Interface Gates

DH0034/DH0034C high speed dual level translator

general description

The DH0034/DH0034C is a high speed level translator suitable for interfacing to MOS or junction FET analog switches. It may also be used as a universal logic level shifter capable of accepting TTL/DTL input levels and shifting to CML, MOS, or SLT levels. Other important design features include:

- Fast switching, $\mathrm{t}_{\mathrm{pdo}}$: typically $15 \mathrm{~ns} ; \mathrm{t}_{\mathrm{pd} 1}$: typically 35 ns
- Large output voltage range: 25 V
- Input is TTL/DTL compatible
- Low output leakage: typically $0.1 \mu \mathrm{~A}$
- High output currents: up to $\pm 100 \mathrm{~mA}$

schematic and connection diagrams

Metal Can Package

TOP VIEW

Dual-in-Line Package

typical applications

5 MHz Analog Switch

TTL to IBM (SLT) Logic Levels

absolute maximum ratings

Vcc Supply Voltage	7.0 V
Negative Supply Voltage	-30 V
Positive Supply Voltage	+25 V
Differential Supply Voltage	25 V
Maximum Output Current	100 mA
Input Voltage	+5.5 V
Operating Temperature Range:	DH 0034
	DH 0034 C

electrical characteristics (See Notes 1 \& 2)

PARAMETER	CONDITIONS	DH0034			DH0034C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$	2.0			2.0			V
Logical "0" Input Voltage	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V} \\ & V_{c c}=4.75 \mathrm{~V} \end{aligned}$			0.8			0.8	V
Logical "1" Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1 N}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=2.4 \mathrm{~V} \end{aligned}$			40			40	$\mu \mathrm{A}$
Logical "1" Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \end{aligned}$			1.0			1.0	mA
Logical "0" Input Current	$\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{I N}=0.4 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V}, V_{I N}=0.4 \mathrm{~V} \end{aligned}$			1.6			1.6	mA
Power Supply Current Logic "0"	(Note 3) $\begin{aligned} & V_{C C}=5.5 \mathrm{~V}, V_{1 N}=4.5 \mathrm{~V} \\ & V_{C C}=5.25 \mathrm{~V}, V_{I N}=4.5 \mathrm{~V} \end{aligned}$		30	32		30	32	mA
Power Supply Current Logic "1"	(Note 3) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{Cc}}=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \end{aligned}$		37	42		37	42	mA
Logical " 0 " Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \\ & V_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA} \end{aligned}$		$V^{-}+.50$ $V^{-}+.3$	$v^{-}+.75$ $v^{-}+.50$		$\begin{aligned} & V^{-}+.50 \\ & V^{-}+.3 \end{aligned}$	$\begin{aligned} & V^{-}+.80 \\ & V^{-}+.65 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Output Leakage Current	$\begin{aligned} & V_{c c}=5.5 \mathrm{~V}, V_{I N}=0.8 \mathrm{~V} \\ & \mathrm{~V}^{+} \cdot \mathrm{V}^{-}=25 \mathrm{~V} \end{aligned}$		0.1	5	\cdots	0.1	5	$\mu \mathrm{A}$
Transition Time to Logical " 0 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{3}=0 \mathrm{~V} \\ & V^{-}=-25 \mathrm{~V}, R_{L}=510 \Omega \end{aligned}$		15	25		15	35	ns
Transition Time to Logical " 1 "	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} . \\ & V^{-}=-25 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=510 \Omega \end{aligned}$		35	60		35	65	ns

Note 1: These specifications apply over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the DH 0034 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the DH 0034 C with a 510 ohm resistor connected between output and ground, and V^{-}connected to -25 V .
Note 2: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Current measured is total drawn from $V_{C C}$ supply.

typical performance characteristics

Logic＂0＂Output Voltage vs
IOUT

Propagation Delay vs Temperature

ac test circuit and waveforms

theory of operation

When both inputs of the DHOO34 are raised to logic＂ 1 ＂，the input AND gate is turned＂on＂ allowing Q1＇s emitter to become forward biased． Q1 provides a level shift and constant output cur－ rent．The collector current is essentially the same as the emitter which is given by $\frac{V_{C C}-V_{B E}}{R 1}$ Approximately 7.0 mA flows out of 01 ＇s col－ lector．

applications information

1．Paralleling the Outputs

The outputs of the DH0034 may be paralleled to increase output drive capability or to accomplish the＂wire OR＂．In order to prevent current hog－ ging by one output transistor or the other，resis－ tors of 2 ohms $/ 100 \mathrm{~mA}$ value should be inserted between the emitters of the output transistors and the minus supply．

2．Recommended Output Voltage Swing

The graph shows boundary conditions which govern proper operation of the DH0034．The range of operation for the negative supply is shown on the X axis and must be between $-3 V$ and -25 V ．The allowable range for the positive supply is governed by the value chosen for $\mathrm{V}^{-} . \mathrm{V}^{+}$ may be selected by drawing a vertical line through the selected value for V^{-}and terminated by the

About 2 mA of Q1＇s collector current is drawn off by pull down resistor，R2．The balance， 5 mA ，is available as base drive to Q 2 and to charge its associated Miller capacitance．The output is pulled to within a $\mathrm{V}_{\text {SAT }}$ of V^{-}．When either（or both） input to the DH0034 is lowered to logic＂ 0 ，＂the AND gate output drops to 0.2 V turning Q 1 off． Deprived of base drive Q 2 rapidly turns off causing the output to rise to the V_{3} supply voltage．Since Q2＇s erfitter operates between 0.6 V and 0.2 V ，the speed of the DH0034 is greatly enhanced．
boundaries of the operating region．For example，a value of V^{-}equal to -6 V would dictate values of

V^{+}between -5 V and +19 V ．In general，it is de－ sirable to maintain at least 5 V difference between the supplies．

