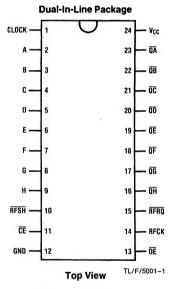
PRELIMINARY

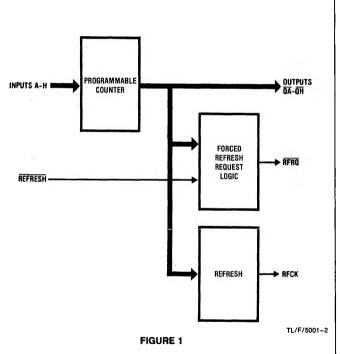
DP84300 Programmable Refresh Timer

General Description

National Semiconductor


The DP84300 programmable refresh timer is a logic device which produces the desired refresh clock required by all dynamic memory systems.

Additional circuitry has been included in the device to minimize logic required by memory systems to perform refresh control.


Features

- One chip solution to produce RFCK timing for the DP8408A, DP8409A, DP8417, DP8418, DP8419, DP8428, DP8429 dynamic RAM controllers
- Programmable refresh clock timer allows for a maximum refresh period with most system clocks
- Timing is completely synchronous with the input clock, preventing race conditions present in some memory controllers
- Includes a refresh request output, simplifying the design of refresh logic in discrete controllers

Connection & Block Diagrams

Recommended Op	erati	ing (Cond	litions	(Commercial)				
If Military/Aerospace specif	ied de	vices	are re	quired,		Min	Тур	Max	Units
please contact the Nation Office/Distributors for availa					1 _{OL} , Low Level Output Current T _A , Operating Free Air			16	mA
	Min	Тур	Max	Units	Temperature	0		75	°C
V _{CC} , Supply Voltage	4.75	5.00	5.25	v					
I _{OH} , High Level Output Current			-3.2	mA					

Electrical	Characteristics over recommended operating temperature range
------------	---

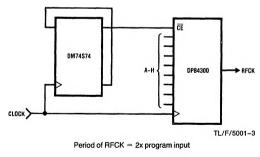
Symbol	Parameter	Conditions	Min	Тур	Max	Units
VIH	High Level Input Voltage		2			v
VIL	Low Level Input Voltage				0.8	v
V _{IC}	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	v
V _{OH}	High Level Output Voltage	$V_{CC} = Min, V_{IH} = 2V, V_{IL} = 0.8V, I_{OH} = Max$	2.4			v
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = Max$			0.5	V
lozh	Off-State Output Current High Level Voltage Applied	$V_{CC} = Max, V_{IH} = 2V, V_O = 2.4V, V_{IL} = 0.8V$			100	μA
I _{OZL}	Off-State Output Current Low Level Voltage Applied	$V_{CC} = Max, V_{IH} = 2V, V_O = 0.4V, V_{IL} = 0.8V$			- 100	μA
li I	Input Current at Maximum Input Voltage	$V_{CC} = Max, V_I = 5.5V$			1.0	mA
l _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.4V$			25	μA
կլ	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-250	μΑ
los	Short Circuit Output Current	V _{CC} = Max	-30		-130	mA
Icc	Supply Current	V _{CC} = Max		150	180	mA

DP84300 Switching Characteristics over recommended ranges of temperature and V_{CC}

Symbol	Parameter		Conditions $R_L = 667\Omega$	Commercial T _A = 0°C to +75°C V _{CC} = 5.0V ±5%			Units
				Min	Тур	Max	
t _{PD}	Clock to Output Pin 13 to Output Enable		C _L = 45 pF		35	50	ns
t _{PZX}					20	35	ns
t _{PXZ}	Pin 13 to Output Disable		C _L = 5 pF		20	35	ns
t _{PZX}	Input to Output Enable		$C_L = 45 pF$		35	45	ns
t _{PXZ}	Input to Output Disable		C _L = 5 pF		35	45	ns
tw	Width of Clock	High		25			ns
		Low		35			ns
tsu	Set-Up Time			50			ns
tн	Hold Time			0	- 15		ns
ÍMAX	Maximum Frequency			12.5			MHz

Mnemonic Description

INPUT SIGNALS


- CLOCK Provides a time base for the programmable divider.
- A-H Program inputs A through H. These inputs select the number of clock cycles that will produce one refresh period. These inputs are binary encoded, with input A the LSB, and H the MSB. Additionally, all zeros produce the maximum count of 256, and an input of one will reset the counter to one.
- REFRESH This input is used to reset the refresh request output (RFRQ).
- OE Output enable. Places the outputs in TRI--STATE®.
- CE Counter enable. This input, when low, enables the timer clock and, when high, stalls the timer.

OUTPUT SIGNALS

- QA-QH Refresh timer outputs QA through QH. Timer starts at programmed input and counts down to one.
- RFRQ Refresh request. This output goes low on the rising edge of the refresh clock (RFCK). The first input clock edge after the REFRESH input is set low clears this output.
- RFCK Refresh clock. The period of the clock is determined by setting conditions on input pins A through H. This output is low for 20 clocks, and high for the remainder of the period.

Functional Description

The DP84300 block diagram is shown in *Figure 1*. This circuit is basically an 8-bit programmable counter. The user selects the number of input clock cycles required per refresh period and sets the binary equivalent on inputs A through H. A signal of that period is produced at the refresh clock (RFCK) output. This output stays low for 20 clock cycles, and goes high for the balance of the period.

