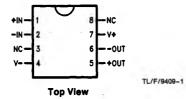


DP2580/ μ A2580 Winchester Disk Servo Preamplifier

General Description

The DP2580 provides termination, gain, and impedance buffering for the thin film servo read head in Winchester disk drives. It is a differential output design with fixed gain of approximately 250. The bandwidth is guaranteed greater than 30 MHz.

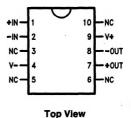
The internal design of the DP2580 is optimized for low input noise voltage to allow its use in low input signal level applications. It is offered in 8-lead ceramic DIP, 10-lead Flatpak, and an SO-8 package suitable for surface mounting.


Features

- Low input noise voltage
- Wide power supply range
- Internal damping resistors

Typ. 0.5 nV/√Hz 8V to 13V 1 kΩ

Connection Diagrams


8-Lead DIP and SO-8 Package

†Order Number μ A2580DC ††See NS Package Number N08E

†Order Number μ A2580SC ††See NS Package Number M08A

10-Lead Ceramic Flatpak

TL/F/9409-2

†Order Number µA2580FC ††See NS Package Number F10B

Pin Description

Name	Function
+IN	Positive Differential Input
-IN	Negative Differential Input
NC	No Connection
V-	Negative Differential Supply with Respect to VCC
+OUT	Positive Differential Output
-OUT	Negative Differential Output
V +	Positive Differential Supply with Respect to V _{CC}
NC	No Connection

†For most current order information, contact your local sales office. ††For most current package information, contact product marketing.

Absolute Maximum Ratings

if Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature Range
Ceramic DIP and Flatpak
SO-8

Operating Temperature Range

Storage Temperature Range

-65°C to +175°C
-65°C to +150°C

0°C to +70°C

Lead Temperature
Ceramic DIP and Flatpak
(Soldering, 60 seconds)

(Soldering, 60 seconds) SO-8 (Soldering, 10 seconds) 300°C

Internal Power Dissipation (Notes 1 and 2)

 8L—Ceramic DIP
 1.3W

 10L—Flatpak
 0.79W

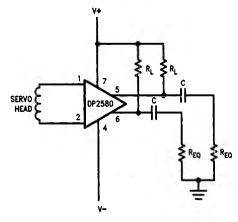
 SO-8
 15V

 Supply Voltage
 15V

 Output Voltage
 15V

 Differential input Voltage
 ± 1V

Note 1: T_J Max = 150°C for the SO-8, and 175°C for the Ceramic DIP and Flatoak.


Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L—Ceramic DIP at 8.7 mW/°C, the 10L—Flatpak at 5.3 mW/°C, and the SO-8 at 6.5 mW°C.

Electrical Characteristics $T_A = 25^{\circ}C$, V + - V - = 8V to 13.2V, unless otherwise specified

265°C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
G	Gain (Differential)	$R_{P} = 100\Omega, (V+) - (V-) \approx 12V$		250		
BW	Bandwidth (3 dB)	$V_I = 0.5 \text{mV}_{\text{p-p}}$	30	65		MHz
Ri	Input Resistance			300		Ω
Cl	Input Capacitance			35		pF
Vı	Input Dynamic Range (Differential)	$R_P = 100\Omega, (V+) - (V-) = 12V$			1	mV _{PP}
Is	Supply Current	(V+) - (V-) = 12V		28	40	mA
ΔVO	Output Offset (Differential)	$R_S = 0\Omega, R_P = 100\Omega$	600		600	mV
Vn	Equivalent Input Noise	BW = 4 MHz		0.6		nV/√H:
PSRR	Power Supply Rejection Ratio	$R_8 = 0\Omega$, $f = 5 MHz$	50	65	0.90	dB
ΔG/V	Gain Sensitivity (Supply)	$\Delta (V+) - (V-) \pm 10\%, R_P = 100\Omega$			0.5	%/V
ΔG/T	Gain Sensitivity (Temp.)	$T_A = 25^{\circ}C \text{ to } 70^{\circ}C, R_P = 100\Omega$		0.16		%/°C
CMR	Common Mode Rejection (Input)	f = 5 MHz	60	70		dB

Typical Applications (Notes 1-4)

TL/F/9409-3

Note 1: Leads shown for 8-lead DIP. Note 2: REQ is equivalent load resistance.

Note 3: $R_p = \frac{R_L \bullet R_{EO}}{R_L + R_{EO}}$

Note 4: G = 2.5 Rp

Where R_P = value Note 3 (above) in Ω .