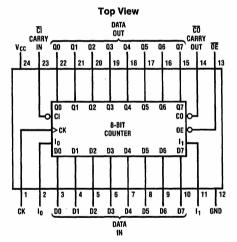
National Semiconductor

DM54LS461A/DM74LS461A Octal Counter

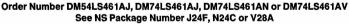
General Description

The LS461A is an 8-bit synchronous counter with parallel load, clear and hold capability. Two function select inputs (I0, I1) provide one of four operations which occur synchronously on the rising edge of the (CK).

The LOAD operation loads the inputs (D7–D0) into the output register (Q7–Q0). The CLEAR operation resets the output register to all LOWs. The HOLD operation holds the previous value regardless of the clock transitions. The IN-CREMENT operation adds one to the output register when the carry-in input is TRUE ($\overline{CI} = LOW$), otherwise the operation is a HOLD. The carry-out (\overline{CO}) is True ($\overline{CO} = LOW$) when the output register (Q7–Q0) is all HIGHs, otherwise FALSE ($\overline{CO} = HIGH$).


The output register (Q7–Q0) is enabled when $\overline{\text{OE}}$ is LOW, and disabled (HI–Z) when $\overline{\text{OE}}$ is HIGH. The output drivers will sink 24 mA required for many bus interface standards.

Two or more LS461A octal counters may be cascaded to provide larger counters. The operation codes were chosen such that when I1 is HIGH I0 may be used to select between LOAD and INCREMENT as in a program counter (JUMP/INCREMENT).


Features

- Octal counter for microprogram-counter, DMA controller for general purpose counting applications
- 8 bits match byte boundaries
- Low current PNP inputs reduce loading
- Bus-structured pinout
- TRI-STATE® outputs drive bus lines
- 24-pin SKINNYDIP saves space
- Expadable in 8-bit increments

Connection Diagram

TL/L/10224-1

Function Table

i	OE	СК	11	10	Ĉİ	D7-D0	Q7-Q0	Operation
	Н	х	х	х	х	х	Z	HI–Z
1	L	1	L	L	X	х	L	CLEAR
1	L	1	L	н	х	х	Q	HOLD
1	L	1	н	L	х	D	D	LOAD
	L	1	н	н	н	Х	Q	HOLD
	L	1	н	Н	L	Х	Q Plus 1	INCREMENT

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V _{CC} Supply Voltage	7V
Input Voltage	5.5V
Off-State Output Voltage	5.5V

Storage Temperature ESD Tolerance Czap = 100 pFRzap = 150Ω Test Method: Human Bod -65°C to +150°C >1000V LS461A

10001

Recommended Operating Conditions

Symbol	Parameter		Military			Units		
Cynibol	i alanotoi	Min	Тур	Max	Min	Тур	Max	Unito
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	v
T _A	Operating Free-Air Temperature	-55	25		0	25	75	°C
T _C	Operating Case Temperature			125				°C

Electrical Characteristics Series 24A Over Recommended Operating Temperature Range

Symbol	Parameter	т	est Conditions		Min	Тур	Max	Units
VIH	High Level Input Voltage	(Note 2)			2			v
VIL	Low Level Input Voltage	(Note 2)				0.8	v	
VIC	Input Clamp Voltage	$V_{CC} = Min, II = -18 mA$				-0.8	-1.5	v
VOH	High Level Output Voltage	V _{CC} = Min	I _{OH} = -2 mA	MIL				
		$V_{IL} = 0.8V$ $V_{IH} = 2V$	$I_{OH} = -3.2 \mathrm{mA}$	СОМ	2.4	2.9		v
V _{OL}	Low Level Output Voltage	V _{CC} = Min	l _{OL} = 12 mA	MIL				
		$V_{IL} = 0.8V$ $V_{IH} = 2V$	$I_{OL} = 24 \text{ mA}$	СОМ		0.3	0.5	V
lozh	Off-State Output Current (Note 3)	$V_{CC} = Max$ $V_O = 2.4V$					100	μA
IOZL		$V_{IL} = 0.8V$ $V_{IH} = 2V$	$V_{O} = 0.4V$				-100	μA
lj –	Maximum Input Current V _{CC} = Max, V _I = 5.5V						1	mA
Iн	High Level Input Current (Note 3)	V _{CC} = Max, V	$V_{CC} = Max, V_I = 2.4V$				25	μΑ
կլ	Low Level Input Current (Note 3) V _{CC} = Max, V _I = 0.4V				-0.04	-0.25	mA	
los	Output Short-Circuit Current	$V_{CC} = 5V$ $V_O = 0V$ (Note 4)			-30	-70	-130	mA
Icc	Supply Current	Supply Current V _{CC} = Max				135	180	mA

Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values.

Note 2: These are absolute voltages with respect to the ground pin on the device and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Note 3: I/O leakage as the worst case of IOZX or IIX, e.g., $I_{\rm IL}$ and IOZL.

Note 4: During IOS measurement, only one output at a time should be grounded. Permanent damage otherwise may result.

Symbol	Parameter	Test Conditions	Military			Commercial			Units	
cynnool	Set-Up Time from Input		Min 40	Typ 20	Max	Min 30	Typ 20	Max	ns	
ts										
tw	Width of Clock	High		20	7		15	7		ns
		Low		35	15		25	15		ns
T _{pd}	CBI to CBO Delay		$C_L = 50 pF$		23	35		23	30	ns
T _{cik}	Clock to Output		C _L = 50 pF		10	25		10	15	ns
Т _{рzx}	Output Enable Delay		$C_L = 50 pF$		19	35		19	30	ns
T _{pzx}	Output Disable Delay		C _L = 5 pF		15	35		15	30	ns
t _H	Hold Time			0	-15		0	-15		ns
f _{max}	Maximum Frequency			15.3	32		22.2	32		МН

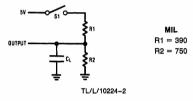
COM'L

R1 = 200

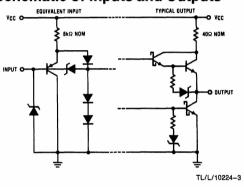
R2 = 390

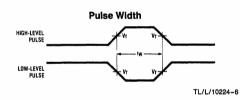
• 3V

n٧

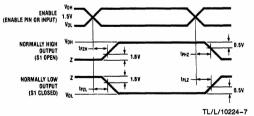

3V

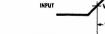
3V

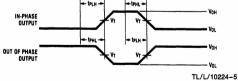

nν


Test Load

LS461A




Schematic of Inputs and Outputs


Test Waveforms

tSET-UP

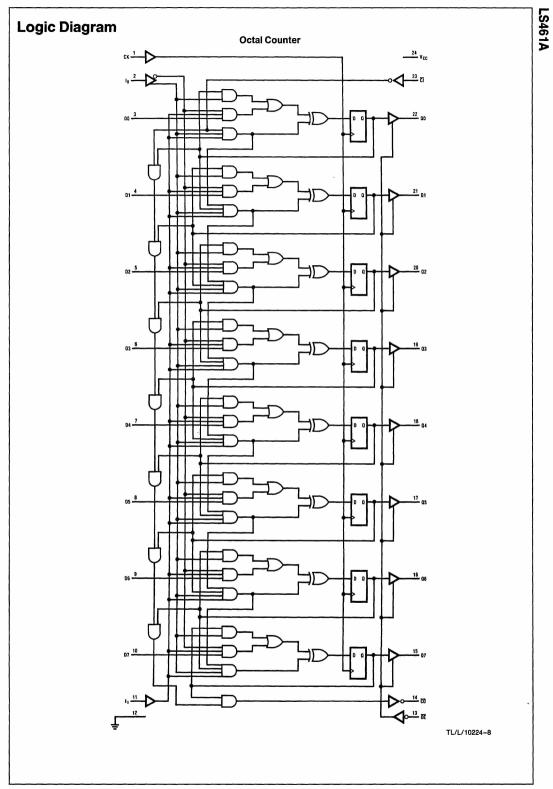
CLOCK

INPUT

DATA INPUT

Propagation Delay

Set-Up and Hold


VT (SEE NOTE A)

- thold

Note A: $V_T = 1.5V$.

Note B: CL includes probe and jig capacitance.

Note C: In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.

