February 1998

DM74ALS541 Octal Buffer and

I Line

Driver with 3-STATE Outputs

FAIRCHILD

DM74ALS541 Octal Buffer and Line Driver with 3-STATE Outputs

General Description

This octal buffer and line driver is designed to have the performance of the 'ALS240 series and, at the same time, offer a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly enhances circuit board layout. The 3-STATE control gate is a 2-input NOR such that if either G1 or G2 is high, all eight outputs are in the high impedance state.

- Switching performance is guaranteed over full temperature and V_{CC} supply range
 Data flow-thru pinout (all inputs on opposite side
- Data flow-thru pinout (all inputs on opposite side from outputs)
- P-N-P Inputs reduce DC loading

Features

 Advanced oxide-isolated ion-implanted Schottky TTL process

www.fairchildsemi.com

Absolute Maximum Ratings (Note 1)

Supply Voltage	7V
Input Voltage: Control Inputs	7V
Voltage Applied to a Disabled	
3-STATE Output	5.5V
Operating Free-Air Temperature	

Range	
DM74ALS	0°C to +70°C
Storage Temperature Range	-65°C to +150°C
Typical θ _{JA}	
N Package	58.5°C/W
M Package	77.5°C/W

Recommended Operating Conditions

Symbol	Parameter		DM74ALS541			
		Min	Nom	Max	1	
V _{cc}	Supply Voltage	4.5	5	5.5	V	
V _{IH}	High Level Input Voltage	2			V	
V _{IL}	Low Level Input Voltage			0.8	V	
I _{он}	High Level Output Current			-15	mA	
I _{OL}	Low Level Output Current			24	mA	
T _A	Free Air Operating Temperature	0		70	°C	

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended free air temperature range

Symbol	Parameter	Test Conditions		Min	Тур	Мах	Units
VIK	Input Clamp Voltage	V_{CC} = Min, I _I = -18 mA				-1.2	V
V _{OH}	High Level Output	$V_{\rm CC}$ = 4.5V to 5.5V	I _{OH} = -0.4 mA	V _{CC} – 2			
	Voltage	V _{CC} = Min	I _{OH} = -3 mA	2.4	3.2		V
			I _{OH} = Max	2]
V _{OL}	Low Level Output	V _{CC} = Min	I _{OL} = 12 mA		0.25	0.4	mA
	Voltage		I _{OL} = 24 mA		0.35	0.5	
-I _I	Input Current at Max	V_{CC} = Max, V_{I} = 7V				100	μA
	Input Voltage						
I _{IH}	High Level Input Current	V_{CC} = Max, V_{I} = 2.7V				20	μA
I	Low Level Input Current	V_{CC} = Max, V_{I} = 0.4V				-100	μA
I _{ozh}	High Level 3-STATE	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.7	/			20	μA
	Output Current						
I _{OZL}	Low Level 3-STATE	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 0.4V				-20	μA
	Output Current						
I _o	Output Drive Current	$V_{\rm CC}$ = Max, $V_{\rm O}$ = 2.25	SV	-30		-112	mA
I _{cc}	Supply Current	V _{CC} = Max	Outputs High		6	14	
			Outputs Low		15	25	mA
			Outputs Disabled		13.5	22	

Symbol	Parameter	Conditions	From (Input)	DM74	ALS541	Unit
			(input) To (Output)	Min	Max	
LH	Propagation Delay Time	$V_{\rm CC}$ = 4.5V to 5.5V,	A to Y	4	14	ns
	Low to High Level Output	$R_1 = R_2 = 500\Omega$,				
HL	Propagation Delay Time	$C_{L} = 50 \text{ pF}$	A to Y	2	10	ns
	High to Low Level Output					
ZH	Output Enable Time		G to Y	5	15	ns
	to High Level Output					
ZL	Output Enable Time		G to Y	8	20	ns
	to Low Level Output					
HZ	Output Disable Time		G to Y	1	10	ns
	from High Level Output					
17	Output DisableTime	-	G to Y	2	12	ns
-2	from Low Level Output					

www.fairchildsemi.com

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconducto	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Cen	er Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
www.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.