ADVANCE INFORMATION DAC 3560C Audio-Subsystem for Portable Applications Edition Feb. 5, 2003 *****MICRONAS 6251-588-1AI

Contents

Page	Section	Title
4	1.	Introduction
4	1.1.	Features
4	1.2.	Target Systems
6	2.	Functional Description
6	2.1.	Digital Audio Interface (I ² S)
7	2.2.	Clock System
7	2.3.	Control Interface
7	2.4.	Registers
8	2.5.	I ² C Bus Interface
8	2.6.	SPI Bus Interface
8	2.7.	Noise Shaper and Multibit DAC
8	2.8.	Analog Low-Pass
8	2.9.	Analog Input
9	2.10.	Analog Audio Driver Output
9	2.11.	LDO
9	2.12.	Charge Pump
9	2.13.	Reference Block
9	2.14.	Temperature Overload Protection
9	2.15.	Power Management
9	2.16.	Click and Pop Suppression
10	3.	Control Registers
10	3.1.	Register Map
15	4.	Specifications
15	4.1.	Outline Dimensions
16	4.2.	Pin Connections and Short Descriptions
17	4.3.	Pin Descriptions
17	4.3.1.	Power Supply Pins
18	4.3.2.	Analog Reference Pins
18	4.3.3.	Analog Audio Pins
18	4.3.4.	Digital Audio Input Pins
18	4.3.5.	Control Interface Pins
18	4.3.6.	Other Pins
19	4.4.	Pin Configurations
19	4.5.	Pin Circuits
21	4.6.	Electrical Characteristics
21	4.6.1.	Absolute Maximum Ratings
22	4.6.2.	Recommended Operating Conditions
23	4.6.3.	Characteristics (LDO Mode)
26	4.6.4.	Characteristics (Non-LDO Mode)
28	4.6.5.	Terminology
29	4.6.6.	I ² C Bus Characteristics
30	4.6.6.1.	I ² S Bus Characteristics
31	4.6.6.2.	SPI-Bus Characteristics
32	4.6.7.	Power Consumption (LDO Mode)

Contents, continued

Page	Section	Title
33	5.	Detailed Mode Description
33	5.1.	LDO Mode, Using the internal Low-Dropout Regulator
33	5.2.	Non-LDO Mode, Using the DAC 3560C without the LDO
34	5.3.	Headphone Common Driver
34	5.4.	Stereo, Mono Mode Operation of the DAC 3560C
35	5.4.1.	Digital Supply
35	5.4.2.	Power On/Off Sequence
36	6.	Application Circuit
38	7.	Data Sheet History

Audio-Subsystem for Portable Applications

1. Introduction

The DAC 3560C is a single-chip, high-precision, dual digital-to-analog converter designed for audio applications. The employed conversion technique is based on oversampling with noise-shaping.

With Micronas' unique multibit sigma-delta technique, less sensitivity to clock jitter, high linearity, and a superior S/N ratio have been achieved. The DAC 3560C is controlled via SPI or I²C bus.

Digital audio input data is received via a versatile I²S interface. The DAC 3560C provides three integrated power audio drivers: a stereo headphone, a mono earpiece and a mono loudspeaker driver. Moreover, mixing additional analog sources to the D/A-converted signal is supported.

For applications with a noise-critical power supply environment, the DAC 3560C is equipped with an integrated Low Drop-Out Voltage Regulator (LDO). The LDO provides a stable 2.85 V output voltage and is intended for supplying the headphone and earpiece drivers. With the LDO, the Power Supply Rejection Ratio (PSRR) of the audio outputs is improved to more than 100 dB.

The DAC 3560C is designed for all kinds of applications in the audio and multimedia field, such as: mobile phones, PDAs, and digital audio players.

1.1. Features

- Three Integrated Short-Circuit-Protected Power Audio Drivers:
 - Stereo headphone output (25 mW at V_{SUP}=2.85 V, or 80 mW at V_{SUP}=5 V respectively)
 - Mono earpiece output (100 mW at V_{SUP}=2.85 V, or 300 mW at V_{SUP}=5 V, respectively)
 - Mono loudspeaker output (400 mW at V_{SUP}=3 V, or 1.1 W at V_{SUP}=5 V, respectively)
- Integrated LDO (Low Drop-Out Regulator)
- 100 dB PSRR
- 98 dB (A) Dynamic Range Multi-Bit Sigma Delta DAC
- Continuous Sample Rates from 8 kHz to 192 kHz
- Capacitor-free Headset Connection
- Analog Stereo and Mono Line Inputs with Programmable Gain
- I²C/SPI Compatible Serial Control Ports
- I²S Digital Audio Interface
- Programmable Power Management
- -30 dB to 6 dB Analog Volume, Mute
- 2.2 V to 5.5 V Supply Voltage
- 1.8 V to 5.5 V Digital I/O Voltage
- Standby Mode
- Zero-Power Mode (< 10 μA)
- PQFN40 Package

1.2. Target Systems

- PDAs
- Hand-held Terminals
- Mobile and Cordless Phones
- Portable MP3 and CD Players

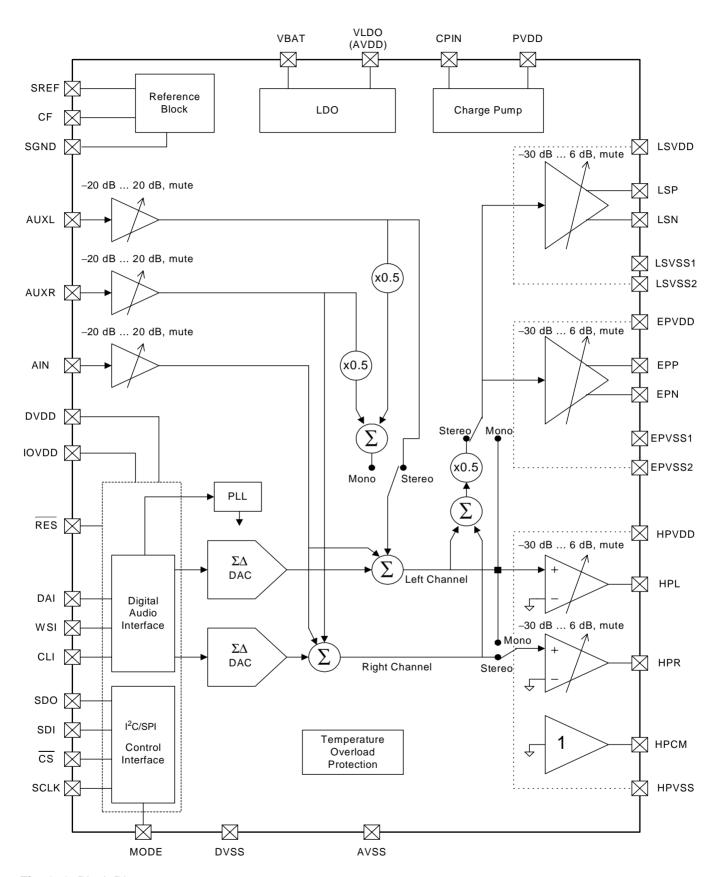


Fig. 1-1: Block Diagram

5

2. Functional Description

The main blocks are described in the following chapters. All functions are controlled via I²C/SPI protocol.

2.1. Digital Audio Interface (I²S)

The I²S interface is the digital audio interface between the DAC 3560C and external digital audio sources. It covers most of the I²S-compatible formats. All modes have two common features:

- 1. The MSB is left-justified to an I²S frame identification (WSI) transition.
- 2. Data is valid on the rising edge of the bit clock CLI.

16-bit mode:

In this case, the bit clock is 32 x fs_{audio}. Maximum word length is 16 bit.

32-bit mode:

In this case, the bit clock is 64 x fs_{audio}. Maximum word length is 32 bit.

Automatic Detection:

No I²C/SPI control is required to switch between 16-bit and 32-bit mode. It is recommended to switch the DAC 3560C into mute position while alternating between the two modes. For high-quality audio, it is recommended to use the 32-bit mode of the I²S interface to make use of the full dynamic range (if more than 16 bits are available).

Left-Right Selection:

Standard I²S format defines an audio frame always starting with the left channel and low-state of WSI. However, the DAC 3560C permits to change the polarity of WSI.

Delay Bit:

The standard I²S format requires a delay of one clock cycle between transitions of WSI and data MSB. In order to fit other formats, however, this characteristic can be switched on or off.

Note: Volume mute should be applied before changing I²S mode in order to avoid audible clicks

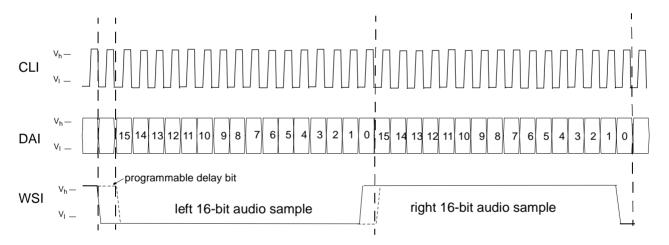


Fig. 2-1: I²S 16-bit mode

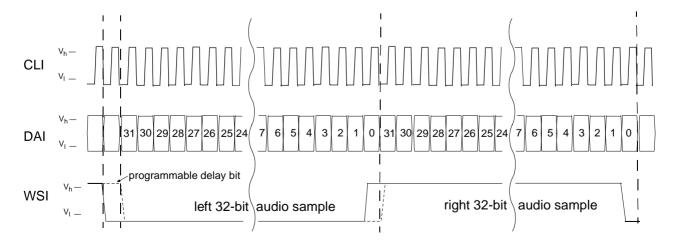


Fig. 2-2: I²S 32-bit mode

2.2. Clock System

Most DACs need 256 x fs_{audio}, 384 x fs_{audio}, or at least an asynchronous clock. The DAC 3560C does not need an external Master clock. No crystal is required.

All internal clocks are generated by an internal PLL circuit, which locks to the I^2S bit clock (CLI). If no I^2S clock is present, the IC can still be controlled and the analog signal path is still available as no I^2S clock is needed for this.

The PLL also generates the clock for the DAC and the noise shaping system. Audible oversampling artifacts even at low audio sampling frequencies are eliminated.

2.3. Control Interface

The DAC 3560C has many register-programmable features. The control interface is used to program the registers of the device. It uses four pins:

SCLK - Serial Data Clock

SDI - Serial Data Input (Input/Output for I²C)

SDO - Serial Data Output (SPI)

CS - Chip Select (SPI)

Table 2-1: Standard Protocols

MODE Pin	Control Protocol
1	I ² C
0	SPI

The control interface supports two standard protocols, the I²C protocol (two-wire operation) and the SPI protocol (three or four-wire operation). The state of the MODE pin selects the control interface type.

2.4. Registers

All registers of the DAC 3560C are 8 bits wide and offer read/write access.

In Section 3. "Control Registers", a definition of the DAC 3560C control registers is shown. A hardware reset initializes all control registers to 0, which is the default value for all registers. The registers are addressed by the sub-address byte, which follows the device address in I²C mode and is the first byte to be sent in SPI mode. The structure of the sub-address is identical in both modes (R/W is ignored in I²C mode).

Table 2-2: Sub-Address Byte

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Function	0	0	R/W	A4	А3	A2	A1	A0

Table 2-3: Structure of the Sub-Address Byte

R	Reserved	Set to 0	
R/W ¹⁾	Read/Write Access	1=Read	0=Write
A [4:0]	Control Interface Sub-Address		
1) R/W n	nust be set to 0 in I ² C r	mode	

Note: Pin $\overline{\text{CS}}$ must be set to IOVDD when using I²C mode.

2.5. I²C Bus Interface

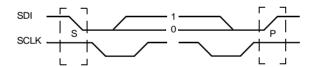

The DAC 3560C is equipped with an I²C bus slave interface. The I²C bus interface uses one level of subaddressing: the I²C device address is used to address the IC. The registers are read/write. The register address is incremented automatically at each data byte unless a stop condition occurs. The I²C device address is given below.

Table 2-4: I²C device address byte

A7	A6	A 5	A4	А3	A2	A 1	W/R
1	0	0	1	1	0	1	0/1

Fig. 2–3 shows I²C bus protocols for write and read operations of the interface; the read operations require an extra start condition and repetition of the chip address with the device read command (DR). Fields with signals/data originating from the DAC 3560C are marked with a gray background.

Fig. 2–3: Example of an I²C protocol for the DAC 3560C (MSB first; data must be stable while clock is high)

Abbreviations:

A = Acknowledge

N = Not Acknowledge (NAK)

S = Start

P = Stop

 $DW = I^2C$ Device Write Address (9A_{hex})

 $DR = I^2C$ Device Read Address (9B_{hex})

2.6. SPI Bus Interface

The SPI bus is a 4-wire serial communications interface. Unlike the I²C bus, the SPI uses two separate pins for input and output and CS signal instead of individual device addresses.

Read and write starts with a low signal at \overline{CS} . The first byte is always interpreted as sub-address byte, which

contains the Register address. The following byte or bytes are then read/write register data.

If more than one data byte appears without changing CS, the register address will be incremented automatically at each data byte.

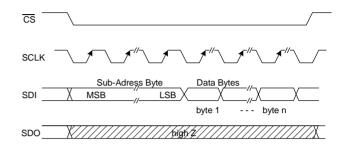


Fig. 2-4: SPI Control Port - Write Access

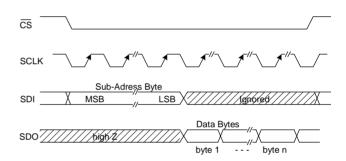


Fig. 2-5: SPI Control Port - Read Access

2.7. Noise Shaper and Multibit DAC

The input signal is interpolated to a higher sampling rate. A successive noise shaper converts the oversampled audio signal into a multibit noise-shaped signal. This technique results in extremely low quantization noise in the audio band.

2.8. Analog Low-Pass

The analog low-pass follows the multibit DAC and is a third order low pass filter with approximately 70 kHz cut-off frequency. It removes the out-of-band components of the oversampled audio signal.

2.9. Analog Input

In addition to the digital audio input, the DAC 3560C provides three analog inputs, (AUXL, AUXR, AIN) for stereo and mono signals. The analog audio signals can be mixed to the digital audio signal as well as being used without digital audio. All three analog inputs are equipped with 20 dB to –20 dB gain controls for individual input level adjustments in steps of 2 dB.

2.10. Analog Audio Driver Output

The device provides three integrated audio drivers.

Table 2-5: Analog Audio Driver Output

Integrated Audio Drivers			
Stereo headphone driver	25 mW at 2.85 V supply 80 mW at 5 V supply		
Mono earpiece driver	100 mW at 2.85 V supply 300 mW at 5 V supply		
Mono loudspeaker driver	400 mW at 3 V supply 1.1 W at 5 V supply		

All drivers are equipped with analog volume controls, which are individually adjustable from 6 dB to -30 dB in 1.5 dB steps. The earpiece driver and the loud-speaker driver have differential outputs, while the headphone drivers are single-ended. Single-ended drivers usually require a large coupling capacitor to block the DC bias from the headphone. The DAC 3560C provides a headphone common output (HPCM), which eliminates the need for such bulky DC-blocking capacitors. All driver outputs are short-circuit-protected.

2.11. LDO

For applications with a noise-critical power supply environment, the DAC 3560C is equipped with an integrated Low-Dropout Voltage Regulator (LDO). The LDO provides a stable 2.85 V output voltage and is intended to supply the headphone and earpiece drivers. With the LDO, the Power Supply Rejection Ratio (PSRR) of the audio outputs is improved to more than 100 dB.

For applications where the LDO cannot be used, e.g., for supply voltages below 2.85 V, it can be disabled via the Mode-Control-Register, (see Section 5.) for details on using the DAC 3560C with or without the internal LDO. The LDO is short-circuit-protected.

2.12. Charge Pump

The DAC 3560C offers an internal charge pump circuit that allows to operate the IC with a supply voltage as low as 2.2 V. An additional capacitor must be connected between pin PVDD and pin VLDO for the charge pump to work properly. The switching frequency is far above the audio range and therefore does not interfere with the audio signals. The charge

pump must be turned on if the supply voltage of the IC drops below 2.7 V. (see Section 5.) for details on using the DAC 3560C with a lowered supply voltage of 2.2 V.

2.13. Reference Block

This block provides the reference level for the analog audio signals. Two modes are possible:

LDO-Mode: The audio reference level is fixed to 1.425 V (Pin SREF), which is one half of the LDO output voltage.

Non-LDO-Mode: The audio reference level at Pin SREF is derived from an internal voltage divider to VBAT/2.

A capacitor connected between SREF and SGND reduces the noise coming from SREF. In addition, a second capacitor can be connected to pin CF to form a second order noise filter. (See Section 5. for details).

2.14. Temperature Overload Protection

The DAC 3560C has an internal temperature overload protection, which disables all audio drivers and the LDO, if the junction temperature exceeds 140 °C. Once the chip has cooled down to 120 °C, the LDO and the audio drivers are enabled again.

2.15. Power Management

As the device has more than one signal path, the DAC 3560C offers a Block-Control-Register, which permits individual control over the power state of the signal chain for optimized power consumption. A zero power and a stand-by mode are also provided.

2.16. Click and Pop Suppression

The DAC 3560C has on-chip facilities allowing to turn the audio output drivers on or off without audible click and pop transients.

3. Control Registers

The DAC 3560C contains 11 registers (all 8 bits). All registers, with the exception of the Reset Register, (write only), allow read and write access.

Note: The default value for all registers after software or hardware reset is 0.

