

Contents

Page	Section	Title
4	1.	Introduction
4	1.1.	Main Features
5	1.2.	System Architecture
5	1.3.	System Application
6	2.	Functional Description
6	2.1.	Display Part
6	2.1.1.	Input Interface
6	2.1.2.	Horizontal Scaler
6	2.1.3.	Luma Processing
7	2.1.4.	Dynamic Peaking
8	2.1.5.	Soft Limiter
8	2.1.6.	Chroma Input
9	2.1.7.	Chroma Interpolation
9	2.1.8.	Chroma Transient Improvement
9	2.1.9.	Inverse Matrix and Digital RGB Processing
10	2.1.10.	Picture Frame Generator
10	2.1.11.	Scan Velocity Modulation
12	2.2.	Analog Back-End
12	2.2.1.	Analog RGB Insertion
12	2.2.2.	Half-Contrast Control
13	2.2.3.	Fast-Blank Monitor
13	2.2.4.	CRT Measurement and Control
15	2.2.5.	Average Beam Current Limiter
16	2.3.	Synchronization and Deflection
16	2.3.1.	Deflection Processing
16	2.3.2.	Security Unit for H-Drive
17	2.3.3.	Soft Start/Stop of Horizontal Drive
18	2.3.4.	Horizontal Phase Adjustment
18	2.3.5.	Vertical Synchronization
18	2.3.6.	Vertical and East/West Deflection
19	2.3.7.	Vertical Zoom
19	2.3.8.	EHT Compensation
19	2.3.9.	Protection Circuitry
20	2.3.10.	Display Frequency Doubling
20	2.3.11.	General-purpose D/A Converter
20	2.3.12.	Clock and Reset
20	2.3.13.	Reset and Power-On
21	3.	Serial Interface
21	3.1.	I ² C-Bus Interface
21	3.2.	I ² C Control and Status Registers
22	3.3.	XDFP Control and Status Registers
34	3.3.1.	Scaler Adjustment

DDP 3310B

Contents, continued

Page	Section	Title
35	4.	Specifications
35	4.1.	Outline Dimensions
35	4.2.	Pin Connections and Short Descriptions
38	4.3.	Pin Description
41	4.4.	Pin Configuration
42	4.5.	Pin Circuits
44	4.6.	Electrical Characteristics
44	4.6.1.	Absolute Maximum Ratings
44	4.6.2.	Recommended Operating Conditions
45	4.6.3.	Recommended Crystal Characteristics
45	4.6.4.	Characteristics
45	4.6.4.1.	General Characteristics
46	4.6.4.2.	Line-locked Clock Inputs: LLC1, LLC2
46	4.6.4.3.	Luma, Chroma Inputs
47	4.6.4.4.	Reset Input, Test Input
47	4.6.4.5.	Half-Contrast Input
48	4.6.4.6.	I ² C-Bus Interface
49	4.6.4.7.	Horizontal and Vertical Sync Inputs and Clock and Frequency Select Pins
49	4.6.4.8.	Horizontal Flyback Input
49	4.6.4.9.	FIFO Control Signals
50	4.6.4.10.	PWM Outputs
50	4.6.4.11.	Horizontal Drive Output
50	4.6.4.12.	Vertical Protection Input
51	4.6.4.13.	Horizontal Safety Input
51	4.6.4.14.	Vertical and East/West D/A Converter Output
51	4.6.4.15.	Sense A/D Converter Input
52	4.6.4.16.	Analog RGB and Fast-Blank Inputs
53	4.6.4.17.	Analog RGB Outputs, D/A Converters
56	4.6.4.18.	Scan Velocity Modulation Output
56	4.6.4.19.	DAC Reference, Beam Current Safety
57	5.	Application Circuit
60	6.	Data Sheet History

Display and Deflection Processor

1. Introduction

The DDP 3310B is a single-chip digital Display and Deflection Processor designed for high-quality backend applications in 100/120-Hz TV sets with 4:3- or 16:9 picture tubes. The IC can be combined with members of the DIGIT 3000 IC family (VPC 32xx, TPU 3040), or it can be used with third-party products. The IC contains the entire digital video component and deflection processing and all analog interface components.

1.1. Main Features

Video processing

- linear horizontal scaling (0.25 ... 4)
- non-linear horizontal scaling "panoramavision"
- dynamic peaking
- soft limiter (gamma correction)
- color transient improvement
- programmable RGB matrix
- picture frame generator
- two analog RGB/Fast-Blank inputs

Deflection processing

- scan velocity modulation output
- high-performance H/V deflection
- EHT compensation for vertical / East/West
- soft start/stop of H-Drive
- vertical angle and bow
- differential vertical output
- vertical zoom via deflection
- horizontal and vertical protection circuit
- adjustable horizontal frequency for VGA/SVGA display

Miscellaneous

- selectable 4:1:1/4:2:2 YC_rC_b input
- selectable 27/32-MHz line-locked clock input
- crystal oscillator for horizontal protection
- automatic picture tube adjustment (cutoff, whitedrive)
- single 5-V power supply
- hardware for simple 50/60-Hz to 100/120-Hz conversion (display frequency doubling)
- two I²C-controlled PWM outputs
- beam current limiter

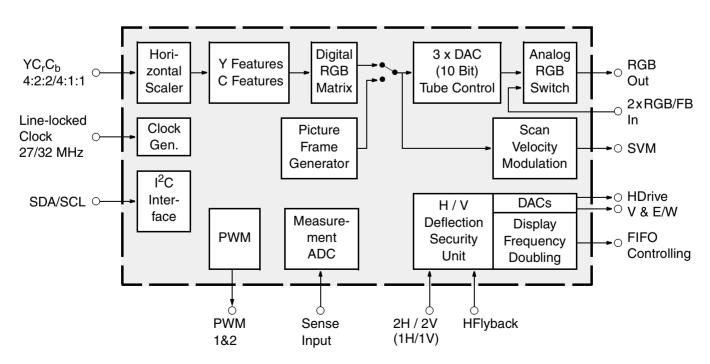


Fig. 1-1: Block diagram of the DDP 3310B

1.2. System Architecture

The DDP 3310B is a mixed-signal IC containing the entire digital video component processing such as chroma transient improvement (CTI), adaptive luma peaking, and a non-linear 'Panorama' aspect ratio conversion. All deflection related signals can be adapted to different scan rates. The analog section contains all analog interface components and an ADC, to compensate long term changes of the picture tube parameters and extreme high-tension effects. Fig. 1–1 shows the block diagram of the single-chip Display and Deflection Processor.

1.3. System Application

Fig. 1–2 depicts several DDP applications. Since the DDP functions as a video back-end, it must be complemented with additional functionality to form a complete TV set.

The VPC 32xx family processes all worldwide analog video signals (including the European PALplus) and allows non-linear Panorama aspect ratio conversion. Thus, 4:3 and 16:9 systems can easily be configured by software. The aspect ratio scaling is also used as a sample rate converter to provide a line-locked digital component output bus $(\mathrm{YC_rC_b})$ compliant to ITU-R-601. All video processing and line-locked clock/data gener-

ation is derived from a single 20.25-MHz crystal. An optional adaptive 2H/4H comb filter (VPC 32xx) performs Y/C separation for PAL and NTSC and all of their substandards.

The VPC 32xxD and the CIP 3250A provide a high-quality analog RGB interface with character insertion capability. This allows appropriate processing of external sources such as MPEG 2 set-top boxes in transparent (4:2:2) quality. Furthermore, it translates RGB/Fast-Blank signals to the common digital video bus and makes those signals available for 100-Hz processing. In some European countries (Italy), this feature is mandatory.

The IP indicates memory-based image processing, such as scan rate conversion, vertical processing (Zoom), or PAL+ reconstruction.

Examples:

- Europe: 15 kHz/50 Hz → 32 kHz/100 Hz interlaced
- US: 15 kHz/60 Hz → 31 kHz/120 Hz non-interlaced

Note: The DDP 3310B and the VPC 32xx families support memory-based applications through line-locked clocks, syncs, and data. The CIP 3250A may run either with the native DIGIT3000 clock but also with a line-locked clock system.

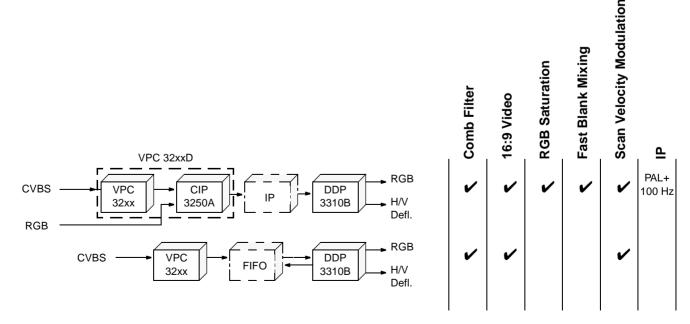


Fig. 1-2: DDP 3310B applications

2. Functional Description

2.1. Display Part

The display part converts the digital YC_rC_b to analog RGB (see Fig. 2–7) and provides contrast and saturation adjustment. In case of YC_rC_b 4:1:1 an interpolation filter is used, which converts the digital input signal to YC_rC_b 4:2:2 standard. The 4:2:2 YC_rC_b signal is processed by the horizontal scaler. In the luminance processing path, a variety of features, such as dynamic peaking and soft limiting, are provided. In the chrominance path, the C_rC_b signals are converted to 4:4:4 format and filtered by a color transient improvement circuit. The YC_rC_b signal is converted by a programmable matrix to RGB color space.

2.1.1. Input Interface

The data inputs Y0...Y7 and C0...C7 are clocked with the external clock LLC2. The clock frequency is selectable for 27 or 32 MHz. A clock generator converts the different external line-locked clock rates to a common internal sample rate of appr. 40.5 MHz in order to provide a fix bandwidth for all digital filters. The horizontal scaler is used for conversion of scan rate and non-linear aspect ratio. The horizontal sync puls at the HS pin should be an active video signal, which is not vertically blanked.

The input interface signals are

- external clock (LLC2)
- luma / chroma inputs (Y0...Y7 / C0...C7)
- horizontal sync (HS) / vertical sync (VS, VS2)

2.1.2. Horizontal Scaler

The scaler block allows linear or non-linear horizontal scaling of the digital input video signal in the range of 0.25 to 4. Non-linear scaling, also called "panorama vision", provides a geometrical distortion of the input picture. It is used to fit a picture with 4:3 format on a 16:9 screen by stretching the picture geometry at the borders. The inverse effect can be produced by the scaler, also. The scaler consists of a programmable decimation and interpolation filter and a 1/2H FIFO memory.

A summary of scaler modes is given in Table 2-1.

Table 2-1: Scaler modes

Mode	Scale Factor	Description		
Panorama 4:3 →16:9	non- linear compr.	4:3 source displayed on a16:9 tube, borders distorted		
Waterglass 16:9 →4:3	non- linear zoom	Letterbox source (PAL+) displayed on a 4:3 tube, vertical overscan, borders distorted, no cropping		
27→40.5 MHz	1.5 linear	sample rate conversion from external to internal pixel clock		
32 →40 MHz	1.25 linear	sample rate conversion from external to internal pixel clock		

2.1.3. Luma Processing

The blacklevel of the input signal is assumed to be 16 (ITU-R standard). The luminance signal is multiplied by a factor between 0 and 2 subdivided into 64 steps.

With a contrast adjustment of 32 (gain=1) the signal can be shifted by ± 100 % of its maximal amplitude with the digital brightness value. This is for adjustment of the headrooms for under- and overshoot. After the brightness addition, the negative going signals are limited to zero. It is desirable to keep a small positive offset with the signal to prevent undershoots produced by the peaking from being cut.

2.1.4. Dynamic Peaking

Especially with decoded composite signals and notch filter luminance separation as input signals, it is necessary to improve the luminance frequency characteristics. With transparent high-bandwidth signals, it is sometimes desirable to soften the image.

In the DDP 3310B, the luma frequency response is improved by "dynamic" peaking. It adapts to the amplitude and the frequency of the input signal. Small AC amplitudes are sharpened while large AC amplitudes remain nearly unmodified.

The dynamic range can be adjusted from -14 to +14 dB for small high-frequency signals. There is separate adjustment for signal overshoot and for signal undershoot. For large signals, the dynamic range is limited by a non-linear function that does not create any visible alias components. The peaking can be switched over to "softening" by inverting the peaking term by software.

The center frequency of the peaking filter is selectable from 2.5 MHz to 3.2 MHz. For S-VHS and for notch filter color decoding, the total system frequency responses for both PAL and NTSC are shown in Fig. 2–1 and Fig. 2–2. (All frequencies refer to a 50/60-Hz video signal).

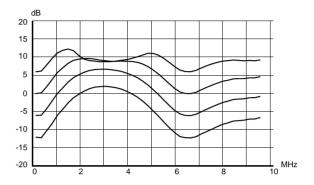


Fig. 2-1: Dynamic peaking frequency response

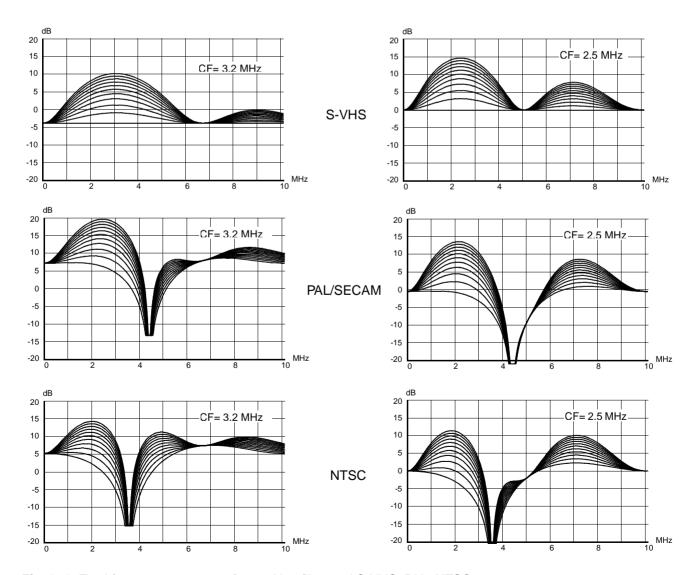


Fig. 2-2: Total frequency response for peaking filter and S-VHS, PAL, NTSC

2.1.5. Soft Limiter

The dynamic range of the processed luma signal must be limited to prevent the CRT from overload. An appropriate headroom for contrast, peaking, and brightness can be adjusted by the TV manufacturer according to the CRT characteristics. All signals above this limit will be "soft"-clipped. A characteristic diagram of the soft limiter is shown in Fig. 2–3. The total limiter consists of three parts:

Part A includes adjustable tilt point and gain. The gain before the tilt value is 1. Above the tilt value, a part (0...15/16) of the input signal is subtracted from the input signal itself. Therefore, the gain is adjustable from 16/16 to 1/16, when the slope value varies from 0 to 15. The tilt value can be adjusted from 0 to 511. Part B has the same characteristics as part A. The subtracting part is also relative to the input signal, so the total differential gain will become negative if the sum of slope A and slope B is greater than 16 and the input signal is above the both tilt values (see characteristics).

Finally, the output signal of the soft limiter will be clipped by a hard limiter adjustable from 256 to 511.

2.1.6. Chroma Input

The chroma input signal can either be YC_rC_b in 4:1:1 or in 4:2:2 format. For the digital signal processing, the time-multiplexed chroma samples will be demultiplexed and synchronized with the signal at the HS pin. The input formatter accepts either two's complement or binary offset code. Also, the delay can be adjusted within a range of ± 2 input clocks relative to the luma signal; this doesn't affect the chroma multiplex.

Table 2-2: 4:1:1 Chroma format

Pin Name	Pixel Number				
	1	2	3	4	
C7	C _{b1} ⁷	C _{b1} ⁵	C _{b1} ³	C _{b1} ¹	
C6	C _{b1} ⁶	C _{b1} ⁴	C _{b1} ²	C _{b1} ⁰	
C5	C _{r1} ⁷	C _{r1} ⁵	C _{r1} ³	C _{r1} ¹	
C4	C _{r1} ⁶	C _{r1} ⁴	C _{r1} ²	C _{r1} ⁰	

Note: C_x^y ; x = pixel number, y = bit number

Table 2-3: 4:2:2 Chroma format

Pin Name	Pixel Number			
	1	2	3	4
C7	C _{b1} ⁷	C _{r1} ⁷	C _{b3} ⁷	C _{r3} ⁷
C6	C _{b1} ⁶	C _{r1} ⁶	C _{b3} ⁶	C _{r3} ⁶
C5	C _{b1} ⁵	C _{r1} ⁵	C _{b3} ⁵	C_{r3}^{5}
C4	C _{b1} ⁴	C _{r1} ⁴	C _{b3} ⁴	C _{r3} ⁴
С3	C _{b1} ³	C _{r1} ³	C _{b3} ³	C_{r3}^{3}
C2	C _{b1} ²	C _{r1} ²	C _{b3} ²	C_{r3}^{2}
C1	C _{b1} ¹	C _{r1} ¹	C _{b3} ¹	C _{r3} ¹
C0	C _{b1} ⁰	C _{r1} ⁰	C _{b3} ⁰	C _{r3} ⁰

Note: C_x^y ; x = pixel number, y = bit number

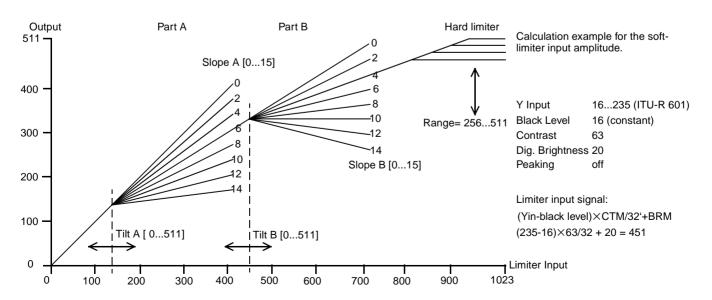


Fig. 2-3: Characteristics of soft limiter A and B and hard limiter

DDP 3310B

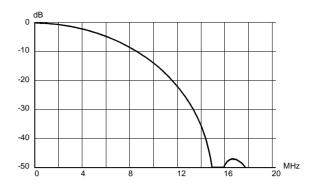
2.1.7. Chroma Interpolation

In case of YC_rC_b 4:1:1 input format, an interpolation filter is used which converts the digital input signal to 4:2:2 format. This filter runs with the incoming pixel clock frequency.

The signal is passed to the scaler in YC_rC_b 4:2:2 format in order to convert the incoming pixel clock frequency (27/32 MHz) to the internal frequency (40.5/40 MHz). A linear phase interpolator is used to convert the chroma sampling rate from 4:2:2 to 4:4:4.

The frequency response of the interpolator is shown in Fig. 2–4. All further processing is carried out at the full sampling rate.

2.1.8. Chroma Transient Improvement


The intention of this block is to enhance the chroma resolution. A correction signal is calculated by differentiation of the color difference signals. The differentiation can be selected according to the signal bandwidth, e.g. for PAL/NTSC/SECAM or digital component signals, respectively. The amplitude of the correction signal is adjustable. Small noise amplitudes in the correction signal are suppressed by an adjustable coring circuit. To eliminate "wrong colors", which are caused by over and undershoots at the chroma transition, the sharpened chroma signals are limited to a proper value automatically.

2.1.9. Inverse Matrix and Digital RGB Processing

Six multipliers in parallel perform the matrix multiplication to transform the C_r and C_b signals to R–Y, B–Y, and G–Y. The initialization values for the matrix are computed from the standard ITU-R (CCIR) matrix:

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1,402 \\ 1 & -0,345 & -0,713 \\ 1 & 1,773 & 0 \end{bmatrix} \times \begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix}$$

The multipliers are also used to adjust color saturation and picture contrast. Since the multiplier allows ± 4 as the biggest coefficient, it is possible that the product of CTM×SATM×MxxM will be clipped, which causes wrong colors. SATLIM limits the product of contrast times saturation to allow a maximum oversaturation. The matrix computes:

Fig. 2–4: Frequency response of the chroma 4:2:2 to 4:4:4 interpolation filter

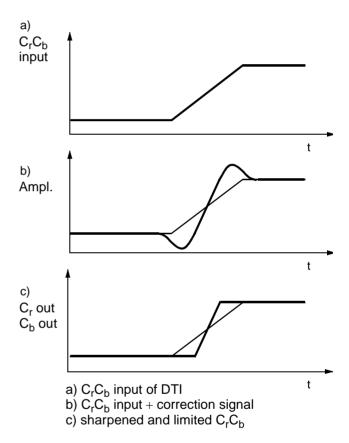


Fig. 2–5: Digital color transient improvement

After adding the post-processed luma, the digital RGB signals are limited to 10 bits. Three multipliers are used to digitally adjust the white-drive and to implement an average beam current limiter. See also Section 2.2.4. "CRT Measurement and Control".

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = MIN \left[\left(\frac{CTM}{32} \times \frac{SATM}{32} \right), \frac{SATLIM}{32} \right] \times \frac{1}{64} \times \begin{bmatrix} MR1M & MR2M \\ MG1M & MG2M \\ MB1M & MB2M \end{bmatrix} \times \begin{bmatrix} Cb \\ Cr \end{bmatrix} + \left(\frac{CTM}{32} \times Y \right) \right]$$

2.1.10. Picture Frame Generator

When the picture does not fill the total screen (height or width too small) it is surrounded with black areas. These areas (and more) can be colored with the picture frame generator. Another possibility is the insertion of a vertical and a horizontal stripe into the picture. This is done by switching over the RGB signal from the matrix to the signal from the frame color register.

The width of each area (left, right, upper, lower) can be adjusted separately. The generator starts on the right, respectively lower side of the screen and stops on the left, respectively upper side of the screen. This means, it runs during horizontal, respectively vertical flyback. The color of the complete border can be stored in a programmable frame color register. The format is 3×4 bit RGB. The contrast can be adjusted separately. If the start value for the generator is larger than the stop value, the picture frame is inserted at the borders. If the start value is smaller than the stop value a vertical or horizontal stripe is inserted.

2.1.11. Scan Velocity Modulation

Picture tubes equipped with an appropriate yoke can use the Scan Velocity Modulation signal to vary the speed of the electron gun during the entire video scan line depending on its content. Transitions from dark to bright will first speed up and then slow down the scan; vice-versa for the opposite transition (see Fig. 2–6).

The digital RGB input signal for the SVM is converted to Y in a simple matrix. Then the Y signal is differentiated by a filter of the transfer function $1-Z^{-N}$, where N is programmable from 1 to 6. With a coring some noise can be suppressed. This is followed by a gain adjustment and an adjustable limiter. The analog output signal is generated by an 8-bit D/A converter. The signal delay can be adjusted by ± 3.5 clocks in half-clock steps in respect to the analog RGB output signals. This is useful to adjust the different group delays of analog RGB amplifiers to the one for the SVM yoke current.

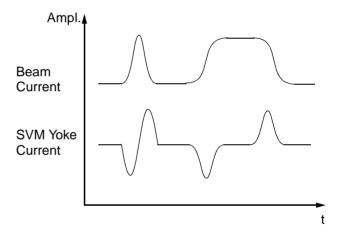


Fig. 2-6: SVM signal wave form

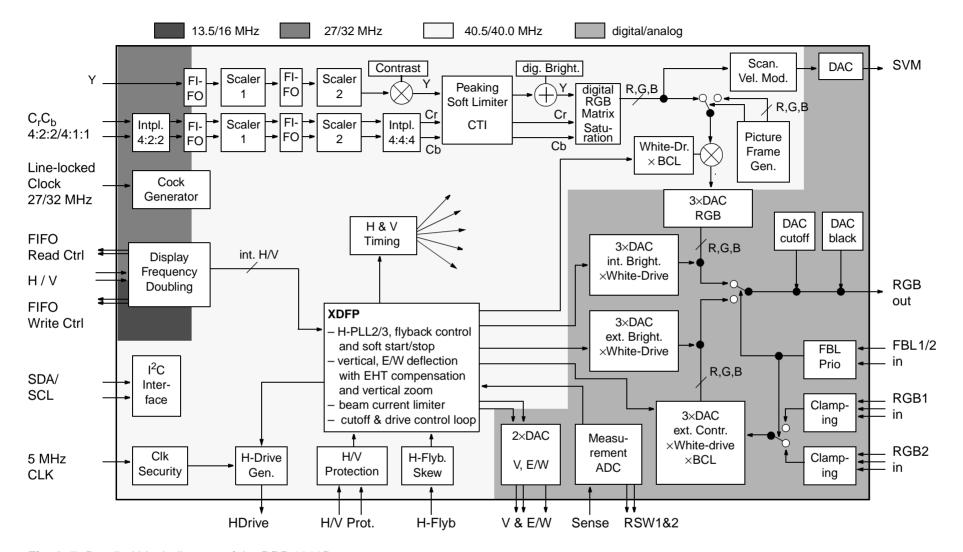


Fig. 2-7: Detailed block diagram of the DDP 3310B

2.2. Analog Back-End

The digital RGB signals are converted to analog RGB using three video digital to analog converters (DAC) with 10-bit resolution. The analog RGB-outputs are current outputs with current-sink characteristics. The maximum current drawn by the output stage is obtained with peak white RGB.

Each RGB signal has two additional DAC's with 9-bit resolution to adjust analog brightness (40 % of the full RGB range) and cutoff / black level (60 % of the full RGB range). An additional fixed current is applied for the blanking level.

In order to define accurate color on different CRT displays, you must exactly adjust what color the CRT phosphorous produces to display the color on screen. To have the same colors for the life of the display, a build-in automatic tube control loop checks and adjusts the black level on every field and white point every third field.

The back-end allows insertion of two external analog RGB signals. The RGB signals are key-clamped and inserted into the main RGB by the Fast-Blank switch. The external RGB signals can be adjusted independently as regarding DC-level (brightness) and magnitude (contrast). An external Half-Contrast signal can be used to reduce the output current of the internal RGB outputs to 50 %.

The controlling of the white-drive/analog brightness and also the external contrast and brightness adjustments is done via the internal processor.

2.2.1. Analog RGB Insertion

The DDP 3310B allows insertion of two external analog RGB signals. Each RGB signal is key-clamped and inserted into the main RGB by the Fast-Blank switch. The selected external RGB input can be overlaid or underlaid to the digital picture. The external RGB signals can be adjusted independently as regards DC level (brightness) and magnitude (contrast).

It depends on the Fast-Blank input signals and the programming of a number of I²C-register settings which analog RGB input is selected. Both Fast-Blank inputs must be either active-Low or active-High.

All signals for analog RGB insertion (RIN1/2, GIN1/2, BIN1/2, FBLIN1/2, HCS) must be synchronized to the horizontal flyback, otherwise a horizontal jitter will be visible. The DDP 3310B has no means for timing correction of the analog RGB input signals.

Table 2-4: RGB Input Selection

Input S	Signals	I ² C Se	ettings	Analog
FBLIN1	FBLIN2	FBPOL	FBPRIO	RGB Outputs
0	0	0	x	Video
0	1	0	x	RGB input 2
1	0	0	х	RGB input 1
1	1	0	0	RGB input 1
1	1	0	1	RGB input 2
0	0	1	0	RGB input 1
0	0	1	1	RGB input 2
0	1	1	х	RGB input 1
1	0	1	х	RGB input 2
1	1	1	Х	Video

Note: with following I²C settings FBFOH1 = FBFOH2 = FBFOL1 = FBFOL2 = 0

2.2.2. Half-Contrast Control

Insertion of transparent text pages or OSD onto the video picture is often difficult to read, especially if the video contrast is high. The DDP 3310B allows contrast reduction of the video background by means of a Half-Contrast input (HCS pin). This input can be supplied with a fast switching signal (similar to the Fast-Blank input), typically defining a rectangular box in which the video picture is displayed with reduced contrast. The analog RGB inputs are still displayed with full contrast.

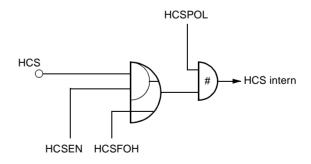


Fig. 2–8: Half-Contrast switch logic

2.2.3. Fast-Blank Monitor

The presence of external analog RGB sources can be detected by means of a Fast-Blank monitor. The status of the selected Fast-Blank input can be monitored via an I²C register. There is a 2-bit information, giving static and dynamic indication of a Fast-Blank signal. The static bit is directly reading the Fast-Blank input line, whereas the dynamic bit is reading the status of a flip flop triggered by the negative edge of the Fast-Blank signal.

With this monitor logic it is possible to detect if there is an external RGB source active and if it is a full-screen insertion or only a box. The monitor logic is connected directly to the FBLIN1 or FBLIN2 pin. Selection is done via I²C register.

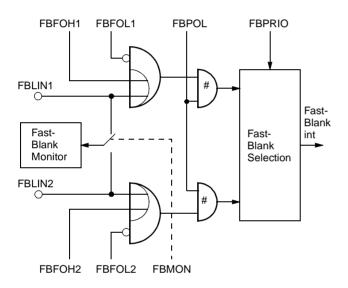


Fig. 2-9: Fast-Blank selection logic

2.2.4. CRT Measurement and Control

The display processor is equipped with an 8/12-bit PDM-ADC for all picture tube measuring purposes. This MADC is connected to the SENSE input pin, the input range is 0 to 1.6V.

Cutoff and white-drive current measurement are carried out with 8-bit resolution during the vertical blanking interval. The current range for cutoff measurement is set by connecting the resistor R1 to the SENSE input. Due to the fact of a 1:10 relation between cutoff and white-drive current, the range select 2 output (RSW2) becomes active for the white-drive measurement and connects R3 in parallel to R1, thus determining the correct current range. During the active picture, the MADC is used for the average beam current limiter with a 12-bit resolution. Again, a different measurement range is selected with active range select 1&2 outputs (RSW1&RSW2) connecting R2 in parallel to R3 and R1. See Fig. 2-10 and Fig. 2-11 for the corresponding timing. These measurements are typically done at the summation point of the picture tube cathode currents.

Another method uses two different current measurements. The range switch 1 pin (RSW1) can be used as a second Sense input, selectable by software. In this case, the cutoff and white-drive currents are measured as before at the SENSE input. The active picture measurement can be done with the second Sense input (RSW1). The signal may come (via a proper interface) from the low end of the EHT coil (CRT anode current). In this case, the resistor R2 in Fig. 2–10 has to be removed.

Fig. 2-10: MADC range switch

The picture tube measurement returns results on every field for:

- cutoff R
- cutoff G
- cutoff B
- white-drive R or G or B (sequentially)

Thus, a cutoff control cycle for RGB requires one field only while a complete white-drive control cycle requires three fields. During cutoff and white-drive measurement the average beam current limiter function (see Section 2.2.5.) is switched off. The amplitude of the cutoff and white-drive measurement lines can be programmed separately with IBRM and WDRM (see Fig. 2–11). The start line for the tube measurement (cutoff red) can be programmed via I²C-bus (TML).

The built-in control loop for cutoff and white-drive can operate in three different modes selected by CUT(WDR)_GAIN and CUT(WDR)_DIS.

The user control mode is selected by setting CUT(WDR)_GAIN = 0. In this mode the registers CUT(WDR)_R/G/B are used as direct control values for cutoff and drive using the whole 9-bit range. If the measurement lines are enabled (CUT(WDR)_DIS = 0) the user can read the measured cutoff & white drive values in the CUT-OFF(WDRIVE)_R/G/B registers. An external software can now control the settings of the CUT(WDR)_R/G/B registers.

- The automatic mode is selected by setting CUT(WDR)_GAIN > 0 and CUT(WDR)_DIS = 0. In this mode, the registers CUT(WDR)_R/G/B are used as reference for the measured values (CUT-OFF(WDRIVE)_R/G/B). Due to the 8-bit resolution of the ADC, only 8 LSB can be used as reference values. The calculated error is used with a small hysteresis (1,5 %) to adjust cutoff and drive. The higher the loop gain (CUT(WDR)_GAIN), the smaller the time constant for the adjustment.
- If the automatic mode was once enabled (CUT(WDR)_GAIN > 0), the control loop can be stopped by setting CUT(WDR)_DIS = 1. In this mode, the calculated cutoff and drive values will no longer be modified and the measurement lines are suppressed. Changes of the reference values (CUT(WDR)_R/G/B) have no effect.

If one of the calculated red, green, or blue white-drive values exceeds its maximal possible value (WDR_R/G/B>511), the white balance gets misadjusted. An automatic drive saturation avoidance prevents from this effect (WDR_SAT = 1) from occurring. If one drive value exceeds the maximum allowed threshold (MAX_WDR), the amplitude of the white-drive measurement line will be increased and decreased if one of them goes below the fixed threshold 475.

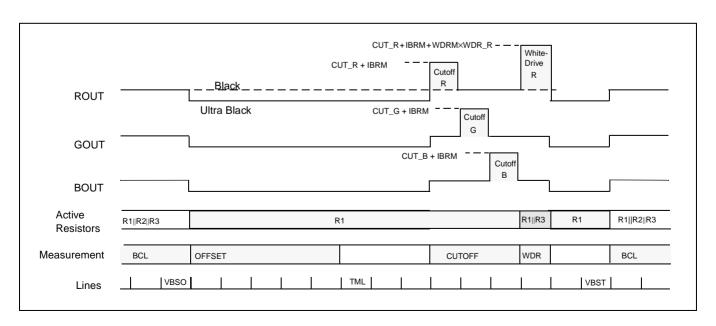


Fig. 2-11: MADC measurement timing

2.2.5. Average Beam Current Limiter

The average beam current limiter (BCL) works on both the digital YUV input and the inserted analog RGB signals by using either the sense input or the RSW1 input for the beam current measurement. The BCL uses a different filter to average the beam current during the active picture resulting in a 12-bit resolution. The filter bandwidth is approximately 4 kHz.

The beam current limiter allows the setting of a threshold current, a gain and an additional time constant. If the beam current is above the threshold, the excess current is low-pass filtered with the according gain and time constant. The result is used to attenuate the RGB outputs by adjusting the white-drive multipliers for the internal (digital) RGB signals and the analog contrast multipliers for the analog RGB inputs, respectively. The lower limit of the attenuator is programmable, thus a minimum contrast can always be set. If the minimum contrast is reached, the brightness will be decreased down to a programmable minimum as well. Typical characteristics of the BCL for different loop gains are shown in Fig. 2–12; for this example the tube has been assumed to have square-law characteristics.

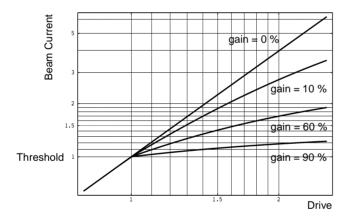


Fig. 2–12: Beam current limiter characteristics: beam current output vs. drive

DDP 3310B

2.3. Synchronization and Deflection

2.3.1. Deflection Processing

The deflection processing generates the signals for the horizontal and vertical drive (see Fig. 2–13). This block contains two numeric phase-locked loops and a security unit:

- PLL2 generates the horizontal and vertical timing, e.g. blanking, clamping, and sync signals. Phase and frequency are synchronized by the incoming sync signals.
- PLL3 adjusts the phase of the horizontal drive pulse and compensates for the delay of the horizontal output stage.
- The security unit observes the H-Drive output signal. With an external 5-MHz reference clock, this unit controls the H-Drive "off time" and period. In case of an incorrect H-Drive signal the security unit generates a free-running H-Drive signal divided down from the 5-MHz reference clock.

The DDP 3310B is able to synchronize various horizontal frequencies, even VGA frequencies. Allowed horizontal frequencies are listed in Table 2–5. The horizontal drive uses a high-voltage (8 V) open-drain output transistor.

2.3.2. Security Unit for H-Drive

The security unit observes the H-Drive output signal with an external 5-MHz reference clock. For different horizontal frequencies the security unit uses different ranges to control the H-Drive signal. Selecting a specific horizontal frequency via I²C-register HFREQ automatically switches to the corresponding security range. The control ranges are listed in Table 2–5.

The window of the control range has to fit into a main control window which is selectable with the FREQSEL input pin. With a Low signal at this pin, the main control range is $28.8...34.4 \,\mu s$ and with a High signal, the main control range is $25.6...29.2 \,\mu s$. This is to prevent malfunctions if the horizontal deflection stage is prepared for VGA frequencies.

The Horizontal Drive Output can be forced to the High level during Flyback. This means, the falling edge of the drive pulse occurs at the earliest to the end of the flyback pulse. This function can be enabled via the I²C bus (EFLB).

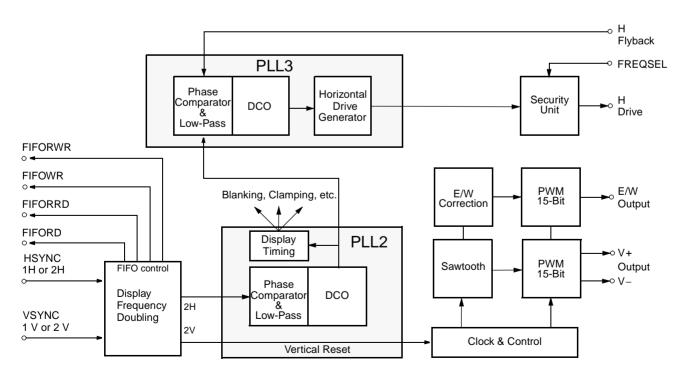


Fig. 2–13: Deflection processing block diagram

2.3.3. Soft Start/Stop of Horizontal Drive

In order to increase the energy supply of the horizontal deflection stage smoothly, a soft start decreases the drive frequency from 55 kHz to 31.25 kHz within 85 ms. The High time $t_{\rm H}$ is always 14.4 μs . This means, the duty factor decreases from 79.2 % to 45 % (see Fig. 2–14).

The soft stop is needed, when the protection circuitry wants to turn off the H-Drive. It has the inverse behavior of the soft start and ends with a High level at the HOUT Pin.

Fig. 2-14: Soft start with a duty factor of 14.4/32

Table 2–5: Allowed Horizontal Frequencies

Supply Clock (MHz)	Pixels per Line Supply Clk	Main Clock (in MHz)	Pixels per line Main Clk	Horizontal Frequency (Hz)	Minimum H-Drive Period (in μs)	Maximum H-Drive Period (in μs)	HFREQ (I ² C)
27	864	40.5	1296	31.24968	29.60	34.40	000
27	858	40.5	1287	31.46853	29.60	34.40	010
27	800	40.5	1200	33.750	28.80	30.60	100
27	768	40.5	1152	35.15625	27.80	29.20	001
27	720	40.5	1080	37.500	25.60	28.00	101
27	712	40.5	1068	37.92135	25.60	28.00	110
32	1024	40.0	1280	31.24952	29.60	34.40	000
32	944	40.0	1180	33.89776	28.80	30.60	100
32	912	40.0	1140	35.08747	27.80	29.20	001
32	852	40.0	1065	37.55869	25.60	28.00	101
32	844	40.0	1055	37.91469	25.60	28.00	110
40.5	1296	40.5	1296	31.24968	29.60	34.40	000

2.3.4. Horizontal Phase Adjustment

This section describes a simple way to get a correct horizontal frame position and clamp window for analog RGB insertion.

- For a correct scaler function in panorama/waterglass mode, the digital input data should be centered to the active video input signal.
- The clamping pulse for analog RGB insertion can be adjusted to the pedestal of the input signal with POFS2.
- The horizontal raster position of the analog inserted RGB1/2 signal can be set to the desired frame position with POFS3.
- 4. The horizontal position of the digital RGB signal can be shifted to the left and right with NEWLIN. Following values allowed in respect to POFS2:
 - -90 < (POFS2+NEWLIN) (Clk×SFIF) < 580
 - Clk = 3 @ LLC2 = 27 MHz
 - Clk = 2.5 @ LLC2 = 32 MHz
- 5. Now the positioning of horizontal blanking and the picture frame generator can be done.

2.3.5. Vertical Synchronization

The number of lines per field can be adjusted by software (LPFD). This number is used to calculate the vertical raster. The DDP synchronizes only to a vertical sync within a programmable detection window (LPFD \pm VSYNCWIN). If there is no vsync, the DDP runs with maximum allowed lines and if the vertical frequency is to high, it runs with minimum allowed lines. The smaller the detection window, the slower the DDP gets synchronized to the incoming vertical sync. In case of an interlaced input signal, it is possible to display both fields at the same raster position by setting R_MODE to 1 or 2.

An automatic field length adaptation can be selected (VA_MODE). In this case, the vertical raster will be calculated according to the counted number of lines per field instead from LPFD. This is useful for video

recorder search mode when the number of lines per field does not comply with the standard, or if you want to use a common value of LPFD for PAL and NTSC (e.g.: LPFD = 290; VSYNCWIN = 54).

2.3.6. Vertical and East/West Deflection

The calculations of the Vertical deflection and East/ West correction waveforms are done in the internal processor. They are described as polynomials in x, where x varies from $-0.5 \times \text{zoom}$ to $+0.5 \times \text{zoom}$ for one field. For zoom>1 the range is limited between -0.5 and +0.5.

The vertical deflection waveform is calculated as follows (without EHT compensation):

$$V = vpos + ampl \cdot (x + lin \cdot x^2 + scorr \cdot x^3)$$

VPOS defines the vertical raster position

AMPL is the vertical raster amplitude (zoom≥1)

LIN is the linearity coefficient

SCORR is the coefficient for S-correction

The vertical sawtooth signal will be generated from a differential current D/A converter and can drive a DC coupled power stage. In order to get a faster vertical retrace timing, the output current of the vertical D/A-converter can be increased during the retrace for a programmable number of lines (FLYBL). The range between the end of the flyback and the beginning of the raster is also programmable (HOLDL).

The East/West deflection waveform, generated from a single-ended D/A converter, is given with the equation:

$$E/W = width + tcorr \cdot x + cush \cdot x^2 + corner \cdot x^4$$

WIDTH is a DC value for the picture width

TCORR is the trapezoidal correction
CUSH is the pincushion correction
CRNU is the upper corner correction
CRNL is the lower corner correction

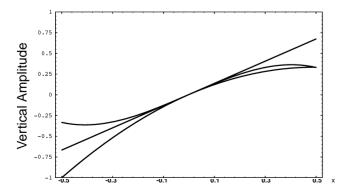
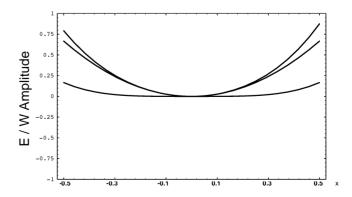



Fig. 2-15: Vertical and East/West deflection waveforms

2.3.7. Vertical Zoom

With vertical zoom, the DDP 3310B is able to display different aspect ratios of the source signal on tubes with 4:3 or 16:9 aspect ratio by adapting the corresponding raster.

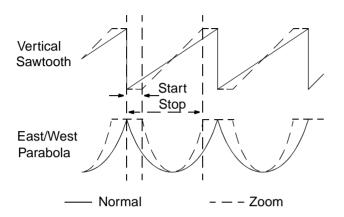


Fig. 2-16: Vertical zoom

2.3.8. EHT Compensation

The vertical deflection waveform can be scaled according to the average beam current. This is used to compensate the effects of electric high-tension changes due to beam current variations. EHT compensation for East/West deflection is done with an offset corresponding to the average beam current. The time constant of this process is freely programmable with a resolution of 18 bit. Both corrections can be enabled separately. The maximum scaling coefficient for vertical deflection is $1\pm x$ and the maximum offset for East/West is y, where x, y are adjustable from 0 to 0.25. The horizontal phase at the output HOUT can be influenced according to the average beam current in a range of $\pm 1.5~\mu s$.

2.3.9. Protection Circuitry

Picture tube and drive stage protection is provided through the following measurements:

- Vertical protection input: this pin watches the vertical sawtooth signal. In every field the sawtooth must descend below the lower threshold A and ascend above the upper threshold B. In this case the protection flag is set (sawtooth o.k.). If an error occurs the protection flag is cleared.
 - After approx. 10 fields with cleared flag, the RGB drive signals are blanked. The blanking is cancelled if the flag is set for 40 fields (see Fig. 2–17).
- Drive shutoff during flyback: this feature can be selected by software (EFLB)
- Safety input pin: This pin has two thresholds. The applied signal has to meet the following conditions:
 - 1. threshold B must not be overshot
 - threshold A has to be exceeded permanently or at least once per line

otherwise the RGB signals are blanked . Both thresholds have a small hysteresis.

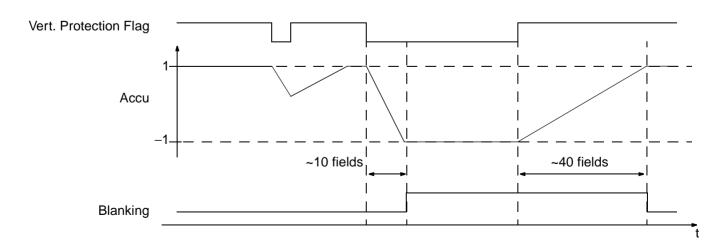


Fig. 2-17: Protection timing

2.3.10. Display Frequency Doubling

The DDP 3310B handles single or double vertical and horizontal input frequencies. The Display Frequency Doubling is used when single H/V frequencies are applied and a FIFO for video frequency doubling is used. In this mode it is mandatory to supply an active video signal to the HS pin, which is not vertical blanked.

Three different raster modes are selectable via I2C bus:

A A' B' B (reduced line flicker)

A A B B (improved vertical resolution)

A A B' B' (non-interlaced)

A/B means field A/B in original raster position and A'/B' means field A/B in the opposite raster position.

A minimum field length filter can be switched on (DFD-FILT) to write only the smallest field length of the past up to four fields into the memory. This prevents readbefore-write errors in signals with a strong changing field length (e.g. VCR signals).

2.3.11. General-purpose D/A Converter

There are two D/A converters realized as pulse width modulators. The resolution is 8 bit and the clock frequency is 20.25 MHz. The outputs are push-pull types. For a ripple-free output voltage, a first-order low-pass filter with a corner frequency <120 Hz should be applied. The D/A converters will be adjusted via I²C-bus. They can be used to adjust two DC voltages, for example for horizontal raster position, raster tilt, or just as switching outputs when the values 0 and 255 are selected.

2.3.12. Clock and Reset

The DDP 3310B has the capability to accept different line-locked clock rates: 27, 32, and 40.5 MHz. This external clock rate is converted internally to a clock rate of 40.5 or 40 MHz by means of a PLL. Selection of external clock frequency is done with pins CM1 and CM0. See Table 2–6 for clock frequency selection. To ensure lock of PLL a reset pulse of at least 500 μ s must be applied after power-up.

Table 2–6: Clock Frequency Selection

CM1	СМО	LLC2
0	0	27 MHz
0	1	32 MHz
1	0	40.5 MHz

2.3.13. Reset and Power-On

The IC has its own voltage supervision to generate an internal reset during power on or when the supply voltage (VSUPD) goes below ~4.5V. Also, a clock supervision of the 5-MHz clock keeps the internal reset active until a proper clock signal is detected (e.g. three clock cycles with the correct period). When the reset pin RESQ or the internal reset becomes active, all counters and registers are set to zero. When the reset pins are released, the internal reset is still active for approximately 4 μ s. Then all registers are loaded with their default values listed in Table 3–3. This initialization takes about 100 μ s. During and after reset, the HOUT signal remains High until a soft start (see Section 2.3.3.) will be performed by setting RAMP_EN.

3. Serial Interface

3.1. I²C-Bus Interface

Communication between the DDP 3310B and the external controller is done via I^2 C-bus. The DDP 3310B has an I^2 C-bus slave interface and uses I^2 C clock synchronization to slow down the interface if required.

Basically, there are two classes of registers in the DDP 3310B:

- 1. The first class are directly addressable I²C registers. They are embedded in the hardware. These registers are 8 or 16 bit wide.
- 2. The second class are "XDFP-REGISTERS", which are used by the "XDFP" on-chip controller. These registers are all 16 bit wide and read- and writable. Communication with these registers requires I²C packets with a 16-bit XDFP-register address and 16-bit data.

Communication with both classes of registers (I²C and XDFP-REGISTERS) are performed via I²C; but the format of the I²C telegram depends on which type of register is being accessed.

The I²C-bus chip address of the DDP 3310B is given below:

A6	A5	A4	А3	A2	A1	A0	R/W
1	0	0	0	1	0	1	1/0

3.2. I²C Control and Status Registers

The I²C-bus interface uses one level of subaddress. First, the bus address selects the IC, then a subaddress selects one of the internal registers. They have 8- or 16-bit data size; 16-bit registers are accessed by reading/writing two 8-bit data words.

- Writing is done by sending the device address first followed by the subaddress byte and one or two data bytes.
- For reading, the read address has to be transmitted first by sending the device write address, followed by the subaddress, a second start condition with the device read address, and reading one or two bytes of data.

Fig. 3–2 shows I²C protocol for read and write operations; the read operation requires an extra start condition and repetition of the chip address with read command set. Table 3–2 gives definitions of the I²C control and status registers.

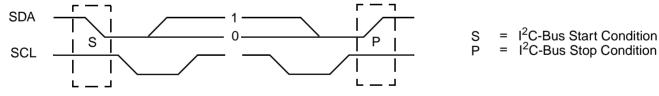



Fig. 3–1: I²C-Bus protocol (MSB first, data must be stable while clock is High)

Write to I²C Control Register:

Read from I²C Control Register:

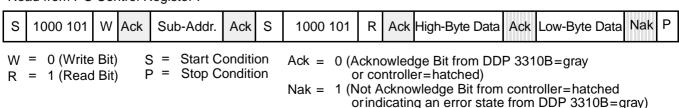


Fig. 3–2: I²C-Bus protocol

3.3. XDFP Control and Status Registers

The second class are "XDFP-REGISTERS", which are used by the XDFP on-chip controller. Access to these registers is achieved by subaddressing.

- Writing to these registers is done by sending the device write address first, followed by the XDFPwrite subaddress, two address bits for the desired XDFP-register, and the two data bytes.
- For reading, the XDFP-register address has to be transmitted first by sending the device write address, followed by the XDFP-read subaddress and the two XDFP-register address bytes. Without sending a stop condition, reading of the addressed data is done by sending the device read address and reading two bytes of data.

Fig. 3–3 shows I²C protocol for read and write operations. Table 3–3 gives definitions of the XDFP control and status registers. If these registers are smaller than 16 bit, the remaining bits should be 0 on write and read operations. Due to the internal architecture, the IC cannot react immediately to an I²C request, which interacts with the on-chip controller. The maximum response timing is approximately 20 ms. If the addressed controller is not ready for further transmissions on the I²C-bus, the clock line SCL is pulled low. This puts the current transmission into a wait state. After a certain period of time, the clock line will be released and the interrupted transmission is carried on.

A hardware reset initializes all control registers to 0. The automatic chip initialization loads a selected set of registers with the default values given in Table 3–3.

Table 3-1: XDFP read/write address

XDFP Read address	h'13
XDFP Write address	h'12

The register modes are

8/16- bit width

r read only register
w write only register
r/w write/read data register

Note: set unused bits to '0'!

The mnemonics used in the DDP 3310B demo software are given in the last column.

Write to XDFP Control Register:

Ī	s	1000101	W	Ack	XDFP Write Addr.	Ack	High-Byte Addr.	Ack	Low-Byte Addr.	Ack	High-Byte data	Ack	Low-Byte Data	Ack	Р
- 1	_														1

Read from XDFP Control Register:

S 1000101 W Ack XDFP Read Addr. Ack High-Byte Addr. Ack Low-Byte Addr. Ack S 1000101 R Ack High-Byte Data Ack Low-Byte Data Nak P

W = 0 (Write Bit) S = Start Condition Ack = 0 (Acknowledge Bit from DDP 3310B=gray R = 1 (Read Bit) P = Stop Condition or Controller = hatched)

Nak = 1 (Not Acknowledge Bit from Controller=hatched or indicating an error state from DDP 3310B=gray)

Fig. 3-3: XDFP protocol

Table 3–2: I²C Control Registers

			I ² C	Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
	•			XDFP INTERFACE		
h'13	16-w	XDFP read	d address			DFPRD
		bit[[9:0]		10-bit XDFP RAM address		
		bit[15:10]	0	reserved, set to zero		
h'12	16-w	XDFP write	e address			DFPWR
		bit[[9:0]		10-bit XDFP RAM address		
		bit[15:10]		reserved, set to zero		
	!		AN	ALOG FAST-BLANK MONITOR		
h'1E	8-r	Fast-Blank	signal state	us		FBLSTAT
		bit[0]	0/1	FBLIN level Low/High		FBLEV
		bit[1]		FBLIN slope: 1 = falling edge occurred		FBSLO
		bit[7:2]		not used		
h'11	16-r/w	picture fran	ne color, 12	P bit wide		PFC
		bit[3:0]	015	blue amplitude	0	PFCB
		bit[7:4]	015	green amplitude	0	PFCG
		bit[11:8]	015	red amplitude	0	PFCR
		bit[15:12]	0	not used	0	
				OUTPUT PINS	•	
h'10	8-r/w	output pin	configuration	on .		PSTR
		bit[2:0]	7 = output 6 = minim	strength, FIFO control t tristate um strength num strength	0	PSTSY
		bit[3]	0/1	strong/weak driver strength PWM1	0	PSTPR1
		bit[4]	0/1	strong/weak driver strength PWM2	0	PSTPR2
		bit[5]	0/1	disable/enable internal resistor for vertical and East/West drive output	0	VEWXR
		bit[6]	0/1	High/Low-active horizontal flyback input	0	FLYPOL
		bit[7]	0/1	disable/enable following I/O pin: FIFO -controll signals, PWM1&2, HCS, R/G/BIN2, and VS2.	0	OSDOFF

Table 3–3: Control Registers of the XDFP

			XDFF	Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
	•			INPUT FORMATTER		
h'1B0	16-r/w	Input form	at			INFMT
		bit [0]	0/1	4:2:2 / 4:1:1 mode	1	M411
		bit [1]	0/1	binary offset / 2's complement	1	COB
		bit [2]	0/1	enable / disable blanking to black (for luma and chroma input when $\mbox{HS}=0$)	1	BLNK
		bit [4:3]	03	select color multiplex	0	CMUX
			SC	ALER CONTROL REGISTER		
h'1C1	16-r/w	scaler mo	de register		0	SCMODE
		bit[1:0]	scaler mod	le		PANO
			0	linear scaling mode		
			1 2	non-linear scaling mode, 'panorama' non-linear scaling mode, 'waterglass'		
			3	reserved		
		bit[2]		reserved, set to 0		
		bit[13:3]		reserved, set to 0		
		bit[14]	0	scaler update command, set to 1 to update only scaler mode register	0	SCMODUP
		bit[15]	0	scaler update command, set to 1 to update all scaler control registers	0	SCUPDATE
h'1C2	16-r/w	active vide	eo length for	1-h FIFO	720	FFLIM
		bit[11:0]	01295 720	length in pixels LLC mode (864/h)		
h'1C3	16-r/w	scaler1 co	efficient: this	scaler compresses the signal.	1024	SCINC1
		bit[11:0]		5 compression by a factor c,		
				the value c*1024 is required		
h'1C4	16-r/w	scaler2 co	efficient; this	scaler expands the signal.	682	SCINC2
		bit[11:0]	2561024	expansion by a factor c, the value 1/c*1024 is required		
h'1C5	16-r/w	bit[11:0]	04095	scaler1/2 non-linear scaling coefficient	0	SCINC
h'1C6	16-r/w	scaler1 wi	indow control	s (see Table 3–4)	0	SCW1_1
 h'1CA		bit[11:0]	04095	5 registers for control of the non-linear scaling	0	 SCW1_5
h'1CB	16-r/w	scaler2 wi	indow control	s (see Table 3–4)	0	SCW2_1
 h'1CF		bit[11:0]	04095	5 registers for control of the non-linear scaling		 SCW2_5

Table 3–3: Control Registers of the XDFP, continued

			XDFP	Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
		1		CHROMA CHANNEL	•	
h'1AF	16-r/w	luma/chroi	ma matching	delay		CRCTRL
		bit [2:0]	-22	variable chroma delay	0	CDEL
		bit [3]		not used, set to "0"	0	
		bit [4]	0/1	$C_B(U)$ sample first / $C_R(V)$ sample first	0	ENVU
		bit [5]		not used, set to "0"		
h'1AB	16-r/w	digital tran	sient improve	ement		DTICTRL
		bit [3:0]	015	coring value	1	DTICO
		bit [7:4]	015	DTI gain	5	DTIGA
		bit [8]	0/1	narrow/wide bandwidth mode	1	DTIMO
				LUMA CHANNEL		
h'1B1	16-r/w	bit [14:9]	063	picture contrast in steps of 1/32	32	СТМ
h'19A	16-r/w	bit [8:0]	-256255	luma DC-offset	0	BRM
h'1AA	16-r/w		king filter, th		PK1	
		bit [3:0]	015	k1: peaking level undershoot	4	PKUN
		bit [7:4]	015	k2: peaking level overshoot	4	PKOV
		bit [8]	0/1	peaking value normal/inverted (peaking/softening)	0	PKINV
h'1AE	16-r/w	luma peak	ing filter, cori	ng		PK2
		bit [4:0]	031	coring level	3	COR
		bit [7:5]	000 001 01x 100 101 11x	peaking reduction 100 % 80 % 60 % 50 % 40 % 30 %	0	PKRD
		bit [8]	0/1	peaking filter center frequency High/Low	0	PFS
h'18A	16-r/w	luma soft l	imiter, slope	A and B		LSLS
		bit [3:0]		slope segment A	0	LSLSA
		bit [7:4]		slope segment B	0	LSLSB
h'18E	16-r/w	luma soft l	imiter, limit A			LSLA
		bit [7:0]		luma soft limiter absolute limit (unsigned)	255	LSLAL
		bit [8]	0/1	modulation off/on (resolution enhancement)	0	LSLM
h'192	16-r/w	luma soft l	imiter, limit B		300	LSLTB
		bit [8:0]		luma soft limiter segment B tilt point (unsigned)		
h'196	16-r/w	bit [8:0]		luma soft limiter segment A tilt point (unsigned)	250	LSLTA

Table 3-3: Control Registers of the XDFP, continued

			XDF	P Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
				INVERSE MATRIX		
h'1B9	16-r/w	picture ma	trix coefficie	ent R-Y = MR1M/64*C _B + MR2M/64*C _R		
h'1B8		bit [15:7]	-256 2 5	5	0	MR1M
		bit [15:7]	-256 2 5	5	86	MR2M
h'1B7	16-r/w	picture ma	trix coefficie	ent G-Y = MG1M/64*C _B + MG2M/64*C _R		
h'1B6		bit [15:7]	–256 25	5	-22	MG1M
		bit [15:7]	-256 25	5	-44	MG2M
h'1B5	16-r/w	picture ma	trix coefficie	ent B-Y = MB1M/64*C _B + MB2M/64*C _B		
h'1B4		bit [15:7]	-256 25	· · ·	113	MB1M
		bit [15:7]	-256 2 5	5	0	MB2M
h'1B2	16-r/w	bit [15:9]	063 -1	picture saturation in steps of 1/32; reserved mode to use old MATRIX coefficients and CTM addresses from B1	-1	SATM
h'1B3	16-r/w	bit [14:8]	0127	limit for picture contrast × saturation in steps of 1/32	80	SATLIM
		1	PI	CTURE FRAME GENERATOR	l	I
h'197	16-r/w	picture fran	me insertion	contrast R (amplitude range:0 to 255)		
		bit [7:4]	013 14,15	R amplitude = PFCR · (PFRCT + 4) invalid	8	PFRCT
h'193	16-r/w	picture fran	me insertion	n contrast G (amplitude range:0 to 255)		
		bit [7:4]	013 14,15	G amplitude = PFCG \cdot (PFGCT + 4) invalid	8	PFGCT
h'18F	16-r/w	picture fran				
		bit [7:4]	013 14,15	B amplitude = PFCB \cdot (PFBCT + 4) invalid	8	PFBCT
h'1D5	16-r/w	bit [10:0]	01295 0 7FF	horizontal picture frame begin (see Table 2–5 for max. pixels per line) horizontally disabled full frame	0	PFGHB
h'1D6	16-r/w	bit [10:0]	01295	horizontal picture frame end (see Table 2–5 for max. pixels per line)	0	PFGHE
h'1AC	16-r/w	bit [8:0]	0511 0	vertical picture frame start line (+128) vertically disabled	0	PFGVB
h'1A8	16-r/w	bit [8:0]	0511	vertical picture frame end line	57	PFGVE
h'198	16-r/w	bit [7:0]	0/1:	disable/enable analog FastBlank input1/2 if bit[x] is set to 1, then the function is active for the respective signal priority	0	PBFB1
h'194	16-r/w	bit [2:0]	07	picture frame generator priority id	7	PFGID
		bit [8]	0/1	enable prio id for picture frame generator	1	PFGEN

Table 3–3: Control Registers of the XDFP, continued

Subaddr.	Mode	Function			Default	Name
			sc	AN VELOCITY MODULATION		
h'1A7	16-r/w	video mod	de coefficient	ts		SVM1
		bit [5:0]	063	gain	60	SVG
		bit [8:6]	06	differentiator delay (0= filter off)	1	SVD
h'19F	16-r/w	limiter				
		bit [7:0]	0255	limit value	100	SVLIM
		bit [8:5]	0	not used, set to"0"	0	
h'19B	16-r/w	delay and	coring			SVM2
		bit [3:0]	015	delay of SVMOUT in steps of 12.5 ns (7 = SVMOUT vs. RGBOUT is 60ns)	7	SVDEL
		bit [7:4]	015	coring value	0	SVCOR
		bit [8]	0	not used, set to"0"		
				TUBE MEASUREMENT		
h'19C 16-r/w		tube meas	surement line	9	10	TML
		bit [8:0]	0511	start line for tube measurement (+2 lines)		
h'15F	16-r/w	bit[10:0]	0 1295	Latch timing of madc data in pixels before the begin of horiz. blanking HBST	128	MADCLAT
h'186	16-r/w	white drive	e measurem	ent control	384	WDRM
		bit [8:0]	0511	RGB amplitude for white-drive beam current measurement		
h'168	16-r/w	bit[14:6]	0511	Amplitude for cutoff measurement. It can be set to measure at higher cutoff current.	256	IBRM
h'171	16-r/w	measuren	nent control	word		MCTRL
		bit [8]	0/1	enable/disable ultra black blanking	0	ULBLK_DIS
		bit [9]	0/1	0: all outputs blanked (video mute) 1: normal mode	0	BLANK_DIS
		bit [10]	0/1	78/156 kHz bandwidth for cutoff and drive measurement	0	BW_SEL
		bit [11]	0/1	enable/disable white drive measurement	0	WDR_DIS
		bit [12]	0/1	enable/disable cutoff measurement	0	CUT_DIS
		bit [13]	0/1	disable/enable horizontal blanking during measurement	0	MBLANK
		bit [14]	0/1	disable/enable RSW1 Pin as input for beam current measurement	0	SMODE

Table 3-3: Control Registers of the XDFP, continued

			XDFF	Control and Status Registers							
Subaddr.	Mode	Function			Default	Name					
	BRIGHTNESS and CONTRAST										
h'165	16-r/w	bit[14:6]	0511	analog contrast for external RGB	360	EXT_CONTR					
h'166	16-r/w	bit[15:6] The range		analog brightness for external RGB oth increase and reduction of brightness.	128	EXT_BRT					
h'167	16-r/w	bit[15:6] The range		internal analog brightness oth increase and reduction of brightness.	24	INT_BRT					
	BCL										
h'D7	16-r/w	bit[14:3]	04095	measured beam current, latched every line except during vertical blanking	0	ВС					
h'160	16-r/w	bit[15:4]	0 2047 0–2048	BCL threshold current if SENSE input used BCL threshold current if RSW1 input used (max. ADC output ~2047)	64	BCL_THRES					
h'161	16-r/w	bit[8:0]	0511	BCL time constant; 0 = off	0	BCL_TC					
h'162	16-r/w	bit[14:6]	0511	BCL loop gain	0	BCL_GAIN					
h'163	16-r/w	bit[14:6]	0511	BCL minimum contrast; (= 0max contrast)	256	BCL_MIN_C					
h'164	16-r/w	bit[14:6]	0511	BCL minimum brightness; (= 0max bright.)	256	BCL_MIN_B					

Table 3–3: Control Registers of the XDFP, continued

	XDFP Control and Status Registers									
Subaddr.	Mode	Function			Default	Name				
CUTOFF and DRIVE										
h'169	16-r/w	bit[12:4]	0511	reference for cutoff Red	511	CUT_R				
h'16A	16-r/w	bit[12:4]	0511	reference for cutoff Green	511	CUT_G				
h'16B	16-r/w	bit[12:4]	0511	reference for cutoff Blue	511	CUT_B				
h'D3	16-r	bit[11:4]	0255	measured cutoff Red	0	CUTOFF_R				
h'D4	16-r	bit[11:4]	0255	measured cutoff Green	0	CUTOFF_G				
h'D5	16-r	bit[11:4]	0255	measured cutoff Blue	0	CUTOFF_B				
h'16C	16-r/w	bit[14:6]	0511 0	gain for cutoff control loop; the reference values are taken directly as cutoff values	0	CUT_GAIN				
h'16D	16-r/w	bit[12:4]	0511	reference for White Drive Red	511	WDR_R				
h'16E	16-r/w	bit[12:4]	0511	reference for White Drive Green	511	WDR_G				
h'16F	16-r/w	bit[12:4]	0511	reference for White Drive Blue	511	WDR_B				
h'D0	16-r	bit[11:4]	0255	measured White Drive Red	0	WDRIVE_R				
h'D1	16-r	bit[11:4]	0255	measured White Drive Green	0	WDRIVE_G				
h'D2	16-r	bit[11:4]	0255	measured White Drive Blue	0	WDRIVE_B				
h'170	16-r/w	bit[14:6]	0511 0	gain for White Drive control loop; the reference values are taken directly as white drive values	0	WDR_GAIN				
h'172	16-r/w	bit[14:6]	475511	threshold for automatic drive saturation avoidance	491	MAX_WDR				
h'1E9	16-r/w	bit[0]	0/1	disable/enable automatic drive saturation avoidance	0	WDR_SAT				

Table 3-3: Control Registers of the XDFP, continued

			XDF	P Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
			DIS	PLAY FREQUENCY DOUBLING		
h'176	16-r/w	display free		DFDCTRL		
		bit[1:0]	display raster mode (A' = field A in raster B) 0 = A A' B' B 1 = A A B B 2 = A A B' B' 3=not used			DFDMODE
		bit[3:2]	minimum 0 = off 1 = 2 field 2 = 3 field 3 = 4 field	İs	0	DFDFILT
		bit[5:4]	0 = leave 1 = double 2 = double	c doubling switch H and V sync unchanged e VSYNC and leave HSYNC unchanged e HSYNC and leave VSYNC unchanged e H and V sync	0	DFDSW
		bit[6]	clock switch 0 = Clock from LLC2 pin divided by 2 1 = Clock from LLC1 pin			DFDCLK
		bit[7]	test bit, se	et to 0	0	
		bit[8]	0 1	automatic VS/VS2 polarity detection Low-active VS/VS2 input	0	VSYPOL
		bit[9]	0/1	High/Low-active HS input	0	HSYPOL
		bit[10]	0/1	VS / VS2 Pin is source of VSYNC	0	VSYSRC
		bit[11]	0/1	dis-/enable still picture (only available if display frequency doubling is enabled)	0	STILL
		bit[12]	0 / 1	High / Low-active FIFO controll signals	0	FIFOPOL
				TIMING		
h'1A4	16-r/w	vertical bla	nking start		182	VBST
		bit [8:0]	0511	first line of vertical blanking (+ 128 offset)		
h'1A0	16-r/w	vertical bla	nking stop		22	VBSO
		bit [8:0]	0511	last line of vertical blanking		
h'1D3	16-r/w	bit[10:0]	01295	horizontal blanking start (see Table 2–5 for max. pixels per line)	253	HBST
h'1D4	16-r/w	bit[10:0]	01295	horizontal blanking stop (see Table 2–5 for max. pixels per line)	331	HBSO
h'1D2	16-r/w	bit[10:0]	01295	Start at active video relative to pixel counter. (see Table 2–5 for max. pixels per line)	330	NEWLIN
h'18b	16-r/w	bit [8:0]	0511	start point of active video relative to incoming HS signal in steps of 2 LLC2 clocks; can be used e.g. for panning	0	SFIF

Table 3–3: Control Registers of the XDFP, continued

			XDF	P Control and Status Registers		
Subaddr.	Mode	Function			Default	Name
			ŀ	HORIZONTAL DEFLECTION		
h'1D1	16-r/w	bit [5:0]	2035	horizontal drive pulse duration (High time)	30	HDRV
h'140	16-r/w	horizontal	deflection c	ontrol register		HCTRL
		bit [0]	0	reserved, set to 0	0	
		bit [1]	0/1	enable/disable vertical protection	0	VPROT_DIS
		bit [2]	0/1	enable/disable H-safety protection	0	HPROT_DIS
		bit [3]	0/1	disable/enable drive high during flyback	0	EFLB
		bit [4]	1	start ramp up/down	0	RAMP_EN
		bit [7:5]	07 000 001 010 100 101 110	horizontal frequency H-Freq. pixels per line @LLC in kHz 27 MHz 32 MHz 31.25 864 1024 35.1 768 912 31.46 858 1024 33.8 800 944 37.5 720 852 37.9 712 844	0	HFREQ
h'141	16-r/w		e delay of l hsync) adj	5	POFS2	
L14.4.4	40 =6			00, 1 step = 1 pixel clock lyback, H/VSYNC and analog RGB (rela-	0	DOEGO
h'144	16-r/w	tive to PL	0	POFS3		
		bit [15:1]	Range ±6	00, 1 step = 1 pixel clock		
h'145	16-r/w	PLL2/3 fil	ter coeffici	ents		
h'142		bit [14:6]	0511	proportional coefficient PLL3, c*2^-9	102	PKP3
		bit [14:6]	0511	proportional coefficient PLL2, c*2^9	184	PKP2
h'14A	16-r/w	bit[15:6]	-51251°	1 vertical angle	0	ANGLE
h'14B	16-r/w	bit[15:6]	-51251	1 vertical bow	0	BOW
		1		VERTICAL MODES		1
h'1E2	16-r/w	bit [0]	0/1	VSYNC synchronized/ free running	0	VS_MODE
h'1E3	16-r/w	raster mod	de		0	R_MODE
		bit [1:0]	0 1 2 3	same input and output raster field 2 is delayed (only A raster is written) field 1 is delayed (only B raster is written) not used		
h'1E8	16-r/w	bit [0]	0/1	automatic lines-per-field adaption (constant raster amplitude) off/on	0	VA_MODE

Table 3-3: Control Registers of the XDFP, continued

			XDFP	Control and Status Registers					
Subaddr.	Mode	Function			Default	Name			
VERTICAL PARAMETERS									
h'152	16-r/w	bit [6:0]	0 127	window (LPFD±VSYNWIN) for sync detection	32	VSYNWIN			
h'153	16-r/w	bit [9:0]	0 1023	lines per field	312	LPFD			
h'154	16-r/w	bit [9:0]	0 1023	number of hold lines	10	HOLDL			
h'155	16-r/w	bit [9:0]	0 1023	number of flyback lines (flyback booster active)	5	FLYBL			
	٧	ERTICAL S	AWTOOTH (CORRECTION (%-values according to DAC	range)				
h'14D	16-r/w	bit [15:8]	-128127	vertical amplitude (±25 %)	0	AMPL			
h'14E	16-r/w	bit [14:6]	0510	zoom (0100200 %)	256	ZOOM			
h'14F	16-r/w	bit [15:8]	-128127	3127 vertical picture position (± 50 %) (DC offset of Sawtooth output). This offset is independent of EHT compensation.		VPOS			
h'150	16-r/w	bit [15:8]	-128127	linearity (±10 %)	0	LIN			
h'151	16-r/w	bit [15:8]	-128127	S-correction (±8 %)	0	SCORR			
		EAST-	WEST PARA	ABOLA (%-values according to DAC range)					
h'157	16-r/w	bit [15:7]	-256255	picture width (0100 %)	51	WIDTH			
h'158	16-r/w	bit [15:8]	-128127	trapez correction (±100 %)	0	TCORR			
h'159	16-r/w	bit [15:8]	-128127	cushion correction (±100 %)	0	CUSH			
h'15A	16-r/w	bit [15:8]	-128127	upper corner correction (±100 %)	0	CRNU			
h'15B	16-r/w	bit [15:8]	-128127	lower corner correction (±100 %)	0	CRNL			
	EXTRE	ME HIGH-TE	NSION (EH	T) COMPENSATION (%-values according to	o DAC ran	ge)			
h'148	16-r/w	bit[15:6]	-512511	EHT compensation coefficient for horizontal phase (±1.5μs)	0	EHTHP			
h'149	16-r/w	bit[14:6]	0511	EHT time constant for horizontal phase compensation 0 = off	0	EHTH_TC			
h'147	16-r/w	bit[15:6]	-512511	EHT compensation coefficient for horizontal amplitude (±100 %)	0	EHTH			
h'15C	16-r/w	bit [15:6]	_512511	EHT compensation coefficient for vertical amplitude (±25 %)	0	EHTV			
h'15D	16-r/w	bit [14:6]	0511	time constant for control of vertical and horizontal amplitude EHT compensation 0 = off	0	EHTV_TC			

Table 3–3: Control Registers of the XDFP, continued

			XDI	FP Control and Status Registers		
Subaddr.	Mode	Function	1		Default	Name
				ANALOG RGB INSERTION		
h'17A	16-r/w	Fast-Blar	nk interface i	mode		FBLMODE
		bit [0]	0 1	Fast-Blank from FBLIN1 pin force internal Fast-Blank signal to High	0	FBFOH1
		bit [1]	0/1	Fast-Blank active High/Low at FBLIN pin	0	FBPOL
		bit [2]	0 1	Fast-Blank from FBLIN1 pin force internal Fast-Blank signal to Low	0	FBFOL1
		bit[3]	0 1	Fast-Blank priority FBLIN1>FBLIN2 FBLIN1 <fblin2< td=""><td>0</td><td>FBPRIO</td></fblin2<>	0	FBPRIO
		bit [4]	0 1	Fast-Blank from FBLIN2 pin force internal Fast-Blank signal to Low	0	FBFOL2
		bit [5]	0 1	Fast-Blank from FBLIN2 pin force internal Fast-Blank signal to High	0	FBFOH2
		bit[6]	0/1	Fast-Blank monitor input select FBLIN1/2	0	FBMON
		bit[7]	0/1	disable/enable clamping for RGBIN1&2	0	CLAMP
		bit[8]	0/1	half contrast signal active High/Low at HCS pin	0	HCSPOL
		bit[9]	0/1	disable/enable half contrast switching	0	HCSEN
		bit[10]	0 1	half contrast signal from HCS pin force internal half contrast signal to High	0	HCSFOH
		bit[11]	0 1	clamp RGBIN1 to black (if CLAMP =1) clamp RGBIN1 to bias (if CLAMP =1)	0	C1_B
		bit[12]	0 1	clamp RGBIN2 to black (if CLAMP =1) clamp RGBIN2 to bias (if CLAMP =1)	0	C2_B
			l ² (C-CONTROLLED 8-BIT PWM	1	
h'178	16-r/w	bit[7:0]	0255	PWM1 data word	0	PWM1
h'179	16-r/w	bit[7:0]	0255	PWM2 data word	0	PWM2
				XDFP STATUS REGISTER		
h'0	16-r/w	firmware	version num	nber		VER
		bit[7:0]		firmware release	_	FW_REL
		bit[15:8]		hardware version number (TC)	_	HW_VER

3.3.1. Scaler Adjustment

In case of linear scaling, most of the scaler registers need not be set. Only the scaler mode, active video length, and the fixed scaler increments (SCINC1 / SCINC2) must be written.

For adjustment of the scaler for non-linear scaling, the parameters given in Table 3–4 should be used. An example for "panorama vision" mode is depicted in

Fig. 3–4. It shows the scaling of the input signal and the variation of the scaling factor during the active video line. The scaling factor starts below 1, i.e. for the borders the video data is expanded and after it exceeds 1 it is compressed. When the picture center is reached, the scaling factor is kept constant. At the second border the scaling factor changes back symmetrically.

Fig. 3-4: Scaler operation for "panorama" mode

Table 3-4: Setup values for non-linear scaler modes

Mode		27 I	ИНz		32 MHz				
		rglass' r 35 %		'panorama' border 30 %		glass' r 35 %	ʻpanorama' border 30 %		
Register	center 3/4	center 5/6	center 4/3	center 6/5	center 3/4	center 5/6	center 4/3	center 6/5	
SCINC1	1099	1064	1024	1024	1195	1122	1024	1024	
SCINC2	1024	1024	259	407	1024	1024	305	489	
SCINC	60	65	56	38	54	42	68	46	
FFLIM	715	717	758	796	833	845	831	871	
SCW1 - 0	20	10	106	106	51	37	109	126	
SCW1 - 1	156	123	106	106	161	166	125	126	
SCW1 - 2	202	236	273	292	256	257	291	310	
SCW1 - 3	338	349	273	292	366	386	307	310	
SCW1 - 4	358	359	379	398	417	423	416	436	
SCW2 - 0	20	10	186	177	51	37	168	175	
SCW2 - 1	156	123	186	177	161	166	184	175	
SCW2 - 2	384	417	354	363	373	368	350	359	
SCW2 - 3	520	530	354	363	483	497	366	359	
SCW2 - 4	540	540	540	540	534	534	534	534	

4. Specifications

4.1. Outline Dimensions

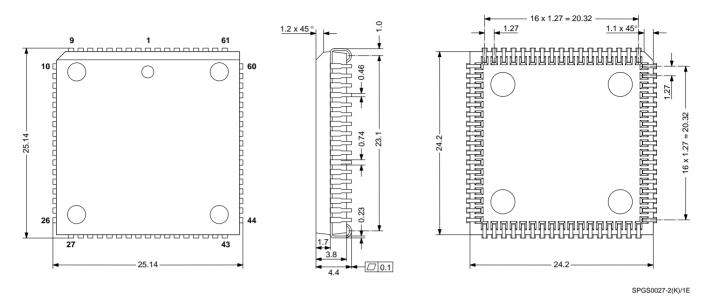


Fig. 4–1: 68-Pin Plastic Leaded Chip Carrier with heat spreader (PLCC68K) Weight approximately 4.8 g Dimensions in mm

4.2. Pin Connections and Short Descriptions

NC = not connected IN = Input
LV = if not used, leave vacant OUT = Output

X = obligatory; connect as described in circuit diagram SUPPLY = Supply Pin

Pin No. PLCCK 68-pin	Pin Name	Туре	Connection (If not used)	Short Description
1	VSUPP	SUPPLY	X	Supply Voltage, Output Pin Driver
2	GNDP	SUPPLY	Х	Ground, Output Pin Driver
3	VS2	IN	GNDD	Additional VSYNC input
4	FIFORRD	OUT	LV	FIFO Read counter Reset
5	FIFORD	OUT	LV	FIFO Read Enable
6	FIFOWR	OUT	LV	FIFO Write Enable
7	FIFORWR	OUT	LV	FIFO Write counter Reset
8	HOUT	OUT	Х	Horizontal Drive Output
9	HFLB	IN	HOUT	Horizontal Flyback Input
10	SAFETY	IN	GNDO	Safety Input
11	VPROT	IN	GNDO	Vertical Protection Input

Pin No. PLCCK 68-pin	Pin Name	Туре	Connection (If not used)	Short Description
12	FREQSEL	IN	Х	Selection of H-Drive Frequency Range
13	CM1	IN	Х	Clock Select 40.5 or 27/32 MHz
14	СМО	IN	Х	Clock select 27/32 MHz
15	RSW2	OUT	LV	Range Switch2, Measurement ADC
16	RSW1	IN/OUT	LV	Range Switch1, Measurement ADC
17	SENSE	IN	GNDO	Sense ADC Input
18	GNDM	SUPPLY	Х	Ground, MADC Input
19	VERT+	OUT	GNDO	Differential Vertical Sawtooth Output
20	VERT-	OUT	GNDO	Differential Vertical Sawtooth Output
21	EW	OUT	GNDO	Vertical Parabola Output
22	XREF	IN	Х	Reference Input for RGB DACs
23	SVM	OUT	VSUPO	Scan Velocity Modulation
24	ROUT	OUT	VSUPO	Analog Output Red
25	GOUT	OUT	VSUPO	Analog Output Green
26	BOUT	OUT	VSUPO	Analog Output Blue
27	GNDO	SUPPLY	Х	Ground, Analog Back-end
28	VSUPO	SUPPLY	Х	Supply Voltage, Analog Back-end
29	VRD/BCS	IN	Х	DAC Reference, Beam Current Safety
30	FBLIN1	IN	GNDO	Fast-Blank1 Input
31	RIN1	IN	GNDO	Analog Red1 Input
32	GIN1	IN	GNDO	Analog Green1 Input
33	BIN1	IN	GNDO	Analog Blue1 Input
34	FBLIN2	IN	GNDO	Fast-Blank2 Input
35	RIN2	IN	GNDO	Analog Red2 Input
36	GIN2	IN	GNDO	Analog Green2 Input
37	BIN2	IN	GNDO	Analog Blue2 Input
38	TEST	IN	GNDD	Test Pin
39	RESQ	IN	Х	Reset Input, active low
40	PWM1	OUT	LV	I ² C-controlled DAC
41	PWM2	OUT	LV	I ² C-controlled DAC
42	HCS	IN	GNDD	Half-Contrast

Pin No. PLCCK 68-pin	Pin Name	Туре	Connection (If not used)	Short Description
43	C0	IN	GNDD	Picture Bus Chroma (LSB)
44	C1	IN	GNDD	Picture Bus Chroma
45	C2	IN	GNDD	Picture Bus Chroma
46	C3	IN	GNDD	Picture Bus Chroma
47	C4	IN	GNDD	Picture Bus Chroma
48	C5	IN	GNDD	Picture Bus Chroma
49	C6	IN	GNDD	Picture Bus Chroma
50	C7	IN	GNDD	Picture Bus Chroma (MSB)
51	VSUPD	SUPPLY	Х	Supply Voltage, Digital Circuitry
52	GNDD	SUPPLY	Х	Ground, Digital Circuitry
53	LLC2	IN	Х	System Clock Input (27/32/40.5 MHz)
54	Y0	IN	GNDD	Picture Bus Luma (LSB)
55	Y1	IN	GNDD	Picture Bus Luma
56	Y2	IN	GNDD	Picture Bus Luma
57	Y3	IN	GNDD	Picture Bus Luma
58	Y4	IN	GNDD	Picture Bus Luma
59	Y5	IN	GNDD	Picture Bus Luma
60	Y6	IN	GNDD	Picture Bus Luma
61	Y7	IN	GNDD	Picture Bus Luma (MSB)
62	LLC1	IN	VSUPD	Single Line-Locked Clock Input (13.5/16 MHz)
63	HS	IN	Х	Horizontal Sync Input
64	VS	IN	GNDD	Vertical Sync Input
65	XTAL2	OUT	Х	Analog Crystal Output (5-MHz Security Clock)
66	XTAL1	IN	Х	Analog Crystal Input (5-MHz Security Clock)
67	SDA	IN/OUT	Х	I ² C-Bus Data
68	SCL	IN/OUT	Х	I ² C-Bus Clock

4.3. Pin Description

Pin 1 – Supply Voltage, Output Pin Driver **VSUPP*** This pin is used as supply for the following digital output pins: FIFORRD, FIFORD, FIFORWR.

Pin 2 – Ground, Output Pin Driver GNDP*
Output Pin Driver Reference

Pin 3 – Sync Signal Input VS2 (Fig. 4–3)

Additional pin for the vertical sync information. Via I²C-Register the used vertical sync can be switched between the inputs VS2 and VS (Pin 64)

Pin 4 – Reset for FIFO Read Counter **FIFORRD** (Fig. 4–4)

This signal is active-High and resets the read counter in the display frequency doubling FIFO.

Pin 5 – Read Enable for FIFO **FIFORD** (Fig. 4–4) This signal is active-High and enables the read counter in the display frequency doubling FIFO.

Pin 6 – Write Enable for FIFO **FIFOWR** (Fig. 4–4) This signal is active-High and enables the write counter in the display frequency doubling FIFO.

Pin 7 – Reset for FIFO Write Counter **FIFORWR** (Fig. 4–4)

This signal is active-High and resets the write counter in the display frequency doubling FIFO.

Pin 8 – Horizontal Drive HOUT (Fig. 4–5)

This open-drain output supplies the drive pulse for the horizontal output stage. A pull-up resistor has to be used (see Section 2.3.).

Pin 9 – Horizontal Flyback Input **HFLB** (Fig. 4–6) Via this pin, the horizontal flyback pulse is supplied to the DDP 3310B (see Section 2.3.).

Pin 10 - Safety Input SAFETY (Fig. 4-6)

This input has two thresholds. A signal between the lower and upper threshold means normal function. Other signals are detected as malfunction (see Section 2.3.9.).

Pin 11 – Vertical Protection Input **VPROT** (Fig. 4–7) The vertical protection circuitry prevents the picture tube from burn-in in the event of a malfunction of the vertical deflection stage. If the peak-to-peak value of the vertical sawtooth signal is too small, the RGB output signals are blanked (see Section 2.3.9.).

Pin 12 – H-Drive Frequency Range Select **FREQSEL** (Fig. 4–3)

This pin selects the frequency range for the horizontal drive signal (see Section 2.3.2.).

Pin 13 – Clock Select 40.5 or 27/32 MHz **CM1** (Fig. 4–3)

Low level selects 27/32 MHz, High level selects 40.5 MHz (see Section 2.3.12.).

Pin 14 – Clock Select 27 or 32 MHz **CM0** (Fig. 4–3) Low level selects 27 MHz, High level selects 32 MHz (see Section 2.3.12.).

Pin 15 – Range Switch2 for Measuring ADC **RSW2** (Fig. 4–8)

This pin is an open-drain pull-down output. During cutoff measurement the switch is off. During white drive measurement the switch is on. Also during the rest of time it is on. (see Section 2.2.4.).

Pin 16 – Range Switch1 or Second Input for Measuring ADC **RSW1** (Fig. 4–9)

This pin is an open-drain pull-down output. During cutoff and white-drive measurement, the switch is off. During the rest of time it is on. The RSW1 pin can be used as second measurement ADC input (see Section 2.2.4.).

Pin 17 – Measurement ADC Input SENSE (Fig. 4–10)

This is the input of the analog to digital converter for the picture and tube measurement. Three measurement ranges are selectable with RSW1 and RSW2 (see Section 2.2.4.).

Pin 18 – Measurement ADC Reference Input **MGND** This is the ground reference for the measurement A/D converter.

Pin 19 – Vertical Sawtooth Output VERT+ (19) (Fig. 4–11)

This pin supplies the drive signal for the vertical output stage. The drive signal is generated with 15-bit precision. The analog voltage is generated by a 4-bit current DAC with external resistor (6 $k\Omega$ for proper operation) and uses digital noise-shaping.

Pin 20 – Vertical Sawtooth Output inverted **VERT**– (Fig. 4–11)

This pin supplies the inverted signal of VERT+. Together with this pin, it can be used to drive symmetrical deflection amplifiers.

Pin 21 – East/West Parabola Output **EW** (Fig. 4–12) This pin supplies the parabola signal for the East/West correction. The drive signal is generated with 15-bit precision. The analog voltage is generated by a 4-bit current DAC with external resistor and uses digital noise-shaping.

Pin 22 - DAC Current Reference XREF (Fig. 4-13)

External reference resistor for DAC output currents, typical 10 k Ω , to adjust the output current of the D/A converters. (see recommended operating conditions). This resistor has to be connected to analog ground as closely as possible to the pin.

Pin 23 – Scan Velocity Modulation Output **SVM** (Fig. 4–14)

This output delivers the analog SVM signal (see Section 2.1.11.). The D/A converter is a current sink like the RGB D/A converters. At zero signal the output current is 50 % of the maximum output current.

Pin 24, 25, 26 – Analog RGB Output **ROUT, GOUT, BOUT** (Fig. 4–14)

These pins are the analog Red/Green/Blue outputs of the back-end. The outputs are current sinks.

Pin 27 - Ground, Analog Back-end GNDO*

This pin has to be connected to the analog ground. No supply current for the digital stages should flow through this line.

Pin 28 – Supply Voltage, Analog Back-end **VSUPO*** This pin has to be connected to the analog supply voltage. No supply current for the digital stages should flow through this line.

Pin 29 – DAC Reference Decoupling/Beam Current Safety **VRD/BCS** (Fig. 4–13)

Via this pin, the DAC reference voltage is decoupled by an external capacitor. The DAC output currents depend on this voltage, therefore a pull-down transistor can be used to shut off all beam currents. A decoupling capacitor of 4.7 μF in parallel to 100 nF (low inductance) is required.

Pin 30, 34 – Fast-Blank Input FBLIN1/2 (Fig. 4–7) These pins are used to switch the RGB outputs to the external analog RGB inputs. FBLIN1 switches the

external analog RGB inputs. FBLIN1 switches the RIN1, GIN1 and BIN1 inputs, FBLIN2 switches the RIN2, GIN2 and BIN2 inputs. The active level (Low or High) can be selected by software.

Pin 31, 32, 33 – Analog RGB Input1 **RIN1, GIN1, BIN1** (Fig. 4–15)

These pins are used to insert an external analog RGB signal, e.g. from a SCART connector which can by switched to the analog RGB outputs with the Fast-Blank signal. The analog back-end provides separate brightness and contrast settings for the external analog RGB signals (see Section 2.2.1. and Fig.).

Pin 35, 36, 37 – Analog RGB Input2 **RIN2, GIN2, BIN2** (Fig. 4–15)

These pins are used to insert an external analog RGB signal, e.g. from a SCART connector which can by switched to the analog RGB outputs with the Fast-Blank signal. The analog back-end provides separate brightness and contrast settings for the external analog RGB signals (see Section 2.2.1. and Fig.).

Pin 38 - Test Input TEST (Fig. 4-16)

This pin enables factory test modes. For normal operation it must be connected to ground.

Pin 39 - Reset Input RESQ (Fig. 4-16)

A low level on this pin resets the DDP 3310B.

Pin 40 – Adjustable DC Output 1 **PWM1** (Fig. 4–17) This output delivers a DC voltage with a resolution of 8 bit, adjustable over the I²C bus. The output is driven by a push-pull stage. The PWM frequency is appr. 79.4 kHz. For a ripple-free voltage a first order lowpass filter with a corner frequency <120 Hz should be applied.

Pin 41 – Adjustable DC Output 2 **PWM2** (Fig. 4–17) See pin 40.

Pin 42 - Half-Contrast Input HCS (Fig. 4-18)

Via this input pin the output level of the D/A-converted internal RGB signals can be reduced by 6 dB. Inserted external analog RGB signals remain unchanged.

Pin 43...50 – Picture Bus Chroma **C0...C7** (Fig. 4–3) The Picture Bus Chroma lines carry the multiplexed color component data. For the 4:1:1 input signal (4-bit chroma) the pins C4...C7 are used.

Pin 51 - Supply Voltage, Digital Circuitry VSUPD*

Pin 52 – Ground, Digital Circuitry **GNDD*** Digital Circuitry Input Reference

Pin 53 – Main Clock Input **LLC2 (53)** (Fig. 4–16) This is the input for the line-locked clock signal. The frequency can be 27, 32, or 40.5 MHz.

Pin 54...61 – Picture Bus Luma **Y0...Y7** (Fig. 4–3) The Picture Bus Luma lines carry the digital luminance data.

Pin 62 – Line-Locked Clock Input **LLC1** (Fig. 4–16) This is the reference clock for the single frequency input sync signals required in a FIFO application. The frequency can be 13.5, 16, or 20.25 MHz.

Pin 63 - Sync Signal Input HS (Fig. 4-3)

This pin gets the horizontal sync information. Either single or double horizontal frequency or VGA horizontal sync signal.

Pin 64 - Sync Signal Input VS (Fig. 4-3)

This pin gets the vertical sync information. Either single or double vertical frequency or VGA vertical sync signal.

Pin 65, 66 - Crystal Output / Input XTAL2 / XTAL1 (Fig. 4–19)

These pins are connected to an 5-MHz crystal oscillator. The security unit for the HOUT signal uses this clock signal as reference.

Pin 67 – I^2 C Data Input/Output **SDA** (Fig. 4–20) Via this pin the I^2 C-bus data are written to or read from the DDP 3310B.

Pin 68 – I²C Clock Input SCL (Fig. 4–20)

Via this pin, the clock signal for the I²C-bus will be supplied. The signal can be pulled down by an internal transistor.

* Application Note:

All ground pins should be connected separately with short and low-resistive lines to a central power supply ground. Accordingly, all supply pins should be connected separately with short and low-resistive lines to the power supply. Decoupling capacitors from VSUPP to GNDP, VSUPD to GNDD, and VSUPO to GNDO are recommended to be placed as closely as possible to the pins.

4.4. Pin Configuration

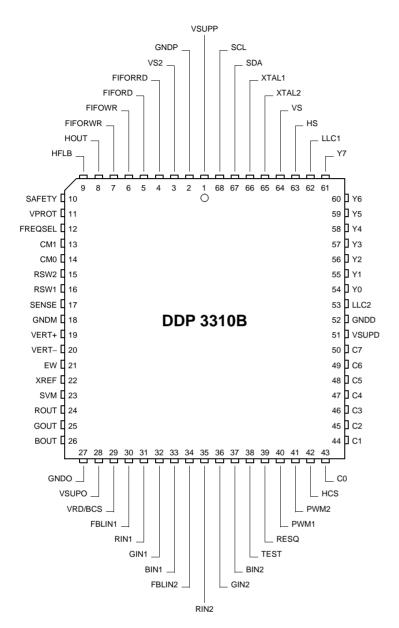
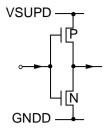




Fig. 4-2: 68-pin PLCCK package

4.5. Pin Circuits

Fig. 4–3: Input pins 3, 12, 13, 14, 43 to 50, 54 to 61, 63, and 64 (VS2, FREQSEL, CM1, CM0, C[7:0], Y[7:0], HS, VS)

Fig. 4–4: Output pins 4 to 7 (FIFORRD, FIFORD, FIFOWR, FIFORWR)

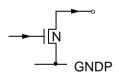


Fig. 4-5: Output pin 8 (HOUT)

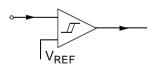


Fig. 4–6: Input pins 9 to 11 (HFLB, SAFETY, VPROT)

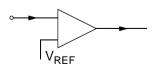


Fig. 4–7: Input pins 30 and 34 (FBLIN1, FBLIN2)

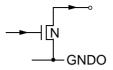


Fig. 4-8: Output pin 15 (RSW2)

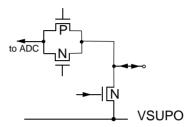


Fig. 4–9: Input/Output pin 16 (RSW1)

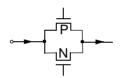


Fig. 4-10: Input pin 17 (SENSE)

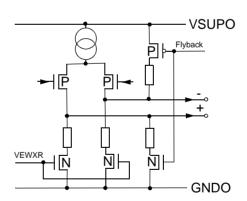


Fig. 4-11: Output pins 19 and 20 (VERT+, VERT-)

42

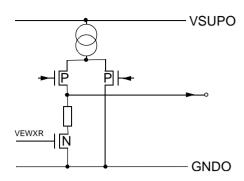
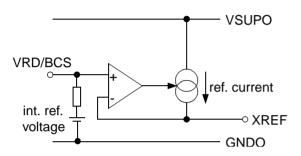
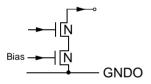
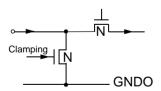


Fig. 4-12: Output pin 21 (EW)

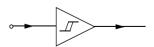

Fig. 4-13: Input pins 22 and 29 (XREF, VDR/BCS)

Fig. 4–14: Output pins 23 to 26 (SVM, ROUT, GOUT, BOUT)

Fig. 4–15: Input pins 31 to 33 and 35 to 37 (R/G/BIN1, R/G/BIN2)

Fig. 4–16: Input pins 38, 39, 53, and 62 (TEST, RESQ, LLC2, LLC1)

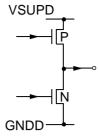


Fig. 4-17: Output pins 40 and 41 (PWM1, PWM2)

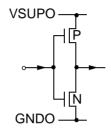


Fig. 4-18: Input pin 42 (HCS)

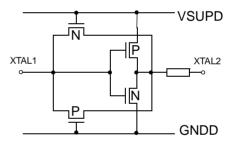


Fig. 4-19: Input pin 66 (XTAL1), Output pin 65 (XTAL2)

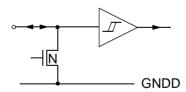


Fig. 4-20: Input/Output pins 67 and 68 (SDA, SCL)

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
T _A	Ambient Operating Temperature	_	0	65	°C
T _C	Case Temperature	-	0	105	°C
T _S	Storage Temperature	-	-40	125	°C
V _{SUP}	Supply Voltage	All Supply Pins	-0.3	6	V
V _I	Input Voltage	All Inputs	-0.3	V _{SUP(P/D/O)} +0.3	V
V _O	Output Voltage	All Outputs (except HOUT)	-0.3	V _{SUP(P/D/O)} +0.3	V
V_{GD}	Voltage between different ground pins	All Ground Pins	-	0.3	V

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

4.6.2. Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
T _A	Ambient Operating Temperature		0	_	65	°C
V _{SUP}	Supply Voltages, all Supply Pins (except output pin driver supply)		4.75	5.0	5.25	V
V _{SUPP}	Output Pin Driver Supply Voltage	VSUPP	3.0	5.0	5.25	V
f _{sys}	Clock Frequency	LLC2	25.1	_	43.3	MHz
R _{xref}	RGB – DAC Current Defining Resistor	XREF	9.5	10	10.5	kΩ

4.6.3. Recommended Crystal Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
f _P	Parallel Resonance Frequency @ C _L =16 pF	XTAL1 XTAL2		5	_	MHz
R _R	Series Resonance Resistance @ C _L =16 pF, f _P =5 MHz		-	_	150	Ω
C ₀	Shunt (Parallel) Capacitance		-	_	6	pF
C _{Lext} see Remarks!	External Load Capacitances (from both crystal pins connected to GNDD)		-	27	-	pF

Remarks:

External capacitors at each crystal pin to ground are required. They are necessary to tune the effective load capacitance (including the capacitance of the printed circuit board and the IC package) to the required load capacitance C_L of the crystal. A higher capacitance will result in a lower clock frequency. The exact value of the matching capacitor should be determined in the actual application (PCB layout).

 $C_{Lext} = 2 (C_L - C_{PCB} - C_{PACK})$

4.6.4. Characteristics

Min./Max. values at: $T_A = 0$ to 65 °C, $V_{SUP(P/D/O)} = 4.75$ to 5.25 V, $R_{xref} = 10$ k Ω , f = 27 MHz Typical values at: $T_C = 70$ °C, $V_{SUP(P/D/O)} = 5$ V, $R_{xref} = 10$ k Ω , f = 27 MHz

4.6.4.1. General Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
I _{VSUPO}	Current Consumption Analog Back-end	VSUPO	ı	65	ı	mA
I _{VSUPD}	Current Consumption Digital Processing	VSUPD	_	225	_	mA
I _{VSUPP}	Current Consumption Output Pin Driver	VSUPP	_	10	_	mA
P _{TOT}	Total Power Dissipation		_	1.5	_	W
IL	Input and Output Leakage Current (if not otherwise specified)		-	-	0.1	μΑ

4.6.4.2. Line-locked Clock Inputs: LLC1, LLC2 (see Fig. 4–21)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage	LLC1	-	-	0.8	V	
V _{IH}	Input High Voltage	LLC2	2.0	-	-	V	
t _{SK}	Clock skew		-	_	±6	ns	
t _R , t _F	Clock Rise / Fall Time		_	_	5	ns	
C _{IN}	Input Capacitance		_	5	-	pF	
1/T _{LLC1}	Clock Frequency	LLC1	12.0	_	17.2	MHz	
t _{WL1}	Clock Low Time		26	_	-	ns	
t _{WH1}	Clock High Time		26	_		ns	
1/T _{LLC2}	Clock Frequency	LLC2	25.1	-	43.3	MHz	
t _{WL2}	Clock Low Time		7	_	-	ns	
t _{WH2}	Clock High Time		7	-	-	ns	

4.6.4.3. Luma, Chroma Inputs (see Fig. 4–21)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	Y[07]	-	-	0.8	V	
V _{IH}	Input High Voltage	C[07]	2.0	-	-	V	
t _{IS}	Input Setup Time		7	ı	-	ns	
t _{IH}	Input Hold Time		6	ı	-	ns	
C _{IN}	Input Capacitance		İ	5	_	pF	

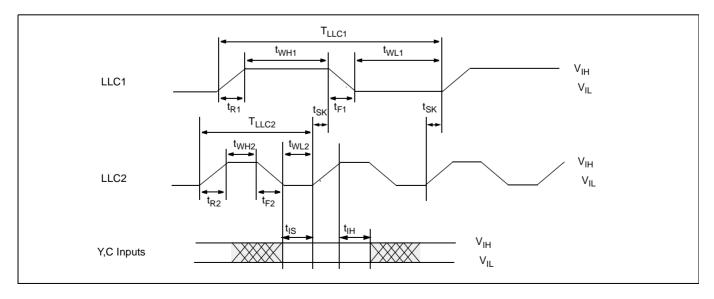


Fig. 4-21: Line-locked clock input pins and luma/chroma bus input timing

4.6.4.4. Reset Input, Test Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	RESQ TEST	-	-	2.0	V	
V _{IH}	Input High Voltage	IESI	3.2	-	-	V	
C _{IN}	Input Capacitance		-	5	_	pF	

4.6.4.5. Half-Contrast Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	HCS	ı	-	0.8	V	
V _{IH}	Input High Voltage		2.0	-	-	V	
C _{IN}	Input Capacitance		ı	5	-	pF	

4.6.4.6. I²C-Bus Interface

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	SDA SCL	_	-	1.5	V	
V _{IH}	Input High Voltage	SCL	3.0	-	-	V	
V _{OL}	Output Low Voltage		_	-	0.6	V	I _{OL} = 6 mA
I _{OL}	Output Low Current		_	-	10	mA	
C _{IN}	Input Capacitance		-	-	5	pF	
t _F	Signal Fall Time		_	-	300	ns	C _L = 400 pF
t _R	Signal Rise Time		_	-	300	ns	C _L = 400 pF
f _{SCL}	Clock Frequency	SCL	0	-	400	kHz	
t _{LOW}	Low Period of SCL		1.3	-	-	μs	
t _{HIGH}	High Period of SCL		0.6	-	-	μs	
t _{IS}	Input Data Set Up Time to SCL high	SDA	55	_	_	ns	
t _{IH}	Input Data Hold Time to SCL Low		55	_		ns	
t _{OS}	Output Data Set Up Time to SCL High		100	_	-	ns	
t _{OH}	Output Data Hold Time to SCL Low		15	_	900	ns	

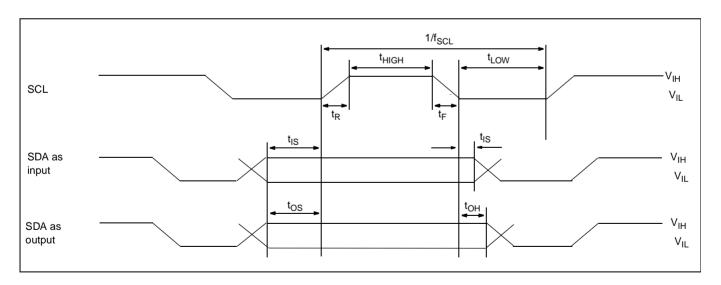


Fig. 4–22: I²C bus timing

4.6.4.7. Horizontal and Vertical Sync Inputs and Clock and Frequency Select Pins

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	HS VS	ı	ı	0.8	>	
V _{IH}	Input High Voltage	VS2 CM0	2.0	-	-	V	
C _{IN}	Input Capacitance	CM1 FREQSEL	-	5	_	pF	
t _{IS}	Input Setup Time	HS VS	6	_	_	ns	
t _{IH}	Input Hold Time	VS2	7	-	_	ns	

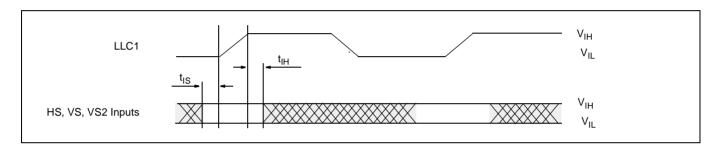


Fig. 4–23: Sync Inputs referenced to line-locked clock

4.6.4.8. Horizontal Flyback Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	HFLB	-	-	1.8	V	
V _{IH}	Input High Voltage		2.6	-	_	V	
V _{IHST}	Input Hysteresis		0.1	-	ı	V	_

4.6.4.9. FIFO Control Signals

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{OL}	Output Low Voltage	FIFORRD FIFORD	-	-	0.4	V	$I_{OL} = 1.6 \text{ mA}$ $I^2C[PSTSY] = 6$
V _{OH}	Output High Voltage	FIFORWR FIFOWR	VSUPP - 0.4	-	VSUPP	V	$-I_{OL} = 1.6 \text{ mA}$ $I^2C[PSTSY] = 6$
t _{OT}	Output Transition Time		-	10	20	ns	$C_{LOAD} = 30pF$ $I^2C[PSTSY] = 6$
l _{OL}	Output Current		-10	_	10	mA	

4.6.4.10. PWM Outputs

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{OL}	Output Low Voltage	PWM1 PWM2	-	-	0.4	V	$I_{OL} = 1.6 \text{ mA}$ $I^2C[PSTPR1/2] = 0$
V _{OH}	Output High Voltage		VSUPD - 0.4	_	VSUPD	V	$-I_{OL} = 1.6 \text{ mA}$ $I^2C[PSTPR1/2] = 0$
t _{OT}	Output Transition Time		-	-	20	ns	CLOAD = 10 pF RIp = 4.7 k Ω CIp = 100 nF I ² C[PSTPR1/2] = 0

4.6.4.11. Horizontal Drive Output

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{OL}	Output Low Voltage	HOUT	ı	ı	0.4	٧	I _{OL} = 10 mA
V _{OH}	Output High Voltage (Open-Drain Stage)		-	-	8	V	external pull-up resistor
t _{OF}	Output Fall Time		-	8	20	ns	C _{LOAD} = 30 pF
I _{OL}	Output Low Current		-	_	10	mA	

4.6.4.12. Vertical Protection Input (see Section 2.3.9.)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IA}	Input Threshold A	VPROT	1.2	1.0	0.8	V	
V _{IB}	Input Threshold B		1.7	1.5	1.3	V	
V _{IHST}	Input Hysteresis A and B		0.1	-	-	V	

4.6.4.13. Horizontal Safety Input (see Section 2.3.9.)

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{IA}	Input Threshold A	SAFETY	2.5	2.2	1.9	V	
V _{IB}	Input Threshold B		3.8	3.5	3.2	V	
V _{IHST}	Input Hysteresis A and B		0.1	_	_	V	

4.6.4.14. Vertical and East/West D/A Converter Output

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
	Resolution	EW VERT+	-	15	-	bit	
V _{OMIN}	Minimum Output Voltage	VERT-	-	0	-	V	R_{load} = 6.8 kΩ R_{xref} = 10 kΩ
V _{OMAX}	Maximum Output Voltage		2.82	3	3.2	V	R_{load} = 6.8 kΩ R_{xref} = 10 kΩ
I _{DACN}	Full scale DAC Output Current		415	440	465	μΑ	$R_{xref} = 10 \text{ k}\Omega$
PSRR	Power Supply Rejection Ratio		-	20	-	dB	

4.6.4.15. Sense A/D Converter Input

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{I255}	Input Voltage for code 255	SENSE RSW1	1.4	1.54	1.7	V	
C ₀	Digital Output for zero Input	KSWI	-	-	16	LSB	
R _I	Input Impedance		1	-	-	ΜΩ	
Range Swi	tch Outputs						
R _{ON}	Output On Resistance	RSW1 RSW2	-	-	50	Ω	I _{OL} = 10 mA
I _{Max}	Maximum Current	R3VV2	-	-	15	mA	
I _{LEAK}	Leakage Current		_	_	600	nA	RSW High Impedance

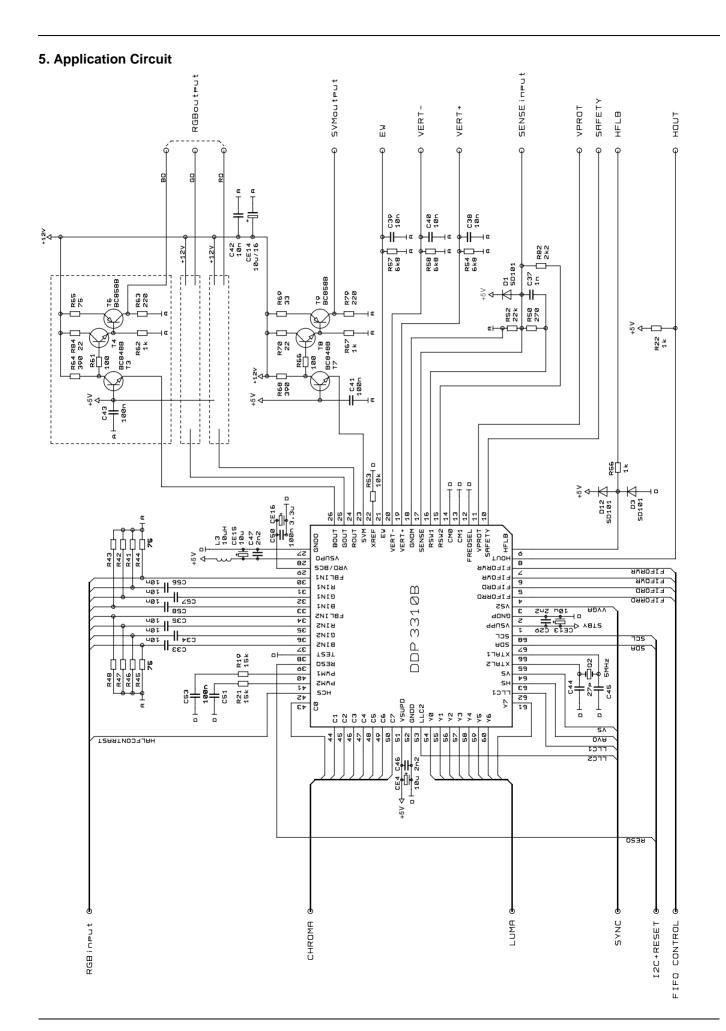
4.6.4.16. Analog RGB and Fast-Blank Inputs

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{RGBIN}	External RGB Input Voltage Range	RIN1 GIN1	-0.3	-	1.1	V	
V _{RGBIN}	Nominal RGB Input Voltage Peak-to-Peak	BIN1 RIN2 GIN2	0.5	0.7	1.0	V _{PP}	SCART Spec: 0.7 V ±3 dB
V _{RGBIN}	RGB Input Voltage for	BIN2	_	0.44	-		Contrast setting: 511
	Maximum Output Current		_	0.7	-		Contrast setting: 323
			_	1.1	-		Contrast setting: 204
C _{RGBIN}	External RGB Input Coupling Capacitor		_	10	-	nF	
	Clamp Pulse Width		1.6	-	-	μѕ	
C _{IN}	Input Capacitance		_	-	13	pF	
I _{IL}	Input Leakage Current		-0.5	-	0.5	μΑ	Clamping OFF, V _{IN} = -0.33 V
V _{CLIP}	RGB Input Voltage for Clipping Current		_	2	_	V	
V _{CLAMP}	Clamp Level at Input		40	60	80	mV	Clamping ON
V _{INOFF}	Offset Level at Input		-10	-	10	mV	Extrapolated from V _{IN} = 100 and 200 mV
V _{INOFF}	Offset Level Match at Input		-10	-	10	mV	Extrapolated from V _{IN} = 100 and 200 mV
R _{CLAMP}	Clamping-ON-Resistance		_	140	-	Ω	
V _{FBLOFF}	FBLIN Low Level	FBLIN1	_	-	0.5	V	
V _{FBLON}	FBLIN High Level	FBLIN2	0.9	_	-	V	
V _{FBLTRIG}	Fast-Blanking Trigger Level typical		_	0.7	_		
^t PID	Delay Fast Blanking to RGB _{OUT} from midst of FBLIN-transition to 90% of RGB _{OUT} transition		-	8	15	ns	Internal RGB = 3.75 mA (Full Scale) Internal Brightness = 0 External Brightness = 1.5 mA (Full Scale) RGBin = 0 V _{FBLOFF} = 0.4 V V _{FBLON} = 1.0 V Rise and fall time = 2 ns
	Difference of Internal Delay to External RGBin Delay		-5	_	+5	ns	
	Switch-Over-Glitch		_	0.5	-	pAs	Switch from 3.75 mA (int.) to 1.5 mA (ext.)

4.6.4.17. Analog RGB Outputs, D/A Converters

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
Internal R	GB Signal D/A Converter Cha	acteristics		•	•	•	
	Resolution	ROUT	_	10	-	bit	
I _{OUT}	Full Scale Output Current	GOUT BOUT	3.6	3.75	3.9	mA	$R_{ref} = 10 \text{ k}\Omega$
I _{OUT}	Differential Non-Linearity		_	-	1	LSB	
I _{OUT}	Integral Non-Linearity		_	-	2	LSB	
I _{OUT}	Glitch Pulse Charge		_	0.5	-	pAs	Ramp signal, 25 Ω output termination
I _{OUT}	Rise and Fall Time		-	3	-	ns	10 % to 90 %, 90 % to 10 %
I _{OUT}	Intermodulation		_	-	-50	dB	2/2.5 MHz full scale
I _{OUT}	Signal to Noise		+50	-	-	dB	Signal: 1MHz full scale Bandwidth: 10MHz
I _{OUT}	Matching R-G, R-B, G-B		-2	-	2	%	
	R/B/G Crosstalk one channel talks two channels talk		_	_	-46	dB	Passive channel: I _{OUT} =1.88 mA Crosstalk-Signal: 1.25
	RGB Input Crosstalk from external RGB one channel talks two channels talk three channels talk		- - -	- - -	-50 -50 -50	dB dB dB	MHz, 3.75 mA _{PP}
Internal R	GB Brightness D/A Converter	Characteristic	cs				
	Resolution	ROUT	_	9	_	bit	
I _{BR}	Full Scale Output Current relative	GOUT BOUT	39.2	40	40.8	%	Ref to max. digital RGB
I _{BR}	Full Scale Output Current absolute		-	1.5	-	mA	
I _{BR}	Differential Non-Linearity		-	-	1	LSB	
I _{BR}	Integral Non-Linearity		_	-	2	LSB	
I _{BR}	Match R-G, R-B, G-B		-2	-	2	%	
I _{BR}	Match to digital RGB R-R, G-G, B-B		-2	_	2	%	

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
RGB Outp	out Cutoff D/A Converter Chara	acteristics		1			
	Resolution	ROUT	_	9	-	bit	
I _{CUT}	Full Scale Output Current relative	GOUT BOUT	58.8	60	61.2	%	Ref to max. digital RGB
	Full Scale Output Current absolute		-	2.25	-	mA	
	Differential Non-Linearity		-	_	1	LSB	
	Integral Non-Linearity		_	_	2	LSB	
	Matching to digital RGB R-R, G-G, B-B		-2	-	2	%	
RGB Outp	out Ultrablack D/A Converter C	haracteristics			•	1	
	Resolution	ROUT	_	1	_	bit	
I _{UB}	Full Scale Output Current relative	GOUT BOUT	19.6	20	20.4	%	Ref to max. digital RGB
	Full Scale Output Current absolute		-	0.75	-	mA	
External F	RGB Voltage/Current Converte	r Characterist	ics	1		1	
	Resolution	ROUT	_	9	_	bit	
I _{EXOUT}	Full Scale Output Current relative	GOUT BOUT	96	100	104	%	Ref. to max. Digital RGE $V_{IN} = 0.7 V_{PP}$ contrast = 323
	Full Scale Output Current absolute		_	3.75	_	mA	Same as Digital RGB
CR	Contrast Adjust Range		_	16:511	_		
	Gain Match R-G, R-B, G-B		-2	-	2	%	Measured at RGB Outputs V _{IN} = 0.7 V, contrast = 323
	Gain Match to RGB-DACs R-R, G-G, B-B		-3	-	3	%	Measured at RGB Outputs V _{IN} = 0.7 V, contrast = 323
R/B/G Input Crosstalk one channel talks two channels talk		_	-	-46	dB	Passive channel: V _{IN} = 0.7 V, contrast = 323 Crosstalk signal: 1.25 MHz, 3.75 mA _{PP}	
	RGB Input Crosstalk from Internal RGB one channel talks two channels talk tree channels talk		-	_	-50	dB	


Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
	RGB Input Noise and Distortion	ROUT GOUT BOUT	-	_	-50	dB	V _{IN} =0.7 V _{PP} at 1 MHz contrast = 323 Bandwidth: 10 MHz
	RGB Input Bandwidth -3 dB			15	_	MHz	V _{IN} = 0.7 V _{PP} contrast =323
	RGB Input THD		-	-50 -40		dB dB	Input signal 1 MHz Input signal 6 MHz V _{IN} = 0.7 V _{PP} contrast =323
	Differential Non-Linearity of Contrast Adjust		-	-	1.0	LSB	V _{IN} = 0.44V
	Integral Non-Linearity of Contrast Adjust		_	_	7	LSB	
V _{RGBO}	R,G,B Output Voltage		-1.0	-	0.3	V	Referred to V _{SUPO}
	R,G,B Output Load Resistance		-	_	100	Ω	Ref. to V _{SUPO}
V _{OUTC}	RGB Output Compliance		-1.5	-1.3	-1.2	V	Ref. to V _{SUPO} Sum of max. Current of RGB- DACs and max. Current of Int. Brightness DACs is 2 % degraded
External F	RGB Brightness D/A Converter	Characteristi	ics	•	•	•	
	Resolution	ROUT	_	9	_	bit	
I _{EXBR}	Full-Scale Output Current relative	GOUT BOUT	39.2	40	40.8	%	Ref to max. digital RGB
	Full Scale Output Current absolute		_	1.5	_	mA	
	Differential Non-Linearity		-	-	1	LSB	
	Integral Non-Linearity		-	-	2	LSB	
	Matching R-G, R-B, G-B		-2	-	2	%	
	Matching to digital RGB R-R, G-G, B-B		-2	-	2	%	

4.6.4.18. Scan Velocity Modulation Output

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
	Resolution	SVMOUT	-	8	-	bit	
I _{OUT}	Full-Scale Output Current		1.55	1.875	2.25	mA	
I _{OUT}	Differential Non-Linearity		-	-	0.5	LSB	
I _{OUT}	Integral Non-Linearity		-	-	1	LSB	
I _{OUT}	Glitch Pulse Charge		-	0.5	-	pAs	Ramp, output line is terminated on both ends with 50 Ω
l _{OUT}	Rise and Fall Time		_	3	_	ns	10 % to 90 %, 90 % to 10 %

4.6.4.19. DAC Reference, Beam Current Safety

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{DACREF}	DAC-Ref. Voltage	VRD/BCS	2.38	2.50	2.67	V	
	DAC-Ref. Output resistance	VRD/BCS	18	25	32	kΩ	
V _{XREF}	DAC-Ref. Voltage Bias Current Generation	XREF	2.25	2.34	2.43	V	$R_{xref} = 10 \text{ k}\Omega$

6. Data Sheet History

1. Advance Information: "DDP 3310B Display and Deflection Processor, July 9, 1999, 6251-464-1AI. First release of the advance information.

Micronas GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: docservice@micronas.com
Internet: www.micronas.com

Printed in Germany Order No. 6251-464-1AI All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.