
DM5447A,DM7446,DM7447A

DM7446A DM5447A DM7447A BCD to 7-Segment Decoders/Drivers

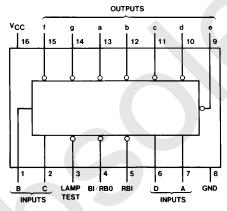
Literature Number: SNOS257A

DM7446A, DM5447A/DM7447A BCD to 7-Segment Decoders/Drivers

General Description

The 46A and 47A feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. All of the circuits have full ripple-blanking input/output controls and a lamp test input. Segment identification and resultant displays are shown on a following page. Display patterns for BCD input counts above nine are unique symbols to authenticate input conditions.

All of the circuits incorporate automatic leading and/or trailing-edge, zero-blanking control (RBI and RBO). Lamp test (LT) of these devices may be performed at any time when the BI/RBO node is at a high logic level. All types contain


an overriding blanking input (BI) which can be used to control the lamp intensity (by pulsing) or to inhibit the outputs.

Features

- All circuit types feature lamp intensity modulation capability
- Open-collector outputs drive indicators directly
- Lamp-test provision
- Leading/trailing zero suppression

Connection Diagram

TI /F/6518-1

Order Number DM5447AJ, DM7446AN or DM7447AN See NS Package Number J16A or N16E

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Units		
Cymbol	1 drameter	Min	Nom	Max	Omis
V_{CC}	Supply Voltage	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
V_{OH}	High Level Output Voltage (a thru g)			30	V
I _{OH}	High Level Output Current (BI/RBO)			-0.2	μΑ
I _{OL}	Low Level Output Current (a thru g)			40	mA
I _{OL}	Low Level Output Current (BI/RBO)			8	mA
T _A	Free Air Operating Temperature	0		70	°C

'46A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Cond	itions	Min	Typ (Note 1)	Max	Units
V_{I}	Input Clamp Voltage	$V_{CC}=$ Min, $I_{I}=$	-12 mA			-1.5	V
V _{OH}	High Level Output Voltage (BI/RBO)	$V_{CC} = Min$ $I_{OH} = Max$		2.4	3.7		>
I _{CEX}	High Level Output Current (a thru g)	$V_{CC} = Max, V_{O}$ $V_{IL} = Max, V_{IH}$				250	μΑ
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL} = Min, V_{IL$			0.3	0.4	٧
II	Input Current @ Max Input Voltage	V _{CC} = Max, V _I = (Except BI/RBO			1	mA	
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.4V (Except BI/RBO)				40	μΑ
I _{IL}	Low Level Input	$V_{CC} = Max$	BI/RBO			-4	mA
	Current	$V_I = 0.4V$	Others			-1.6	1117 (
los	Short Circuit Output Current	V _{CC} = Max (BI/RBO)				-4	mA
Icc	Supply Current	V _{CC} = Max (Note 2)			60	103	mA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: $I_{\mbox{\footnotesize CC}}$ is measured with all outputs open and all inputs at 4.5V.

'46A Switching Characteristics at $V_{CC}=5V$ and $T_A=25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time Low to High Level Output	$C_L = 15 \text{ pF}$ $R_L = 120\Omega$		100	ns
t _{PHL}	Propagation Delay Time High to Low Level Output			100	ns

Recommended Operating Conditions

Symbol	Parameter		DM5447A			Units		
Зушьог	raiametei	Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
V _{OH}	High Level Output Voltage (a thru g)			15			15	V
ГОН	High Level Output Current (BI/RBO)			-0.2			-0.2	μΑ
I _{OL}	Low Level Output Current (a thru g)			40			40	mA
I _{OL}	Low Level Output Current (BI/RBO)			8			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

'47A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Cond	ditions	Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I =$	= -12 mA			-1.5	V
V _{OH}	High Level Output Voltage (BI/RBO)	$V_{CC} = Min$ $I_{OH} = Max$		2.4	3.7		V
I _{CEX}	High Level Output Current (a thru g)	$V_{CC} = Max, V_{CC}$ $V_{IL} = Max, V_{IH}$	•			250	μΑ
V _{OL}	Low Level Output Voltage	$V_{CC} = Min, I_{OL}$ $V_{IH} = Min, V_{IL}$		0.3	0.4	V	
II	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I$			1	mA	
I _{IH}	High Level Input Current	V _{CC} = Max, V _I	= 2.4V			40	μΑ
I _{IL}	Low Level Input	V _{CC} = Max	BI/RBO			-4	mA.
	Current	$V_{l} = 0.4V$	Others			-1.6	110.4
los	Short Circuit Output Current	V _{CC} = Max (BI/RBO)				-4	mA
Icc	Supply Current	V _{CC} = Max	DM54		60	85	mA
		(Note 2)	DM74		60	103	IIIA

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: I_{CC} is measured with all outputs open and all inputs at 4.5V.

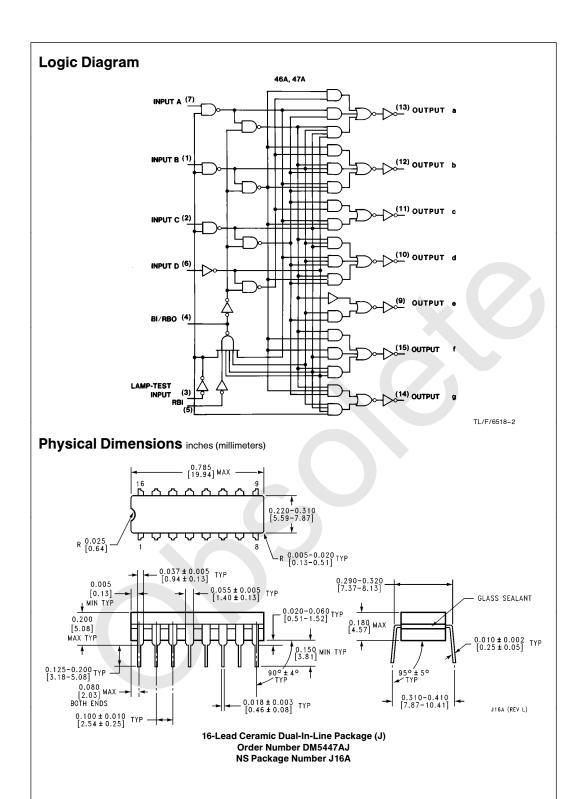
'47A Switching Characteristics at $V_{CC}=5V$ and $T_A=25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time Low to High Level Output	$C_L = 15 pF$ $R_L = 120\Omega$		100	ns
t _{PHL}	Propagation Delay Time High to Low Level Output			100	ns

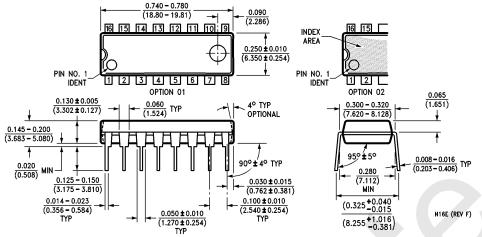
Function Table

46A, 47A

Decimal or			Inpu	ts			BI/RBO	Outputs				Note			
Function	LT	RBI	D	С	В	Α	(Note 1)	а	b	С	d	е	f	g	Note
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	Н	
1	Н	Х	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н	
2	Н	×	L	L	Н	L	Н	L	L	Н	L	L	Н	L	
3	Н	Х	L	L	Н	Н	Н	L	L	L	Ļ	Н	Н	L	
4	Н	X	L	Н	L	L	Н	Н	L	L	Н	Н	L	L	
5	Н	Х	L	Н	L	Н	Н	L	Н	L	L	Н	L	L	
6	Н	X	L	Н	Н	L	Н	Н	Н	L	L	L	L	L	
7	Н	Х	L	Н	Н	Н	Н	L	L	L	Н	Н	Н	Н	(2)
8	Н	X	Н	L	L	L	Н	L	L	L	L	L	L	L	(-)
9	Н	Х	Н	L	L	Н	Н	ΛL	L	L	Н	Н	L	L	
10	Н	X	Н	L	Н	L	Н	Н	Н	Н	L	L	Н	L	
11	Н	X	Н	L	Н	Н	Н	Н	Н	L	L	Н	Н	L	
12	Н	X	Н	Н	L	L	Н	Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	Н	Н	L	Н	Н	L	Н	L	L	
14	Н	×	Н	Н	Н	L	Н	Н	Н	Н	L	L	L	L	
15	Н	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
ВІ	Х	Х	Х	Х	Х	X	L	Н	Н	Н	Н	Н	Н	Н	(3)
RBI	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	(4)
LT	L	Х	Х	Х	Х	X	Н	L	L	L	L	L	L	L	(5)


Note 1: BI/RBO is a wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

Note 2: The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.


Note 3: When a low logic level is applied directly to the blanking input (BI), all segment outputs are high regardless of the level of any other input.

Note 4: When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go H and the ripple-blanking output (RBO) goes to a low level (response condition).

Note 5: When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are L . H = High level, L = Low level, X = Don't Care

Physical Dimensions inches (millimeters) (Continued)

16-Lead Molded Dual-In-Line Package (N) Order Number DM7446AN or DM7447AN NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>