

					DIP
				28	
			Enci	20	
			F3CO	27	
		OKOL	BCKO	20	
	4	ÇKDV	WCKO	25	
		NC	DOL	24	
	6	XII	DOH	23	
	7	XTO	V _{DD}	22	
	8	V _{SS1}	V _{SS2}	21	
	.9	СКО	DG	20	
	10	SYN	NC	19	
	11	NC	NC	18	
	12	NC	OW18	17	
	13	NC	OW20	16	
	14	RST	COB	15	
Top View					SOIC
100 1164					
				-	
	1 NC	•	V _{SS}	40	
	1 NC 2 NC	;• ;	V _{SS} XTC	40 39 39	
		;• ; ;	V _{ss} xtc xt	4 3 3 3	
	1 NC 2 NC 3 NC 4 CK 5 NC	;• ; ;; ;; ;;	V _{SS} XTC XT CKDV	40 39 38 37 36	
	1 NC 2 NC 3 NC 4 CK 5 NC 6 NC	;• ; ; ; ; ; ; ;	V _{SS} XTC XT <u>CKD</u> V NC	40 39 38 37 36 35	
	1 NC 2 NC 3 NC 4 CK 5 NC 6 NC 7 SY		V _{SS} XTC XT CKDV NC CKSL	40 39 38 37 36 35 34	
	1 NC 2 NC 3 CK 5 NC 6 NC 7 SY 8 NC		V _{SS} XTC XT CKDV NC OKSL BCK	40 39 38 37 36 35 34 33	
	1 NC			40 39 38 37 36 35 34 33 32	
	1 2 NC CK NC				
	1 2 3 4 5 6 7 8 9 9 11 1		V _{SS} XTO XT CKDV NC CKSL BCK DIN NC LIC LIC		
	1 2 3 4 5 6 7 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		V _{SS} XTC XT CKDV NC CKSL BCK DIN DIN LRC LRC FSCC		
	 1 1 1 1 1 1 1 1 1 1 1 1 1		V _{SS} XTC XT CKDV NC CKSL BCK BCK LRC LRC FSCC BCKC		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		V _{SS} XTC XT CKDV NC CKSL BCK DIM NC LRC LRC FSCC BCKC		
	81대 로 [1] 로 [1] 은 [1] -	→ → → → → → → → → → → → → →	V _{SS} XTC XT CKDV NC CKSL BCK DIN NC LRC FSCC BCKC WCKC		
	1 [1] 1 [1		V _{SS} XTC XT CKDV NC CKSL BCK DIN NC FSCC BCKC WCKC NC DOL		
	해 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		V _{SS} XTC XT CKDV NC CKSL BCK DIN NC ECS BCKC WCKC NC DOL		
	6 [프] 1 [= 1] 1 [=		V _{SS} XTC XT CKDV NC CKSL BCK DIN NC ERC FSCC BCKC NC DOL		

2 3 4

5 6 7

29 30

39

40

PIN DESCRIPTION

PIN NUMBER VO SOIC DIP NAME DESCRIPTION NC NC NC CKO Clock output (same frequency as XTI input clock). -10 NC NC SYN H: Free-running mode; L: Forced synchronizing mode. 11 12 13 14 15 H: Normal operation; L: System reset. Belect output data format— H: Two's complement; L: Complemented offset binary (COB). Select number of output data bits.²⁰ 16 17 OW18 NC NC DG NC 28 NC R DO NC NC DG NC 28 NC R DO NC NC DG NC 28 NC R DO NC NC DC NC DC NC DC Select number of output data bits.⁽²⁾ - 18 19 20 - 21 22 - 23 23 - 24 25 26 Dealitch control clock. Ground 2. Supply voltage (+5V). Rch serial data output (8fs rate). Lch serial data output (8fs rate). NC WCKÓ 100 Output timing control (word clock). вско Output timing control for serial data (bit clock). 27 28 FSCO Internal timing clock (fs rate) LRCI Multiplex clock for Lch/Rch input data (fs rate)—H: Lch; L: Rch. 1 1 2 3 | 5 4 6 NĈ Serial data input. Timing clock for serial input data. Select system clock.(2) 8.3 Select system clock.⁽²⁾ Input for oscillator or external clock XTI (system clock). Output for oscillator; not connected when using external clock. 0 хто when using Ground 1. 8 V_{ss1} _ NOTES: (1) I = Input terminal; O = Output terminal. (2) Refer to the Functional Description section for details.

