DP8402A,DP8403,DP8404,DP8405

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel Error Detection and

Correction Circuits (EDAC's)

Literature Number: SNOSBX3A

National Semiconductor

DP8402A/DP8403/DP8404/DP8405 32-Bit Parallel **Error Detection and Correction Circuits (EDAC's)**

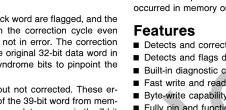
General Description

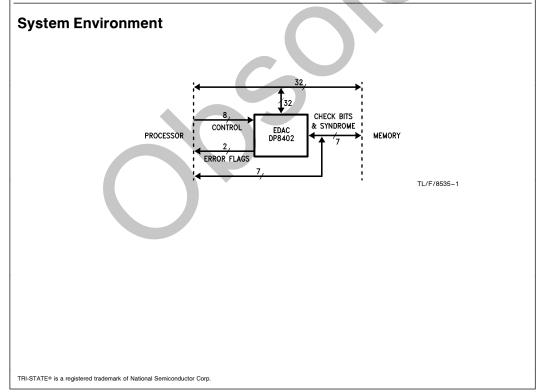
The DP8402A, DP8403, DP8404 and DP8405 devices are 32-bit parallel error detection and correction circuits (EDACs) in 52-pin DP8402A and DP8403 or 48-pin DP8404 and DP8405 600-mil packages. The EDACs use a modified Hamming code to generate a 7-bit check word from a 32-bit data word. This check word is stored along with the data word during the memory write cycle. During the memory read cycle, the 39-bit words from memory are processed by the EDACs to determine if errors have occurred in memory. Single-bit errors in the 32-bit data word are flagged and corrected.

Single-bit errors in the 7-bit check word are flagged, and the CPU sends the EDAC through the correction cycle even though the 32-bit data word is not in error. The correction cycle will simply pass along the original 32-bit data word in this case and produce error syndrome bits to pinpoint the error-generating location.

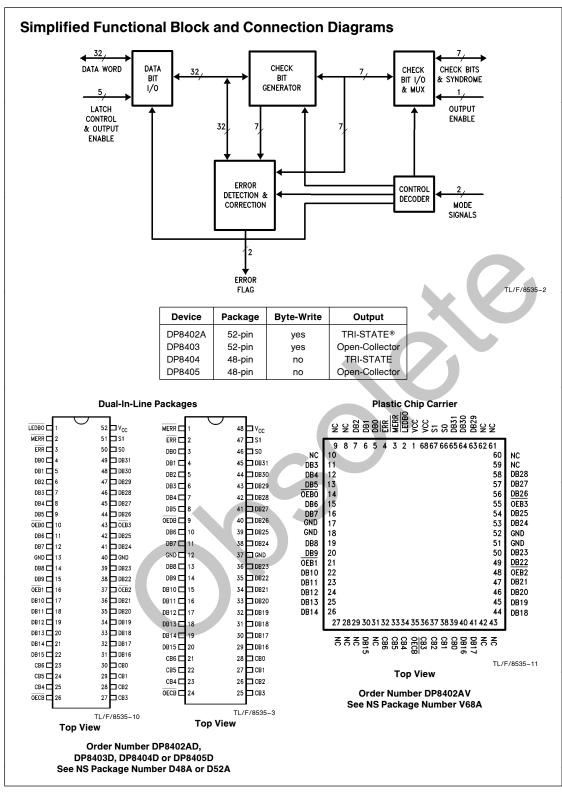
Double bit errors are flagged but not corrected. These errors may occur in any two bits of the 39-bit word from memory (two errors in the 32-bit data word, two errors in the 7-bit check word, or one error in each word). The gross-error

condition of all lows or all highs from memory will be detected. Otherwise, errors in three or more bits of the 39-bit word are beyond the capabilities of these devices to detect.


PRELIMINARY


August 1989

Read-modify-write (byte-control) operations can be performed with the DP8402A and DP8403 EDACs by using output latch enable, LEDBO, and the individual OEB0 thru OEB3 byte control pins.


Diagnostics are performed on the EDACs by controls and internal paths that allow the user to read the contents of the DB and CB input latches. These will determine if the failure occurred in memory or in the EDAC.

- Detects and corrects single-bit errors
- Detects and flags double-bit errors
- Built-in diagnostic capability
- Fast write and read cycle processing times
- Byte-write capability . . . DP8402A and DP8403
 - Fully pin and function compatible with TI's SN74ALS632A thru SN74ALS635 series

© 1995 National Semiconductor Corporation TL/F/8535 RRD-B30M105/Printed in U. S. A.

mou	e De	enn	itions				PCC Pin D		DF040	ZA
MODE			DESCRI				pin 1	V _{CC}	pin 35	OECB
	S1	S0	MOD	E		RATION	2	LEDBO	36	CB3
0	L	L	WRITE			vord and output	3	MERR	37	CB2
				TIOO	checkword		4	ERR	38	CB1
1	L	Н	DIAGNOS	nus	against late	us data words	5	DB0	39	CB0
					0	/output valid	6	DB1	40	DB16
					error flags.	/ output valid	7	DB2	41	DB17
2	н	L	READ & F	LAG		ord and output	8	NC	42	NC
					error flags		9	NC	43	NC
3	н	н	CORREC	Г	Latched inp	out data and	10	NC	44	DB18
					checkword	/output	11	DB3	45	DB19
					corrected c		12	DB4	46	DB20
					syndrome of	code	13	DB5	47	DB21
<u>.</u>							14	OEBO	48	OEB2
	Defi						15	DB6	49	DB22
50, S1					ode, see prec	eding	16	DB7	49 50	DB22 DB23
			de Definiti				10	GND	51	GND
			port for 3				18	GND	52	GND
BO IN	ru CB6				eckword. Also ne error code		18	DB8	53	DB24
			or correction			uunng	19 20	DB8 DB9	53 54	DB24 DB25
DEBO t	hru				ffer enable. V	Vhen high		OEB1		OEB3
DEB3	a				t TRI-STATE		21		55	
DP840)2A,				. OEB0 contr		22	DB10	56	DB26
DP840	3)	thru	I DB7, OE	B1 cor	ntrols DB8 th	ru DB15,	23	DB11	57	DB27
		OE	B2 control	ls DB1	6 thru DB23	and OEB3	24	DB12	58	DB28
	_		trols DB2				25	DB13	59	NC
EDBC					atch enable.		26	DB14	60	NC
DP840	,				e Latch. Ope	rates on all	27	NC	61	NC
DP840	3)		bits of the		ora. for the data l	(O port	28	NC	62	NC
DP840	14				uffers are at	70 port.	29	NC	63	DB29
DP840			-STATE.	iipui b	uners are at		30	DB15	64	DB30
DECB	0)			utput b	ouffer enable.	When	31	NC	65	DB31
					ers are in TR		32	CB6	66	S0
		mo	de.				33	CB5	67	S1
ERR					lag, a low ind	licates at	34	CB4	68	V _{CC}
			st a single							
MERR					t flag, a low ir	ndicates				
		two	or more e	errors p	present.					
					Т	ABLE I. Write C	Control Function			
emory		EDAC	C 0	ntrol		DB Control	DB Output Latch		СВ	Error Flag
Cycle		unctio		SO	Data I/O	OEBn or OEDB	DP8402A, DP8403 LEDBO	3 Check I/O	Control OECB	ERR ME
Write		enera eck wo		L	Input	Н	х	Output check bits†	L	н

