DM5490/DM7490 (SN5490/SN7490)decade counter DM5492 /DM7492 (SN5492/SN7492) divide-by-twelve counter DM5493 / DM7493 (SN5493/SN7493) four-bit binary counter general description

These TTL (Transistor-Transistor-Logic) monolithic counters are capable of counting pulses at a guaranteed frequency of 20 MHz . Gating is provided to reset the counters to the more popular states. Characteristics include high speed at moderate power dissipation, high noise immunity, and minimal variation in performance over temperature. These circuits are completely compatible with other series 54/74 devices.

To provide greater flexibility, the counters may be used in any of the modes as follows:

DM5490/DM7490

1. BCD decade counter-connect the A output to the BD input. This is the normal mode of operation.
2. Symmetrical divide-by-ten operation-connect the D output to the A input. When pulses are then applied to the BD input, a symmetrical waveform one tenth of the applied frequency will appear at the A output.
3. Divide-by-five operation-if no external connections are made a frequency division of five will result between the BD input and the D output. This allows the flip flop A to be used to divide-by-two if desired.

DM5492/DM7492

1. When used as a divide-by-twelve counter output A is connected to the $B C$ input. In this mode outputs A, C, and D provide divisions by 2, 6, and 12 respectively.
2. When the connection is not made between A and $B C$, and when an input frequency is applied to the $B C$ input, a frequency division of 3 and 6 results on the C and D outputs respectively. In this mode the A flip flop may be used independently except for the common reset input.

DM5493/DM7493

1. When used as a four-bit binary counter, output A is connected to the B input. In this mode outputs A, B, C, and D provide divisions by 2, 4,8 , and 16 respectively.
2. When the connection is not made between A and B and when an input frequency is applied to the B input, a frequency division of 2,4 and 8 results on the B, C, and D outputs respectively. In this mode the A flip flop may be used independently except for the common reset input.

logic and connection diagrams

absolute maximum ratings

Supply Voltage
Input Voltage
Operating Temperature Range
DM5490, DM5492, DM5493
DM7490, DM7492, DM7493
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
300^{\circ} \mathrm{C}
$$

electrical characteristics (Note 1)

