DP8310,DP8311

DP8310/DP8311 Octal Latched Peripheral Drivers

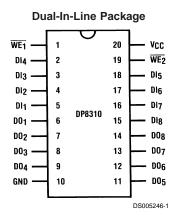
Literature Number: SNOSBE4

February 2000

DP8310/DP8311 Octal Latched Peripheral Drivers

General Description

The DP8310 and DP8311 Octal Latched Peripheral Drivers provide the function of latching eight bits of data with open collector outputs, each driving up to 100 mA DC with an operating voltage range of 30V. Both devices are designed for low input currents, high input/output voltages, and feature a power up clear (outputs off) function.

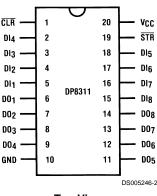

The DP8310 is positive edge latching. Two active low write/ enable inputs are available for convenient data bussing without external gating.

The DP8311 is positive edge latching. The active low strobe input latches data or allows fall through operation when held at logic "0". The latches are cleared (outputs off) with a logic "0" on the clear pin.

Features

- High current, high voltage open collector outputs
- Low current, high voltage inputs

Connection Diagrams



Top View

- All outputs simultaneously sink rated current "DC" with no thermal derating at maximum rated temperature
- Parallel latching or buffering
- Separate active low enables for easy data bussing
- Internal "glitch free" power up clear
- 10% V_{CC} tolerance

Applications

- High current high voltage drivers
- Relay drivers
- Lamp drivers
- LED drivers
- TRIAC drivers
- Solenoid drivers
- Stepper motor drivers
- Level translators
- Fiber-optic LED drivers

Dual-In-Line Package

Top View

Order Number DP8310N or DP8311N See NS Package Number N20A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

DC Electrical Characteristics

DP8310 and DP8311 (Notes 2, 3)

Note: *Derate N20A package 15.4 mW/°C above T_A = 25°C, θJ_A = 65°C/W.

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
Temperature			
DP8310/DP8311	0	+70	°C
Input Voltage		30	V
Output Voltage		30	V

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Logical "1" Input Voltage		2.0			V
V _{IL}	Logical "0" Input Voltage				0.8	V
V _{OL}	Logical "0" Output Voltage	Data outputs latched to logical "0", V _{CC} = Min.				
	DP8310/DP8311	I _{OL} = 100 mA		0.35	0.5	V
I _{OH}	Logical "1" Output Current	Data outputs latched to logical "1", V_{CC} = Min.				
	DP8310/DP8311	V _{OH} = 30V		2.5	250	μA
I _{IH}	Logical "1" Input Current	V_{IH} = 2.7V, V_{CC} = Max		0.1	25	μA
I _I	Input Current at Maximum Input Voltage	$V_{IN} = 30V, V_{CC} = Max$		1	250	μA
I _{IL}	Logical "0" Input Current	$V_{IN} = 0.4V, V_{CC} = Max$		-215	-300	μA
V_{clamp}	Input Clamp Voltage	I _{IN} = 12 mA		-0.8	-1.5	V
I _{CC0}	Supply Current, Outputs On	Data outputs latched to a logical "0". All Inputs are at logical "1", V_{CC} = Max.				
	DP8310			100	152	mA
	DP8311			88	125	mA
I _{CC1}	Supply Current, Outputs Off	Data outputs latched to a logic "1". Other conditions same as I _{CC0} .				
	DP8310			40	57	mA
	DP8311			25	36	mA

AC Electrical Characteristics

DP8310 only: V_{CC} = 4.5V, T_A = 25°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Write Enable Input to Output	(Figure 1)		40	120	ns
t _{pd1} Low to High Propagation Delay Write Enable Input to Output		(Figure 1)		70	150	ns
t _{SETUP}	Minimum Set-Up Time Data in to Write Enable Input	t _{HOLD} = 0 ns (Figure 1)	45	20		ns
t _{pWH} , t _{pWL}	Minimum Write Enable Pulse Width	(Figure 1)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 1)		16	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 1)		38	70	ns
C _{IN}	"N" Package (Note 4)			5	15	pF

AC Electrical Characteristics

DP8310/DP8311

DP8311 only: $V_{CC} = 5V$, $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Data In to Output	(Figure 2)		30	60	ns
t _{pd1}	Low to High Propagation Delay Data to Output	(Figure 2)		70	100	ns
t _{SETUP}	Minimum Set-Up Time Data in to Strobe Input	t _{HOLD} = 0 ns (Figure 2)	0	-25		ns
t _{pWL}	Minimum Strobe Enable Pulse Width	(Figure 2)	60	35		ns
t _{pdC}	Propagation Delay Clear to Data Output	(Figure 2)		70	135	ns
t _{pWC}	Minimum Clear Input Pulse Width	(Figure 2)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 2)		20	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 2)		38	60	ns
C _{IN}	Input Capacitance — Any Input	(Note 4)		5	15	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. **Note 2:** Unless otherwise specified min/max limits apply across the 0°C to +70°C for the DP8310/DP8311. All typical values are for $T_A = 25^{\circ}C$, $V_{CC} = 5V$.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

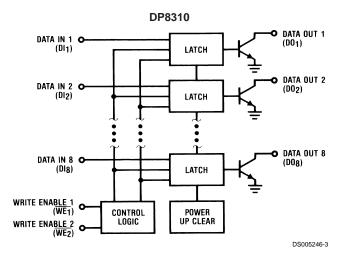
Note 4: Input capacitance is guaranteed by periodic testing. f_{TEST} = 10 kHz at 300 mV, T_{A} = 25°C.

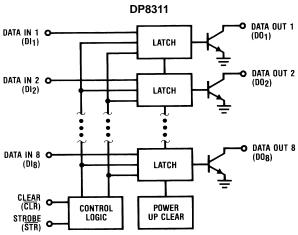
DP8310/DP8311

Logic Table

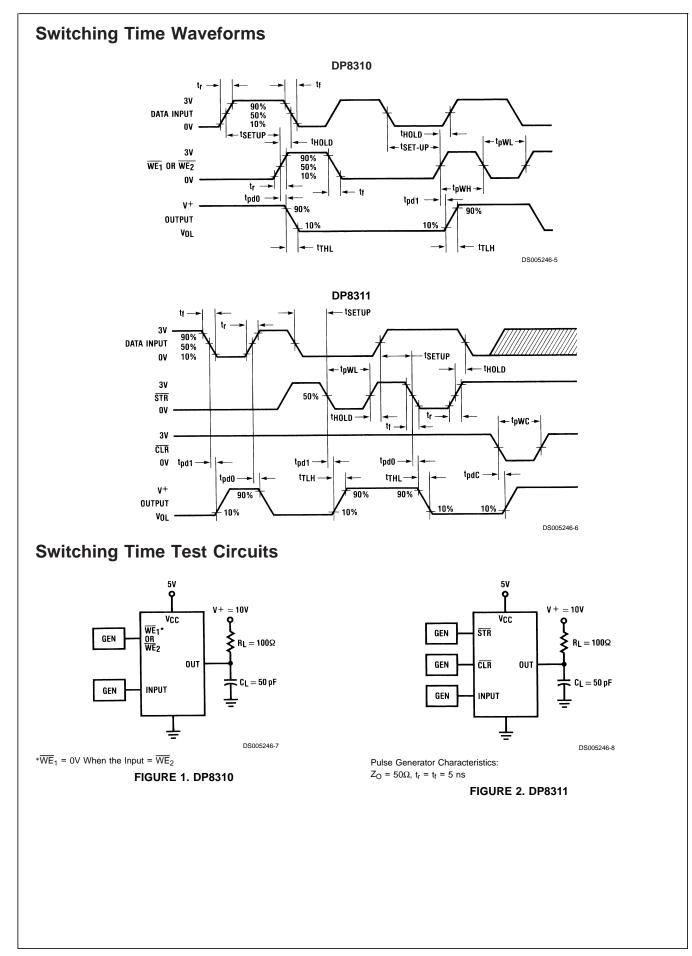
0					
	DP8310 Write Write Data Data				
Write					
Enable 1	Enable 2	Input	Output		
WE ₁	WE ₂	DI ₁₋₈	DO ₁₋₈		
0	0	Х	Q		
0	s	0	1		
0	×	1	0		
<i>x</i>	0	0	1		
×	0	1	0		
0	1	Х	Q		
1	0	Х	Q		
1	1	Х	Q		

[DP8311				
	Clear Strobe CLR STR		Data Input DI _{1–8}	Data Output DO ₁₋₈	
	1	1	Х	Q	
	1	0	0	1	
	1	0	1	0	
	0	Х	Х	1	