Memory Write Cycle Details

During a memory write cycle, the check bits (CB0 thru CB6) are generated internally in the EDAC by seven 16-input parity generators using the 32-bit data word as defined in Table 2. These seven check bits are stored in memory along with the original 32-bit data word. This 32-bit word will later be used in the memory read cycle for error detection and correction.

										TA	۱BL	E II.	Pari	ity A	lgo	rithr	n															
Check Word													32	2-Bit	Dat	a W	ord															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	(
CB0	Х		Х	Х		Х					Х		Х	Х	Х			Х			Х		Х	Х	Х	Х		Х				2
CB1				Х		Х		Х		Х		Х		Х	Х	Х				Х		Х		Х		Х		Х			Х	2
CB2	X		Х			Х	Х		Х			Х	Х			Х	Х		Х			Х	Х		Х			Х	Х	Х		2
CB3			Х	Х	Х				Х	Х	Х				Х	Х			Х	Х	Х				Х	Х	Х				Х	2
CB4	X	Х							Х	Х	Х	Х	Х	Х			Х	Х							Х	Х	Х	Х	Х	Х		
CB5	X	Х	Х	Х	Х	Х	Х	Х									Х	Х	Х	Х	Х	Х	Х	Х								
CB6	X	Х	Х	Х	Х	Х	Х	Х																	Х	Х	Х	Х	Х	Х	Х	2

The seven check bits are parity bits derived from the matrix of data bits as indicated by "X" for each bit.

Check bits 0, 1, 2 are odd parity or the exclusive NORing of the "X"ed bits for the particular check bit. Check bits 3, 4, 5, 6 are even parity or the exclusive ORing of the "X"ed bits for the particular check bit.

Memory Read Cycle (Error Detection & Correction Details)

During a memory read cycle, the 7-bit check word is retrieved along with the actual data. In order to be able to determine whether the data from the memory is acceptable to use as presented on the bus, the error flags must be tested to determine if they are at the high level.

The first case in Table III represents the normal, no-error conditions. The EDAC presents highs on both flags. The

next two cases of single-bit errors give a high on $\overline{\text{MERR}}$ and a low on $\overline{\text{ERR}}$, which is the signal for a correctable error, and the EDAC should be sent through the correction cycle. The last three cases of double-bit errors will cause the EDAC to signal lows on both $\overline{\text{ERR}}$ and $\overline{\text{MERR}}$, which is the interrupt indication for the CPU.

TABLE III. Error Function

Total Numb	er of Errors		r Flags	Data Correction
32-Bit Data Word	7-Bit Check Word	ERR	MERR	Butu Correction
0	0	н	H	Not applicable
1	0	L	н	Correction
0	1	L	н	Correction
1	1	L	L	Interrupt
2	0	L,		Interrupt
0	2	L	L	Interrupt

The DP8402 check bit syndrome matrix can be seen in TA-BLE II. The horizontal rows of this matrix generate the check bits by selecting different combinations of data bits, indicated by "X"s in the matrix, and generating parity from them. For instance, parity check bit "0" is generated by EXCLUSIVE NORing the following data bits together; 31, 29, 28, 26, 21, 19, 18, 17, 14, 11, 9, 8, 7, 6, 4, and 0. For example, the data word "0000001H" would generate the check bits CB6-0 = 48H (Check bits 0, 1, 2 are odd parity and check bits 3, 4, 5, 6 are even parity).

During a WRITE operation (mode 0) the data enters the DP8402 and check bits are generated at the check bit input/output port. Both the data word and the check bits are then written to memory. During a READ operation (mode 2, error detection) the data and check bits that were stored in memory, now possibly in error, are input through the data and check bit I/O ports. New check bits are internally generated from the data word. These new check bits are then compared, by an EXCLU-SIVE NOR operation, with the original check bits that were stored in memory. The EXCLUSIVE NOR of the original check bits, that were stored in memory, with the new check bits is called the syndrome word. If the original check bits are the same as the new check bits, a no error condition, then a syndrome word of all ones is produced and both error flags (ERR and MERR) will be high. The DP8402 matrix encodes errors as follows:

				TABLE IV.	Read, Flag, ar	nd Correct Function			
Memory Cycle	EDAC Function	Cor S1	ntrol S0	Data I/O	DB Control OEBn or OEDB	DB Output Latch DP8402A, DP8403 LEDBO	Check I/O	CB Control OECB	Error Flags ERR MERR
Read	Read & flag	н	L	Input	Н	Х	Input	Н	Enabled†
Read	Latch input data and check bits	н	н	Input data latched	Н	L	Input check word latched	Н	Enabled†
Read	Output corrected data & syndrome bits	н	н	Output corrected data word	L	х	Output syndrome bits‡	L	Enabled†
	e III for error description e V for error location.	I.							