PARAMETER		CONDITIONS		MIN	TYP	MAX	UNITS
Input Diode Clamp Voltage		$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\text { IOUT }=-12 \mathrm{~mA}$		-1.0	-1.5	mA
Logical "1" Input Voltage	DM5490, 92,93	$\frac{V_{c c}=4.5 \mathrm{~V}}{V_{\mathrm{cc}}=4.75 \mathrm{~V}}$		2.0			V
Logical "0" Input Voltage	DM5490, 92,93	$\frac{V_{c c}=4.5 \mathrm{~V}}{V_{c c}=4.75 \mathrm{~V}}$. 8	V
Logical "1" Output Voltage	DM5490, 92,93	$\frac{V_{c c}=4.5 \mathrm{~V}}{V_{c c}=4.75 \mathrm{~V}}$	$\mathrm{I}_{\text {OUT }}=-400 \mu \mathrm{~A}$	2.4			V
Logical "0" Output Voltage	DM5490, 92,93	$\frac{V_{c c}=4.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}}=4.75 \mathrm{~V}}$	$\mathrm{I}_{\text {OUT }}=16 \mathrm{~mA}$. 2	. 4	v
Logical "1" Input Current	DM5490, 92,93	$\frac{V_{C C}=5.5 \mathrm{~V}}{V_{c \mathrm{Cc}}=5.25 \mathrm{~V}}$	$V_{\text {IN }}=5.5 \mathrm{~V}$			1	mA
Output Short Circuit Current	DM5490, 92,93	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$	(Note 2)	$\begin{array}{r} 20 \\ 18 \\ \hline \end{array}$		$\begin{array}{r} 55 \\ 55 \\ \hline \end{array}$	mA
DM5490/DM7490							
Logical "1" Input Current $\begin{aligned} & R_{0(1)}, R_{0(2)}, R_{9(1)}, R_{9(2)} \\ & A \\ & B D \end{aligned}$	DM5490	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V} \end{aligned}$	$V_{i N}=2.4 \mathrm{~V}$			$\begin{array}{r} 40 \\ 80 \\ 160 \end{array}$	$\begin{aligned} & \mu A \\ & \mu A \\ & \mu A \end{aligned}$
Logical "0" Input Current $\begin{aligned} & R_{0(1)}, R_{0(2)}, R_{9(1)}, R_{9(2)} \\ & A \\ & B D \end{aligned}$	DM5490	$\frac{\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}} \quad 5.25 \mathrm{~V}}$	$\mathrm{V}_{1 \mathrm{~N}}=.4 \mathrm{~V}$			1.6 3.2 6.4	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Supply Current	DM5490	$\frac{\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}}$			32	45	mA
Maximum Input Frequency		$\begin{aligned} & V_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \text { F.O. }=10, \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & C_{O}=50 \mathrm{pF} \end{aligned}$	20	32		MHz
Propagation Delay Time to a Logical "1" Level From Input to Output	$\begin{aligned} & \frac{A}{B} \\ & \frac{B}{C} \\ & \frac{D}{D} \end{aligned}$	$\begin{aligned} & \text { F.O. }=10, \\ & \text { C Out }=50 \mathrm{pF}, \\ & \text { All Outputs } \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 16 \\ & 35 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Propagation Delay Time to a Logical " 0 " Level From Input to Output	$\frac{\frac{A}{B}}{\frac{B}{C}}$	$\begin{aligned} & \text { F.O. }=10, \\ & C_{\text {OUT }}=50 \mathrm{pF}, \\ & \text { All Outputs } \end{aligned}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 19 \\ & 35 \\ & 50 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 60 \\ & 80 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Minimum Allowable Clock Pulse Width (Note 3)	~ 6	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			8	15	ns
DM5492/DM7492							
Logical " 1 " Input Current $\begin{aligned} & R_{o(1)} \cdot R_{O(2)} \\ & A \\ & B C \end{aligned}$	$\frac{\text { DM5492 }}{\text { DM7492 }}$	$\frac{\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{cc}}=5.25 \mathrm{~V}}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$.		$\begin{array}{r} 40 \\ 80 \\ 160 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: $\mathrm{Min} /$ max limits apply across ty e guaranteed operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
for the DM5490. DM5492 and DM5493 and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the DM7490. DM 7492 and DM7493
unless otherwise specified. All typicals are given for $V_{C C}=5.0 \mathrm{~V}$ and $T_{A}=25 \mathrm{C}$.
Note 2: Only one output may te shorted at a time.
Note 3: The flip flop will always recognize a 15 ns pulse

ac test circuit

typical performance characteristics

BCD count sequence

DM5490/DM7490

COUNT		OUTPUT		
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

count sequence

DM5492/DM7492

COUNT	OUTPUT			
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	1	0	0	0
7	1	0	0	1
8	1	0	1	0
9	1	0	1	1
10	1	1	0	0
11	1	1	0	1

DM5493/DM7493

COUNT		OUTPUT		
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

RESET OPERATION

To reset the counter to the BCD count of zero, both Reset 0 inputs must be at logical " 1 " levels while at least one Reset 9 input is at a logical " 0 " level.

To reset the counter to the BCD count of nine, both Reset 9 inputs must be at logical " 1 " levels; while at least one Reset 0 input is at a logical " 0 ".

Notes:

1. Counting occurs on the negative-going edge of the input pulse.
2. At least one of the Reset 0 inputs and at least one of the Reset 9 inputs must be at a logical " 0 " for proper counting.
3. For $\div 10$ counting, connect the A output to the $B D$ input.

RESET OPERATION

To reset the counter to the count of zero, both Reset 0 inputs must be at logical " 1 " levels.

Notes:

1. Counting occurs on the negative-going edge of the input pulse.
2. At least one of the Reset 0 inputs must be at a logical " 0 " for proper counting.
3. For $\div 12$ counting, connect the A output to the $B C$ input.

RESET OPERATION

To reset the counter to the count of zero, both Reset 0 inputs must be at logical " 1 " levels.

Notes:

1. Counting occurs on the negative-going edge of the input pulse.
2. At least one of the Reset 0 inputs must be at a logical " 0 " for proper counting.
3. For $\div 16$ counting, connect the A output to the B input.