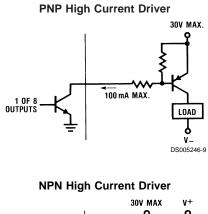

X = Don't Care

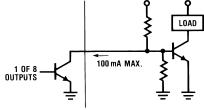

1 = Outputs Off

0 = Outputs On


Q = Pre-existing Output = Positive Edge Transition

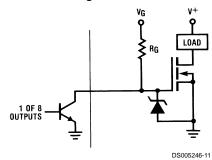
Block Diagrams

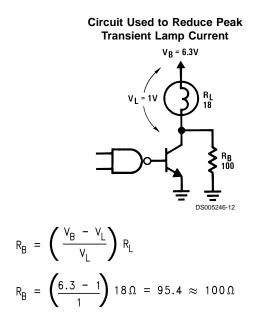

DS005246-4

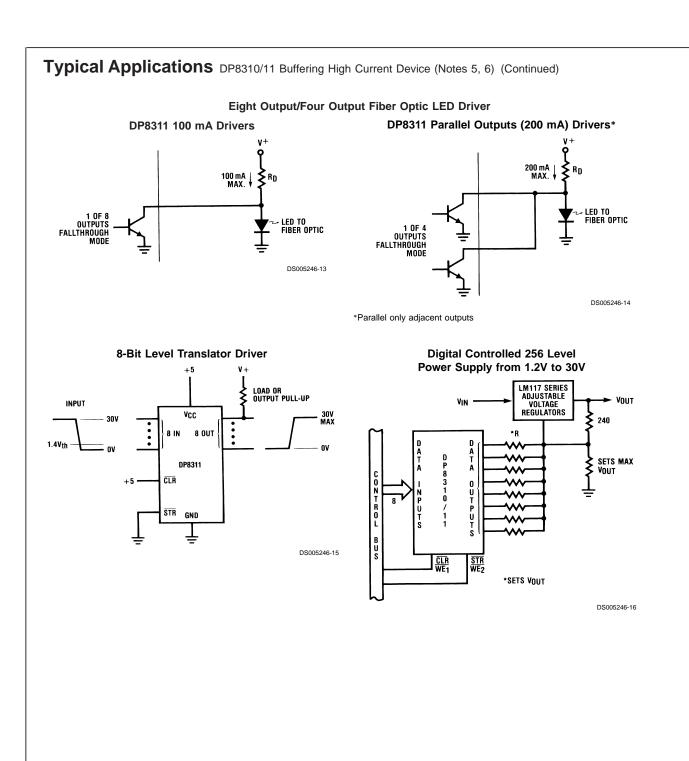


DP8310/DP8311

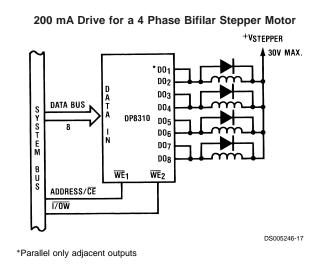
DP8310/DP8311

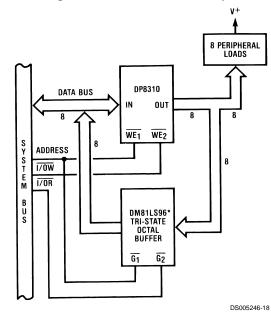

Typical Applications DP8310/11 Buffering High Current Device (Notes 5, 6)



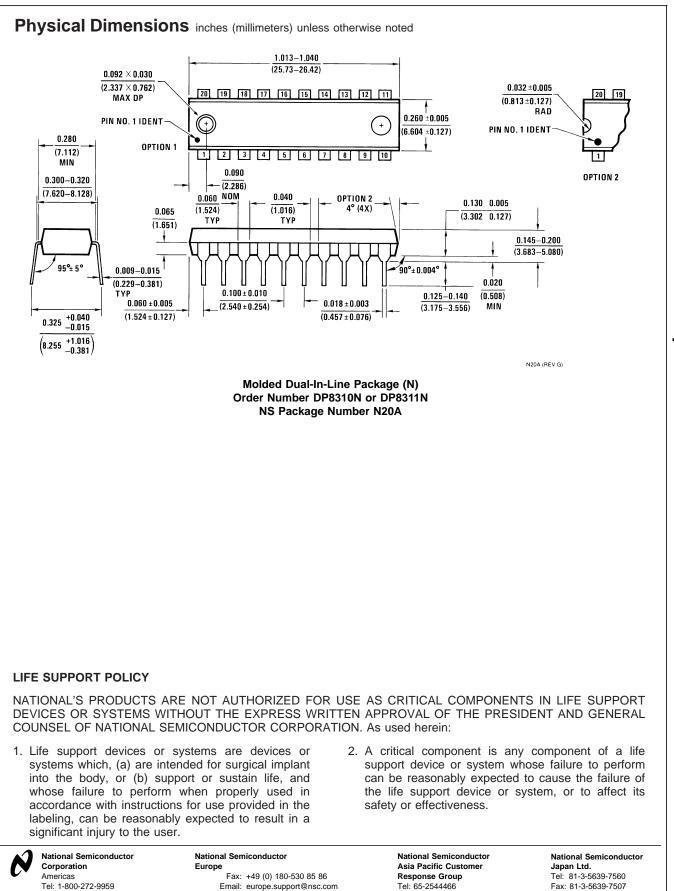


DS005246-10


VMOS High Current Driver



Typical Applications DP8310/11 Buffering High Current Device (Notes 5, 6) (Continued)



*High Level Input Voltage must not Exceed V_{CC} of the DM81LS96

Note 5: Always use good V_{CC} bypass and ground techniques to suppress transients caused by peripheral loads.

Note 6: Printed circuit board mounting is required if these devices are operated at maximum rated temperature and current (all outputs on DC).

Reading the State of the Latched Peripherals

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Fax: 65-2504466

Email: ap.support@nsc.com

Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

Fax: 1-800-737-7018

www.national.com

Email: support@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated