
DM54LS251,DM74LS251

DM54LS251 DM74LS251 TRI-STATE(RM) Data Selectors/Multiplexers

Literature Number: SNOS294A

DM54LS251/DM74LS251 **TRI-STATE®** Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totempole outputs.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

Features

- TRI-STATE version of LS151
- Interface directly with system bus
- Perform parallel-to-serial conversion
- Permit multiplexing from N-lines to one line
- Complementary outputs provide true and inverted data
- Maximum number of common outputs 54LS 49
 - 74LS 129
- Typical propagation delay time (D to Y) 54LS 17 ns
- 74LS 17 ns
- Typical power dissipation 54LS 35 mW 74LS 35 mW

unation Tabl

С	Connection Diagram								
	Dual-In-Line Package								
		_					DATAS	ELECT	_
	۷çc	Ď		05 C	1		A	в [,]	c`
	16		15	14	13	12	11	10	9
			I						
								7	
			2	3	4	5	6	7	8
	, DЗ	C	ן 2010	 01 [I Ю	I Y I	I W STF	I ROBE G	ND ^I
	<u> </u>	DA	TA INPU	ITS		DUTPUT	s		
									6415-1
	0	rde				51J, DI 0M74L9		251W,	
5	See N	S P				A, M16		E or W	16A
							-		

	I	Outputs				
Select			Strobe	v	w	
С	В	Α	S	•	**	
х	x	x	Н	Z	Z	
L	L	L	L	D0	D0	
L	L	н	L	D1	D1	
L	н	L	L	D2	D2	
L	н	н	L	D3	D3	
н	L	L	L	D4	D4	
н	L	н	L	D5	D5	
н	н	L	L	D6	D6	
н	н	н	L	D7	D7	

X = Don't Care, Z = High Impedance (Off)

D0, D1 ... D7 = The level of the respective D input

DM54LS251/DM74LS251 TRI-STATE Data Selectors/Multiplexers

June 1989

TRI-STATE® is a registered trademark of National Semiconductor Corporation

© 1995 National Semiconductor Corporation TL/F/6415

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM54LS	-55°C to +125°C
DM74LS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C

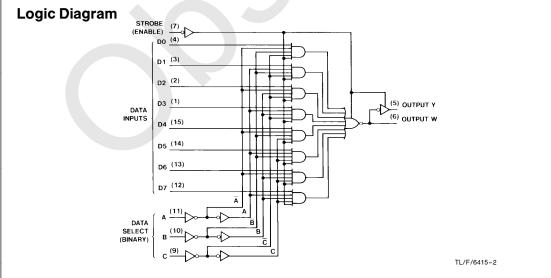
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

