0: NORMAL
 - 1: Fail (EEPROM DATA CRC error)
- *ASIC calibration EEPROM

NOTE

Just after power-on of the IC, some of the bits listed above may be set depending on the apply sequence of VB. It is recommended to issue a DIAG_READ1 to clear these bits prior to all S/W sequences.

2. **B14-B9 = 0 1 0 0 0 0**

This flag is cleared after the register is read by the CPU.

- 1) SPI-NG (B7)
 - 0: NORMAL
 - 1: Fail (SPI read and write command is wrong)

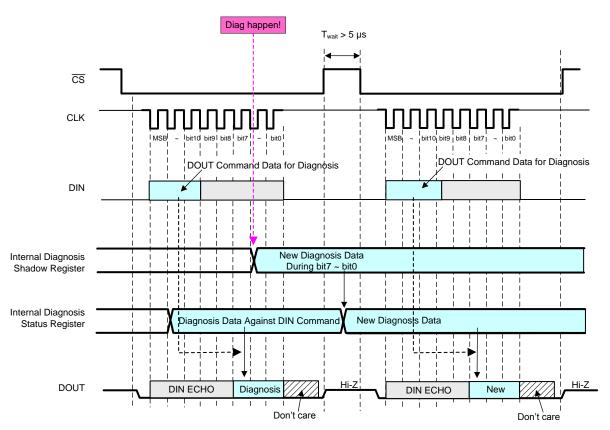


Figure 7. DIAG_READ

Internal Diagnosis Register (Status Register and Shadow Register)

If the diagnosis happens during the SPI communication, the function follows this protocol:

The diagnosis information is stored in the shadow register when the diagnosis happens.

After the output of the previous information a new diagnosis is sent from the shadow to the status register, and both registers are output through the DOUT pin.

In this case, a FAULT signal continues to be output until a new diagnosis is read by the CPU.

All diagnosis bits read by the DIAG_READ1 command happen before the \overline{CS} falling edge. So, all the diagnosis events that happen right after the \overline{CS} falling edge are not read by the current DIAG_READ1 command, instead they are read by the next DIAG_READ1 command.

Submit Documentation Feedback

SLVSBS4 - DECEMBER 2012

CHARGE PUMP

Description

The charge pump block generates the supply for high-side and low-side pre-drivers to maintain the gate voltage on the external FETs. External storage cap (CCP) and bucket caps (C1, C2) are used to support pre-driver slope and switching frequency requirements. R1 and R2 can reduce switching current if required. The charge pump has a voltage supervisor for over and undervoltage, and a selectable stop condition for pre-drivers.

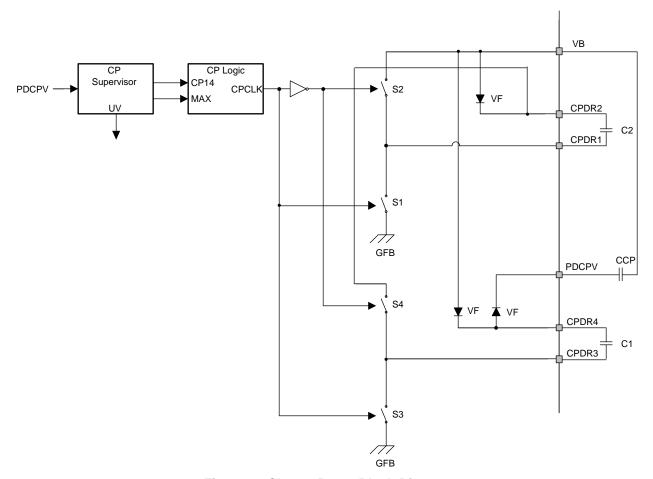


Figure 8. Charge Pump Block Diagram

CHARGE PUMP ELECTRICAL CHARACTERISTICS(1)

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CHARGE	PUMP	,	•		•	
V _{chv1_0}		$VB = 5.3 \text{ V}, I_{load} = 0 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 7	VB + 8	VB + 9	V
V _{chv1_1}		$VB = 5.3 \text{ V}, I_{load} = 5 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 6	VB + 7	VB + 8	V
V _{chv1_2}		$VB = 5.3 \text{ V}, I_{load} = 8 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 5	VB + 6	VB + 7	V
V _{chv2_0}		VB = 12 V, I_{load} = 0 mA, C1 = C2 = 47 nF, CCP = 2.2 μ F	VB + 13	VB + 14	VB + 15	V
V _{chv2_1}	Output voltage	$VB = 12 \text{ V}, I_{load} = 11 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 13	VB + 14	VB + 15	V
V _{chv2_2}		$VB = 12 \text{ V}, I_{load} = 18 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 12.5	VB + 13.5	VB + 15	V
V _{chv3_0}		VB = 18 V, I_{load} = 0 mA, C1 = C2 = 47 nF, CCP = 2.2 μ F	VB + 13	VB + 14	VB + 15	V
V _{chv3_1}		$VB = 18 \text{ V}, I_{load} = 13 \text{ mA}, C1 = C2 = 47 \text{ nF}, CCP = 2.2 \mu\text{F}$	VB + 13	VB + 14	VB + 15	V
V _{chv3_2}		VB = 18 V, I_{load} = 22 mA, C1 = C2 = 47 nF, CCP = 2.2 μ F	VB + 13	VB + 14	VB + 15	V
V _{chvmax}	Maximum voltage		35	37.5	40	V
V_{chvUV}	Undervoltage detection threshold		VB + 4	VB + 4.5	VB + 5	V
T _{chv} ⁽²⁾	Rise time	VB = 5.3 V, C1 = C2 = 47 nF, CCP = 2.2 μ F, V _{chvUV} released		1	2	ms
R _{on}	On resistance S1~S4			8		Ω