FIGURE 2a. Expansion of Clock Divisor by 2x

When used with the DP8409A dynamic RAM controller, this duty cycle allows the DP8409A the maximum probability to perform a hidden refresh, while still allowing ample time for the DP8409A to perform a forced refresh when needed.

An additional output is provided to ease the design of systems that don't use the DP8409A. This output is called refresh request (RFRQ). Refresh request becomes true at the rising edge of refresh clock, and becomes false on the first rising edge of the input clock after a refresh.

In systems where a divisor of more than 256 is needed, an expansion input (CE) has been provided. When this input is high, all counter-related timing is suspended. This excluded actions due to the REFRESH input. The circuits in *Figures 2a* and *2b* show how to expand the range of the timer by 2x or by up to 4096 clock cycles. *Figures 3a* and *3b* show two typical applications using the DP84300.

By using the clock enable input, it is also possible to change the duty cycle of the refresh clock. The circuits in *Figures 4a* and *4b* show how this may be done.

To reset the counter to a known state, select an input divisor of one. On the next clock edge the counter will reset to one. On the next clock edge whatever input divisor that is present on input A-H will be loaded into the counters.

TABLE I. Divider Constants for Generation of a 15.5 μ s Clock

CPU Clock Frequency	Divisor Input	Actual Period of Output	% Chance of Hidden Refresh
2 MHz	31	15.5 μs	35%
3 MHz	46	15.3 μs	56%
4 MHz	62	15.5 μs	67%
5 MHz	77	15.6 μs	74%
6 MHz	93	15. 5 μs	78%
7 MHz	109	15.6 μs	81%
8 MHz	124	15.5 μs	83%
9 MHz	140	15.6 μs	85%
10 MHz	155	15.5 μs	87%

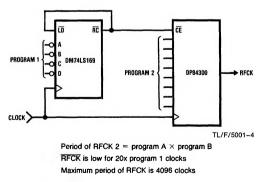
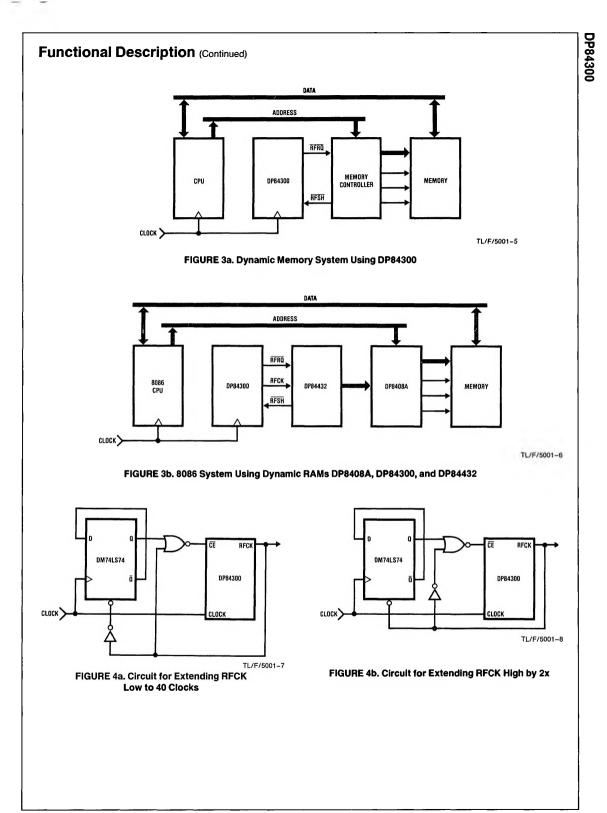
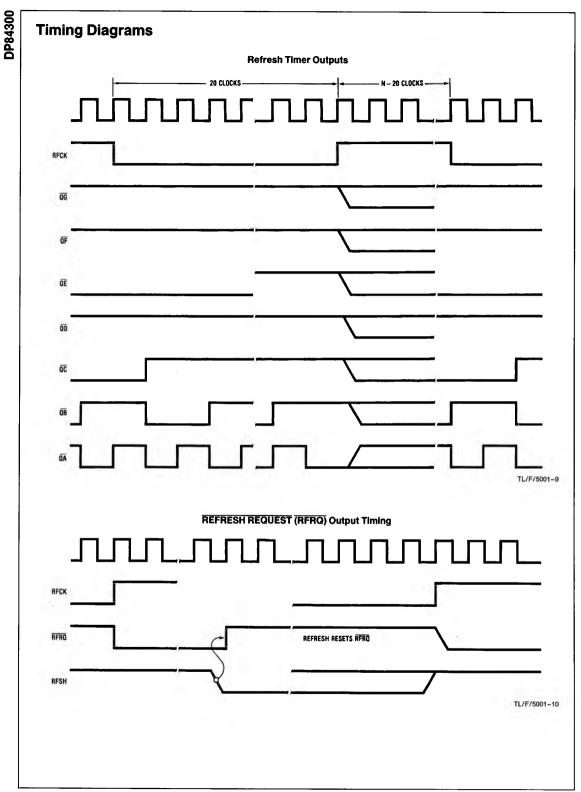




FIGURE 2b. Typical Expansion for the DP84300

