Optical disc ICs

BTL driver for CD-ROMs BA5972FP

The BA5972FP is a 4-channel BTL driver developed for use with CD-ROMs. A multi-purpose operational amplifier is equipped in each channel to allow use in a variety of applications. Also, by applying independent power supplies for both the pre-stage and power-stage, with the power-stage power supply further split into two so one power supply handles two channels each, a highly efficient driver has been realized.

Applications

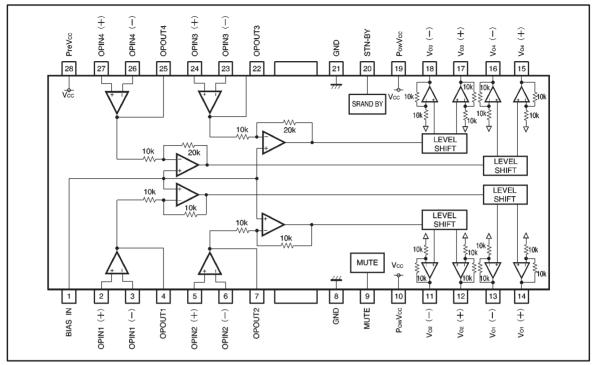
CD-ROM, DVD-ROM, MD, and optical discs

Features

- 1) Wide dynamic range (V_{OUT} = 4V [Typ.] when PreV_{CC} = 8V, PowV_{CC} = 5V, and R_L = 8 Ω).
- 2) Internal thermal shutdown circuit.

- 3) Internal mute functions.
- 4) Internal standby functions.

Absolute maximum ratings (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	PreVcc, PowVcc	13.5	V
Power dissipation	Pd	1.7 ^{*1}	w
Operating temperature	Topr	-35~+85	Ĵ
Storage temperature	Tstg	-55~+150	C

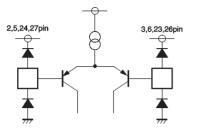
*1 When mounted on a 70mm × 70mm × 1.6mm glass epoxy board with copper foil coverage of less than 3%. Reduced by 13.6mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta = 25° C)

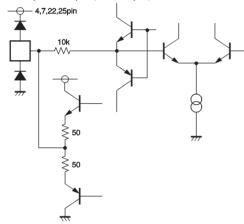
Parameter	Symbol	Limits	Unit
Power supply voltage	PreVcc	4.5~13.2	V
Fower supply voltage	PowVcc	4.5~PreVcc	V

Block diagram

Pin descriptions

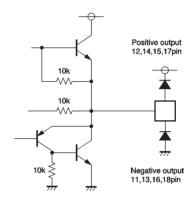

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	BIAS IN	Bias amplifier input	15	Vo4 (+)	Driver channel 4 positive output
2	OPIN1 (+)	Channel 1 pre-amplifier non-inverse input	16	Vo4 ()	Driver channel 4 negative output
3	OPIN1 ()	Channel 1 pre-amplifier inverse input	17	Vo3 (+)	Driver channel 3 positive output
4	OPOUT1	Channel 1 pre-amplifier output	18	Vo3 (—)	Driver channel 3 negative output
5	OPIN2 (+)	Channel 2 pre-amplifier non-inverse input	19	PowVcc	PowVcc (channels 3 and 4)
6	OPIN2 ()	Channel 2 pre-amplifier inverse input	20	STN-BY	Standby
7	OPOUT2	Channel 2 pre-amplifier output pin	21	GND	GND
8	GND	GND	22	OPOUT3	Channel 3 pre-amplifier output
9	MUTE	Mute control for all channels	23	OPIN3 ()	Channel 3 pre-amplifier inverse input
10	PowVcc	PowVcc (channels 1 and 2)	24	OPIN3 (+)	Channel 3 pre-amplifier non-inverse input
11	Vo2 (—)	Driver channel 2 negative output	25	OPOUT4	Channel 4 pre-amplifier output
12	V02 (+)	Driver channel 2 positive output	26	OPIN4 ()	Channel 4 pre-amplifier inverse input
13	Vo1 ()	Driver channel 1 negative output	27	OPIN4 (+)	Channel 4 pre-amplifier non-inverse input
14	Vo1 (+)	Driver channel 1 positive output	28	PreVcc	PreVcc

Note: Positive output and negative output are the polarities with respect to the input.

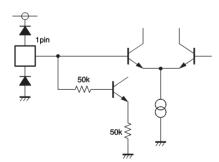

(For example, if pin 4 voltage is high, then pin 14 voltage becomes high.)