No variation of the external components

Specified by design

SLVSBS4-DECEMBER 2012

PRE-DRIVER

Description

The pre-driver block provides three high-side pre-drivers and three low-side pre-drivers to drive external Nchannel MOSFETs. The turn on side of the high-side pre-drivers supply the large N-channel transistor current to quickly charge and PMOS support output voltage up to PDCPV. The turn off side supplies the large N-channel transistor current to quickly discharge, while the low-side pre-drivers supply the large N-channel transistor current for charge and discharge. The output voltage of the low-side pre-driver is controlled by VB and it has VGS protection to make less than 18 V. The pre-driver has a stop condition in some fault conditions (\$16 Error Detection).

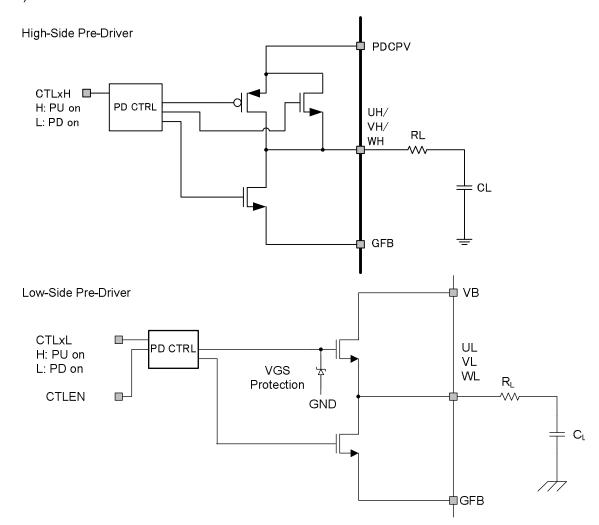


Figure 9. Pre-driver Block Diagram

PRE-DRIVER ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
HIGH SIDE	PRE-DRIVER				'	
V _{OH_H}	Output voltage high	I _{sink} = 10 mA, U(V/W)H – GFB	V _{chv} - 2.7	V _{chv} – 1.35		V
V _{OL_H}	Output voltage low	I _{source} = 10 mA, U(V/W)H - GFB		60	120	mV
R _{ONH_HP}	ON resistance pull up (Pch)	U(V/W)H = PDCPV - 1 V		135	270	Ω
R _{ONH_HN}	ON resistance pull up (Nch)	U(V/W)H = PDCPV - 2.5 V		8	16	Ω
R _{ONL_H}	ON resistance pull down			6	12	Ω
T _{on_h} ⁽¹⁾	Turn-on time	VB = $5.3 \sim 18$ V, $C_L = 11$ nF, $R_L = 0$ Ω from 20% to 80%	100	300	500	ns
T _{off_h} ⁽¹⁾	Turn-off time	$VB = 5.3 \sim 18 \text{ V}, C_L = 11 \text{ nF}, R_L = 0 \Omega$ from 80% to 20%	100	300	500	ns
T _{h-ondly} ⁽¹⁾	Output delay time	VB = 5.3 ~ 18 V, C_L = 11 nF, R_L = 0 Ω to 20%, see Figure 10	100	200	400	ns
T _{h-offdly} ⁽¹⁾	Output delay time	VB = 5.3 ~ 18 V, C_L = 11 nF, R_L = 0 Ω to 80%, see Figure 10	100	200	400	ns
LOW SIDE	PRE-DRIVER					
V _{OH_L}	Output voltage high	I _{sink} = 10 mA, U(V/W)L – GFB	VB - 0.14	VB-0.07		V
V_{OL_L}	Output voltage low	I _{source} = 10 mA, U(V/W)L - GFB		70	140	mV
R _{ONH_L}	ON resistance pull up			7	14	Ω
R _{ONL_L}	ON resistance pull down			7	14	Ω
T _{on_I} (1)	Turn-on time	VB = $5.3 \sim 18$ V, $C_L = 22$ nF, $R_L = 0$ Ω from 20% to 80%	100	300	800	ns
T _{off_I} ⁽¹⁾	Turn-off time	VB = $5.3 \sim 18$ V, $C_L = 22$ nF, $R_L = 0$ Ω from 80% to 20%	100	300	800	ns
T _{I-ondly} (1)	Output delay time	VB = 5.3 ~ 18 V, C_L = 22 nF, R_L = 0 Ω to 20%, see Figure 10	100	200	400	ns
T _{I-offdly} (1)	Output delay time	VB = 5.3 ~ 18 V, C_L = 22 nF, R_L = 0 Ω to 80%, see Figure 10	100	200	400	ns
V_{CLAMP}	VGS protection voltage		16	18	20	V
T _{diff1} (1)	Differential time 1	VB = $5.3 \sim 18 \text{ V } (T_{\text{h-on}})$ – $(T_{\text{l-off}})$, see Figure 10	-300		300	ns
T _{diff2} ⁽¹⁾	Differential time 2	VB = $5.3 \sim 18$ V (T_{l-on})–(T_{h-off}), see Figure 10	-300		300	ns

