4-channel BTL driver for CD players BA5931FP

The BA5931FP is a 4-channel BTL driver designed for CD player motors and actuators. The 28-pin HSOP package allows for application miniaturization.

Applications

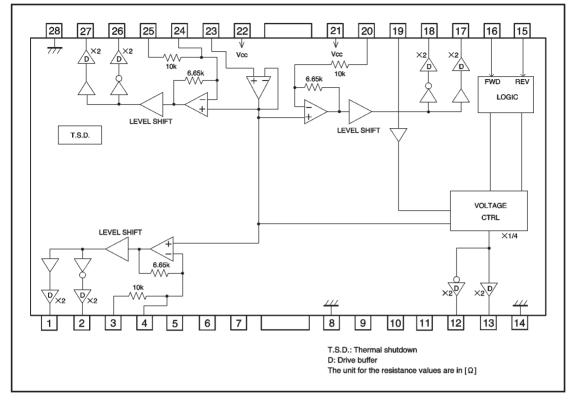
CD players, CD-ROM drives

Features

- Internal drivers for focus coils, tracking coils, spindle motors, feed motors and loading.
- HSOP 28-pin package allows for miniaturization of applications.
- 3) Low number of external components.
- Driver gain is adjustable with a single attached resistor.
- 5) Internal thermal shutdown circuit.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7 *	W
Operating temperature	Topr	-35~+85	Ĉ
Storage temperature	Tstg	-55~+150	Ĉ


*Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

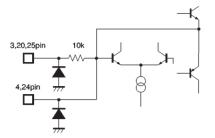
When mounted on a 50 imes 50 imes 1 mm paper phenol board.

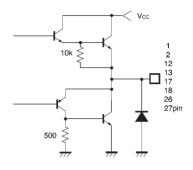
• Recommended operating conditions (Ta = 25° C)

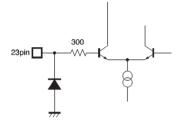
Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	—	13.2	V

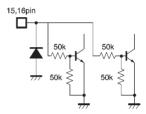
Block diagram

Pin descriptions


Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	OUT1-1	Channel 1 negative output	15	REV	Loading reverse input
2	OUT1-2	Channel 1 positive output	16	FWD	Loading forward input
3	IN1-1	Channel 1 input	17	OUT3-1	Channel 3 negative output
4	IN1-2	Channel 1 gain adjustment input	18	OUT3-2	Channel 3 positive output
5	N.C.	N.C.	19	LDIN	Loading input
6	N.C.	N.C.	20	INЗ	Channel 3 input
7	N.C.	N.C.	21	Vcc	Vcc
8	GND	Ground	22	Vcc	Vcc
9	N.C.	N.C.	23	VrefIN	Bias amplifier input
10	N.C.	N.C.	24	IN4-2	Channel 4 gain adjustment input
11	N.C.	N.C.	25	IN4-1	Channel 4 input
12	OUT2-2	Loading positive output	26	OUT4-2	Channel 4 positive output
13	OUT2-1	Loading negative output	27	OUT4-1	Channel 4 negative output
14	GND	Substrate ground	28	GND	Substrate ground


Note 1: positive and negative output is relative to the polarity of the input pins.


Note 2: "Loading positive output" and "loading negative output" indicate polarity relative to the mode.