Memory Read Cycle (Error Detection & Correction Details) (Continued)

- 1) Single data bit errors cause 3 or 5 bits in the syndrome word to go low. The columns of the check bit syndrome matrix (TABLE II) are the syndrome words for all single bit data errors in the 32 bit word (also see TABLE V). The data bit in error corresponds to the column in the check bit syndrome matrix that matches the syndrome word. For instance, the syndrome word indicating that data bit 31 is in error would be (CB6-CB0) = "0001010", see the column for data bit 31 in TABLE II, or see TABLE V. During mode 3 (S0 = S1 = 1) the syndrome word is decoded, during single data bit errors, and used to invert the bit in error thus correcting the data word. The corrected word is made available on the data I/O port (DB0 thru DB31), the check word I/O port (CB0 thru CB6) presents the 7-bit syndrome error code. This syndrome error code can be used to locate the bad memory chip.
- 2) A single check bit error will cause that particular check bit to go low in the syndrome word.
- 3) A double bit error will cause an even number of bits in the syndrome word to go low. The syndrome word will then be the EXCLUSIVE NOR of the two individual syndrome words corresponding to the 2 bits in error. The two-bit error is not correctable since the parity tree can only identify single bit errors.

If any of the bits in the syndrome word are low the "ERR" flag goes low. The "MERR" (dual error) flag goes low during any double bit error conditions. (See Table III).

Three or more simultaneous bit errors can cause the EDAC to believe that no error, a correctable error, or an uncorrectable error has occurred and will produce erroneous results in all three cases. It should be noted that the gross-error conditions of all lows and all highs will be detected.

												٦	AE	BLE	V. Syr	dro	me	e D	eco	odir	ng		
	Sy	nd	ron	ne E	Bits	5	Error		Sy	ndı	on	ne E	Bits	;	Error			Sy	ndı	om	ne E	Bits	;
6	5	4	3	2	1	0	LIIO	6	5	4	3	2	1	0	LIIO		6	5	4	3	2	1	0
L	L	L	L	L	L	L	unc	L	н	L	L	L	L	L	2-bit		н	L	L	L	L	L	L
L	L	L	L	L	L	Н	2-bit	L	н	L	L	L	L	Н	unc		н	L	L	L	L	L	н
L	L	L	L	L	Н	L	2-bit	L	Н	L	L	L	Н	L	DB7		Н	L	L	L	L	Н	L
L	L	L	L	L	Н	Н	unc	L	Н	L	L	L	Н	Н	2-bit		н	L	L	L	L	Н	Н
L	L	L	L	Н	L	L	2-bit	L	Н	L	L	Н	L	L	DB6		н	L	L	L	н	L	L
L	L	L	L	Н	L	Н	unc	L	Н	L	L	Н	L	Н	2-bit		Н	Ł	L	L	Н	L	н
L	L	L	L	Н	н	L	unc	L	Н	L	L	н	Н	L	2-bit		Н	Ŀ	L	L	Н	Н	L
L	L	L	L	Н	Н	Н	2-bit	L	Н	L	L	Н	Н	Н	DB5		Н	L	Ľ	L	Н	H,	Η
L	L	L	Н	L	L	L	2-bit	L	Н	L	Н	L	L	L	DB4		н	L	L	Н	L	L	L
L	L	L	н	L	L	Н	unc	L	н	L	Н	L	L	Н	2-bit		н	Ŀ	L	н	L	L	н
L	L	L	н	L	Н	L	DB31	L	н	L	Н	L	Н	L	2-bit		ľΗ.	L	L	н	L	Н	Ľ
L	L	L	Н	L	Н	Н	2-bit	L	Н	L	Н	L	Н	Н	DB3		н	L	L	Н	L	Н	Н
L	L	L	Н	Н	L	L	unc	L	Н	L	Н	Н	L	L	2-bit		н	L	L	н	н	L	L
L	L	L	н	Н	L	н	2-bit	L	Н	L	Н	н	L	н	DB2		н	L	L	Ή	Н	L	н
L	L	L	Н	Н	Н	L	2-bit	L	Н	L	Н	н	Н	L	unc		Н	L	L	Н	Н	Н	L
L	L	L	Н	Н	Н	Н	DB30	L	Н	L	Н	Н	Н	Н	2-bit		н	L	L	Н	Н	Н	Н
L	L	н	L	L	L	L	2-bit	L	Н	н	L	Ъ	L	L	DB0		н	L	н	L	L	L	L
L	L	Н	L	L	L	н	unc	L	Н	н	L	L	L	Н	2-bit		Н	L	Н	L	L	L	н
L	L	Н	L	L	Н	L	DB29	L	н	Н	L.	L	Н	L	2-bit		Н	L	Н	L	L	Н	L
L	L	Н	L	L	Н	Н	2-bit	L	Н	Н	L	L	Н	Н	unc		н	L	Н	L	L	Н	Н
L	L	Н	L	Н	L	L	DB28	L	н	н	L	н	Ľ,	L	2-bit		н	L	Н	L	Н	L	L
L	L	Н	L	Н	L	Н	2-bit	L	н	Н	L	н	L	Н	DB1		н	L	Н	L	Н	L	н
L	L	Н	L	Н	Н	L	2-bit	L	Н	н	L	н	Н	L	unc		Н	L	Н	L	Н	Н	L
L	L	Н	L	Н	Н	н	DB27	L	Н	Н	L	Н	Н	Н	2-bit		н	L	Н	L	Н	Н	Н
L	L	н	Н	L	L	L	DB26	Ľ	н	н	Н	L	L	L	2-bit		н	L	н	Н	L	L	L
L	L	Н	н	L	L	Н	2-bit	Ľ	н	Н	Н	L	L	Н	unc		н	L	Н	Н	L	L	н
L	L	Н	Н	L	Н	L	2-bit	L	Н	н	Н	L	Н	L	unc		Н	L	Н	Н	L	Н	L
L	L	Н	Н	L	Н	Н	DB25	L	Н	Н	Н	L	Н	Н	2-bit		Н	L	Н	Н	L	Н	Н
L	L	Н	Н	Н	L	L	2-bit	L	н	н	Н	н	L	L	unc		н	L	н	н	Н	L	L
L	L	Н	Н	Н	L	Н	DB24	L	Н	Н	Н	Н	L	н	2-bit		н	L	н	Н	Н	L	Н
L	L	Н	Н	Н	Н	L	unc	L	Н	Н	Н	Н	Н	L	2-bit		н	L	Н	Н	Н	Н	L
L	L	Н	Н	Н	Н	Н	2-bit	L	Н	Н	Н	Н	Н	Н	CB6		Н	L	Н	Н	Н	Н	Н
СВ	X =	er er	ror i	n ch	eck	bit)	x																
DB	Y =	= er	ror i	n da	ita b	it Y																	