⁽¹⁾ Specified by design

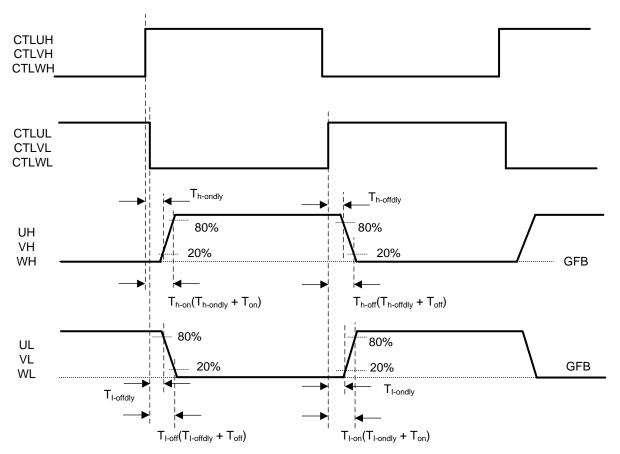


Figure 10. Delay Time from Input to Output

INSTRUMENTS

PHASE COMPARATOR

SLVSBS4 - DECEMBER 2012

Description

A 3-channel comparator module monitors the external FET by detecting voltage across the drain-source for highside and low-side FETs. PHTM is the threshold level of comparators usable for sensorless communication. Figure 11 shows an example of the threshold level. There is no detection when CTLEN = Low.

Figure 11. Phase Comparator Block Diagram

PHASE COMPARATORS ELECTRICAL CHARACTERISTICS

VB = 12 V. $T_{A} = -40 ^{\circ}\text{C}$ to $125 ^{\circ}\text{C}$ (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS					
PHASE COMPARATOR											
V _{iofs}	Input offset voltage		-15	_	15	mV					
V _{inp}	Input voltage range (PHTM)	VB = 5.3 ~18 V	1.325	_	4.5	V					
V _{inm}	Input voltage range (PHxM)		-1	-	VB	V					
V _{ihys}	Input hysteresis voltage		100	200	400	mV					
V _{OH}	Output high voltage	$I_{sink} = 2.5 \text{ mA}$	0.9 × V _{CC}	-	_	V					
V _{OL}	Output low voltage	I _{source} = 2.5 mA	_	_	0.1 × V _{CC}	V					
T _{res_tr} ⁽¹⁾	Response time (rising)	C _L = 100 pF	_	0.2	0.5	μs					
T _{res_tf} ⁽¹⁾	Response time (falling)	C _L = 100 pF	_	0.4	1	μs					

(1) Specified by design

Submit Documentation Feedback

www.ti.com

SLVSBS4 - DECEMBER 2012

MOTOR CURRENT SENSE

Description

The operational amplifier is operating with an external resistor network for higher flexibility to adjust the current measurement to application requirements. The first stage amplifier is operating with the external resistor and the output voltage up to VB at ALFB. The gain of the amplifier is adjustable by external resistors from x10 to x30. The second stage amplifier is a buffer to MCU at ALV. Current sense has a comparator for motor overcurrent (OVAD). ADTH is the overcurrent threshold level and sets the value by the external resistor as well. Figure 13 shows the curve of the detection level. ALFB is divided by 2, compare this value with ADTH. In the recommended application, zero-point adjustment is required as a large error offset in the initial condition.

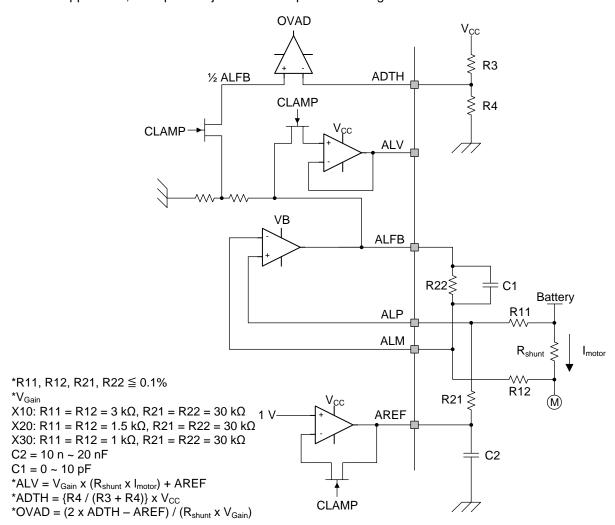


Figure 12. Motor Current Sense Block Diagram

MOTOR CURRENT SENSE ELECTRICAL CHARACTERISTICS(1)

 $VB = 12 \text{ V}, T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
MOTOR C	URRENT ⁽²⁾ SENSE		•			
V _{Ofs}	Input offset voltage		-5		5	mV
V _{O_0}	Output voltage (ALV)	VB = 5.3 ~ 18 V, I _{motor} = 0 A		1		V