Input/output circuits

ROHM

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Quiescent current dissipation	lcc	_	6.3	9.8	mA	No load	
All drivers other than loading dr	iver〉	1					
Output voltage, offset	Voo	-40	-	40	mV	Driver channels 1, 3 and 4	
Maximum output pin voltage 1	VOH1	4.7	5.6	_	V	VBIAS=4V, VIN=8V	
Maximum output pin voltage 2	Voh2	_	-5.6	-4.7	V	VBIAS=4V, VIN=0.7V	
Closed loop voltage gain	Gvc	7.4	8.4	9.4	dB	VIN=0.5V	
Ripple rejection	RR	_	60	-	dB	VIN=0.1Vrms, 100Hz	
Slew rate	SR	_	2.0	-	V/µs	100 Hz square wave, 3 VP-P output	
〈Loading driver〉							
Output voltage F	Vof	2.0	2.6	3.2	V	Vcc=8V, RL=8Ω, LDIN=2.5V	
Output voltage R	Vor	-3.1	-2.5	-1.9	V		
Output voltage range F	Vomf	2.3	3.1	-	V		
Output voltage range R	Vomr	_	-3.1	-2.3	V	Vcc=5V, RL=8 Ω , LDIN=4.5V *	
Output load variation F1	ΔVF1	_	250	500	mV	Vcc=8V, LDIN=3.0V	
Output load variation R1	ΔVR1	_	250	500	mV	l=100→400mA *	
Output load variation F2	ΔVF2	_	600	850	mV	Vcc=5V, LDIN=OPEN	
Output load variation R2	ΔVR2	_	600	850	mV	l=100→400mA *	
Supply voltage variation F	ΔV_{FL}	-500	-	500	mV	- Vcc=4.5V→13.2V, RL=∞	
Supply voltage variation R	ΔVRL	-500	-	500	mV		
Output voltage, offset	Vool	-50	-	50	mV	Output voltage during braking	
$\langle Controller\ FWD\ REV\ pin angle$					1		
Input high level voltage 1	VIH1	2.0	-	_	V	Determined by input pin voltage FWD (pin 16) and REV (pin 15) VIN=5V	
Input low level voltage 1	VIL1	-	-	0.5	V		
Input high level current	Ін	_	-	500	μA		
Input low level current	lı∟	_	-	500	μA	VIN=0V	

ONot designed for radiation resistance.

*1 VOMF and VOMR remain roughly the same even when LDIN (loading input, pin 19) is opened.

*2 Δ VF1 and Δ VR1 indicate load variation at unclipped, 3.0 V output.

ΔVF2 and ΔVR2 indicate load variation when output is clipped to open input at reduced voltage (5 V). This is the load variation in this state.

Measurement circuit

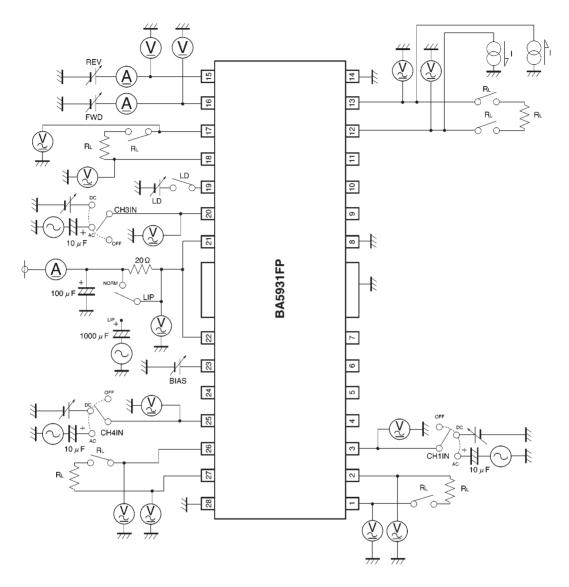
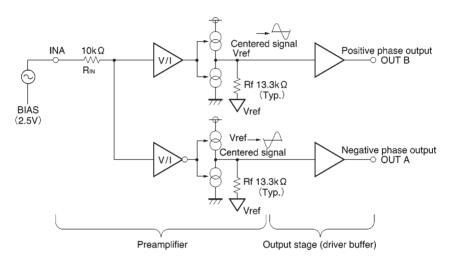
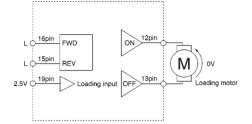


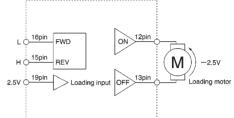
Fig. 1

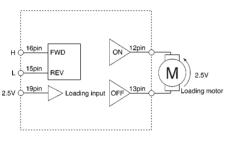
Circuit operation

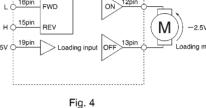
(1) Driver

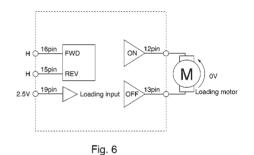
Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals, which normally center on 2.5V, are V/I converted by the preamplifier, generating a current corresponding to the input voltage. This current is passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V/I conversion, generating BTL output via the driver buffer.


Fig. 2


FWD	REV	Loading	Illustration
	L	High impedance	Fig.3
L	Н	Reverse	Fig.4
н	L	Forward	Fig.5
	Н	Brake	Fig.6


Switching the loading motor driver output mode ($V_{CC} = 8V$) (2)



Note: Loading driver gain = 0dB

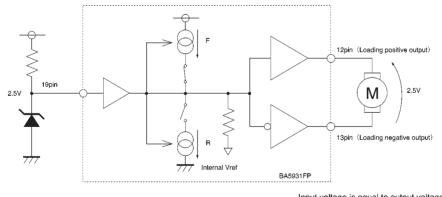


Fig. 7

Input voltage is equal to output voltage(gain is 0 dB)

Note: The loading output voltage will not exceed the power supply's maximum output voltage, even if set above this maximum voltage. The example above applies only when setting below the maximum output voltage. Maximum output voltage for the power supply can be output by opening the loading input pin (19 pin).

Application example

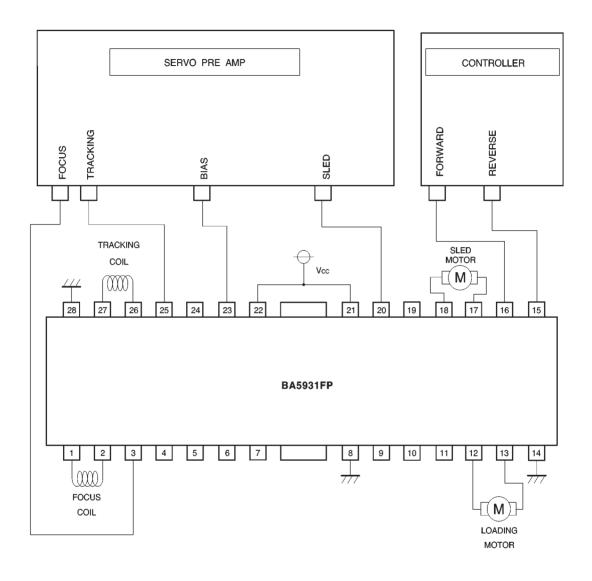


Fig. 8

Operation notes

(1) The BA5931FP has a thermal shutdown circuit. The output current is muted when the chip temperature rises above $175^{\circ}C$ (typically).

(2) The IC is muted when the bias pin (pin 23) is lowered below 1.4V (typically). Make sure it stays between 1.6V and 6.5V during normal use.

(3) Muting occurs during thermal shutdown or a drop in the bias pin voltage. In each case, only the drivers are

muted. During muting, the output pins remain at the internal bias voltage, (approx $V{\rm cc}/2).$

(4) Connect the IC to a $0.1 \mu F$ bypass capacitor between power supplies, at the base of the IC.

(5) The radiating fin is connected to the package's internal GND, but should also be connected to an external ground.

S

OUTPUT VOLTAGE: Vo

•Electrical characteristic curves

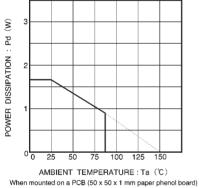
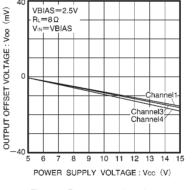
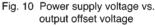
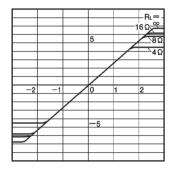
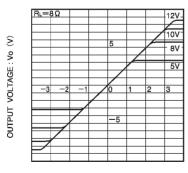





Fig. 9 Thermal derating curve



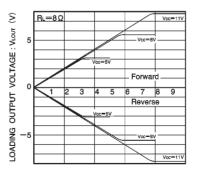
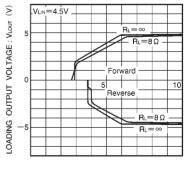

INPUT VOLTAGE : VIN (V)

Fig. 11 Channel 1, 3 and 4 I / O characteristics (variable load)

INPUT VOLTAGE : VIN (V)



LOADING INPUT VOLTAGE : V $_{\text{LIN}}$ (V)

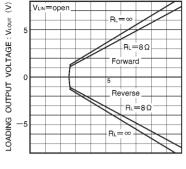
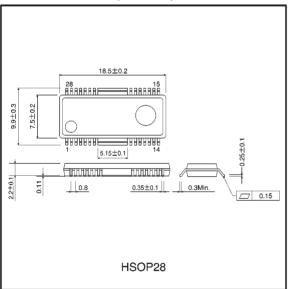

ROHM

Fig. 13 Loading driver I / O characteristics

POWER SUPPLY VOLTAGE : Vcc (V)


Fig. 14 Loading output vs. power supply voltage

POWER SUPPLY VOLTAGE : Vcc $\langle V \rangle$

Fig. 15 Loading output vs. power supply voltage

External dimensions (Units: mm)