3.1. Register Map

Table 3-1: Register Map Table

Sub-Address	Register
00h	Reset Register
01h	Block Control Register
02h	Mode Control Register
03h	I ² S-Interface Control Register
04h	Left Headphone Volume Control
05h	Right Headphone Volume Control
06h	Earpiece Volume Control
07h	Loudspeaker Volume Control
08h	Left Input Aux Gain Control
09h	Right Input Aux Gain Control
0Ah	Ain Input Gain Control
0BhFFh	Reserved

Table 3–2: Register Description

Name	Sub-Address	Dir	Default after Reset	Function					
DACC-Register									
Reset Register	h00	w	h00						
Reset	h0X	W	0	Writing to this Register clears all internal registers to their default reset value					
Block Control Register	h01	RW	h00	Ignored, if in Standby or Zero Power Mode					
PDAC	h01[7]	RW	0	1 = On, 0 = Off (Power DAC)					
PAIN	h01[6]	RW	0	1 = On, 0 = Off (Power Ain) Gain					
PAUX	h01[5]	RW	0	1 = On, 0 = Off (Power Aux) Gain					
PL	h01[4]	RW	0	1 = On, 0 = Off (Power Loudspeaker) Driver					
PE	h01[3]	RW	0	1 = On, 0 = Off (Power Earpiece) Driver					
PRH	h01[2]	RW	0	1 = On, 0 = Off (Power Right Headphone) Driver					
PLH	h01[1]	RW	0	1 = On, 0 = Off (Power Left Headphone) Driver					
ENHPC	h01[0]	RW	0	1 = On, 0 = Off (Enable Headphone Common Output) Driver					
Mode Control Register	h02	RW	h00	For details, please refer to Section 5.					
_	h02[7]	RW	0	Reserved					
RDWN	h02[6]	RW	0	1 = On, 0 = Off (Ramp down SREF during Stand- by Mode)					
CPON	h02[5]	RW	0	1 = On, 0 = Off (Charge pump on (only in NON-LDO Mode)					
BYPLDO	h02[4]	RW	0	1 = On, 0 = Off (Bypass LDO (only in Standby, Zero Power)					
SNLDOM	h02[3]	RW	0	1 = On, 0 = Off (Select Non-LDO Mode)					
SMM	h02[2]	RW	0	1 = Mono, 0 = Stereo (Select Stereo or Mono Mode)					
PM	h02[1:0]	RW	0	PM[1:0] 00 Zero Power Mode 01 Standby Mode 11 Operating Mode 10 Reserved					

Table 3-2: Register Description, continued

Name	Sub-Address	Dir	Default after Reset	Function
I2S Interface Control Register	h03	RW	h00	
_	h03[7:5]	RW	0	Reserved
POL	h03[4]	RW	0	Invert Polarity of Word Strobe Input POL=0 - Left Channel → WSI=0 POL=1 - Right Channel → WSI=0
DEL	h03[3]	RW	0	1 = Delay, 0 = no Delay (Delay Bit)
SR	h03[2:0]	RW	0	SR[2:0] 000 32 kHz - 48 kHz Sample Rate 001 24 kHz - 32 kHz Sample Rate 010 16 kHz - 24 kHz Sample Rate 011 12 kHz - 16 kHz Sample Rate 100 8 kHz - 12 kHz Sample Rate 101 6 kHz - 8 kHz Sample Rate 110 96 kHz Sample Rate 111 192 kHz Sample Rate
Left Headphone Volume Register	h04	RW	h00	
_	h04[7:5]	RW	0	Reserved
LHV	h04[4:0]	RW	0	LHV[4:0] Left Headphone Volume 00000 Mute 00001 -30 dB in steps of 1.5 dB 11001 6 dB 11011-11111 6 dB
Right Headphone Volume Register	h05	RW	h00	
_	h05[7:5]	RW	0	Reserved
RHV	h05[4:0]	RW	0	RHV[4:0] Right Headphone Volume 00000 Mute 00001 -30 dB in steps of 1.5 dB 11001 6 dB 11011-11111 6 dB

Table 3-2: Register Description, continued

Name	Sub-Address	Dir	Default after Reset	Function
Earpiece Volume Register	h06	RW	h00	
-	h06[7:5]	RW	0	Reserved
EV	h06[4:0]	RW	0	EV[4:0] Earpiece Volume 00000 Mute 00001 -30 dB in steps of 1.5 dB 11001 6 dB 11011-11111 6 dB
Loudspeaker Volume Register	h07	RW	h00	
-	h07[7:5]	RW	0	Reserved
LV	h07[4:0]	RW	0	LV[4:0] Loudspeaker Volume 00000 Mute 00001 -30 dB in steps of 1.5 dB 11001 6 dB 11011-11111 6 dB
Left Aux Gain Register	h08	RW	h00	
_	h08[7:5]	RW	0	Reserved
ALV	h08[4:0]	RW	0	ALV[4:0] Left AUX Pre-Amplifier Gain 00000 Mute 00001 –20 dB in steps of 2 dB 10101 20 dB 10110-11111 20 dB
Right AUX Gain Register	h09[7:5]	RW	h00	
_	h09[7:5]	RW	0	Reserved
ARV	h09[4:0]	RW	0	ARV[4:0] Right AUX Pre-Amplifier Gain 00000 Mute 00001 –20 dB in steps of 2 dB 10101 20 dB 10110-11111 20 dB

Table 3–2: Register Description, continued

Name	Sub-Address	Dir	Default after Reset	Function
AIN Gain Register	h0A[7:5]	RW	h00	
_	h0A[7:5]	RW	0	Reserved
AIV	h0A[4:0]	RW	0	AIV[4:0] AIN Pre-Amplifier Gain 00000 Mute 00001 -20 dB in steps of 2 dB 10101 20 dB 10110-11111 20 dB

4. Specifications

4.1. Outline Dimensions

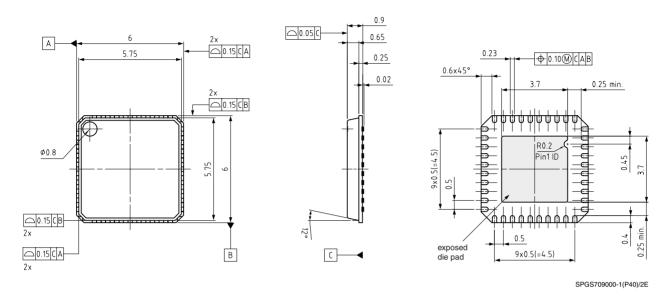


Fig. 4–1: 40-Pin Plastic Quad Flat No leads package (PQFN40) Weight approximately 0.096 g Dimensions in mm

4.2. Pin Connections and Short Descriptions

NC = not connected LV = leave vacant I = Input, O = Output, I/O = Input/Output P = Power GND = Ground OBL = obligatory; connect as described in the circuit diagram

Pin No. PQFN 40-pin	Pin Name	Туре	Connection (If not used)	Short Description
1	VBAT	Р	-	Power Supply
2	LSVSS1	Р	GND	Loudspeaker Driver Ground
3	LSP	0	LV	Loudspeaker Differential Positive Output
4	LSVDD	Р	VBAT	Loudspeaker Power Supply Driver
5	LSN	0	LV	Loudspeaker Differential Negative Output
6	LSVSS2	Р	GND	Loudspeaker Driver Ground
7	DVDD	Р	-	Digital Power Supply
8	DVSS	Р	GND	Digital Ground
9	MODE	I	OBL	I ² C / SPI Control Mode Selection
10	IOVDD	Р	-	Digital I/O Power Supply
11	SDI	I/O	OBL	SPI / Data In (I ² C Data In/Out)
12	SCLK	1	OBL	SPI / I ² C CLK
13	SDO	0	LV	SPI / Data Out
14	CS	1	IOVDD	SPI Chip Select (active Low)
15	DAI	I	GND	I ² S Data In
16	WSI	I	GND	I ² S Word Strobe Input
17	CLI	I	GND	I ² S Clock In
18	RES	I	OBL	Reset Input (active Low)
19	NC		NC	
20	NC		NC	
21	AIN	I	LV	Analog Mono Input
22	AUXL	I	LV	Analog AUX Input Left Channel
23	AUXR	I	LV	Analog AUX Input Right Channel
24	НРСМ	0	LV	Headphone Common Output
25	HPVSS	Р	GND	Headphone Driver Ground
26	HPL	0	LV	Headphone Output Left Channel
27	HPR	0	LV	Headphone Output Right Channel
28	HPVDD	Р	VLDO	Headphone Driver Power Supply

Pin No. PQFN 40-pin	Pin Name	Туре	Connection (If not used)	Short Description
29	SGND	Р	GND	Ground for Audio Signal reference level, Connect to GND
30	SREF	0	OBL	Audio Signal reference level
31	CF	0	SREF	Audio Signal reference level
32	EPVSS2	Р	GND	Earpiece Driver Supply Return, Connect to GND
33	EPN	0	LV	Earpiece Differential Negative Output
34	EPVDD	Р	VLDO	Earpiece Driver Power Supply
35	EPP	0	LV	Earpiece Differential Positive Output
36	EPVSS1	Р	GND	Earpiece Driver Ground
37	AVSS	Р	GND	Analog Ground
38	PVDD	0	VLDO	Charge Pump Out
39	CPIN	Р	OBL	Charge Pump In
40	VLDO (AVDD)	Р	VBAT	LDO Output, Analog Power Supply

Note: Pins CPIN, EPVDD and HPVDD must be connected to Pin VLDO

4.3. Pin Descriptions

4.3.1. Power Supply Pins

The power supply pins are divided into functional regions: LDO region, digital region, digital input region, three analog regions. Two major applications are possible: LDO mode or Non-LDO mode. They are described in detail in Section 5.1. and Section 5.2.

DVDD, IOVDD, DVSS (see Fig. 4–8, Fig. 4–9, Fig. 4–10):

- The DVDD and DVSS power supply pair is connected internally with all digital parts of the DAC 3560C.
- The IOVDD and DVSS power supply pair is connected internally with all digital inputs and outputs of the DAC 3560C.
- DVSS is the ground connection for all digital circuits.

AVSS, PVDD, CPIN (see Fig. 4–3): VBAT, VLDO (see Fig. 4–4):

VBAT is the input of the internal LDO. VLDO is the output of the LDO. If the LDO function is not used, VBAT must be connected to VLDO. At PVDD an internal supply can be generated. Pin CPIN must be connected to VLDO. This function is necessary in Non-LDO mode and external power voltages below 2.7 V. At these low supply voltages, an internal charge pump ensures proper functioning of the chip down to 2.2 V. An external capacitor of 47 nF must be connected from PVDD to VLDO. AVSS serves as ground pin for the aforementioned capacitor and must be connected to DVSS.

HPVDD, HPVSS (see Fig. 4-6, Fig. 4-7)

The HPVDD and HPVSS pins supply the headphone drivers. HPVDD must be connected to VLDO. HPVSS must be connected to AVSS.

EPVDD, EPVSS (see Fig. 4-11)

The EPVDD and EPVSS pins supply the earpiece drivers. EPVDD must be connected to VLDO. EPVSS must be connected to AVSS.

LSVDD, LSVSS (see Fig. 4-12)

The LSVDD and LSVSS pins supply the loudspeaker drivers. LSVDD must be connected to VBAT. LSVSS must be connected to AVSS.

4.3.2. Analog Reference Pins

SREF, CF (see Fig. 4-2):

Reference for analog audio signals. SREF is used as reference for the internal op amps and drivers. There are two modes of usage:

1) LDO mode:

SREF must be blocked against SGND with a 3.3 µF (plus optional 10 nF) capacitor.

CF must be connected to SREF.

The internal reference is fixed at 1.425 V.

- 2) Non-LDO mode (ratiometric mode):
- a) SREF and CF are connected together. Both are blocked against SGND with a 3.3 µF (+ optional 10 nF capacitor). The PSRR of SREF is reduced compared to the Bandgap mode.
- b) SREF is blocked against SGND with a 1 µF (+ optional 10 nF) capacitor and CF is blocked with a 1.0 µF capacitor. PSRR is improved with respect to

The internal reference is VLDO/2.

Note: SREF can be used as reference input for external op amps, if no current load is applied. Keep the traces at SREF and CF as short as possible to avoid system noise pickup.

SGND (see Fig. 4-2):

Reference ground for the internal bandgap and biasing circuits. This pin should be connected to a clean ground potential. Any external distortions on this pin will affect the analog performance of the DAC 3560C. SGND must be connected to AVSS.

4.3.3. Analog Audio Pins

AUXL, AUXR, AIN (see Fig. 4-5):

These pins provide analog stereo/mono inputs. Auxiliary input signals, e.g. the output of a conventional receiver circuit or the output of a tape recorder can be connected here.

The input gain is programmable between -20 dB and +20 dB in steps of 2 dB.

The input signals have to be connected by capacitive

Each signal can be mixed to the output of the embedded DAC.

HPL, HPR, HPCM (see Fig. 4-6, Fig. 4-7):

The HPL/R pins are connected to the internal headphone drivers. They can be used for single-ended stereo headphones of greater or equal than 16 Ohm. There are two modes of applying the load:

1) Load to ground: Each channel must be coupled capacitively.

2) Load to HPCM: Channels can be coupled directly to HPCM. The common mode buffer at HPCM must be enabled before activating the drivers.

EPP, **EPN** (see Fig. 4–11):

The EPP/N pins are connected to the internal earpiece driver. They can be used for differential mono earpiece speakers of greater than, or equal to, 16 Ohm.

LSP, LSN (see Fig. 4-12):

The LSP/N pins are connected to the internal loudspeaker driver. They can be used for differential mono loudspeakers of greater or equal than 4 Ohm.

All analog outputs show a programmable gain range of -30 dB to +6 dB plus Mute.

Note: Any occurrence of a short circuit at these pins may result in initialization of the built-in temperature protection unit, which turns off the output drivers. When the short-circuit condition is removed, the drivers will be turned on again.

4.3.4. Digital Audio Input Pins

CLI, DAI, WSI (see Fig. 4-8):

These three pins are inputs for the digital audio data DAI, frame indication signal WSI, and bit clock CLI. The digital audio data is transmitted in an I²S-compatible format. Audio word lengths of 16 and 32 bits are supported, as well as SONY and Philips I²S protocol.

4.3.5. Control Interface Pins

SCLK, SDI, SDO, MODE, CS (see Fig. 4-8, Fig. 4-9, Fig. 4-10):

Two protocol control modes are possible:

1) I²C mode:

SCLK and SDI provide the connection to the serial control interface.

2) SPI mode:

Two additional signals are needed: CS serves as the interface chip select.

SDO sends out data after a read command.

MODE toggles between the two control modes.

4.3.6. Other Pins

RES (see Fig. 4-8):

This pin may be used to reset the chip. After power-up it should be raised from DVSS potential to IOVDD level. Signal function is active low.

4.4. Pin Configurations

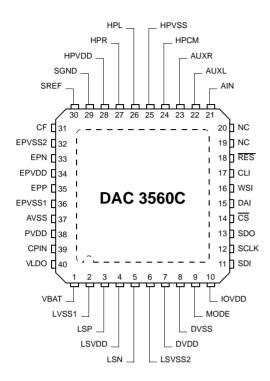


Fig. 4-2: PQFN40 package

4.5. Pin Circuits

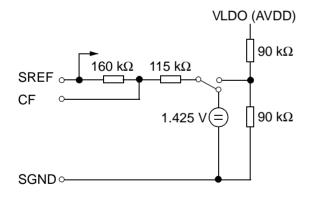


Fig. 4-3: Reference Pins: SREF, CF, SGND, VLDO

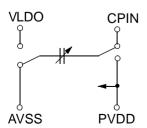


Fig. 4-4: Supply Pins: CPIN, PVDD

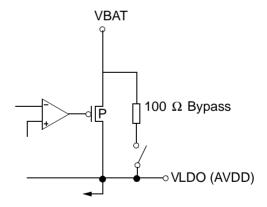


Fig. 4-5: Supply Pins: VLDO, VBAT

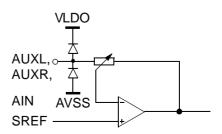


Fig. 4-6: Input Pins: AUXL, AUXR, AIN

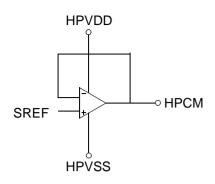


Fig. 4-7: Output Pin: HPCM

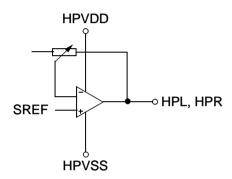


Fig. 4-8: Output Pins: HPL, HPR

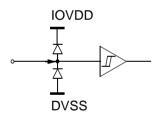


Fig. 4-9: Input Pins: Mode, CS, DAI, WSI, CLI, RES

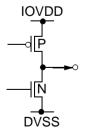


Fig. 4-10: Output Pin: SDO

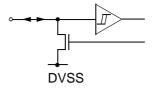


Fig. 4-11: In/Out Pins: SDI, SCLK

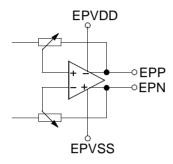


Fig. 4-12: Output Pins: EPP, EPN, EPVDD, EPVSS

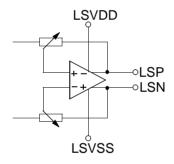


Fig. 4-13: Output Pins: LSP, LSN, LSVDD, LSVSS

4.6. Electrical Characteristics

4.6.1. Absolute Maximum Ratings

Symbol	Parameter	Pin Name	Min.	Max.	Unit
V _{SUP}	Supply Voltage	VBAT, LSVDD, VLDO, HPVDD, EPVDD, CPIN, DVDD, IOVDD	-0.3	6	V
V _{Iana}	Analog Input Voltages	AIN, AUXL, AUXR, SREF, CF	-0.3	VLDO+0.3	V
V _{Idig}	Digital Input Voltages	MODE, SDO, SDI, SCLK, CS, DAI, WSI, CLI, RES	-0.3	IOVDD+0.3	V
V _{II2C}		SDI, SCLK	-0.3	6	V
I _{Iana}	Analog Input Currents	AIN, AUXL, AUXR, SREF, CF	-5	5	mA
I _{Idig}	Digital Input Currents	MODE, SDO, SDI, SCLK, CS, DAI, WSI, CLI, RES	-5	5	mA
l _{Odig}	Digital Output Currents	SDO, SDI, SCLK	-50	50	mA
I _{OLDO}	Analog Output Currents	LDO	internally	50	mA
I _{OHP}		HPL, HPR, HPCM	limited	internally	mA
I _{OEP}		EPN, EPP		limited	
I _{OLS}		LSP, LSN			
T _S	Storage Temperature		-40	125	°C
T _J	Junction Temperature		-40	125	°C
Ртот	Continuous Power Dissipation at TA = 85 °C, exposed pad soldered to PCB			1	W

Stresses beyond those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions/Characteristics" of this specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

Note: Positive currents flow into the device

4.6.2. Recommended Operating Conditions

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit
T _A	Ambient Operating Temperature					
	-Operating Conditions -Extended Temperature Range ¹⁾		0 -40		85 85	°C °C
V _{SUPA1}	Analog Supply Voltage (Non-LDO mode) Charge pump: on	VBAT, LSVDD, VLDO, HPVDD, EPVDD, CPIN	2.2		3.4	V
	Analog Supply Voltage (Non-LDO mode)		2.7		5.5	V
	Charge pump: off					
V _{SUPA2}	Analog Supply Voltage (LDO mode)	VBAT, LSVDD	3		5.5	V
V _{SUPD}	Digital Supply Voltage	DVDD	2.2		5.5	V
V _{SUPIO}	Digital Interface Voltage	IOVDD	1.8		5.5	V
C _{LDOout}	LDO Output Capacitor	VLDO, use Ceramic X7R, X5R	0.8	1.0	1.3	μF
C _{LDOin}	LDO Input Capacitor	VBAT	0.47			μF
C _{Pout}	Charge Pump Output Capacitor	PVDD, VLDO		47		nF
C _{Ain}	Analog Input Coupling Capacitor	AUXL, AUXR, AIN	470			nF
C _{Sref}	SREF Bypass Capacitor	SREF	3.3			μF
R _{LHP}	Headphone Load Resistance	HPL, HPR, HPCM	16	32		Ω
R _{LEP}	Earpiece Load Resistance	EPP, EPN	16	32		Ω
R _{LS}	Loudspeaker Load Resistance	LSP, LSN	4	8		Ω

¹⁾ The functionality of the device in the "Extended Temperature Range" was checked by electrical characterization on sample base. Data sheet parameters are valid for "operating conditions" only.

4.6.3. Characteristics (LDO Mode)

Unless noted otherwise: LSVDD = VBAT = 3.6 V, EPVDD = HPVDD = CPIN = PVDD = VLDO = 2.85 V (LDO-mode), $T_A = 0$ °C ...85 °C. Typical values are at $T_A = 25$ °C.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
POWER MA	ANAGEMENT, LDO		•	•		•	•
V_{LDO}	LDO Output Voltage in Operational Mode	VLDO	2.75	2.85	2.95	V	no load connected
V_{LDO}	LDO Output Voltage in Standby Mode	VLDO	2.75	2.85	2.95	V	LDO not bypassed, no load connected
				VBAT		V	LDO bypassed with internal 100Ω switch, no load connected
V _{LDO}	LDO Output Voltage in Zero Power Mode	VLDO		HIGH-Z		٧	LDO not bypassed
	Zero Power Mode			VBAT		V	LDO bypassed with internal 100Ω switch, no load connected
I _{LDO}	LDO Output Current	VLDO			260	mA	
V_{Drop}	LDO Drop Out Voltage	VBAT, VLDO		70		mV	I _{load} = 100 mA
I _{Short}	LDO Short Circuit Current	VLDO		650		mA	VLDO = 0V, Standby or Operational Mode, LDO not bypassed
I _{SupTot} Supply Current	Supply Current	VBAT, LSVDD, VLDO, EPVDD,			10	μΑ	Zero Power Mode
		HPVDD, CPIN, PVDD, IOVDD, DVDD		170		μА	Standby Mode, LDO bypassed, HPCM-Output enabled
				350		μА	Standby Mode, LDO bypassed, HPCM-Output off
				450		μА	Standby Mode, LDO on, HPCM-Output enabled
				620		μА	Standby Mode, LDO on, HPCM-Output off
			See Ta	ble 4–1.			Operational Mode
T_TS	Thermal Shutdown Temperature		125	140	160	°C	
H _{TS}	Thermal Shutdown Hysteresis			20		°C	
ANALOG A	UDIO INPUTS - AIN, AUXL, AUXR						
V _{AI1}	0 dB (Full Scale) Input Level	AIN, AUXL, AUXR		2.04		V _{pp}	Gains set to 0 dB
V_{Al2}	Input Clipping Level	AIN, AUXL, AUXR		2.85		V _{pp}	Gains set to -20 dB
R _I	Input Resistance	AIN, AUXL,	9	12.5	15	kΩ	Gain = +20 dB
		AUXR	57	69	83		Gain = 0 dB
			100	125	150		Gain = −20 dB
G _{AI}	Gain Setting Range	AIN, AUXL, AUXR	-20		20	dB	
d _{GAI}	Gain Step Size	AIN, AUXL, AUXR		±2		dB	

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
E _{GAI}	Gain Step Size Error	AIN, AUXL, AUXR	-0.5		0.5	dB	
ANALOG AU	IDIO OUTPUTS – HEADPHONE, EA	RPIECE, LOUDSPI	EAKER				
G _{AO}	Volume Range	HPL, HPR, EPP, EPN, LSP, LSN	-30		6	dB	
dG_{AO}	Volume Step Size	HPL, HPR, EPP, EPN, LSP, LSN		±1.5		dB	
E _{GAO}	Volume Step Size Error	HPL, HPR, EPP, EPN, LSP, LSN	-0.5		0.5	dB	
P _{HP}	Headphone Output Power	HPL, HPR, (HPCM)		25 (22)		mW	THD < 0.1%, f=1 kHz, R _L = 32 Ω
P _{EP}	Earpiece Output Power	EPP, EPN		100		mW	THD < 0.2%, f=1 kHz, R _L = 32 Ω (one channel)
P _{LS}	Loudspeaker Output Power	LSP, LSN		410		mW	THD < 1%, f=1 kHz, R_L = 8 Ω
I _{HPshort}	Headphone Short-circuit Current	HPL, HPR, HPCM, VLDO, AVSS	0.1	0.45		A	not tested
I _{EPshort}	Earpiece Short-circuit Current	EPP, EPN, VLDO, AVSS	0.15	0.5		А	not tested
I _{LSshort}	Loudspeaker Short-circuit Current	LSP, LSN, VLDO, AVSS	0.5	1.2		A	not tested
REFERENCE	ES						
V _{OREF1}	Output Signal Reference Level	HPL, HPR, HPCM, EPP, EPN		1.425		V	SREF settled
V _{OREF2}	Output Signal Reference Level	LSP, LSN		1.5		٧	SREF settled
SIGNAL CHA	AINS – DYNAMIC PERFORMANCE			1	1	•	•
Bandwidth =	kHz with 24-Bit data, 20 Hz20 kHz, are unweighted, values in dBA are A-	weighted.					
V _{AOHP}	0dB (full scale) Output Level Headphone	HPL, HPR		2.04		V _{pp}	Gains, Volumes = 0 dB. No load connected.
V _{AOEP}	0dB (full scale) Output Level Earpiece	EPP, EPN,		4.08		V _{pp}	Gains, Volumes = 0 dB. No load connected.
V _{AOLS}	0dB (full scale) Output Level Loudspeaker	LSP, LSN		4.08		V _{pp}	Gains, Volumes = 0 dB. No load connected.
DR _{DA} DR _{HP}	Dynamic Range, Digital to Analog Out	HPL, HPR, (HPCM) , EPP, EPN,		98 94		dBA dB	Digital to Headphone
DR _{DA} DR _{EP}		LSP, LSN		99 95		dBA dB	Digital to Earpiece
DR _{DA} DR _{LS}				99 95		dBA dB	Digital to Loudspeaker
DR _{AA} DR _{HP}	Dynamic Range, Analog to Analog Out	AIN, AUXL, AUXR, HPL, HPR, HPCM, EPP, EPN, LSP,		98 94		dBA dB	Analog to Headphone, DAC off
DR _{AA} DR _{EP}		LSN		99 96		dBA dB	Analog to Earpiece, DAC and headphone off
DR _{AA} DR _{LS}	1			98 96		dBA dB	Analog to Loudspeaker, DAC and headphone off

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
THD _{HP}	THD+N	HPL, HPR, (HPCM)		-76 (-68)		dB	Headphone, $R_L = 32 \Omega$, $P_{OUT} = 15 \text{ mW}$
THD _{EP}		EPP, EPN		-69		dB	Earpiece, $R_L = 32 \Omega$, $P_{OUT} = 50 \text{ mW}$
THD _{LS}		LSP, LSN		-63		dB	Loudspeaker, $R_L = 8 \Omega$, $P_{OUT} = 200 \text{ mW}$
LM	Mute Level	HPL, HPR, (HPCM), EPP, EPN, LSP, LSN		-108		dBV	Headphone, volumes muted, Earpiece, Loudspeaker
PSRR _{HP}	PSRR	VBAT, HPL, HPR, (HPCM)		115		dB	Headphone, f = 1 kHz, VBAT > 3 V, including LDO-Isolation V _{RIPPLE,peak} = 0.25 V Zero-Audio Signal
PSRR _{EP}	PSRR	VBAT, EPP, EPN		105		dB	Earpiece, f = 1 kHz, VBAT > 3 V, including LDO-Isolation V _{RIPPLE,peak} = 0.25 V Zero-Audio Signal
PSRR _{LS}	PSRR	VBAT, LSP, LSN	tbd	93		dB	Loudspeaker, f = 1 kHz, VBAT > 3 V V _{RIPPLE,peak} = 0.25 V Zero-Audio Signal

4.6.4. Characteristics (Non-LDO Mode)

Unless noted otherwise: LSVDD = VBAT = EPVDD = HPVDD = CPIN = VLDO = 2.2 V... 5.5 V (Non-LDO-mode), $T_A = 0$ °C ...85 °C. Typical values are at $T_A = 25$ °C.

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
POWER MA	ANAGEMENT, LDO		•	•		•	
I _{SupTot}	Supply Current at 2.2 V	VBAT, LSVDD,			10	μА	Zero Power Mode
		VLDO, EPVDD, HPVDD, CPIN, PVDD, IOVDD,		185		μА	Standby Mode, HPCM- Output enabled
		DVDD		355		μА	Standby Mode, HPCM- Output off
I _{SupTot}	Supply Current at 5 V	VBAT, LSVDD, VLDO, EPVDD,			10	μΑ	Zero Power Mode
		HPVDD, CPIN, PVDD, IOVDD, DVDD		235		μА	Standby Mode, HPCM- Output enabled
		DVDD		420		μА	Standby Mode, HPCM- Output off
ANALOG A	UDIO INPUTS - AIN, AUXL, AUXR	T	1	1	1	1	T
V _{AI1}	0 dB (Full Scale) Input Level	AIN, AUXL, AUXR		1.43 x V _{LDO} /2		V _{pp}	Gains set to 0 dB
V_{Al2}	Input Clipping Level	AIN, AUXL, AUXR		V _{LDO}		V _{pp}	Gains set to -20 dB
ANALOG A	UDIO OUTPUTS – HEADPHONE, EA	ARPIECE, LOUDSP	EAKER		l		
P _{HP}	Headphone Output Power at 2.2 V	HPL, HPR, (HPCM)		12		mW	THD < 0.1%, f=1 kHz, R _L = 32 Ω
P _{EP}	Earpiece Output Power at 2.2 V	EPP, EPN		50		mW	THD < 0.2%, f=1 kHz, R _L = 32Ω
P _{LS}	Loudspeaker Output Power at 2.2 V	LSP, LSN		170		mW	THD < 1%, f=1 kHz, R_L = 8 Ω
P _{HP}	Headphone Output Power at 5 V	HPL, HPR, (HPCM)		78		mW	THD < 0.1%, f=1 kHz, R _L = 32Ω
P _{EP}	Earpiece Output Power at 5 V	EPP, EPN		300		mW	THD < 0.2%, f=1 kHz, R _L = 32Ω
P _{LS}	Loudspeaker Output Power at 5 V	LSP, LSN		1.1		W	THD < 1%, f=1 kHz, R_L = 8 Ω
REFERENC	CES		•				•
V _{OREF1}	Output Signal Reference Level	HPL, HPR, HPCM, EPP, EPN		V _{LDO} /2		V	SREF settled
V _{OREF2}	Output Signal Reference Level	LSP, LSN		V _{LDO} /2		V	SREF settled
	IAINS – DYNAMIC PERFORMANCE	1	1	1	I .	1	
	B kHz with 24-Bit data, = 20 Hz20 kHz, 3 are unweighted, values in dBA are A	\-weighted.					
V _{AOHP}	0 dB (Full scale) Output Level Headphone	HPL, HPR		1.43 x V _{LDO} /2		V _{pp}	Gains, Volumes = 0 dB. No load connected.
	1	1	1	1	1	1	1

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{AOEP}	0 dB (Full scale) Output Level Earpiece	EPP, EPN,		2.86 x V _{LDO} /2		V _{pp}	Gains, Volumes = 0 dB. No load connected.
V _{AOLS}	0 dB (Full scale) Output Level Loudspeaker	LSP, LSN		2.86 x V _{LDO} /2		V _{pp}	Gains, Volumes = 0 dB. No load connected.
DR _{DA} DR _{HP}	Dynamic Range, Digital to Analog Out at 2.2 V	HPL, HPR, (HPCM),		96 93		dBA dB	Digital to Headphone
DR _{DA} DR _{EP}		EPP, EPN, LSP, LSN		98 94		dBA dB	Digital to Earpiece
DR _{DA} DR _{LS}				98 94		dBA dB	Digital to Loudspeaker
DR _{DA} DR _{HP}	Dynamic Range, Digital to Analog Out at 5 V	HPL, HPR, (HPCM),		103 99		dBA dB	Digital to Headphone
DR _{DA} DR _{EP}		EPP, EPN, LSP, LSN		102 98		dBA dB	Digital to Earpiece
DR _{DA} DR _{LS}				94 91		dBA dB	Digital to Loudspeaker
DR _{AA} DR _{HP}	Dynamic Range, Analog to Analog Out at 2.2 V	AIN, AUXL, AUXR, HPL,		96 92		dBA dB	Analog to Headphone, DAC off
DR _{AA} DR _{EP}		HPR, HPCM, EPP, EPN, LSP, LSN		98 94		dBA dB	Analog to Earpiece, DAC and headphone off
DR _{AA} DR _{LS}					95 92		dBA dB
DR _{AA} DR _{HP}	Dynamic Range, Analog to Analog Out at 5 V	AIN, AUXL, AUXR, HPL,		104 100		dBA dB	Analog to Headphone, DAC off
DR _{AA} DR _{EP}		HPR, HPCM, EPP, EPN, LSP, LSN		103 99		dBA dB	Analog to Earpiece, DAC and headphone off
DR _{AA} DR _{LS}				94 91		dBA dB	Analog to Loudspeaker, DAC and headphone off
THD _{HP}	THD+N at 2.2 V	HPL, HPR		-71		dB	Headphone, R_L = 32 Ω , P_{OUT} = 8 mW
THD _{HP}		HPL, HPR, (HPCM)		-67		dB	Headphone + HPCM, R _L = 32 Ω , P _{OUT} = 8 mW
THD _{EP}		EPP, EPN		-69		dB	Earpiece, R_L = 32 Ω , P_{OUT} = 30 mW
THD _{LS}		LSP, LSN		-62		dB	Loudspeaker, R_L =8 Ω , P_{OUT} = 130 mW
THD _{HP}	THD+N at 5 V	HPL, HPR		-82		dB	Headphone, R_L = 32 $Ω$, P_{OUT} = 50 mW
THD _{HP}		HPL, HPR, (HPCM)		-74		dB	Headphone + HPCM, R _L = 32 Ω , P _{OUT} = 50 mW
THD _{EP}		EPP, EPN		-76		dB	Earpiece, R_L = 32 Ω , P_{OUT} = 140 mW
THD _{LS}		LSP, LSN		-63		dB	Loudspeaker, R _L =8 Ω , P _{OUT} = 600 mW
PSRR _{HP}	PSRR	VBAT, HPL, HPR, (HPCM)		68		dB	Headphone, f = 1 kHz,
PSRR _{EP}		VBAT, EPP, EPN		70		dB	Earpiece, f = 1 kHz
PSRR _{LS}		VBAT, LSP, LSN		70		dB	Loudspeaker, f = 1 kHz

4.6.5. Terminology

- Dynamic range (dB): DR is a measure of the difference between the highest and lowest portions of a signal. Normally, a THD+N measurement at 60 dB below full scale. The measured signal is then corrected by adding the 60 dB to it.

 (e.g. THD+N at -60 dB = -35 dB, DR = 95 dB).
- 2. THD+N (dB): Is a ratio, of the RMS values of (Noise + Distortion)/Signal at a given output level or output power.
- 3. Channel Separation (dB): Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full-scale signal down one channel and measuring the other.

4.6.6. I²C Bus Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{I2CIL}	I ² C BUS Input Low Voltage	SCLK, SDI			0.3	IOVDD	
V _{I2CIH}	I ² C BUS Input High Voltage	וטפ	0.65			IOVDD	
t _{l2C1}	I ² C START Condition Setup Time		120			ns	
t _{I2C2}	I ² C STOP Condition Setup Time		120			ns	
t _{I2C5}	I ² C Data Setup Time before Rising Edge of Clock		55			ns	
t _{I2C6}	I ² C Data Hold Time after Falling Edge of Clock		55			ns	
t _{I2C3}	I ² C Clock Low Pulse Time	SCLK	500			ns	
t _{I2C4}	I ² C Clock High Pulse Time		500			ns	
f _{I2C}	I ² C BUS Frequency				1.0	MHz	
V _{I2COL}	I ² C Data Output Low Voltage	SCLK, SDI			0.4	V	I _{I2COL} = 3 mA
I _{I2COH}	I ² C Data Output High Leakage Current	301			1.0	μА	V _{I2COH} = 5 V
t _{I2COL1}	I ² C Data Output Hold Time after Falling Edge of Clock		15			ns	
t _{I2COL2}	I ² C Data Output Setup Time before Rising Edge of Clock		100			ns	f _{I2C} = 1 MHz

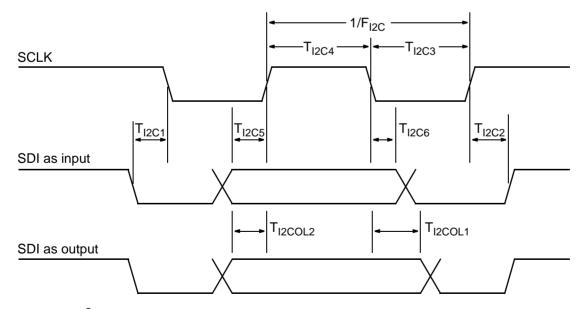
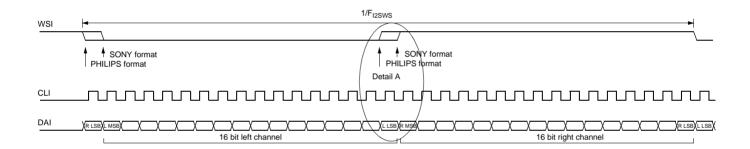



Fig. 4–14: I²C bus timing diagram

4.6.6.1. I²S Bus Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{I2SIL}	Input Low Voltage	DAI - CLI			0.2	IOVDD	
V _{I2SIH}	Input High Voltage	WSI	0.65			IOVDD	
Z _{I2SI}	Input Impedance				5	pF	
I _{LEAKI2S}	Input Leakage Current		-1		1	μА	0 V < U _{INPUT} < IOVDD
t _{I2S1}	I ² S Input Setup Time before Rising Edge of CLI	DAI WSI	10			ns	for details see Fig. 4–15 (I ² S interface)
t _{I2S2}	I ² S Input Hold Time after Rising Edge of CLI		20			ns	
R _{CLI}	I ² S Clock Input Ratio		0.9		1.1		
F _{CLI}	I ² S Clock Frequency	CLI,DAI			12.3	MHz	32 bit, F _{sample} = 192 kHz

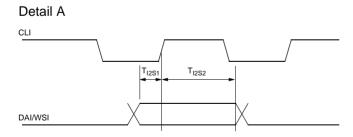


Fig. 4–15: I²S timing diagram

4.6.6.2. SPI-Bus Characteristics

Symbol	Parameter	Pin Name	Min.	Тур.	Max.	Unit	Test Conditions
V _{SPIIL}	Input Low Voltage	SDI			0.2	IOVDD	
V _{SPIIH}	Input High Voltage	SCLK	0.65			IOVDD	
Z _{SPII}	Input Impedance				5	pF	
I _{LEAKSPI}	Input Leakage Current		-1		1	μΑ	0 V < U _{INPUT} < IOVDD
t _{SPI1}	SPI Input Setup Time before Rising Edge of SCLK	SDI CS	10			ns	
t _{SPI2}	SPI Input Hold Time after Rising Edge of SCLK		40			ns	
R _{CLI}	SPI Clock Input Ratio		0.9		1.1		
V _{SPIOL}	SPI Output Low Voltage	SDO			0.4	V	I _{SPIOL} = 0.5 mA, IOVDD= 1.8 V
V _{SPIOH}	SPI Output High Voltage		1.2			V	I _{SPIOH} = -0.5 mA IOVDD = 1.8 V
f _{SCLK1}	SPI Clock Frequency, read access	SCLK, SDI, SDO		7	tbd	MHz	C _L = 20 pF, IOVDD = 3.3 V
				tbd	tbd	MHz	C _L = 20 pF, IOVDD = 1.8 V
f _{SCLK2}	SPI Clock Frequency, write access	SCLK, SDI		14	tbd	MHz	C _L = 20 pF, IOVDD = 3.3 V
				tbd	tbd	MHz	C _L = 20 pF, IOVDD = 1.8 V

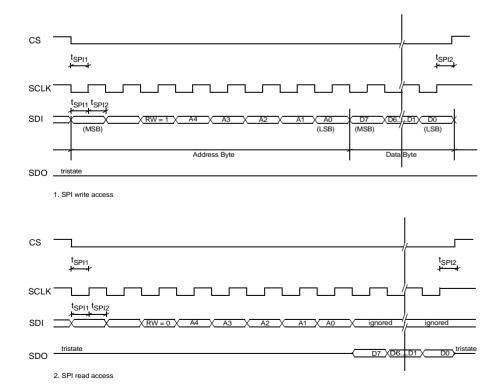


Fig. 4–16: SPI write and read access

4.6.7. Power Consumption (LDO Mode)

 $LSVDD=VBAT= 3.6 \ V, \ EPVDD=HPVDD=CPIN=PVDD=VLDO= 2.85 \ V, \ DVDD= 2.2 \ V, \ IOVDD= 1.8 \ V. \ Typical \ Values, Operational \ Mode.$

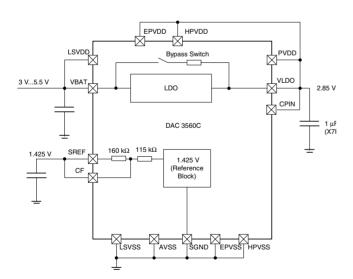
Table 4–1: Current Consumption Examples (Operational Mode)

Control Bits	Α	В	С	D	E	F	G	Н	I	Description
SMM			Х	Х	Х	Х				Select mono mode
PDAC	Х	Х	Х	Х					Х	Power DAC
PAIN					Х	Х			Х	Power AIN input
PAUX							Х	Х	Х	Power AUX input
PL			Х		Х				Х	Power Loudspeaker
PEP				Х		Х			Х	Power Earpiece
PRHP	Х	Х					Х	Х	Х	Power Headphone Left
PLHP	Х	Х					Х	Х	Х	Power Headphone Right
ENHPC		Х						Х	Х	Enable Headphone Common Driver
Current Consumption										Unit
Analog ¹⁾	7.5	8.7	4.3	4.7	3.1	3.4	6.1	7.3	13	mA
DVDD ²⁾	0.32		0.2	•	0	0	0	0	0.32	mA
IOVDD ²⁾	< 10		•		•	•	•	•	•	μΑ

All figures are quiescent currents with zero audio signal, no load connected.

- B) Stereo D/A → Headphone L/R + Headphone Common
- C) Mono D/A \rightarrow Loudspeaker
- D) Mono D/A → Earpiece
- E) AIN → Loudspeaker
- F) AIN → Earpiece
- G) AUX \rightarrow Headphone L/R
- H) AUX → Headphone L/R + Headphone Common
- I) All signal chains on, stereo mode

 $^{^{1)}}$ Including all analog supply pins: VBAT, LSVDD, VLDO, EPVDD, HPVDD, CPIN, PVDD $^{2)}$ I 2 S digital audio data received with f_{sample} = 48 kHz, 16-bit word length, CLI=1.536 Mhz.


A) Stereo D/A \rightarrow Headphone L/R

5. Detailed Mode Description

The DAC 3560C features many modes of operation, which can be set for a targeted application using the internal registers. Also, some external components and pin-to-pin connections may differ from application to application – mainly depending on whether the internal LDO is used or not. A detailed description of these features is given below.

5.1. LDO Mode, Using the internal Low-Dropout Regulator

The SNLDOM-Function bit in the MODE Control Register controls the operation of the DAC 3560C with, or without, use of the internal LDO. The default setting selects the LDO mode. The LDO then delivers a stable 2.85 V at its output when the device is in Stand-by or Operational Mode. The signal reference level for the audio outputs is 1.425 V (Pin SREF) except for the loudspeaker output, which has a reference level of 1.5 V. The LDO is intended to supply the headphone and the earpiece driver. Connect the supply pins of these drivers (HPVDD, EPVDD) to the LDO output (VLDO). Also connect the pins from the charge pump (CPIN, PVDD) to the LDO output. The charge pump is disabled when the DAC 3560C is in LDO Mode, Using the LDO increases the PSRR of the headphone and earpiece outputs in respect to the battery line (VBAT) to more than 100 dB. The input voltage range for full performance of the LDO is 5.5 V to 3.0 V.

Fig. 5–1: Simplified application diagram using the DAC 3560C in LDO-Mode.

Lowering the input voltage further will – depending on load – reduce the PSRR until the LDO is out of regulation.

The LDO output can be bypassed using the BYPLDO-Function bit in the MODE Control Register. Selecting this bit closes an internal 100 Ω switch between the LDOs input and output pin. This function is only available in Zero Power and Standby Mode. The LDO is then turned off. Use this function to reduce the quiescent current in Standby Mode.

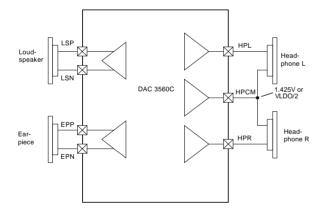
5.2. Non-LDO Mode, Using the DAC 3560C without the LDO

Selecting the SNLDOM-Function Bit in the MODE Control Register disables the LDO and configures the DAC 3560C for a supply voltage range from 2.2 V to 5.5 V. The signal reference level for the audio outputs is formed by a resistive voltage divider to VBAT/2. A second filter capacitor can be connected to pin CF to form a second order noise filter. Connect the LDO output pin (VLDO) directly to the battery line (VBAT) as well as the supply pins of the audio drivers (HPVDD EPVDD, LSVDD) and the charge pump input (CPIN).

When using the LDO, connect an 1- μ F ceramic capacitor (X7R, X5R) to the LDO output to ensure a stable operation of the LDO.

The DAC 3560C utilizes an internal charge pump circuit to keep internal circuits operating at low supply voltages. The charge pump must be used, if the supply voltage at VBAT is below 2.7 V. Connect an additional capacitor between pin PVDD and pin VLDO to allow the internal charge pump to work properly.




Fig. 5–2: Simplified application diagram using the DAC 3560C in Non-LDO-Mode

5.3. Headphone Common Driver

The DAC 3560C has driver outputs for earpiece, loud-speaker and headphone connection. While the earpiece and loudspeaker outputs are of the differential type, the headphone driver outputs are single-ended. Single-ended drivers usually require a large coupling capacitor to block the DC bias from the headphone. The DAC 3560C provides a headphone common output (HPCM), which eliminates the need for bulky DC-blocking capacitors.

Selecting the ENHPC-Bit in the BLOCK Control Register enables the headphone common driver output (HPCM). The HPCM-driver is then turned on with the left or right headphone and delivers the audio signal reference level at the output (1.425 V or VLDO/2).

Capacitive coupling is also possible for all driver outputs. Make sure that the ENHPC-Bit in the BLOCK Control Register is set correctly before setting the device in Standby or Operational Mode, otherwise the DAC 3560C might fail to bias DC-Blocking capacitors at the headphone outputs.

Fig. 5–3: Headphone connection, using the headphone common driver output.

5.4. Stereo, Mono Mode Operation of the DAC 3560C

Selecting the SMM-Function Bit in the MODE Control Register configures the DAC 3560C for mono or stereo operation.

Selecting mono mode will turn off the right DAC-channel. The I²S audio data format is still the same as for stereo operation but right channel audio data are dropped internally. The right headphone driver will be routed to the left signal chain. Use the Mono Mode to reduce the current consumption if no stereo signal processing is required.

For both modes, stereo or mono, the DAC 3560C supports side tone mixing from the auxiliary inputs (AUXL, AUXR, AIN). It is also possible to use the DAC 3560C without digital audio from the DAC, if only an analog-in to analog-out function is needed. See Table 5–1 for side tone capabilities of the DAC 3560C. Please also refer to the functional block diagram (see Fig. 1–1 on page 5), to see how audio signals are mixed.

Table 5–1: Mixing Possibilities: All Audio Inputs/ Outputs active. Volumes, Gains set to 0 dB

Output	Stereo Mode	Mono Mode			
Left Headphone Output	Ain + AuxL +DacL	Ain +(AuxL+AuxR)/2 + DacL			
Right Headphone Output	Ain + AuxR +DacR	Ain +(AuxL+AuxR)/2 + DacL			
Loudspeaker Output	Ain +(AuxL+AuxR)/2 +(DacL+DacR)/2	Ain +(AuxL+AuxR)/2 + DacL			
Earpiece Output	Ain +(AuxL+AuxR)/2 +(DacL+DacR)/2	Ain +(AuxL+AuxR)/2 + DacL			

Note: Please note that the sum of all input signals (DAC, AUX, AUXR, AIN), must not exceed the 0 db (Full Scale Level), otherwise signal degradation will occur due to clipping.

5.4.1. Digital Supply

The DAC 3560C has two supply pins for the digital part of the IC. The IOVDD Pin supplies the digital I/O cells. The usable voltage range is 1.8 V to 5.5 V, allowing direct connection to modern microcontrollers. Pin DVDD supplies the internal digital core of the IC with a voltage range from 2.2 V to 5.5 V. Use the lowest voltage available to reduce the digital supply current. Do not connect IOVDD or DVDD to the LDO-Output when using the LDO, as this will result in a deadlock situation for the DAC 3560C.

5.4.2. Power On/Off Sequence

The DAC 3560C has three power states – Zero Power, Standby and Operational Mode, that permit powering on the device without clicks and pops, while giving the lowest current consumption possible. The power states of the DAC 3560C are controlled by function bits PM[1:0] in the Mode Control Register, selectable via the I²C/SPI control interface.

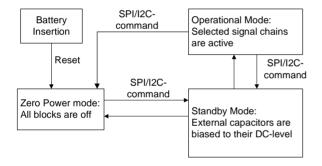


Fig. 5-4: Power States

Zero Power Mode:

When the battery voltage is initially applied, the \underline{DAC} 3560C must be reset with a low signal at Pin RES, in order to clear all internal registers to their default values, which sets the DAC 3560C into a defined state (Zero Power Mode).

In Zero Power Mode, all blocks are forced off and the current consumption of the device is zero.

After releasing the $\overline{\text{RES}}$ pin, it is possible to program all registers of the DAC 3560C. However, all register contents are suppressed except the BYPLDO-function bit from the Mode Control Register, which allows bypassing the LDO output with an internal 100 Ω switch to VBAT. The following bits:

- SNLDOM: (For using the device with or without the LDO)
- ENHPC: (For using or not using the headphone common driver)

should be set before entering the next power state (Standby Mode).

Standby Mode:

In Standby Mode, external capacitors are biased to their DC level (signal reference level). Only circuitries to bias the external capacitors are enabled, resulting in a low-current consumption.

Allow the signal reference level (Pin SREF, CF) to settle before changing to Operational Mode.

If the LDO is enabled (bit SNLDOM=0) it delivers a stable 2.85 V at the output (VLDO). Bypassing the LDO with an internal 100 Ω switch to VBAT is also possible. The LDO is then disabled. Use this function to reduce the quiescent current in Standby Mode.

All registers are programmable during Standby Mode, but the content of the Block Control register is suppressed. It is recommended to keep all output volumes in their mute position before changing to Operational Mode in order to avoid audible clicks and pops.

Operational Mode:

In Operational Mode, the content of the Block Control register will become transparent, so that all selected blocks and their signal chains are active.

Programming all registers is possible allowing changing signal paths on the fly. However, it is recommended to ramp down the output volumes before, in order to avoid audible clicks and pops.

Power-Down Sequence:

Powering down the DAC 3560C from Operational Mode or Standby Mode can be achieved by selecting Zero Power Mode from the Mode Register. All register values remain unchanged. It is possible to clear all register values to their default values by a write access to the RESET Register.

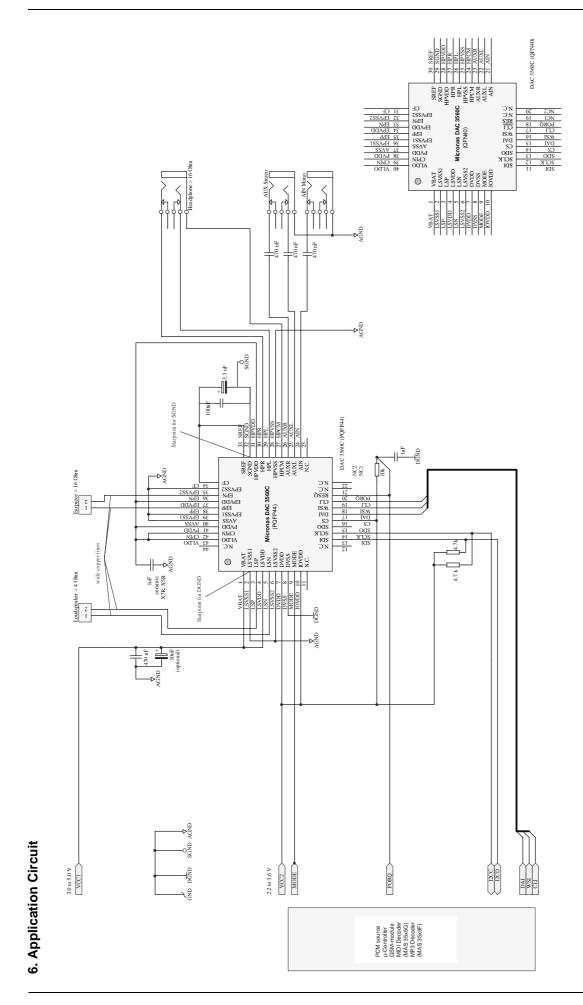


Fig. 6-1: Application circuit in LDO Mode, I²C-Control

7. Data Sheet History

 Advance Information: "DAC 3560C Audio-Subsystem for Portable Applications", Feb. 5, 2003, 6251-588-1AI. First release of the advance information.

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-588-1AI All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.