Product Folder Links: DRV3211-Q1

No variation of the external components

Motor current is converted to voltage in test

MOTOR CURRENT SENSE ELECTRICAL CHARACTERISTICS⁽¹⁾ (continued)

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
V _{Line}	Linearity (ALV)	$VB = 5.3 \sim 18 \text{ V},$ inearity (ALV) $R_{shunt} = 1 \text{ m}\Omega,$ $R11 = R12 = 1 \text{ k}\Omega, R21 = R22 = 30 \text{ k}\Omega$		30	2%	mV/A
V_{Gain}	Gain		10		30	
T _{set_TR1}	Settling time (Rise) ALV ±1%	$VB = 5.3 \sim 18 \text{ V},$ $R_{shunt} = 1 \text{ m}\Omega, C1 = 4.7 \text{ pF}, C_L = 100 \text{ pF},$ $R11 = R12 = 1 \text{ k}\Omega, R21 = R22 = 30 \text{ k}\Omega,$ $I_{motor} = 0 \rightarrow 30 \text{ A}, (ALV : 1 \rightarrow 1.9 \text{ V})$	_	1	2.5	μs
T _{set_TR2}	Settling time (Rise) ALV ±1%	$\begin{split} VB &= 5.3 \sim 18 \ V, \\ R_{shunt} &= 1 \ m\Omega, \ C1 = 4.7 \ pF, \ C_L = 100 \ pF, \\ R11 &= R12 = 1 \ k\Omega, \ R21 = R22 = 30 \ k\Omega, \\ I_{motor} &= 0 \rightarrow 100 \ A, \ (ALV: 1 \rightarrow 4 \ V) \end{split}$	_	1	2.5	μs
T _{set_TF1}	Settling time (Fall) ALV ±1%	$VB = 5.3 \sim 18 \text{ V},$ $R_{shunt} = 1 \text{ m}\Omega, \text{ C1} = 4.7 \text{ pF}, \text{ C}_L = 100 \text{ pF},$ $R11 = R12 = 1 \text{ k}\Omega, \text{ R21} = R22 = 30 \text{ k}\Omega,$ $I_{motor} = 30 \rightarrow 0 \text{ A}, \text{ (ALV : 1.9} \rightarrow 1 \text{ V)}$	_	1	2.5	μs
T _{set_TF2}	Settling time (Fall) ALV ±1%	$\begin{split} VB &= 5.3 \sim 18 \ V, \\ R_{shunt} &= 1 \ m\Omega, \ C1 = 4.7 \ pF, \ C_L = 100 \ pF, \\ R11 &= R12 = 1 \ k\Omega, \ R21 = R22 = 30 \ k\Omega, \\ I_{motor} &= 100 \rightarrow 0 \ A, \ (ALV: 4 \rightarrow 1 \ V) \end{split}$	_	1	2.5	μs
OVAD	Overcurrent threshold	150-A detection, $R_{shunt} = 1 \ m\Omega, \\ R11 = R12 = 1 \ k\Omega, \ R21 = R22 = 30 \ k\Omega, \\ R3 = 8.2 \ k\Omega, \ R4 = 10 \ k\Omega$	-10%	150	10%	A
TDEL_OVAD (3)	Propagation delay (Rise or fall)		_	_	1.5	μs

(3) Specified by design

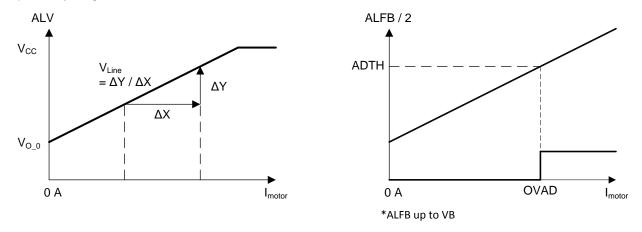


Figure 13. Motor Current Sense and Overcurrent

PRODUCT PREVIEW

www.ti.com SLVSBS4 - DECEMBER 2012

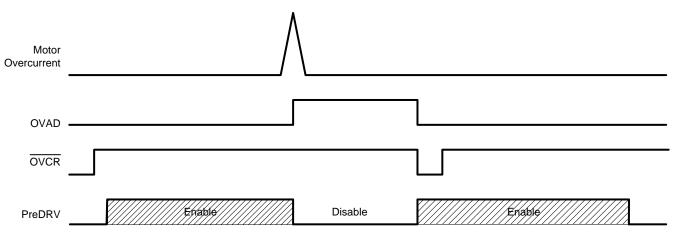


Figure 14. Motor Overcurrent Event

Table 3. Motor Overcurrent Truth Table

RES	OVCR	MOTOR OVERCURRENT	OVAD	PRE-DRIVER ENABLE OR DISABLE
0	_	_	0 (Clear)	Disable ⁽¹⁾
1	0	_	0 (Clear) (2) (3)	Enable
	1	0	Keep	Enable
		1	1 (Set)	Disable

- (1) The CTLEN goes to Hi-Z because the external CPU will not drive it when $\overline{RES} = 0$, then all the pre-drivers are turned off because CTLEN is internally pulled down.
- The OVAD is not set, even if a motor overcurrent error is generated during $\overline{\text{OVCR}} = 0$. The OVAD is cleared if $\overline{\text{OVCR}} = 0$ even when the motor overcurrent error is generated.