_		Svi	ndr	om	e F	Bits		
Error	6	5	4	3	2	1	0	Error
2-bit	н	н	L	L	L	L	L	unc
unc	H	Н	L	L	Ł	L.	Н	2-bit
unc	Н	н	L	L	Ł	н	L	2-bit
2-bit	н	Н	L	L	L	Н	Н	DB23
unc	н	Н	L	L	н	L	L	2-bit
2-bit	н	н	L	L	Н	L	Н	DB22
2-bit	н	н	L	L	Н	Н	L	DB21
unc	н	Н	L	L	Н	Н	Н	2-bit
unc	н	Н	L	Н	L	L	L	2-bit
2-bit	н	н	L	н	L	L	Н	DB20
2-bit	н	н	L	н	L	н	L	DB19
DB15	н	Н	L	Н	L	Н	Н	2-bit
2-bit	н	Н	L	Н	Н	L	L	DB18
unc	н	Н	L	Н	Н	L	Н	2-bit
DB14	н	Н	L	Н	Н	н	L	2-bit
2-bit	н	Н	L	Н	Н	Н	Н	CB4
unc	н	Н	Н	L	L	L	L	2-bit
2-bit	н	н	н	L	L	L	Н	DB16
2-bit	н	н	н	L	L	Н	L	unc
DB13	Н	Н	Н	L	L	Н	Н	2-bit
2-bit	н	Н	Н	L	Н	L	L	DB17
DB12	н	н	н	L	Н	L	Н	2-bit
DB11	н	н	н	L	н	н	L	2-bit
2-bit	н	Н	Н	L	Н	Н	Н	CB3
2-bit	н	Н	Н	Н	L	L	L	unc
DB10	Н	Н	Н	Н	L	L	Н	2-bit
DB9	н	Н	Н	Н	L	Н	L	2-bit
2-bit	н	Н	Н	Н	L	Н	Н	CB2
DB8	н	Н	Н	Н	н	L	L	2-bit
2-bit	н	Н	Н	Н	Н	L	Н	CB1
2-bit	н	Н	Н	Н	Н	Н	L	CB0
CB5	н	Н	н	н	н	н	н	none

2-bit = double-bit error

unc = uncorrectable multibit error

			ТА	BLE VI. Read	d-Modify	-Write Functio	n		
MEMORY CYCLE	EDAC FUNCTION	CON ⁻ S1	FROL S0	BYTEn†	OEBn†	DB OUTPUT LATCH LEDBO	CHECK I/O	CB CONTROL	ERROR FLAG ERR MERR
Read	Read & Flag	Н	L	Input	Н	Х	Input	Н	Enabled
Read	Latch input data & check bits	Н	н	Input data latched	н	L	Input check word latched	Н	Enabled
	Latch corrected			Output			Hi-Z	Н	
Read	data word into output latch	Н	Н	data word latched	н	н	Output Syndrome bits	L	Enabled
Modify	Modify appropriate byte or bytes &		1	Input modified BYTE0	н	н	Output	L	нн
/write	generate new check word	L	L	Ouput unchanged BYTE0	L		check word	Ľ	

†OEB0 controls DB₀-DB₂ (BYTE0), OEB1 controls DB₀-DB₁5 (BYTE1), OEB2 controls DB16-DB23 (BYTE2), OEB3 controls DB24-DB31 (BYTE3).

Read-Modify-Write (Byte Control) Operations

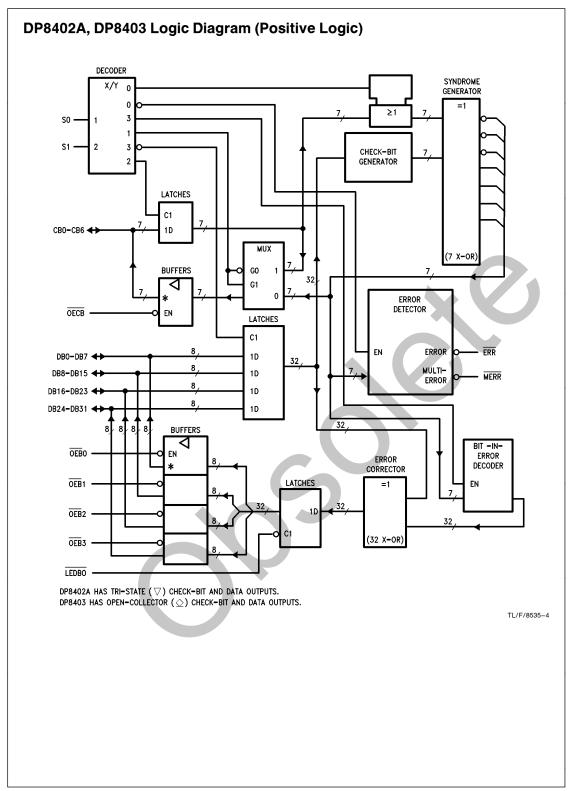
The DP8402A and DP8403 devices are capable of bytewrite operations. The 39-bit word from memory must first be latched into the DB and CB input latches. This is easily accomplished by switching from the read and flag mode (S1 = H, SO = L) to the latch input mode (S1 = H, S0 = H). The EDAC will then make any corrections, if necessary, to the data word and place it at the input of the output data latch. This data word must then be latched into the output data latch by taking LEDBO from a low to a high.

Byte control can now be employed on the data word through the $\overline{OEB0}$ through $\overline{OEB3}$ controls. $\overline{OEB0}$ controls DB0-DB7 (byte 0), $\overline{OEB1}$ controls DB8-DB15 (byte 1), $\overline{OEB2}$ controls DB16-DB23 (byte 2), and $\overline{OEB3}$ controls DB24-DB31 (byte 3). Placing a high on the byte control will disable the output and the user can modify the byte. If a low is placed on the byte control, then the original byte is allowed to pass onto the data bus unchanged. If the original data word is altered through byte control, a new check word must be generated before it is written back into memory. This is easily accomplished by taking control S1 and S0 low. Table VI lists the read-modify-write functions.

Diagnostic Operations

The DP8402A thru DP8405 are capable of diagnostics that allow the user to determine whether the EDAC or the memory is failing. The diagnostic function tables will help the user to see the possibilities for diagnostic control.

In the diagnostic mode (S1 = L, S0 = H), the checkword is latched into the input latch while the data input remains transparent. This lets the user apply various data words against a fixed known checkword. If the user applies a diagnostic data word with an error in any bit location, the $\overline{\text{ERR}}$ flag should be low. If a diagnostic data word with two errors in any bit location is applied, the MERR flag should be low. After the checkword is latched into the input latch, it can be verified by taking OECB low. This outputs the latched checkword. With the DP8402A and DP8403, the diagnostic data word can be latched into the output data latch and verified. It should be noted that the DP8404 and DP8405 do not have this pass-through capability because they do not contain an output data latch. By changing from the diagnostic mode (S1 = L, S0 = H) to the correction mode (S1 = H, S0 = H), the user can verify that the EDAC will correct the diagnostic data word. Also, the syndrome bits can be produced to verify that the EDAC pinpoints the error location. Table VII DP8402A and DP8403 and Table VIII DP8404 and DP8405 list the diagnostic functions.


	CONT	ROL		DB BYTE CONTROL	DB OUTPUT LATCH	CHECK I/O	CB CONTROL	ERROF	R FLAGS
EDAC FUNCTION	S1	S0	DATA I/O	OEBn	LEDBO		OECB	ERR	MERR
Read & flag	Н	L	Input correct data word	Н	х	Input correct check bits	Н	н	Н
Latch input check word while data input latch remains transparent	L	Н	Input diagnostic data word†	Н	L	Input check bits latched	Н	Ena	abled
Latch diagnostic data word into	L	н	Input diagnostic	н	Н	Output latched check bits	L	Ena	abled
output latch			data word†			Hi-Z	н	Enabled	
Latch diagnostic data word into input latch	Н	Н	Input diagnostic data word	Н	Н	Output syndrome bits	L	Ena	abled
inputiation			latched			Hi-Z	Н		
Output diagnostic data word & syndrome bits	Н	н	Output diagnostic data word	L	Н	Output syndrome bits		Ena	abled
Output corrected diagnostic data word & output syndrome bits	Н	Н	Output corrected diagnostic data word	L	L	Hi-Z Output syndrome bits Hi-Z	H	Ena	abled

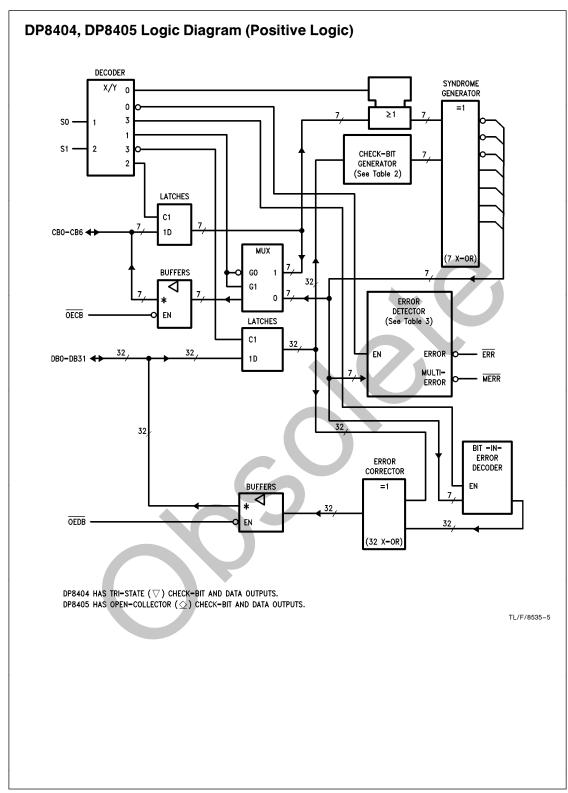

two bit locations.

TABLE VIII. DP8404, DP8405 Diagnostic Function

EDAC FUNCTION	CONT S1	FROL S0	DATA I/O	DB CONTROL	СНЕСК І/О	DB CONTROL		FLAGS MERR
Read & flag	Н	L	Input correct data word	н	Input correct check bits	н	Н	н
Latch input check bits while data input latch remains transparent	L	Н	Input diagnostic data word†	Н	Input check bits latched	Н	Ena	bled
Output input check bits	L	н	Input diagnostic data word†	Н	Output input check bits	L	Ena	bled
Latch diagnostic data into	T	Н	Input diagnostic	н	Output syndrome bits	L	Ena	bled
input latch			data word latched		Hi-Z	н	End	5104
Output corrected diagnostic	н	н	Output corrected diagnostic	L	Output syndrome bits	L	Ena	bled
data word			data word		Hi-Z	Н		

† Diagnostic data is a data word with an error in one bit location except when testing the MERR error flag. In this case, the diagnostic data word will contain errors in two bit locations.

Supply	Derating Free-Air Temperatu Voltage, V _{CC} (See Note 1) foltage: CB and DB All Others	ure Range (unless otherwise noted) 7V Operating Free 5.5V 7V Storage Tempe			Co	ommer	rcial	2 to + 1 0° to + 2 to + 1	70°C
	ommended Opera			Militar	v	Co	omme	rcial	
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Мах	Unite
V _{CC}	Supply Voltage		4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-Level Input Voltage		2			2			V
V _{IL}	Low-Level Input Voltage				0.8			0.8	V
I _{OH}	High-Level Output Current	ERR Or MERR			-0.4			-0.4	mA
.011		DB Or CB DP8402A, DP8404			-1			-2.6	
IOL	Low-Level Output Current	ERR Or MERR			4			8	mA
		DB or CB			12			24	
tw	Pulse Duration	LEDBO Low	25			25			ns
		(1) Data And Check Word Before S0 ↑ (S1 = H)	15			10		2	
		(2) SO High Before $\overline{\text{LEDBO}} \uparrow (S1 = H)^{\dagger}$	45			45			
	Setun Time	(3) $\overline{\text{LEDBO}}$ High Before The Earlier of S0 \downarrow or S1 \downarrow †	0			0			
t _{su}	Setup Time	(4) $\overline{\text{LEDBO}}$ High Before S1 \uparrow (S0 = H)	0			0			ns
		(5) Diagnostic Data Word Before S1 \uparrow (S0 = H)	15			10			
		(6) Diagnostic Check Word Before The Later Of S1 \downarrow or S0 \uparrow	15			10			
		(7) Diagnostic Data Word Before <u>LEDBO</u> ↑ (S1 = L and S0 = H)‡	25			20			
		(8) Read-Mode, S0 Low And S1 High	35			30			
		(9) Data And Check Word After S0 \uparrow (S1 = H)	20			15		-	
t _h	Hold Time	(10) Data Word After S1 \uparrow (S0 = H)	20			15			ns
-11		(11) Check Word After The Later of S1 \downarrow or S0 \uparrow	20			15			
		(12) Diagnostic Data Word After $\overline{\text{LEDBO}} \uparrow (S1 = L \text{ And } S0 = H)$;	0			0			
t _{corr}	Correction Time (see Figure	9 1)*	65			58			ns
T _A	Operating Free-Air Tempera	ature	-55		125	0		70	°C
*This sp †These	ecification may be interpreted as the imes ensure that corrected data is s	e maximum delay to guarantee valid corrected data at the o		 I include			lelay.	70	

