General Description

The DH0035/DH0035C is a high speed digital driver designed to drive PIN diodes in RF modulators and switches. The device is used in conjunction with an input buffer such as the DM7830/DM8830 or DM5440/DM7440.

Features

- Large output voltage swing-30V
- Peak output current in excess of 1A
- Inputs TTL/DTL compatible
- Short propagation delay-10 ns
- High repetition rate- 5 MHz

The DH0035/DH0035C is capable of driving a variety of PIN diode types including parallel, serial, anode grounded and cathode grounded. For additional information, see AN-49 PIN Diode Drivers.
The DH0035 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ whereas the DH 0035 C is guaranteed from $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

TL/K/10124-1

Metal Can Package

TL/K/10124-2
Top View
Order Number DH0035G-MIL or DH0035CG See NS Package Number G12B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallablity and specifications.
V^{-}Supply Voltage Differential (Pin 5 to Pin 1 or 2) 40 V
$\mathrm{~V}^{+}$Supply Voltage Differential (Pin 1 or 2 to $\operatorname{Pin} 8$ or 9$) 30 \mathrm{~V}$
Input Current (Pin 3 or 7)
Peak Output Current

Power Dissipation (Note 3)
1.5 W

Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
DH0035
DH0035C
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) . $300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	Limits			Units
		Min	Typ	Max	
Input Logic "1" Threshold	$\mathrm{V}_{\text {OUT }}=-8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		1.0	2.0	V
Input Logic "0" Threshold	$\mathrm{V}_{\text {OUT }}=+8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	0.4	0.6		V
Positive Output Swing	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$	7.0	+8.0		V
Negative Output Swing	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}$		-8.0	-7.0	V
Positive Short Circuit Current	$V_{\mathbb{N}}=0 V, R_{L}=0 \Omega$ (Pulse Test, Duty Cycle $\leq 3 \%$)	400	800		mA
Negative Short Circuit Current	$\begin{aligned} & V_{\mathbb{I N}}=1.5 \mathrm{~V}, \mathbb{I}_{\mathrm{N}}=50 \mathrm{~mA}, R_{\mathrm{L}}=0 \Omega \\ & \text { (Pulse Test, Duty Cycle } \leq 3 \% \text {) } \end{aligned}$	800	1000		mA
Turn-On Delay	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-3 \mathrm{~V}$		10	15	ns
Turn-Off Delay	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+3 \mathrm{~V}$		15	30	ns
On Supply Current	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$		45	60	mA

Note 1: Unless otherwise specified, these specifications apply for $\mathrm{V}^{+}=10.0 \mathrm{~V}, \mathrm{~V}^{-}=-10.0 \mathrm{~V}$, pin 5 grounded, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH0035, and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DH0035C.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Derate linearly at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.

Typical Applications

Grounded Cathode Design

TL/K/10124-3
Note: Cathode grounded PIN diode: $R_{p}=62 \Omega$ limits diode forward current to 100 mA . Typical switching for HP33604A, RF turn-on 25 ns, turn-off 5 ns . $\mathrm{C} 2=250 \mathrm{pF}, \mathrm{R}_{\mathrm{p}}=0 \Omega, \mathrm{C} 1=0.1 \mathrm{~F}$.

Typical Applications (Continued)

Note: Anode Grounded PIN diode: $\mathrm{R}_{\mathrm{M}}=56 \Omega$ limits diode forward current to 100 mA . Typical switching for HP33622A, RF turn-on 5 ns ; turn-off 4 ns . $\mathrm{C} 1=470 \mathrm{pF}, \mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{M}}=0 \Omega$.