PHASE AMPLIFIER (Sample and Hold Mode and Through Mode)

Description

The 3-channel amplifier module monitors the drain-source for high-side and low-side FETs. Two modes (selected by the SPI) are provided: sample and hold mode, and through mode. Sample and hold is controlled by PSSx at the external pins and PSCx connects the charging capacitor. Through mode is real-time detection and the amplifier has x1–x4 gain control.

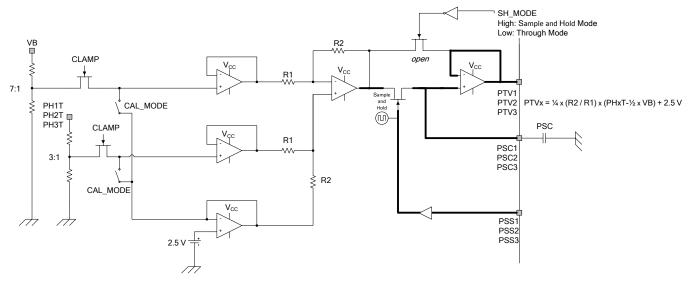


Figure 15. Sample and Hold Mode Block Diagram

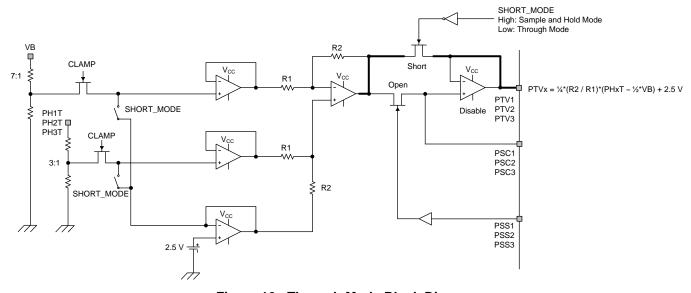


Figure 16. Through Mode Block Diagram

22

Product Folder Links: DRV3211-Q1

www.ti.com SLVSBS4 – DECEMBER 2012

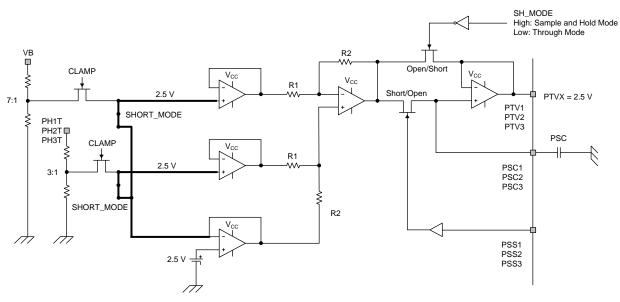


Figure 17. Short Mode (Optional) Block Diagram

PHASE AMPLIFIER ELECTRICAL CHARACTERISTICS(1)

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
PHASE AMP	LIFIER					
V _{ofs_SH}	Output offset voltage, sample and hold mode	VB = 5.3–18 V, Gain = 1	-50	_	50	mV
V _{ofs_TH}	Output offset voltage, through mode	VB = 5.3–18 V, Gain = 1		_	50	mV
V _{in_cm}	Common mode input range	VB = 5.3–18 V, Gain = 1–4	1.5		VB – 1.5	٧
V _{out_max}	Maximum output voltage	VB = 5.3–18 V, Gain = 1–4	4.5	_	-	>
V _{out_min}	Minimum output voltage	VB = 5.3–18 V, Gain = 1–4	_	_	0.5	٧
V _{gain} ⁽²⁾	Gain		_	1 2 3 4	_	
V _{out_SH0}	Output voltage, sample and hold mode	VB = 5.3–18 V, Gain = 1–4, PHxT = VB / 2	-	2.5	-	٧
V _{out_TH0}	Output voltage, through mode	VB = 5.3–18 V, Gain = 1–4 PHxT = VB / 2	-	2.5	-	V
V _{out_SH1}	Output voltage, sample and hold mode	VB = 12 V, Gain = 1, PHxT = 1.5 V	-	1.375	-	V
V _{out_TH1}	Output voltage, through mode	VB = 12 V, Gain = 1, PHxT = 1.5 V	-	1.375	-	>
V _{out_SH2}	Output voltage, sample and hold mode	VB = 12 V, Gain = 1, PHxT = 10.5 V	_	3.625	_	V
V _{out_TH2}	Output voltage, through mode	VB = 12 V, Gain = 1, PHxT = 10.5 V	_	3.625	1	٧
STL_SHTR	Settling time (rise), sample and hold mode PTVx ±1%	VB = 12 V, Gain = 1, PSC = 470 pF, PTVx = 100 pF, PHxT = 1.5 V ≥ 10.5 V, (PTVx = 1.375 V \rightarrow 3.625 V), see Figure 20		1.5	3	μs
STL_THTR	Settling time (rise), through mode PTVx ±1%	VB = 12 V, Gain = 1, PTVx = 100 pF, PHxT = 1.5 V ≥ 10.5 V, (PTVx = 1.375 V \rightarrow 3.625 V), see Figure 21		1.5	3	μs
STL_SHTF	Settling time (fall), sample and hold mode PTVx ±1%	VB = 12 V, Gain = 1, PSC = 470 pF, PTVx = 100 pF, PHxT = 10.5 V ≥ 1.5 V, (PTVx = 3.625 V → 1.375 V), see Figure 20		1.5	3	μs
STL_THTF	Settling time (fall), through mode PTVx ±1%	VB = 12 V, Gain = 1, PTVx = 100 pF, PHxT = 10.5 V ≥ 1.5V, (PTVx = 3.625 V \rightarrow 1.375 V), see Figure 21		1.5 3		μs
SH Error Voltage	Falling voltage	VB = 5.3–18 V, PSC = 470 pF, TH = 1 mS, see Figure 19		5	75	mV