0	Demonstern	To at Oan ditions	I	Military		Co	mmercia	al	
Symbol	Parameter	Test Conditions	Min	Тур†	Max	Min	Тур†	Max	Units
V _{IK}		$V_{CC} = 4.5V, I_I = -18 \text{ mA}$			-1.5			-1.5	V
	All outputs	$V_{CC}=$ 4.5V to 5.5V, $I_{OH}=-$ 0.4 mA	$V_{CC}-2$			$V_{CC}-2$			
V _{OH}		$V_{CC} = 4.5V, I_{OH} = -1 \text{ mA}$	2.4	3.3					v
	DB or CB	$V_{CC} = 4.5V, I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
	ERR or MERR	$V_{CC} = 4.5V, I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	
		$V_{CC} = 4.5V, I_{OL} = 8 \text{ mA}$					0.35	0.5	
V _{OL}		$V_{CC} = 4.5V, I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4	V
	DB or CB	$V_{CC} = 4.5V, I_{OL} = 24 \text{ mA}$					0.35	0.5	
	S0 or S1	$V_{CC} = 5.5V, V_1 = 7V$			0.1			0.1	
lj –	All others	$V_{CC} = 5.5V, V_{I} = 5.5V$			0.1			0.1	mA
	S0 or S1				20			20	
Ι _Η	All others‡	$V_{CC} = 5.5V, V_{I} = 2.7V$			20			20	μΑ
	S0 or S1				-0.4			-0.4	
Ι _{ΙL}	All others‡	$V_{CC} = 5.5V, V_{I} = 0.4V$			-0.1			-0.1	mA
l _O §		$V_{CC} = 5.5V, V_{O} = 2.25V$	-30		-112	-30		-112	mA
Icc		V _{CC} = 5.5V, (See Note 1)		150	250		150	250	mA

DP8403, DP8405 Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range (unless otherwise noted)

	-	T (0) (1)		Military		Co	mmerci	al	
Symbol	Parameter	Test Conditions	Min	Тур†	Max	Min	Тур†	Max	Units
V _{IK}		$V_{CC} = 4.5V, I_I = -18 \text{ mA}$			-1.5			-1.5	V
V _{OH}	ERR or MERR	$V_{CC} = 4.5V$ to 5.5V, $I_{OH} = -0.4$ mA	V _{CC} -2			$V_{CC}-2$			V
I _{OH}	DB or CB	$V_{CC} = 4.5V, V_{OH} = 5.5V$			0.1			0.1	mA
	ERR or MERR	$V_{CC} = 4.5V, I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	
	ERR OF MERR	$V_{CC} = 4.5V, I_{OL} = 8 \text{ mA}$					0.35	0.5	
V _{OL}		$V_{CC} = 4.5V, I_{OL} = 12 \text{ mA}$		0.25	0.4		0.25	0.4	V
	DB or CB	$V_{CC} = 4.5V, I_{OL} = 24 \text{ mA}$					0.35	0.5	
	S0 or S1	$V_{CC} = 5.5V, V_I = 7V$							
II	All others	$V_{CC} = 5.5V, V_1 = 5.5V$							mA
	S0 or S1								
Ι _Η	All others‡	$V_{CC} = 5.5V, V_{I} = 2.7V$							μA
	S0 or S1								
IIL	All others‡	$V_{CC} = 5.5V, V_I = 0.4V$							mA
l _O §	ERR or MERR	$V_{CC} = 5.5 V, V_{O} = 2.25 V$	-30		-112	-30		-112	mA
Icc		V _{CC} = 5.5V, (See Note 1)		150			150		mA

†All typical values are at V_{CC} = 5V, T_A = +25^{\circ}C.

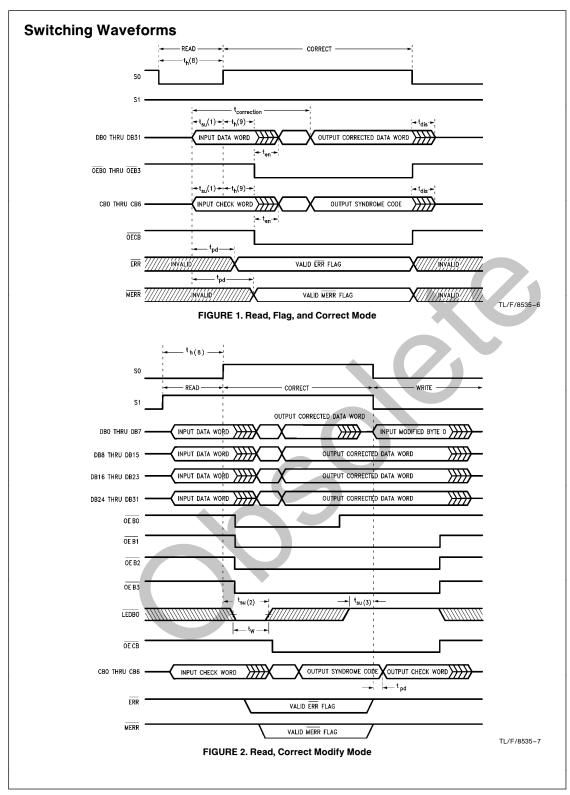
 \ddagger For I/O ports (QA through QH), the parameters I_{IH} and I_{IL} include the off-state output current.