Input / output circuits

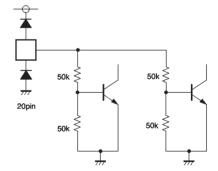
Pre-amplifier input



Pre-amplifier output (driver input)



Driver output


Mute

Bias

Standby

Units for resistance is (Ω)

Optical disc ICs

●Electrical characteristics (unless otherwise noted, Ta = 25°C, PreVcc = 8V, PowVcc1 = 5V, PowVcc2 = 8V, BIAS = 2.8	5V,
$R_L = 8\Omega$)	

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	la	—	20	30	mA	No load
Circuit current during standby	lsт	-	-	1	mA	No load
Standby on voltage	VSTON	-	—	0.5	V	
Standby off voltage	VSTOFF	2.0	—	_	V	
〈Driver〉						-
Output offset voltage 1	V001	-70	0	70	mV	channel 1, 2
Output offset voltage 2	V002	-90	0	90	mV	channel 3, 4
Maximum output amplitude 1	Vом1	3.6	4.0	-	V	channel 1, 2, $V_{IN} = \pm 2.0V$
Maximum output amplitude 2	Vom2	5.4	6.0	—	V	channel 3, 4, $V_{IN} = \pm 2.0V$
Voltage gain 1	Gvc1	10	12	14	dB	V _{IN} =±0.5V
Voltage gain 2	Gvc2	16	18	20	dB	V _{IN} =±0.5V
Mute on voltage	VMTON	2.0	_	-	V	
Mute off voltage	VMTOFF	-	—	0.5	V	
(Pre-stage operational amplifier)	>					
Common-mode input voltage	Vicм	-0.3	-	6.8	V	
Input offset voltage	VOFOP	-6	0	6	mV	
Input bias current	VBOP	-	—	300	nA	
Output high level voltage	VOHOP	6.9	7.35	-	V	
Output low level voltage	VOLOP	-	0.75	1.1	V	
Output drive current sink	Isi	1	-	-	mA	50Ω at Vcc
Output drive current source	lso	1	—	-	mA	50 Ω at GND
Slew rate	SROP	_	1	-	V/µs	100kHz rectangular wave, 2VP-P output

ONot designed for radiation resistance.

Measurement circuit

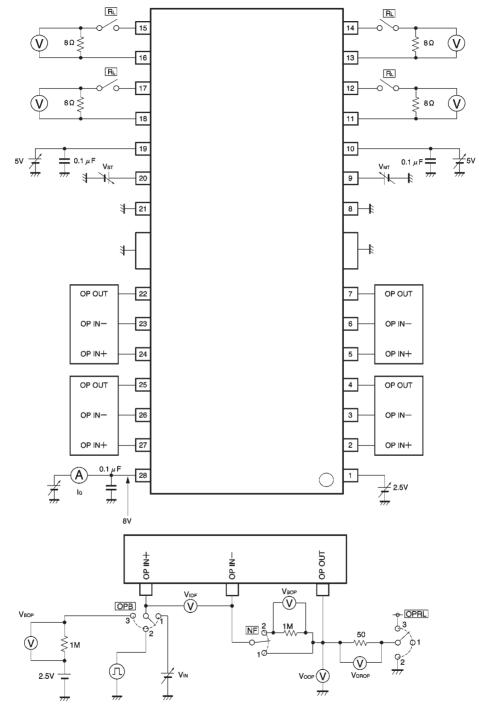


Fig.1

rohm

Measurement circuit switch table

(1) Circuit current and standby (V_{MT} = 0V, V_{IN} = 2.5V, R_L \rightarrow OFF, OPB \rightarrow 1, NF \rightarrow 1, OPRL \rightarrow 1)

Symbol	Input	Remarks	Measurement point
Vst	1		
lo	5V	_	la
lsт	0V	_	la
VSTON	0.5V	_	la
VSTOFF	2.0V	_	la

(2) Driver block (Vst = 5V, $R_L \rightarrow ON$, $OPB \rightarrow 1$, $NF \rightarrow 1$, $OPRL \rightarrow 1$)

Sumbol	In	out	Demerika	Measurement
Symbol	Vin	Vмт	Remarks	point
V001	2.5V	0.5V	-	Vo (channel 1, 2)
V002	2.5V	0.5V	_	Vo (channel 3, 4)
Voomi	±2.0V	0.5V	V _{IN} =0.5V and 4.5V	Vo (channel 1, 2)
Voom2	±2.0V	0.5V	V _{IN} =0.5V and 4.5V	Vo (channel 3, 4)
Gvc1	±0.5V	0.5V	V _{IN} =2.0V and 3.0V	Vo (channel 1, 2)
Gvc2	±0.5V	0.5V	V _{IN} =2.0V and 3.0V	Vo (channel 3, 4)
VMTON	3.0V	2.0V	Verify output voltage is muted	Vo
VMTOFF	3.0V	0.5V	Verify output voltage is muted	Vo

(3) Pre-stage operational amplifier block (Vsr = 5V, Vmr = 0V, $R_L \rightarrow OFF$)

Symbol		Switch			Demoder	Measurement
	OPB	NF	OPRL	VIN	Remarks	point
VOFOP	1	1	1	2.5V	-	VIOF
VBOP	3	2	1	2.5V	-	VBOP/1MΩ
Vонор	1	1	1	5V	-	VOOP
Volop	1	1	1	0V	-	VOOP
lsı	1	1	3	2.5V	-	Vdrop/50 Ω
lso	1	1	2	2.5V	-	Vdrop/50Ω
SROP	2	1	1	±1V	100kHz rectangular wave, 2.5±1V input	Voop

Application example

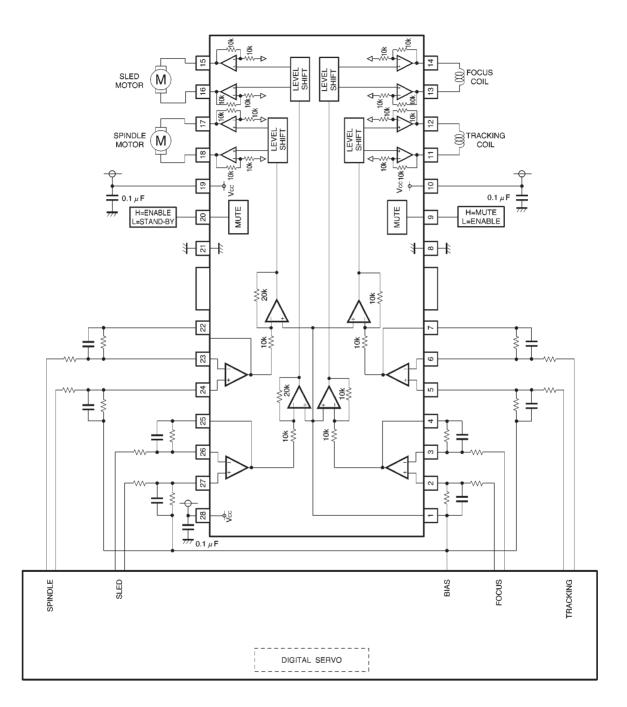


Fig.2

ROHM

Operation notes

(1) The BA5972FP contains a thermal shutdown circuit.

When the chip temperature reaches $175^{\circ}C$ (Typ.), the output current is muted. If the chip temperature then drops below $150^{\circ}C$ (Typ.), then the mute is released.

(2) By having the mute pin (pin 7) voltage pulled up to 2.0V or greater, you can mute the output current for channels 1 and 4. For normal conditions, have pin 7 open or at 0.5V or below.

(3) If the voltage of the bias pin (pin 1) drops below 1.4V (Typ.), outputs are muted.

For normal conditions, have the voltage above 1.7V.

(4) If the power supply voltage drops below 3.8V (Typ.), internal circuits turn off. If the power supply voltage then rises to 4.0V (Typ.), the circuits turn on.

(5) If the voltage of the thermal shutdown, mute ON, or bias pin drops, or if the power supply voltage drops, the mute is activated; however, in these situations, only the drivers are muted.

Also, the output pin voltage becomes the internal bias voltage (approx. Vcc/2).

Electrical characteristic curves

(6) If the standby pin voltage is open or 0.5V or below, the circuit current enters the standby condition.

For normal operation, have the standby pin voltage pulled up to 2.0V or greater.

(7) Connect a bypass capacitor (approx. 0.1μ F) between the bases of the power supply pins of this IC.

(8) Even though the radiation fins are connected to ground within the package, be sure to also connect them to a ground externally as well.

(9) The application example will assure excellent results, but nevertheless, be sure to carefully check all characteristics during use. During use with constants in the external circuitry modified, be sure to leave a sufficient margin in order to take into consideration fluctuations in the static and transient characteristics of the external components and this IC.

Also, be aware that ROHM has not sufficiently performed all confirmations regarding patent rights.

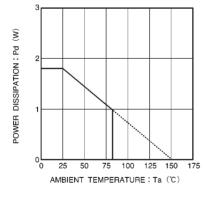
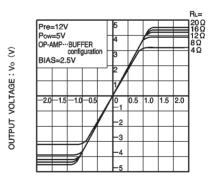
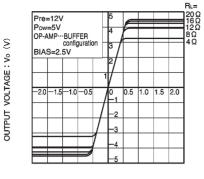




Fig.3 Thermal derating curve

INPUT VOLTAGE : VIN (V)

Fig.4 I / O characteristics (channels 1 and 2)

INPUT VOLTAGE : V_{IN} (V)

Fig.5 I / O characteristics (channels 3 and 4)

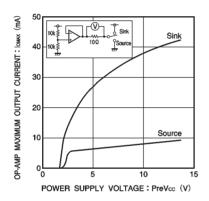
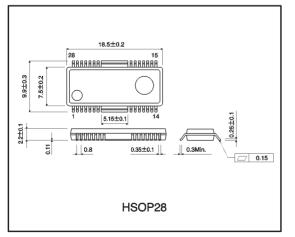
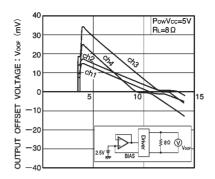




Fig.7 Op-amp maximum output current characteristics

POWER SUPPLY VOLTAGE : PreVcc (V)

Fig.6 Driver output offset characteristics

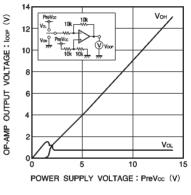


Fig.8 Op-amp saturation voltage characteristics

670