- (1) No variation of the external components.
- (2) V_{gain} is an SPI setting

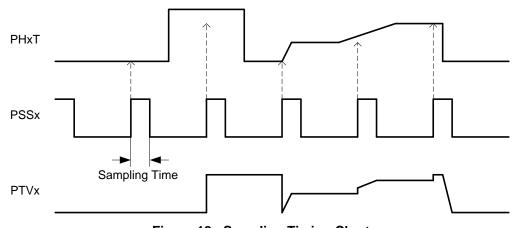


Figure 18. Sampling Timing Chart

4 Submit Documentation Feedback

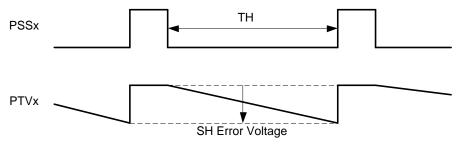


Figure 19. Holding Timing Chart

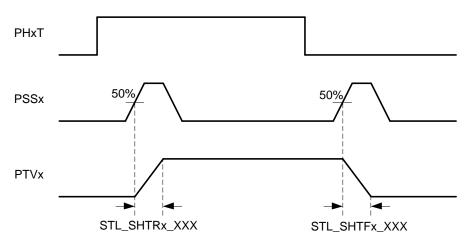
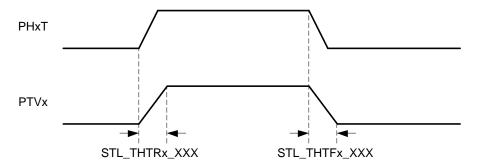
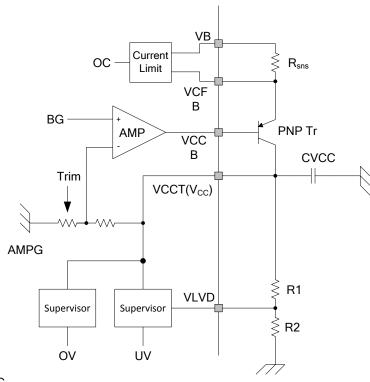


Figure 20. Settling Time Timing Chart (Sample and Hold Mode)




Figure 21. Settling Time Timing Chart (Through Mode)

REGULATORS

Description

The regulator block offers a 5-V LDO and a 3.3-V LDO. The V_{CC} LDO regulates VB down to 5 V with an external PNP controlled by the regulator block. The 5-V LDO is supplied to the MCU and other components. The 5-V LDO is protected against a short to GND fault, and the external resistors R1 and R2 set the undervoltage. The V_{DD} regulator regulates VB down to 3.3-V with an internal FET and a controller.

The regulators detect the overvoltage and undervoltage events of both supplies.