ELECTROSTATIC (\mathfrak{X}) **DISCHARGE SENSITIVITY**

AUDIO Electrostatic discharge can cause damage ranging from performance degradation to complete device failure. Burr-Brown Corporation recommends that all integrated circuits be handled and stored using appropriate ESD protection methods.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

BURR-BROWN® BURR-BROWN IC Data Book—Data Conversion Products

8.3.149

DF1700

PRODUCTS-DF

GITAL /

G

For Immediate Assistance, Contact Your Local Salesperson

DC SPECIFICATIONS

ELECTRICAL

DIGITAL CHARACTERISTICS: V_{00} = 4.75V to 5.25V, V_{ss} = 0V, T_{A} = -20°C to +70°C unless otherwise specified.

				DF1700P, U			
PARAMETER	PIN	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
INPUT							
Logic Family					CMOS		
Logic Vottages	XTI	V				0.3V _{pp}	V
	XTI	V _{#1}		0.7V _{p0}			V I
	(1)	V ₁₁₂				0.5	V
	(1)	V _{IHZ}		2.4			V
Input Leakage Current	XTI	l _{un}			10	20	μA
	XTI	u	$V_{IN} = 0V$		10	20	μA
	(1)	ы	$V_{iN} = V_{DD}$				μΑ
Input Current		^ا ر	V _{IN} = OV		10	· 20	μΑ
OUTPUT							
Logic Family					CMOS		
Logic Voltages	(2)	Va	$I_{cr} = 1.6 \text{mA}$			0.4	V
	(2)	V _{OH}	l _{он} = -0.4mA	2.5			V
POWER SUPPLY REQUIREMENTS							
Supply Voltages		V _{PO}		4.75	5	5.25	V
Supply Current		100	$V_{00} = 5V_1 F_{8Y_2}^{(3)}$			45	mA
Power Dissipation		Po	Nominal V _{pp}			250	mW
TEMPERATURE RANGE (Amblent, T.)							
Specification				-20		70	°C
Operating				-20		70	°C

NOTES: (1) Refers to pins LRCI, DIN, BCKI, CKSL, CKOV, SYN, RST, COB, OW20, and OW18. (2) Refers to pins CKO, DG, DOL, DOR, WCKO, BCKO, and FSCO. (3) F_{SYS} is the frequency of the internal system clock. F_{SYS} = F_{XT} / 2 with CKDV = H and F_{SYS} = F_{XT} / 2 with CKDV = L.

AC SPECIFICATIONS

ELECTRICAL

 $V_{cc} = 4.75V$ to 5.25V, $V_{ss} = 0V$, $T_{A} = -20^{\circ}C$ to 70°C unless otherwise specified.

		C	ONDITIO	N	Ð	F1700P	, U		Timing Waveform
PARAMETER	SYMB	CKSL	CKDV	x fs(1)	MIN	ТҮР	MAX	UNITS	
CRYSTAL OSCILLATOR									XTI / Min 0.7V _{DD}
Oscillating Frequency	f _{max}	н	н	192	1		13	MHz	
	f _{max}	н	L	384	2		26	MHz	0.5Vpp
	MAX	1 E	н	256	1		13	MHz	
	FMAX	Ľ	L	512	2		26	MHz	
EXTERNAL CLOCK							1		Max 0.3V _{DD}
Clock Pulse Width	t.w	н	н	192	35		500	ns	
	t _{cw}	н	L	384	15		250	ns	
	t _{cw}	L	н	256	35		500	ns	
	t _{ew}	L	L	512	15		250	ns	t _{сү}
Clock Period	t _{cv}	н	н	192	76		1000	ns	
	t _{CY}	Н	<u> </u>	384	38		500	ns	
	tev	L	H	256	76		1000	ns	
	Cr	l.	L	512	38		500	ns	

NOTES: (1) fs = sampling frequency.

8.3.150

Burr-Brown IC Data Book—Data Conversion Products

AC SPECIFICATIONS (CONT)

ELECTRICAL

 $V_{DD} = 4.75V$ to 5.25V, $V_{SS} = 0V$, $T_A = -20^{\circ}C$ to 70°C unless otherwise specified.

		DF1700P, U			Timing Waveform	
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	
INPUT TIMING (BCKI, DIN, LRCI, X	TI)					BCKI / 1.5V
BCKI, Pulse Width	t _{eow}	100			ns	
BCKI, Cycle Time	t _{eCY}	200			ns j	
DIN, Setup Time	t _{os}	75			ns	
DIN, Hold Time	t _{он}	75			ns	
Rising Edge of Last BCKI To Edge of LRCI	t _{ol}	75			ns	
Edge of LRCI To Rising Edge of First BCKI	t.	75			ns	LRCI 1.5V
Falling Edge of XTI To Rising Edge of LRCI	t _{xi.}	20			ns	
Rising Edge of LRCI To Falling Edge of XTI	t _x	0			ns	XTIV _{b0} /2

PARAMETERSYMBOLCONDITIONMINTYPMAXUNITSOUTPUT TIMING BCKO Delay Time from XTIbdH $\overrightarrow{CKDV} = L$ $\overrightarrow{OKDV} = L$ <br< th=""><th></th><th></th><th></th><th>D</th><th>F1700P</th><th>, U</th><th></th><th>Timing Waveform</th><th></th></br<>				D	F1700P	, U		Timing Waveform	
CUTPUT TIMING BCKO Delay Time from XTI xbH $\overline{CKDV} = L$ 35120nsMOH $\overline{CKDV} = L$ 35120nsns $\overline{CKDV} = L$ 35120nsOutput DelaytbdL $\overline{C}_L = 15pF$ -10010ns $\overline{CKDV} = H$ $\overline{C}_L = 15pF$ -10010nsOutput DelaytbdL $\overline{C}_L = 15pF$ -10010ns $\overline{CKDV} = H$ \overline{CL} <th>PARAMETER</th> <th>SYMBOL</th> <th>CONDITION</th> <th>MIN</th> <th>TYP</th> <th>MAX</th> <th>UNITS</th> <th></th> <th></th>	PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OUTPUT TIMING								
from XTI bdbL $\overline{CKDV} = L$ 35 120 ns 120 n	BCKO Delay Time	txbH	CKDV = L	35		120	กร		
Cutput Delay $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	from XTI	txbL	CKDV = L	35		120	ns	T _{SYS}	
Coutput DelayCKDV = H tbdL35 C ₁ = 15pF10 -100 010 nsns ns $\chiTI(CKDV = H)$ χTI tbdH $\chi_{DD}/2$ tbdL90/2 tbdLOutput DelaytbdL tbdHC ₁ = 15pF-10 -10010 nsns χTI (CKDV = H) $\chi_{DD}/2$ tbdH $\chi_{DD}/2$ tbdH90/2 tbdH90/2 tbdH90/2 tbdHOutput Delay01010ns $\chi_{DD}/2$ tbdH1.5V90/2 tbdH <td< td=""><td></td><td>txbH</td><td><u>CKDV</u> = H</td><td>35</td><td>1</td><td>120</td><td>ns</td><td></td><td></td></td<>		txbH	<u>CKDV</u> = H	35	1	120	ns		
Output Delay tbdL C _i = 15pF -10 0 10 ns (CKDV = H) vor/2 Vor/2 Vor/2 Pisol Ns CKDV = H) vor/2 Ns Vor/2 Pisol Ns Vor/2 Pisol Ns Vor/2 Pisol Ns Vor/2 Pisol		txbL	CKDV = H	35		120	ns	XTI V M	
tbdH C _L = 15pF -10 0 10 ns tbdH tsbL BCK0 - tbdH tsbL DOL DOR DGR WCK0 - tbdH 1.5V 8.3	Output Delay	tbdL	C _L = 15pF	-10	0	10	ns	(CKDV = H)	
BCKO DOL DOL DOR DOL DOR DOL DOR DOL DOL DOR DOL DOL DOL DOL DOL DOL DOL DOL		tbdH	C _L = 15pF	-10	0	10	ns		
BCKO DOL DOL DOL DOL DOL DOL DOL DO									
BCKO DOL DOL DOL DOL DOL DOL DOL DO									
BCKO DOL DOL DOL DOL DOL DOL DOL DO									
DOL DOR DOR DGR WCKO UCKO UCKO UCKO UCKO UCKO UCKO UCKO U								вско 1.5V	
DOL DOR DOR DOR DOR DOR DOR DOR DOR DOR DOR									
DOL DOR DGR WCKO UCA UCA DGR WCKO UCA I.5V UCA I.5V UCA I.5V UCA I.5V								tbdL	
DOR DOL DOL DOR WCKO WCKO									
								DOR 1.5V	
									~ ~
								DGR tbdH	8.3
								WCKO	
								1.5V	11
									6

ORDERING INFORMATION

Basic Model Number	 DF1700	မှု
Package Code		
U: 40-pin Plastic SOIC		

ABSOLUTE MAXIMUM RATINGS

+V _{np}	0.3V to 7.0V
Input Voltage	0.3 to V _m +0.3V
Soldering Temperature	
Soldering Time	10s
Storage Temperature	40°C to +125°C
Stresses above these ratings may permanently of	tamage the device.

MODEL	PACKAGE	PACKAGE DRAWING NUMBER				
DF1700P	28-Pin Plastic DIP	215				
DF1700U	40-Pin SOIC	252				
NOTE: (1) For detailed drawing and dimension table, please see end of data						

NOTE: (1) For detailed drawing and dimension table, please see end of da sheet, or Appendix D of Burr-Brown IC Data Book.

BURR-BROWN® Burr-Brown IC Data Book—Data Conversion Products

8.3.151

THEORY OF OPERATION

The DF1700 has dual filters. Each filter consists of three cascaded, 2x oversampling finite impulse response (FIR) filters as shown in Figure 1. The output of the first, 153-tap filter is again 2x oversampled by the second, 29-tap filter. This 4x oversampled data is again 2x oversampled by a third, 17tap filter. This oversampling technique further separates the desired analog signal and the sampling frequency. This is

desirable because a low-pass filter is required at the output of a DAC to remove all unwanted frequency components caused by the sampling frequency. With the analog signal frequency further separated from the sampling frequency, a lower order analog filter with much better phase characteristics can be used at the output of the DAC without worrying about foldover noise.

FIGURE 1. Block Diagram of Channel Filter.

FUNCTIONAL DESCRIPTION

SYSTEM CLOCK

The internal system clock of the DF1700 is generated by either a crystal oscillator connected across pins XTI and XTO driving the internal clock generator, or an external clock applied at pin XTI. Four different XTI clock frequencies can be obtained with the control of pins CKDV and CKSL. This will provide the correct clock period of the internal system clock as indicated in Table I. For XTI clock frequencies of 384fs and 512fs, the clock is divided by two for internal use. The system clock signal of the same frequency as pin XTI is available at pin CKO.

8.3.152

Burr-Brown IC Data Book—Data Conversion Products

DATA

Serial Data Input

The 16-bit input data format is two's complement and MSB first. The serial data input timing is the rising edge of BCKI. (Figure 2). Consequently the input serial data must be changed at the falling edge of BCKI. The input data is latched to the internal register at the edge of LRCI.

Serial Data Output

The serial data output mode is selected by pins $\overline{OW18}$ and $\overline{OW20}$ as shown in Table II.

The output data format is MSB first and either two's complement or complementary offset binary (COB). The format of output data is selected by the $\overline{\text{COB}}$ pin:

 $\overline{COB} = H$ Two's complement $\overline{COB} = L$ Complemented Offset Binary (COB)

The output data from the DF1700 can be fed directly to the data inputs of either the PCM1700 or PCM63 with the BCKO clock output serving as the input clock to these DACs. The data bits will be clocked into the DAC on the rising edges of BCKO (Figure 3).

CON	NUTION	xn	CLOCK PERIOD OF		
CKDV	CKSL	CLOCK (F _x)	INTERNAL SYSTEM CLOCK		
н	н	192 1 s	1/F _{x1}		
́н	Ξ.	256fs	1/F _{x1}		
L	н	384fs	2/F _{x1}		
L	ι. Γ	512fs	2/F.,		

NOTE: fs = sampling frequenc

TABLE I. System Clock Frequency Selection.

OW18	ÓW20	NO. OF OUTPUT DATA BITS
H	н	16
Ĺ	́н	18
H 1 1	L	20

TABLE II. Programming the Number of Output Data Bits.

CLOCK SYNCHRONIZATION

The internal clock for the arithmetic circuitry and output interface is derived by the system clock from the XTI pin, and is independent of the input circuitry timing from the BCKI and LRCI input clocks. There are two synchronization modes: the Free-Running Mode and the Forced Synchronization Mode.

Burr-Brown IC Data Book—Data Conversion Products

8.3,153

For Immediate Assistance, Contact Your Local Salesperson

Free-Running Mode ($\overline{SYN} = H$)

No adjustment of the internal clock takes place for phase differences between the internal clock and the LRCI clock of unreferences between the internal clock and the EKC1 clock of up to $\pm 3/8$ of the input data sample period (1/fs). Hence, internal timing is not affected even if jitter is present on the LRCI clock input, and no jitter or timing glitches appear on the data output. If the clock phase differences exceed the $\pm 3/8$ fs limit, or if the RESET function is executed, the internal clock is synchronized to the rising edge of LRCI.

Forced Synchronization Mode $(\overline{SYN} = L)$

In this mode the internal clock is resynchronized at each rising edge of LRCI. Note that device misoperation may occur if jitter in the LRCI input shortens the LRCI period below the required system clock period. Furthermore, if the LRCI period is too long, internal arithmetic operations will function correctly, but output timing is adversely affected.

The internal timing clock derived from the system clock is available at the FSCO pin.

SYSTEM RESET

The RESET function is useful for synchronizing the internal arithmetic circuitry and output section clock with the LRCI external input clock when operating in the free-running mode

FIGURE 4. System Reset Circuit.

 $(\overline{SYN} = H)$. It is not necessary to reset in the forced synchronization mode. Reset is also not required if the output timing needs not be synchronized with LRCI. Figure 4 shows the connection to reset the DF1700 on power-up.

8.3.154

Burr-Brown IC Data Book—Data Conversion Products

APPLICATIONS

The most common application for the DF1700 is in high performance digital audio playback such as compact disc players. Digital information from a compact disc is often formatted using a digital interface format receiver chip (DIFRC). The DF1700 can be interfaced directly to the output of many popular DIFRCs as shown in Figure 5.

The fs data stream which has been formatted by the DIFRC is 8x oversampled by the DF1700 and separated into left and right channel data for input to the PCM1700 DAC (Figure 6). The analog stereo outputs from the PCM1700 each pass

through a three pole Generalized Immittance Converter (GIC) low-pass filter which has extremely low distortion and negligible phase shift. An evaluation board, the DEM1143, is available from Burr-Brown for the PCM1700/ DF1700. This board has the features mentioned above as well as an AES/EBU interface and breadboard area for user experimentation. Figure 7 shows a similar circuit diagram with the DF1700 providing 8x oversampled data to a pair of PCM63 DACs.

FIGURE 5. Interfacing the DF1700 to Various Digital Interface Format Receiver Chips (DIFRCs).

BURR-BROWN® BURT-Brown IC Data Book—Data Conversion Products

8.3.155