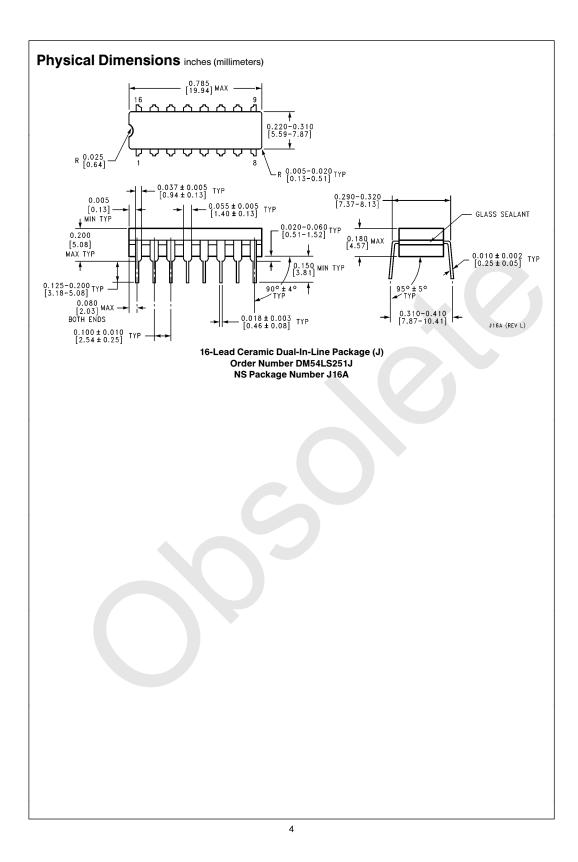
Recommended Operating Conditions

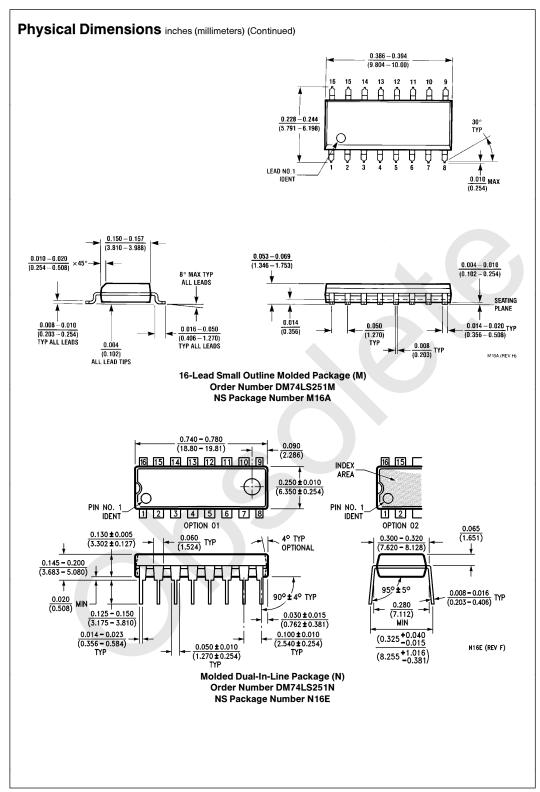
Parameter	DM54LS251			DM74LS251			Units
ratameter	Min	Nom	Мах	Min	Nom	Max	Onits
Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
High Level Input Voltage	2			2			V
Low Level Input Voltage			0.7			0.8	V
High Level Output Current			-1			-2.6	mA
Low Level Output Current			12			24	mA
Free Air Operating Temperature	-55		125	0		70	°C
	High Level Input Voltage Low Level Input Voltage High Level Output Current Low Level Output Current	Parameter Min Supply Voltage 4.5 High Level Input Voltage 2 Low Level Input Voltage 1 High Level Output Current 1	Min Nom Supply Voltage 4.5 5 High Level Input Voltage 2 2 Low Level Input Voltage - - High Level Output Voltage - - Low Level Output Current - -	Min Nom Max Supply Voltage 4.5 5 5.5 High Level Input Voltage 2 0.7 Low Level Output Current 1 -1 Low Level Output Current 0 12	Min Nom Max Min Supply Voltage 4.5 5 5.5 4.75 High Level Input Voltage 2 2 2 Low Level Input Voltage 0.7 High Level Output Current -1	ParameterMinNomMaxMinNomSupply Voltage4.555.54.755High Level Input Voltage2222Low Level Input Voltage0.70.71High Level Output Current1-11Low Level Output Current12121	MinNomMaxMinNomMaxSupply Voltage4.555.54.7555.25High Level Input Voltage2-220.8Low Level Input Voltage0.70.80.8-2.6High Level Output Current-122424