- * R_{sns} = 0.2 V / ICLVCC
- * VCCUV = 2.325 x {(R1+R2) / R2}

Figure 22. V_{CC} Block Diagram

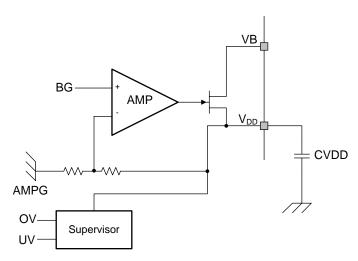


Figure 23. V_{DD} Block Diagram

Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

INSTRUMENTS

www.ti.com SLVSBS4 – DECEMBER 2012

V_{CC} AND V_{DD} ELECTRICAL CHARACTERISTICS⁽¹⁾

VB = 12 V, T_{A} = $-40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{CC}						
V _{CC}	Output voltage	$VB = 5.3-18 \text{ V}, I_{load} = 5-150 \text{ mA}$	4.9	5	5.1	V
IBVCC	Base current		1.5			mA
hfePNP	DC current gain of external VCC		100			
VLRVCC	Load regulation	$VB = 5.3-18 \text{ V}, I_{load} = 5-150 \text{ mA}$	-50	_	50	mV
CVCC	Load capacitance		22		100	μF
RVCC	ESR of external capacitance				300	$m\Omega$
VCCUV	Undervoltage detection threshold	R1 = 7.5 k Ω , R2 = 10 k Ω , VCCUV > 4 V	3.97	4.07	4.17	V
VCCUVHY S	Undervoltage detection threshold hysteresis			100		mV
VCCOV	Overvoltage detection threshold		6	6.5	7	V
ICLVCC	Current limit	$R_{sns} = 0.51 \Omega$	300	400	550	mA
TVCC1	Rise time	V_{CC} > UVVCC, CVCC = 22 μ F		0.3	0.5	ms
TVCC2	Rise time	V_{CC} > UVVCC, CVCC = 100 μ F		1	1.5	ms
V_{DD}						
V_{DD}	Output voltage	$VB = 5.3-18 \text{ V}, I_{load} = 0-2 \text{ mA}$	3	3.3	3.6	V
CVDD	Load capacitance			1		μF
VDDUV	Undervoltage detection threshold		2.2	2.3	2.4	V
VDDOV	Overvoltage detection threshold		4.1	4.3	4.5	V
T _{vdd} ⁽²⁾	Rise time	V _{DD} > VDDUV, CVDD = 1 μF		75	150	μs

⁽¹⁾ No variation of the external components

VB Monitor

Description

The block monitors VB overvoltage.

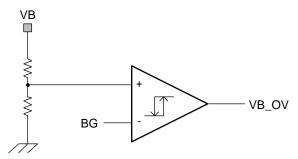


Figure 24. VB Monitor Block Diagram

VB MONITOR ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VB MONITOR					
V _{stop} Pre-driver stop VB voltage		26.5	27.5	28.5	V

Submit Documentation Feedback

⁽²⁾ Specified by design

THERMAL SHUTDOWN

Description

The device has temperature sensors that produce a pre-driver stop condition if the chip temperature exceeds 175°.

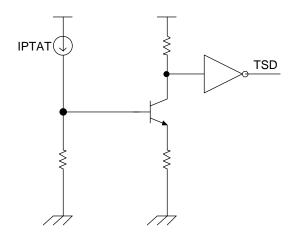


Figure 25. Thermal Shutdown Block Diagram

THERMAL SHUTDOWN ELECTRICAL CHARACTERISTICS

 $VB = 12 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C} \text{ (unless otherwise specified)}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
THERMAL SHUT DOWN					
TSD ⁽¹⁾ Thermal shut down threshold		155	175	195	°C

(1) Specified by design

OSCILLATOR

Description

Oscillator block generates two 10-MHZ clock signals. OSC1 is the main clock used for internal logic synchronization and timing control. OSC2 is the secondary clock which is used to monitor the status of OSC1.

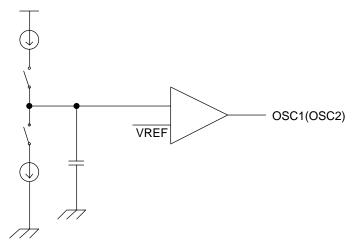


Figure 26. Oscillator Block Diagram

28

SLVSBS4 - DECEMBER 2012

OSCILLATOR ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40$ °C to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
OSCILLA	TOR					
OSC	OSC frequency		9	10	11	MHz

I/O

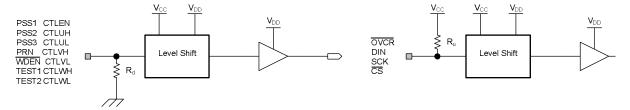


Figure 27. Input Buffer 1 Block Diagram

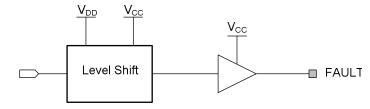


Figure 28. Output Buffer 1 Block Diagram

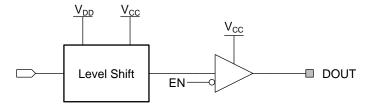


Figure 29. Output Buffer 2 Block Diagram

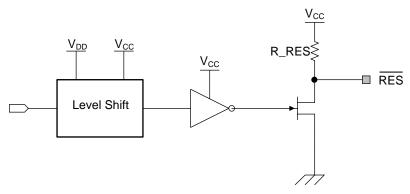


Figure 30. Output Buffer 3 Block Diagram

ELECTRICAL CHARACTERISTICS

VB = 12 V, $T_A = -40^{\circ}C$ to 125°C (unless otherwise specified)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT BUFF	FER 1				<u>"</u>	
V _{IH}	Input threshold logic high		0.7 × V _{CC}			V
V _{IL}	Input threshold logic low				0.3 × V _{CC}	V
R _u	Input pullup resistance		50	100	150	kΩ
R _d	Input pulldown resistance		50	100	150	kΩ
OUTPUT BU	JFFER 1 AND 2				<u> </u>	
V _{OH}	Output level logic high	I _{sink} = 2.5 mA	0.9 × V _{CC}			V
V _{OL}	Output level logic low	I _{source} = 2.5 mA			0.1 × V _{CC}	V
OUTPUT BU	IFFER 3				<u> </u>	
R_RES	Pullup resistor		1.5	3	4.5	kΩ
V _{OL}	Output level logic low	I _{source} = 2 mA			0.1 × V _{CC}	V

ERROR DETECTION

Table 4. Error Detection

ITEMS	SPI	PRE-DRIVER	FAULT SIGNAL	RES
VB – Overvoltage –		STOP	L	Н
CP – Overvoltage	_	STOP	L	Н
CP – Undervoltage	Error Bit (CPLV)	_	L	Н
V _{CC} – Overvoltage	Error Bit (VCO)	_	L	Н
V _{CC} – Undervoltage		STOP	L	L
V _{CC} – Overcurrent	Error Bit (V _{CC})	_	Н	Н
Motor – Overcurrent	Error Bit (OVAD)	STOP	Н	Н
V _{DD} – Overvoltage	Error Bit (VDO)	_	L	Н
V _{DD} – Undervoltage		STOP	L	L
Thermal Shut Down	Error Bit (TD)	STOP	Н	Н
Watchdog	_	_	L	L
EEPROM Data Check	Error Bit (EEP)	_	L	Н
Clock Monitor	-	_	L	L
SPI	Error Bit (SPI)	_	L	Н

Product Folder Links: DRV3211-Q1

Submit Documentation Feedback

3-Jan-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Samples
	(1)		Drawing			(2)		(3)	(Requires Login)
DRV3211QPFPQ1	ACTIVE	HTQFP	PFP	80	1	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

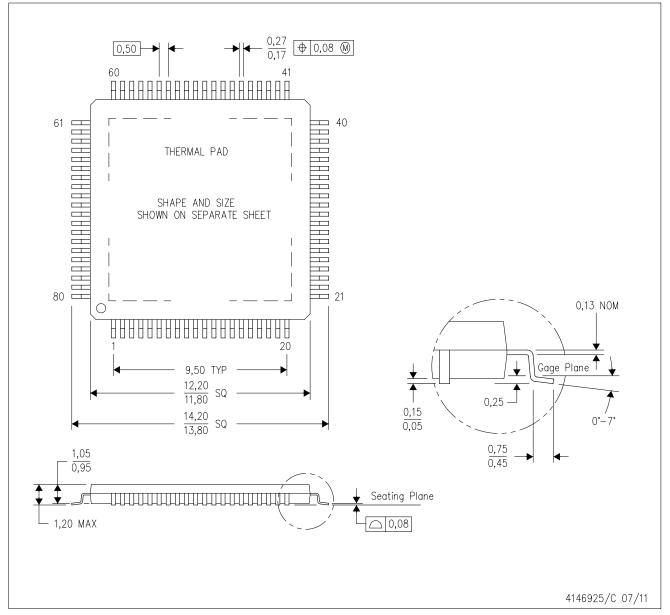
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

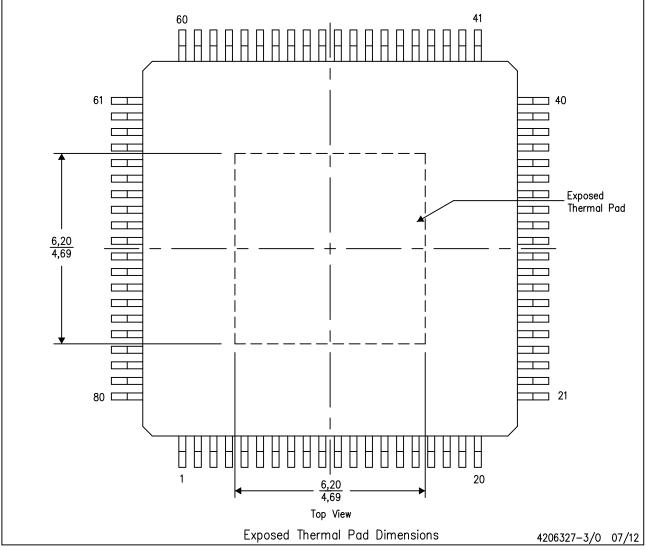
PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

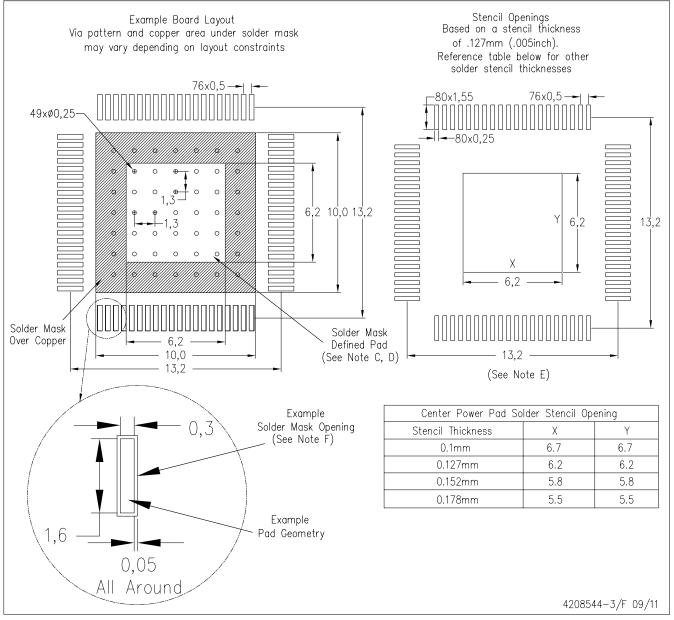


THERMAL INFORMATION

This PowerPAD package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

PFP (S-PQFP-G80)

PowerPAD™ PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>