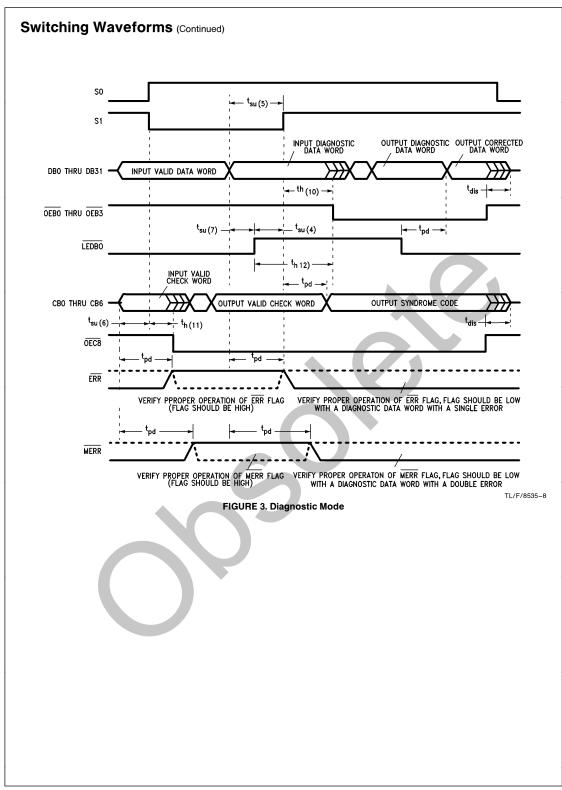
The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

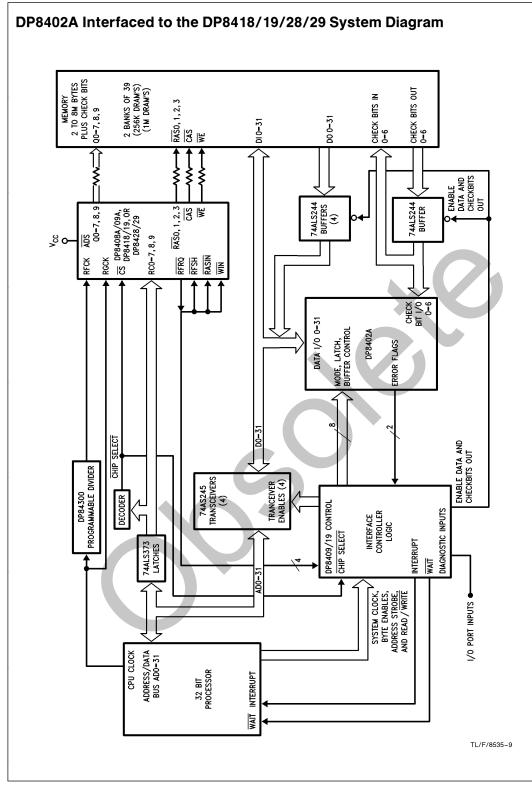
Note 1: $I_{\mbox{CC}}$ is measured with S0 and S1 at 4.5V and all CB and DB pins grounded.

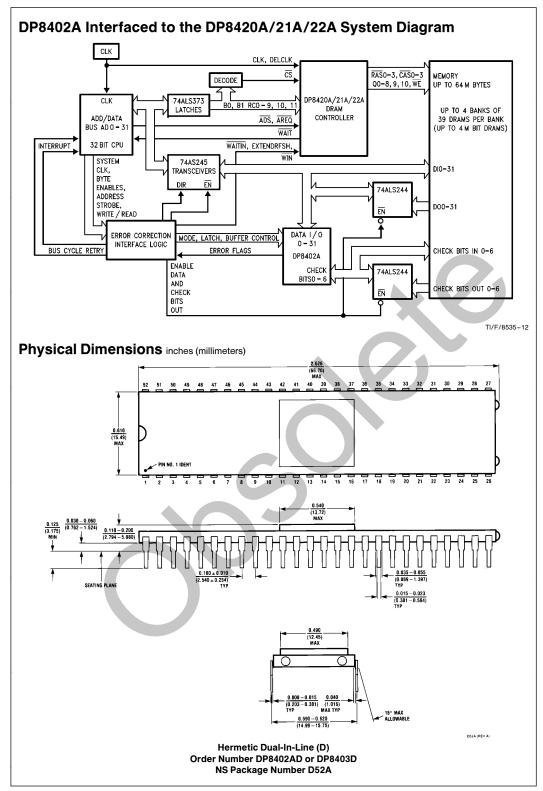
Symbol	From	То	Test Conditions		Military		Commercial	
oynize.	(Input)	(Output)		Min	Max	Min	Max	Unit
t _{pd}	DB and CB	ERR	$S1 = H, S0 = L, R_L = 500\Omega$	10	43	10	40	ns
۰pa	DB	ERR	$S1=L,S0=H,R_{L}=500\Omega$	10	43	10	40	113
t	DB and CB	MERR	$S1 = H, S0 = L, R_L = 500\Omega$	15	67	15	55	ns
t _{pd}	DB	MERR	$S1 = L, S0 = H, R_L = 500\Omega$	15	67	15	55	
t _{pd}	S0↓ and S1↓	СВ	$R1 = R2 = 500\Omega$	10	60	10	48	ns
t _{pd}	DB	СВ	$S1 = L, S0 = L, R1 = R2 = 500\Omega$	10	60	10	48	ns
t _{pd}	LEDB0↓	DB	$S1 = X, S0 = H, R1 = R2 = 500\Omega$	7	35	7	30	ns
t _{pd}	S1 ↑	СВ	$S0 = H, R1 = R2 = 500\Omega$	10	60	10	50	ns
t _{en}	<u>OECB</u> ↓	СВ	$S0 = H, S1 = X, R1 = R2 = 500\Omega$	2	30	2	25	ns
t _{dis}	<u>OECB</u> ↑	СВ	$S0 = H, S1 = X, R1 = R2 = 500\Omega$	2	30	2	25	ns
t _{en}	OEB0 thru OEB3↓	DB	$S0 = H, S1 = X, R1 = R2 = 500\Omega$	2	30	2	25	ns
t _{dis}	OEB0 thru OEB3 ↑	DB	$S0 = H, S1 = X, R1 = R2 = 500\Omega$	2	30	2	25	ns
						\mathbf{C}		

Symbol	From	То	Test Conditions	Military		Commercial			Units	
Symbol	(Input)	(Output)		Min	Тур†	Max	Min	Тур†	Max	
t _{pd}	DB and CB	ERR	$S1 = H, S0 = L, R_L = 500\Omega$		26			26		ns
чра	DB	ERR	$S1 = L, S0 = H, R_L = 500\Omega$		26			26		
	DB and CB		$S1 = H, S0 = L, R_L = 500\Omega$		40			40		ns
t _{pd}		MERR	$S1 = L, S0 = H, R_L = 500\Omega$		40			40		
t _{pd}	S0 \downarrow and S1 \downarrow	СВ	$R_L = 680\Omega$		40			40		ns
t _{pd}	DB	СВ	$S1 = L, S0 = L, R_L = 680\Omega$		40			40		ns
t _{pd}	LEDB0	DB	$S1 = X, S0 = H, R_L = 680\Omega$		26			26		ns
t _{pd}	S1 ↑	СВ	$S0 = H, R_L = 680\Omega$		40			40		ns
t _{PLH}	<u>OECB</u> ↑	СВ	$S1 = X, S0 = H, R_L = 680\Omega$		24			24		ns
t _{PHL}	<u>OECB</u> ↓	СВ	$S1 = X, S0 = H, R_L = 680\Omega$		24			24		ns
t _{PLH}	OEB0 thru OEB3 ↑	DB	$S1 = X, S0 = H, R_L = 680\Omega$		24			24		ns
t _{PHL}	OEB0 thru OEB3 ↓	DB	$S1 = X, S0 = H, R_L = 680\Omega$		24			24		ns
		1.0540								

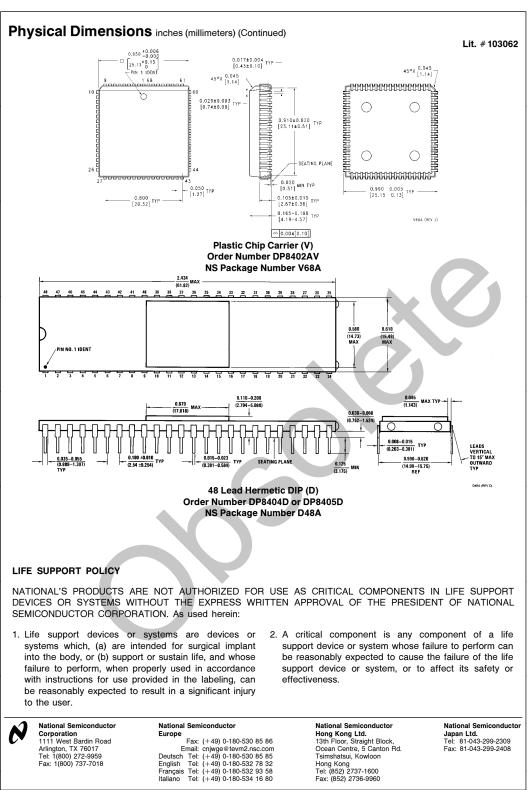

†All typical values are at V_{CC} = 5V, T_{A} = +25°C.


Symbol	From	То	Test Conditions	Military			Commercial			Units	
Cymber	(Input)	(Output)			Тур†	Max	Min	Тур†	Max	0.110	
t _{pd}	DB and CB	ERR	$S1 = H, S0 = L, R_L = 500\Omega$		26			26		ns	
чра		Liut	$S1 = L, S0 = H, R_L = 500\Omega$		26			26			
t . DR and CR	DB and CB	MERR	$S1 = H, S0 = L, R_L = 500\Omega$		40			40		ns	
t _{pd}			$S1 = L, S0 = H, R_L = 500\Omega$		40			40			
t _{pd}	S0 \downarrow and S1 \downarrow	СВ	$R1 = R2 = 500\Omega$		35			35		ns	
t _{pd}	DB	СВ	$S1 = L, S0 = L, R1 = R2 = 500\Omega$		35			35		ns	
t _{pd}	S1 ↑	СВ	$S0 = H, R1 = R2 = 500\Omega$		35			35		ns	
t _{en}	<u>OECB</u> ↓	СВ	$S1 = X, S0 = H, R1 = R2 = 500\Omega$		18			18		ns	
t _{dis}	OECB ↑	СВ	$S1 = X, S0 = H, R1 = R2 = 500\Omega$		18			18		ns	
t _{en}	<u>OECB</u> ↓	DB	$S1 = X, S0 = H, R1 = R2 = 500\Omega$		18			18		ns	
t _{dis}	<u>OECB</u> ↑	DB	$S1 = X, S0 = H, R1 = R2 = 500\Omega$		18			18		ns	


DP8405 Switching Characteristics, $V_{CC} = 4.5V$ to 5.5V, $C_L = 50$ pF, $T_A = Min$ to Max


	From	То	Test Conditions	Military			Commercial			Units
Symbol	(Input)	(Output)	Test conditions	Min	Тур†	Max	Min	Тур†	Max	Units
t _{pd}	DB and CB	ERR	$S1 = H, S0 = L, R_L = 500\Omega$		26			26		ns
чра	DB	ERR	$S1=L,S0=H,R_{L}=500\Omega$		26			26		115
tea	DB and CB	MERR	$S1 = H, S0 = L, R_L = 500\Omega$		40			40		ns
t _{pd}	DD and OD		$\mathrm{S1}=\mathrm{L},\mathrm{S0}=\mathrm{H},\mathrm{R}_{\mathrm{L}}=500\Omega$		40			40		113
t _{pd}	S0 \downarrow and S1 \downarrow	СВ	$R_L = 680\Omega$		40			40		ns
t _{pd}	DB	СВ	$S1=L, S0=L, R_L=680\Omega$		40			40		ns
t _{pd}	S1 ↑	DB	$SO = H, R_L = 680\Omega$		40			40		ns
t _{PLH}	<u>OECB</u> ↑	CB	$\text{S1}=\text{X}, \text{S0}=\text{H}, \text{R}_{\text{L}}=500\Omega$		24			24		ns
t _{PHL}	<u>OECB</u> ↓	СВ	$S1 = X, S0 = H, R_L = 680\Omega$		24			24		ns
t _{PLH}	<u>OEDB</u> ↑	DB	$S1=X,S0=H,R_{L}=680\Omega$		24			24		ns
t _{PHL}	<u>OEDB</u> ↓	DB	$S1=X,S0=H,R_L=680\Omega$		24			24		ns
$\dagger A \parallel$ typical values are at Voc = 5V. T _A = +25°C.										

†All typ



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated