

These retriggerable one shots provide the designer with

four inputs; two active high and two active low. This permits a choice of either leading-edge or trailing-edge triggering,

independent of input transition times. When input conditons

for triggering are met, a new cycle starts and the external

capacitor is rapidly discharged and then allowed to charge

again. The retriggerable feature allows for output pulse

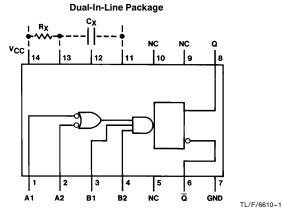
widths to be expanded. In fact a continuous true output can

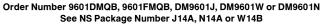
be maintained by having an input cycle time which is shorter

than the output cycle time. Retriggering may be inhibited by

9601/DM9601 Retriggerable One Shot

General Description


Features


- High speed operation—input repetition rate > 10 MHz
- Flexibility of operation—optional retriggering/lock-out capability
- \blacksquare Output pulse width range—50 ns to $\,\infty\,$
- Leading or trailing edge triggering
- Complementary outputs/inputs
- Input clamping diodes
- DTL/TTL compatible logic levels

 Alternate Military/Aerospace device (9601) is available. Contact a National Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

tying the \overline{Q} output to an active low input.

Function Table

Inputs				Out	puts	
A1	A2	B1	B2	Q	Q	
H X L L X X H ↓	$\begin{array}{c} H \\ X \\ X \\ X \\ X \\ X \\ X \\ L \\ L \\ L \\ \downarrow \\ \downarrow \\ H \end{array}$	X L X H ↑ H H H H H H	X X L H H ↑ H H H H		+ + + + V V + V V V V V V	 H = High Logic Level L = Low Logic Level X = Either Low or High Logic Level ↑ = Low to High Level Transition ↓ = High to Low Level Transition

© 1995 National Semiconductor Corporation TL/F/6610

RRD-B30M105/Printed in U. S. A.

9601/DM9601 Retriggerable One Shot

June 1989

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	5.5V
Operating Free Air Temperature Range	
Military	-55°C to +125°C
Commercial	0° to +70°C
Storage Temperature Range	-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		Military			Commercial			Units
Gymbol			Min	Nom	Max	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High Level Input Voltage	$T_A = -55^{\circ}C$	2						v
		$T_A = 0^{\circ}C$				1.9			
		$T_A = 25^{\circ}C$	1.7			1.8			
		$T_A = 75^{\circ}C$				1.6			
		$T_{A} = 125^{\circ}C$	1.5						
VIL	Low Level Input Voltage	$T_A = -55^{\circ}C$			0.85				
		$T_A = 0^{\circ}C$						0.85	V
		$T_A = 25^{\circ}C$			0.9			0.85	
		$T_A = 75^{\circ}C$						0.85	
		$T_{A} = 125^{\circ}C$			0.85				
I _{OH}	High Level Output Current				-0.72			-0.96	mA
I _{OL}	Low Level Output Current				10			12.8	mA
T _A	Free Air Operating Temperature		-55		125	0		75	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (Note 3) $V_{CC} = Min, I_I = -12 \text{ mA}$		Min	Typ (Note 1)	Max	Units
VI	Input Clamp Voltage					-1.5	V
V _{OH}	High Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min, (N)$	lote 4)	2.4			V
0L	Low Level Output	$V_{CC} = Min, I_{OL} = Max$	MIL			0.4	v
	Voltage	V _{IL} = Max, V _{IH} = Min (Note 4)	СОМ			0.45	
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 4.5V$				60	μΑ
Ι _{ΙL}	Low Level Input Current	V _{CC} = Max	$MIL V_{IN} = 0.40V$			-1.6	mA
			$COM V_{IN} = 0.45V$			-1.6	
l _{OS}	Short Circuit Output Current	V _{CC} = Max	MIL	-10		-40	mA
		(Notes 2 and 4)	СОМ	-10		-40	
ICC	Supply Current	V _{CC} = Max				25	mA

Note 1: All typicals are at V_{CC}\,=\, 5V, T_A $=\,$ 25°C.

Note 2: Not more than one output should be shorted at a time.

Note 3: Unless otherwise noted, $R_{X}\,=\,$ 10k between PIN 13 and V_{CC} on all tests.

Note 4: Ground PIN 11 for V_{OL} test on PIN 6, V_{OH} and I_{OS} tests on PIN 8. Open PIN 11 for V_{OL} test on PIN 8, V_{OH} and I_{OS} tests on PIN 6.

Symbol	Parameter	From (Input) To (Output)	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time Low to High Level Output	Negative Trigger Input to True Output	$\begin{array}{l} C_L = 15 \ \text{pF} \\ C_X = 0 \\ R_X = 5 \ \text{k}\Omega \end{array}$		40	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Negative Trigger Input to Complement Output			40	ns
t _{PW(MIN)}	Minimum True Output Pulse Width				65	ns
t _{PW}	Pulse Width		$\begin{array}{c} R_{X} = \mbox{10} \ k\Omega \\ C_{X} = \mbox{1000} \ pF \end{array}$	3.08	3.76	μs
C _{STRAY}	Maximum Allowable Wiring Capacitance		Pin 13 to GND		50	pF
R _X	External Timing Resistor]	DM96		25	kΩ
R _X	External Timing Resistor]	DM86		50	kΩ

Operating Rules

- 1. An external resistor R_X and an external capacitor C_X are required for operation. The value of R_X can vary between the limits shown in switching characteristics. The value of C_X is optional and may be adjusted to achieve the required output pulse width.
- 2. Output pulse width t_{PW} may be calculated as follows:

$$t_{PW} = K R_X C_X \left[1 + \frac{0.7}{R_X} \right] \text{(for } C_X > 10^3 \text{ pF)} \\ K \approx 0.34$$

 R_X in k Ω , C_X in pF and t_{PW} in ns. (For $C_X < 10^3$ pF, see curve.)

- 3. R_X and C_X must be kept as close as possible to the circuit in order to minimize stray capacitance and noise pickup. If remote trimming is required, R_X may be split up such that at least R_{X(MIN)} must be as close as possible to the circuit and the remote portion of the trimming resistor R < R_{X(MAX)} R_X.
- 4. Set-up time (t₁) for input trigger pulse must be > 40 ns. (See Figure 1).

Release time (t₂) for input trigger pulse must be > 40 ns. (See *Figure 2*).

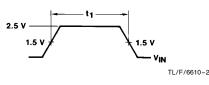
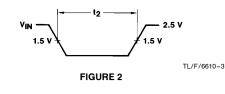
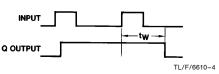
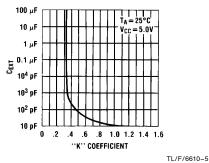
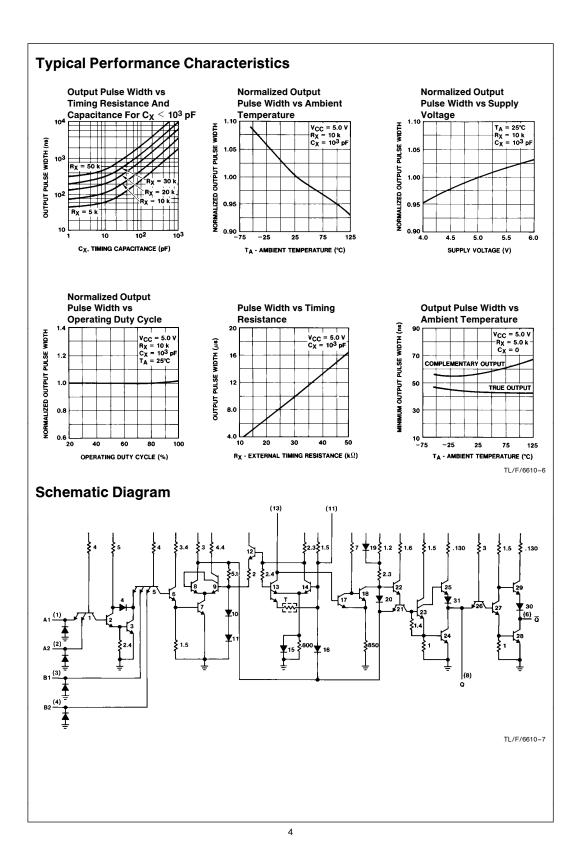
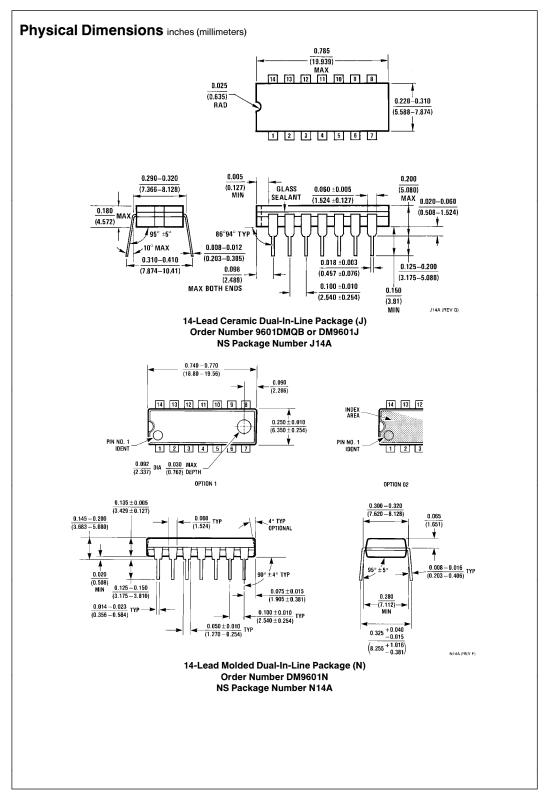




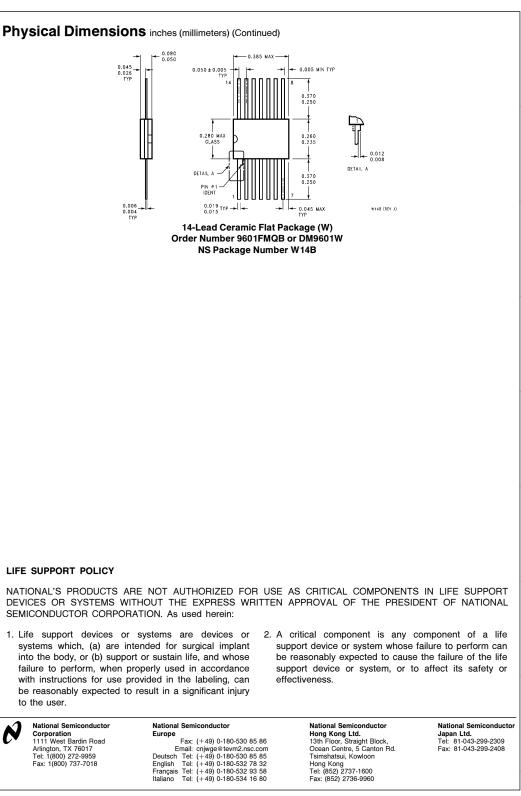
FIGURE 1


5. Retrigger pulse width (see *Figure 3*) is calculated as follows:

$$t_W = t_{PW} + t_{PLH} = K R_X C_X \left[1 + \frac{0.7}{R_X} \right] + t_{PLH}$$






Typical "K" Coefficient Variation vs Timing Capacitance The multiplicative factor "K" varies as a function of the timing capacitor, C_X . The graph below details this characteristic:

 $^{*}\mbox{For further detailed device characteristics and output performance, please refer to the NSC one-shot application note, AN-366.$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.