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

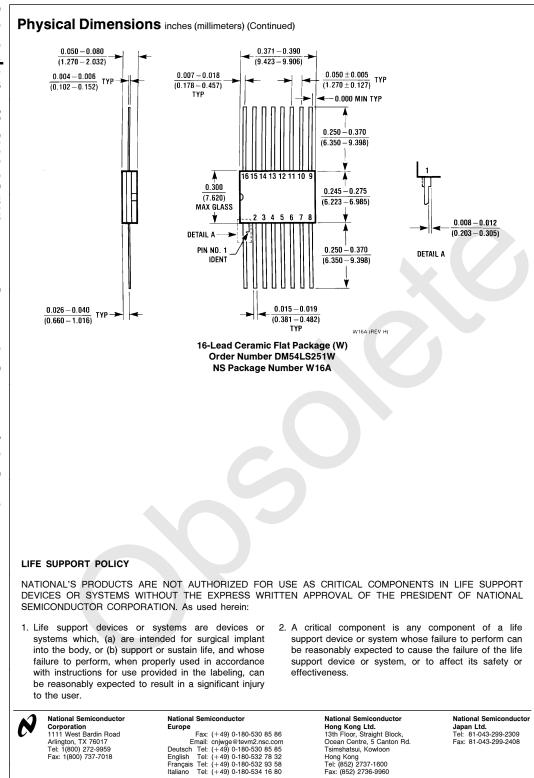
Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = Min, I_{OH} = Max$	DM54	2.4	3.4		V
	Voltage	$V_{IL} = Max, V_{IH} = Min$	DM74	2.4	3.1		v
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	DM54		0.25	0.4	r.
	Voltage	$V_{IL} = Max, V_{IH} = Min$	ax, V _{IH} = Min DM74		0.35	0.5	V
		$I_{OL} = 12 \text{ mA}, V_{CC} = Min$	DM74		0.25	0.4	
I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$				0.1	mA
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μΑ
Ι _{ΙL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.4	mA
I _{OZH}	Off-State Output Current with High Level Output Voltage Applied	$\label{eq:V_CC} \begin{split} V_{CC} &= Max, V_O = 2.7V \\ V_{IH} &= Min, V_{IL} = Max \end{split}$				20	μΑ
I _{OZL}	Off-State Output Current with Low Level Output Voltage Applied	$\label{eq:V_CC} \begin{split} V_{CC} &= Max, V_O = 0.4V \\ V_{IH} &= Min, V_{IL} = Max \end{split}$				-20	μΑ
I _{OS}	Short Circuit	V _{CC} = Max	DM54	-20		- 100	mA
	Output Current	(Note 2)	DM74	-20		- 100	
ICC1	Supply Current	V _{CC} = Max (Note 3)			6.1	10	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 4)			7.1	12	mA


Note 1: All typicals are at V_{CC}\,=\, 5V, T_A $=\,$ 25°C.


Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 3: I_{CC1} is measured with the outputs open, STROBE grounded, and all other inputs at 4.5V.

Note 4: $I_{\rm CC2}$ is measured with the outputs open and all inputs at 4.5V.


	ng Characteristics at						
Symbol	Parameter	From (Input) to (Output)	C _L =	45 pF	C _L = 150 pF		Units
		to (Calpai)	Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time Low to High Level Output	A, B, C (4 Levels) to Y		45		53	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A, B, C (4 Levels) to Y		45		53	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	A, B, C (3 Levels) to W		33		38	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	A, B, C (3 Levels) to W		33		42	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	D to Y		28		35	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	D to Y		28		38	ns
t _{PLH}	Propagation Delay Time Low to High Level Output	D to W		15		25	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	D to W		15		25	ns
t _{PZH}	Output Enable Time to High Level Output	Strobe to Y		45		60	ns
t _{PZL}	Output Enable Time to Low Level Output	Strobe to Y		40		51	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 1)	Strobe to Y		45			ns
t _{PLZ}	Output Disable Time from Low Level Output (Note 1)	Strobe to Y		25			ns
t _{PZH}	Output Enable Time to High Level Output	Strobe to W		27		40	ns
t _{PZL}	Output Enable Time to Low Level Output	Strobe to W		40		47	ns
t _{PHZ}	Output Disable Time from High Level Output (Note 1)	Strobe to W		55			ns
t _{PLZ}	Output Disable Time from Low Level Output (Note 1)	Strobe to W		25			ns

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated