

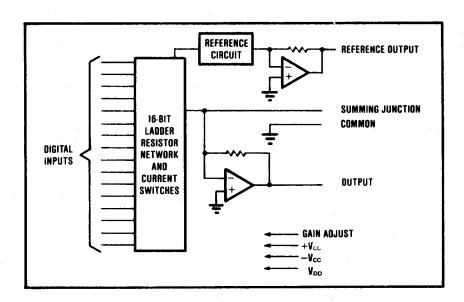
DAC1600

FOR COMMERCIAL APPLICATIONS

Monolithic 16-Bit Resolution DIGITAL-TO-ANALOG CONVERTER

FEATURES

- COMPLETE D/A CONVERTER:
 INTERNAL REFERENCE
 ±10V OUTPUT OPERATIONAL AMPLIFIER
- ◆ 14-BIT ACCURACY (K GRADE): ±0.003% FSR LINEARITY ERROR 14-BIT MONOTONICITY GUARANTEED 0°C to +70°C
- SETTLING TIME 10µs, MAX
- ±15V POWER SUPPLY OPERATION
- 24-PIN MOLDED PLASTIC DIP


DESCRIPTION

The low prices of DAC1600JP and DAC1600KP make these very-high resolution D/A converters the best value available.

The DAC1600 family offers TTL input compatibility, guaranteed monotonicity (13-bit, J grade; 14-bit, K grade) over 0°C to +70°C and settling time of 10μ sec maximum.

This precision component is made possible using Burr-Brown's proprietary monolithic integrated circuit process which has been optimized for converter circuits. A stable subsurface reference zener, laser-trimmed thin-film ladder resistors, and high speed current switches combine to give superior performance over the rated temperature range.

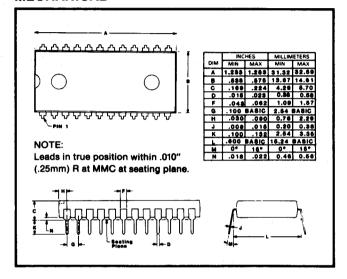
The DAC1600 is priced and specified for applications where high resolution and monotonocity are the key application parameters and where tightly-specified performance over temperature is not required. Because of the low price, it is feasible to use a 16-bit D/A converter for new applications in communications systems, electronic controllers, electronic games, and personal computer peripherals.

International Airport Industrial Park - P.O. Box 11400 - Tucson, Arizona 85734 - Tel. (602) 746-1111 - Twx: 910-952-1111 - Cable: BBRCORP - Telex: 66-6491

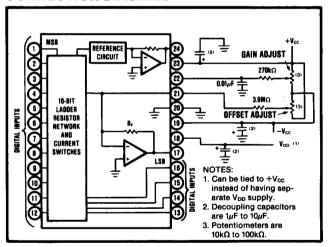
SPECIFICATIONS

ELECTRICAL

Typical at ± 25 °C. $\pm V_{CC} = 15V$, $V_{DD} = \pm 5V$ unless otherwise noted.


MODEL	DAC1600JP-V	DAC1600KP-V	UNITS		
INPUTS		L			
DIGITAL INPUTS					
Input Code ⁽¹⁾	СОВ		*		
Resolution, max	16	*	Bits		
Digital Logic Inputs ⁽²⁾ :					
V _{IH} , min to max	+2.4 to +V _{DD}	*	٧		
V _{IL} , min to max	1.0 to +0.8	. *	٧		
I_{IH} , $V_I = +2.7V$, max	+40	*	μΑ		
I_{IL} , $V_i = +0.4V$, max	−0.5	*	mA ·		
TRANSFER CHARACTERISTIC	s				
ACCURACY					
Linearity Error, max ⁽³⁾	±0.006	±0.003	% of FSR ⁽⁴⁾		
Differential Linearity Error,					
max	±0.012	±0.006	% of FSR		
Gain Error, max ⁽⁵⁾⁽⁶⁾	±0.3	*	%		
Bipolar Zero Error, max ⁽⁵⁾	40	*	mW		
Monotonicity Over 0°C to					
+70°C ⁽⁷⁾	13	14	Bits		
Sensitivity of Gain to Power					
Supply Variations:					
±V _{cc}	±0.002		% of FSR/%Vcc		
V _{DD}	±0.0002	*	% of FSR/%V _{DD}		
TEMPERATURE					
COEFFICIENTS					
Gain	±10	*	ppm/°C		
Bipolar Zero	±5	*	ppm of FSR/°C		
SETTLING TIME (to ±0.003%					
of FSR) ⁽⁸⁾ , 10V step and 2kΩ					
load, max	10	•	μsec		
OUTPUT		L			
ANALOG OUTPUT					
Voltage Range, min	±10		v		
Current, min ⁽⁹⁾	±10 ±5		mA		
Impedance	0.15		Ω		
•	0.13		7,		
REFERENCE OUTPUT			*		
Voltage ⁽¹⁰⁾	+6.3	'	٧		
Source Current Available					
for External Loads, max	+1.5		mA		
Temperature Coefficient	±10		ppm/°C		
POWER SUPPLY REQUIREMEN	NTS		r		
RATED VOLTAGE					
±V _{CC} ⁽¹¹⁾	15	!	V		
V _{DD} (12)	+5	*	V		
CURRENT, max ⁽¹³⁾					
±V _{cc}	35	:	mA A		
V _{DD}	8	L	mA		
TEMPERATURE RANGE					
For parameters specified					
over temp, min/max	0 to +70	.	°C		
Storage, min/max	-60 to +100	l *	°C		

NOTES: (1) COB = Complementary Offset Binary. (2) Digital inputs are TTL-compatible for V_{DD} over the range of +4.5 V to $+V_{CC}$. Digital input specs are guaranteed over $0^{\circ}C$ to $+70^{\circ}C$. These specs are tested at $25^{\circ}C$ only. (3) $\pm 0.003\%$ of FSR is 1/2 LSB at 14 bits. (4) FSR means Full Scale Range and is 20V for a $\pm 10V$ range. (5) Adjustable to zero with external potentiometer. (6) Adjusting the gain potentiometer rotates the transfer function around Bipolar Zero, 0V (Input Code 7FFFH). (7) Guaranteed. Tested at $25^{\circ}C$ only. (8) Guaranteed. Not tested. (9) Output may be indefinitely shorted to Common without damage. (10) Tolerance is $\pm 5\%$. (11) Range of operation is $\pm 13.5 V$ to $\pm 16.5 V$. (12) V_{DD} may be operated up to $+V_{CC}$. Digital input logic threshold remains at $\pm 1.4 V$ over the V_{DD} range. (13) Typical power supply currents are about 50% of the maximum.


ABSOLUTE MAXIMUM RATINGS

+V _{cc} to Common 0V, +18V
-V _{cc} to Common 0V, -18V
V _{DD} to Common 0V, +18V
Digital Data Inputs to Common1V, +18V
Reference Out to Common Indefinite Short to Common
External Voltage Applied to D/A Output5V to +5V
Vout Indefinite Short to Common
Power Dissipation 1000mW
Storage Temperature60°C to +100°C
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

MECHANICAL

CONNECTION DIAGRAM

ORDERING INFORMATION

Model	Linearity Error & Monotonicity for	1-99	100-999	1000+
DAC1600JP-V	13 bits	\$14.35	\$8.95	\$8.05
DAC1600KP-V	14 bits	15.95	9.95	8.95

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patentights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

PIN ASSIGNMENTS

Pin	Description	Pin	Description
1	Bit 1 (MSB)	13	Bit 13
2	Bit 2	14	Bit 14
3	Bit 3	15	Bit 15
4	Bit 4	16	Bit 16 (LSB)
5	Bit 5	17	Vout
6	Bit 6	18	V _{DD}
7	Bit 7	19	−V _{cc}
8	Bit 8	20	Common
9	Bit 9	21	Summing Junction (Zero Adjust)
10	Bit 10	22	Gain Adjust
11	Bit 11	23	+V _{cc}
12	Bit 12	24	+6.3V Reference Output

OPERATING INSTRUCTIONS

POWER SUPPLY CONNECTIONS

For optimum performance and noise rejection, power supply decoupling capacitors should be added as shown in the Connection Diagram. $1\mu F$ to $10\mu F$ tantalum capacitors should be located close to the D/A converter.

EXTERNAL ZERO AND GAIN ADJUSTMENT

Zero and gain may be trimmed by installing external zero and gain potentiometers. Connect these potentiometers as shown in the Connection Diagram and adjust as described below. TCR of the potentiometers should be $100\text{ppm}/^{\circ}\text{C}$ or less. The $3.9\text{M}\Omega$ and $270\text{k}\Omega$ resistors ($\pm20\%$ carbon or better) should be located close to the D/A converter to prevent noise pickup. If it is not convenient to use these high-value resistors, an equivalent "T" network, as shown in Figure 1, may be substituted in place of the $3.9\text{M}\Omega$ part. A $0.001\mu\text{F}$ to $0.01\mu\text{F}$ ceramic capacitor should be connected from Gain Adjust to Common to prevent noise pickup. See Figure 2 for relationship of zero and gain adjustment.

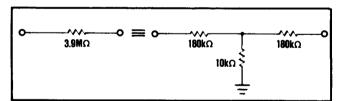


FIGURE 1. Equivalent Resistances.

Zero Adjustment

Apply the digital input code that produces zero output voltage or current. See Table I for corresponding codes and the Connection Diagram for zero adjustment circuit connections. Zero calibration should be made before gain calibration.

Gain Adjustment

Apply the digital input that gives the maximum positive output voltage. Adjust the gain potentiometer for this positive full scale voltage. See Table I for positive full scale voltages and the Connection Diagram for gain adjustment circuit connections.

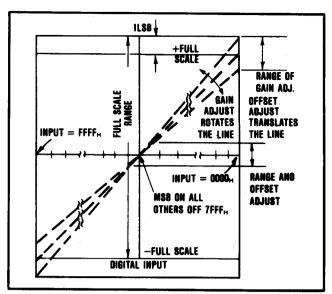


FIGURE 2. Relationship of Zero and Gain Adjustment.

TABLE I. Calibration Table.

		Analog Output		
Digital Input	Description	16-bit	15-bit	15-bit
One LSB 0000 _H 7FFF _H FFFF _H	One LSB + Full Scale Bipolar Zero - Full Scale	305µV +9.99960V 0V -10.00000V	610µV 9.99939V 0V -10.00000V	1224µV +9.99878V 0V -10.00000V

INSTALLATION CONSIDERATIONS

This D/A converter family is laser-trimmed to 14-bit linearity. The design of the device makes the 16-bit resolution available. If 16-bit resolution is not required, bit 15 and bit 16 should be connected to V_{DD} through a single $Ik\Omega$ resistor.

Due to the extremely-high resolution and linearity of the D/A converter, system design problems such as grounding and contact resistance become very important. For a 16-bit converter with a 20V full-scale range, 1LSB is $305\mu V$. With a load current of 5mA, series wiring and connector resistances of only $60m\Omega$ will cause the output to be in error by 1LSB. To understand what this means in terms of a system layout, the resistance of #23 wire is about $0.021\Omega/ft$. Neglecting contact resistance, less than 18 inches of wire will produce a 1/2LSB error in the analog output voltage!

In Figure 3 lead and contact resistances are represented by R_1 through R_3 . As long as the load resistance R_L is constant, R_1 simply introduces a gain error and can be removed during initial calibration. R_2 is part of R_L , if the output voltage is sensed at Common, and therefore introduces no error. R_L should be located as close as possible to the D/A converter for optimum performance. The effect of R_3 is negligible.

In many applications it is impractical to sense the output voltage at the output pin. Sensing the output voltage at the system ground point is permissible with the DAC1600 family because the D/A converter is designed to have a constant return current of approximately 2mA flowing from Common. The variation in this current is under $20\mu A$ (with changing input codes), therefore R_3 can be as large as 3Ω without adversely affecting the linearity of the D/A converter. The voltage drop across R_3 ($R_3 \times 2mA$) appears as zero error and can be removed with the zero calibration adjustment. This alternate sensing point (the system ground point) is shown in Figure 3.

The D/A converter and the wiring to its connectors should be located to provide optimum isolation from sources of RFI and EMI. The key concept in elimination of RF radiation or pickup is loop area; therefore, signal leads and their return conductors should be kept close together. This reduces the external magnetic field along with any radiation. Also, if a single lead and its return conductor are wired close together, they present a small flux-capture cross section for any external field. This reduces radiation pickup in the circuit.

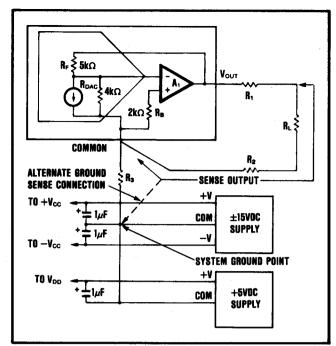


FIGURE 3. Output Circuit.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated